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Process Models and Design Space

• Process models map process parameters and input 
variables onto the product attributes.
– Design space may be defined in terms of a process model

• Process models are often based on a relatively small 
number of experiments
– Designed experiments tend to be parsimonious.
– Parsimonious experiments may have large variances.
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Process Models and Probabilities

• Process models focus on predicting response means.
– In a QbD paradigm, “What is needed is a multivariate 

predictive distribution for the quality responses.”
– “If we can quantify the entire (multivariate) predictive 

distribution of the process quality responses as a function 
of [input variables and process parameters], then we can 
compute the probability of a future batch meeting the 
quality specifications.”

– (Peterson, Pharmaceutical Manufacturing, June 25, 2010)
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Advantages of Monte Carlo Simulation
1. We make no assumptions concerning sources 

of uncertainty or variable covariance.

2. We see the distribution of output variable 
values, not just a standard deviation.

3. Sensitivity analysis allows us to prioritize high 
risk input variables and improve process 
control.



6

Monte Carlo Methods
• Develop a mathematical model.

– The Process Model.

• Add random variables.
– Replace quantities of interest with random numbers 

selected from appropriate distribution functions that are 
expected to describe the variables.

• Monitor selected output variables.
– Output variables become distributions whose properties are 

determined by the model and the distributions of the 
random variables.
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Implementation of Monte Carlo Simulation

• Monte Carlo simulation offers a simple tool to 
explore influence of random variation in input 
parameters on multivariate predictive distributions

• In this presentation, we will examine the application 
of Monte Carlo simulation to a process model for two 
case studies
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Case Study 1: Background Information

Adapted from ICH IWG Training, October, 2010

Design Space defined on the basis of Multivariate DOE results, RSM design, 
20+3 center points
DOE Inputs: 

-API particle size (API), log(D90) microns
- Magnesium Stearate specific surface area (MgSt), cm2/g
- Lubrication time (LubT), min
- Tablet hardness (Hard), N

DOE Response:
-% Dissolved in 20 minutes (Diss)

Control Strategy:
-Predictions from regression model derived from DOE data implemented 

as a
surrogate for traditional dissolution testing

Specification: 80% dissolved in 20 min
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Case Study 1: DOE Data
Exp No Run Order API MgSt LubT Hard Diss

1 1 0.5 3000 1 60 101.24
2 14 1.5 3000 1 60 87.99
3 22 0.5 12000 1 60 99.13
4 8 1.5 3000 10 60 86.03
5 18 0.5 12000 10 60 94.73
6 9 1.5 12000 10 60 83.04
7 15 0.5 3000 1 110 98.07
8 2 0.5 12000 1 110 97.68
9 6 1.5 12000 1 110 85.47

10 16 0.5 3000 10 110 95.81
11 20 1.5 3000 10 110 84.38
12 3 1.5 12000 10 110 81
13 10 0.5 7500 5.5 85 96.85
14 17 1.5 7500 5.5 85 85.13
15 19 1 3000 5.5 85 91.87
16 21 1 12000 5.5 85 90.72
17 7 1 7500 1 85 91.95
18 4 1 7500 10 85 88.9
19 5 1 7500 5.5 60 92.37
20 11 1 7500 5.5 110 90.95
21 12 1 7500 5.5 85 91.95
22 13 1 7500 5.5 85 90.86
23 23 1 7500 5.5 85 89
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Case Study 1: Problem Description
Objective: Evaluate the response variance in the predictive model

• Predictive model derived from analysis of DOE data
• Standard Error for Diss = 0.72
• Design space defined in terms of ranges evaluated during DOE

Design Space:
API: 0.5 - 1.5
MgSt: 3000 – 12000
LubT: 1 – 10
Hard: 60 – 110
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Case Study 1: Approach for Uncertainty 
Estimation

Method: Uncertainty estimated using Monte Carlo simulation, using 
@RISK

Following cases were studied:
- Case A: Assumed measurement uncertainty for each of the inputs 
(i.e. common cause variation), modeled as a normal distribution, no 
uncertainty assumed for the model coefficients
- Case B: Assumed measurement uncertainty for each of the inputs 
and also for the model coefficients, modeled as a normal distribution
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Case Study 1: Results for Case A

For the following combination of input variables ( API: 1.5, MgSt: 12000, LubT: 10, 
Hard: 110) there is a 5.7% probability of not meeting the dissolution specification

Thus we have ~94% ‘assurance of quality’, and, there is potential for dissolution 
failure at edge of design space
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Case Study 1: Results for Case B

For the same combination of input variables as in Case A, assuming uncertainty 
in model coefficients (s= 1% of mean value) there is a 22.4% probability of 
not meeting the dissolution specification
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Case Study #2: Estimating Model 
Coefficients by Monte Carlo Simulation

• Previous Studies:  Estimated model coefficient 
standard deviations do not predict the observed 
response uncertainty.

• Can we use Monte Carlo simulation to provide better 
estimates of model coefficient standard deviations?
– Solve for the model coefficients using Monte Carlo 

simulation.
– Model coefficients are given as distributions.
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Estimating Variance of Process Model 
Regression Coefficients

Jth Model coefficient variance = Jth diagonal element of Cov(B)

Problems: 1.) We know that D (matrix of input variables) has uncertainty.
2.) We suspect that uncertainties may be correlated.

Model coefficient 
Covariance matrix Cov(B)=[DTD]-1R

2

Response variance
( p  = # model coefficients

N = # experiments)
R

2 =  (Ri – Ri )2

N - p

^

i=1

N

Assumptions:  Only R has uncertainty;  Errors uncorrelated and constant

Cov(B)=D†[Cov(R)]D†T
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Least Squares Solution to a 
Process Model

Matrix Representation of Process Model:      R = DB

Solving for the Model Coefficients:                D†R = B

The pseudoinverse solution of a matrix equation gives the 
least squares best estimates of the B coefficients!

Define the pseudoinverse of D:                     D† = (DTD)-1DT
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Case Study 2:  Modeling 45 minute 
dissolution (D45) of a tableting process

• 32 Factorial Experimental Design
– Granulating Water (GS:  36-38 kg)
– Granulating Power (P:    18.5-22.5 kW)

• Nested Compression Factors
– Compression Force (CF: 11.5-17.5 kN)
– Press Speed (S: 70-110 kTPH)

• Least Squares Predictive Model*

D45 = 68.35 – 1.34(GS) – 2.88(P)  - 8.95(CF) + 2.43(GS)2

* Parameter values are mean-centered and range-scaled.
Publication Reference 
Application of Quality by Design Knowledge (QbD) From Site Transfers to Commercial 
Operations Already in Progress,” J. PAT, Jan/Feb, pg. 8, 2006.
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Measurement Uncertainty and Prediction Uncertainty

Benchmark

Experiment Measured Mean Model Prediction Measured St. Dev.
1 69.0 69.2 3.1
2 73.5 72.3 3.1
3 71.9 72.1 1.9
4 67.1 65.5 2.9
5 69.8 71.2 1.9
6 75.5 75.0 0.8
7 65.4 66.6 2.7
8 75.8 77.3 1.1
9 56.1 59.4 3.7
10 61.0 59.4 3.7
11 67.2 68.3 2.4
12 77.0 77.3 1.1
13 72.7 68.3 2.4

2.4
2.6

Standard Error of Prediction
Standard Error (RMS Measurement Standard Deviation)

D45 (%)
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Increase in process parameter variance causes a shift in some model coefficients.

Increase in process parameter variance increases model coefficient variance.
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Case Study 2: How Do Variances in Process Parameters 
Influence Model Coefficients?
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Regression #1 #2 #3 #4
P Std. Dev. - - 1 1

GS Std. Dev. - - 0.25 0.25 0.25
CF Std. Dev. - - 1 1
R Std. Dev. - measured - measured 2.5%

B0 68.35 ± 0.83 68.35 ± 0.93 68.41 ± 1.06 68.39 ± 1.44 68.39 ± 0.9
B(GS) -1.34 ± 1.07 -1.34 ± 1.21 -1.23 ± 1.49 -1.22 ± 1.96 -1.24 ± 1.28
B(P) -2.88 ± 0.96 -2.88 ± 1.04 -2.13 ± 1.18 -2.11 ± 1.53 -2.63 ± 1.06
B(CF) -8.95 ± 1.17 -8.95 ± 1.38 -7.37 ± 1.35 -7.37 ± 1.87 -8.52 ± 1.2

B(GS^2) 2.44 ± 1.35 2.44 ± 1.52 2.13 ± 1.84 2.14 ± 2.43 2.15 ± 1.57
Std. Error of 
Prediction 1.6% 1.8% 2.1% 2.8% 1.8%

Monte Carlo Simulation Parameters

Std. Error

Estimated Model Coefficient Uncertainties from 
Monte Carlo Simulation

0.5

0.5
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Regression versus Monte Carlo 
Distributions for D45
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Monte Carlo with and without 
measurement error
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Conclusion

• Uncertainty analysis is a powerful tool to 
estimate robustness of a process model

• Monte Carlo simulation of process models 
facilitates implementation of risk mitigation 
techniques in the control strategy
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• Back up
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Experimentation and Process Modeling

D45exp 1

D45exp 2

D45exp 3



GSexp 1 Pexp 1 CFexp 1

GSexp 2 Pexp 2 CFexp 2

GSexp 3 Pexp 3 CFexp 3



 

 
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Propagation of uncertainty in process model predictions:

All Model Coefficient variances and Process Variable variances 
contribute to each predicted Response uncertainty in a model-dependent 
manner.

D45pred 1 = B0 + B1 ·GSexp 1 + B2 ·Pexp 1 + B3 ·CFexp 1 + B4 ·GS2
exp 1

D45pred 2 = B0 + B1 ·GSexp 2 + B2 ·Pexp 2 + B3 ·CFexp 2 + B4 ·GS2
exp 2

D45pred 3 = B0 + B1 ·GSexp 3 + B2 ·Pexp 3 + B3 ·CFexp 3 + B4 ·GS2
exp 3



 

 

 



 

 

Experimentation and Process Modeling
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Case Study #2:  Influence of Process Parameter 
Variation on Prediction

• Model Conditions
– GS mean = 36 kg
– P    mean = 20 kW
– CF  mean = 14 kN
– Input parameter standard deviations were varied.
– Dissolution values were predicted.
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B0
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B2

B3
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A Process Model: 
Matrix Representation

R = DB

D45pred 1

D45pred 2

D45pred 3



1   GSexp 1 Pexp 1 CFexp 1 GS2
exp 1

1   GSexp 2 Pexp 2 CFexp 2 GS2
exp 2

1   GSexp 3 Pexp 3 CFexp 3 GS2
exp 3



 



 

  

=

Response

matrix

Design

matrix

B

matrix
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Estimating Variance in Prediction: 
The Basis for Uncertainty in Design Space

Jth experimental variance = Jth diagonal element of Cov(R)

Response 
Covariance matrix Cov(R) = B[Cov(D)]BT

Assumptions:  Only D has uncertainty.

Problems: 1.) We know that B has uncertainty.
2.) We know that uncertainties in D will be correlated, but

we don’t know Cov(D)



30

Example: Simulations 1-4
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Case Study 2: Influence of Dissolution 
Measurement Error

• Model Conditions
– GS mean = 36 kg
– P    mean = 20 kW
– CF mean = 14 kN
– Input parameter standard deviations were varied.
– Dissolution measurement error was added.
– Dissolution values were predicted.
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Example: Simulations 5-7
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Propagation of Uncertainty in 
Process Modeling

1.  Assign random variables to Dissolution values (R) and use Monte 
Carlo simulations to propagate error to the model coefficients (B).

Solving for the Model Coefficients:     D†R=B

2.  Assign random variables to Process Parameters (D) and use Monte 
Carlo simulations to propagate error to B.

B1 = D†
11 ·RExp 1 + D†

12 ·RExp 2 + D†
13 ·RExp 3 +…

B2 = D†
21 ·RExp 1 + D†

22 ·RExp 2 + D†
23 ·RExp 3 +…



 

   

The pseudoinverse of D:                     D†=(DTD)-1DT
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How Do Variances in Process Parameters Influence 
Model Coefficients?

• Simulation # 1 (1-0.25-1)
– Measured D45 means and standard deviations.
– P 19-23 kW ± 1 kW
– GS 36-38 kg ± 0.25 kg
– CF 12-18 ± 1 kN

• Compare to regression distributions
– Model coefficient means
– Model coefficient standard deviations
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Case Study 2: Simulation 1
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36

Case Study 2: Influence of Process Parameters 
Variation

• Increase in granulation water mass (GS) variance:
– Increases predicted D45 variance.
– Slightly shifts predicted D45 means.
– Skews the predicted D45 distributions.

• Increase in granulator power (P) endpoint variance:
– Increases predicted D45 variance.
– Does not shift predicted D45 means.
– Does not skew the predicted D45 distributions.
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Case Study 2: Influence of Dissolution 
Measurement Error

• Increase in D45 measurement variance:
– does not shift predicted D45 means.
– does not appear to skew predicted D45 

distributions.
– increases predicted D45 variance.

• Advantage #2, we get the distribution, not just the 
standard deviation.

• Advantage #3, sensitivity analysis allows us to 
prioritize process improvement.
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Benchmark

Experiment Measured Mean Model Prediction Measured St. Dev.
1 69.0 69.2 3.1
2 73.5 72.3 3.1
3 71.9 72.1 1.9
4 67.1 65.5 2.9
5 69.8 71.2 1.9
6 75.5 75.0 0.8
7 65.4 66.6 2.7
8 75.8 77.3 1.1
9 56.1 59.4 3.7
10 61.0 59.4 3.7
11 67.2 68.3 2.4
12 77.0 77.3 1.1
13 72.7 68.3 2.4

2.4
2.6

Standard Error of Prediction
Standard Error (RMS Measurement Standard Deviation)

D45 (%)

Measurement Uncertainty and Prediction Uncertainty
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