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Introduction 

The contact-kinin system ' is a proteolytic system comprising four proteins that are present in 
biological fluid in form of zymogens, namely Hageman factor (f.XII), factor XI (EM), pre-
kallikrein (PK) and high molecular weight kininogen (HK). Zymogens upon interaction with 

negatively charged surfaces become activated, triggering a series of enzymatic events that are 
important in the initiation and amplification of local inflammatory reactions . During activation, 

F.XII is converted to the catabolic peptides f.XIIf and f.XIIa which activate the classical pathway of 
Complement system by acting at the site of C1r and Cls (Fig . 1) . 

Alternatively, increased fibrinolytic activity may result in activation ofearly Complement factors 
since plasrnin can activate C l s in vitro and in vivo(Naff, et al ., 1968, Ratnoff, et al., 1967, RatnofF, 
et al ., 1969) . The possible involvement of the kinin system and fibrinolysis in the inflammatory 

phenomena in the brain of patients with Alzheiemer's disease (AD) is supported by several lines of 
evidences : i) Hageman factor is associated with %myloid-13 (AB) deposits(Yasuhara, et al ., 1994), ii) 
HK is massively cleaved in cerebrospinal fluid of AD patients (Bergarnaschini, L., et al ., 2001), iii) 
plasminogen, plasminogen activator and inhibitors are produced in brain (Hua, et al ., 2002, 

Kranenburg, et al ., 2005) . The mechanism of AB-dependent Contact system activation (Figure 1) 

involves the interaction of A13 with f.XII and/or kallikrein since f.XII deficiency and kallikrein 

inhibition abrogate the ability to cleave HK. Furthermore, in vitro, A!3 enhances the t-PA 

dependent conversion of plasminogen to plasmin, as effectively as fibrin(ogen) fragments . 

The negatively charged residues, and their distribution within the region 1-11 of AB (Figure 
2) seems to play a key role in the activation of this system as suggested by the finding that there 

was not a significant difference in the HK cleaving activities of the full length peptides (1- 42 or 1-

40) and the truncated fragments 1-28 and 1-11, whereas the fragments A1312-28, AB (Gln1I)1-16 

and A(3 40-11 had no activating ability (Bergamaschini L, et al . } 

Contact/Kinin system and Allzheiemer's disease 
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Several lines of evidence support the hypothesis that contact system could be involved in 

AD pathogenesis (Joseph, et al., 1999, Bergamaschini, et al ., 1998, Niwano, et al., 1995, Yasuhara, 

et al ., 1994) . However, whether or not the functional disturbances of neurons or glial cells in AD 

brain might be, at least in part, attributable to the generation of bradykinin, as a consequence of 

contact-kinin system activation, remains to be ascertained . In any case, activation of factor XII and 
pre-kailikrein results in generation of enzymes that react with C1-1NH to form f.XIIa-C1-INH and 

kallikrein C1-INH complexes. Cl;-INH is also the major inhibitor of activated complement C1 . In 

situ hybridization revealed that in brain areas with neuritia plaques and activated glial cells, only 

neurons express C1-INH mRNA and not the other cells such as astrocytes that usually produce 

them. Thus, a defective synthesis combined to an increased rate of consumption of CI-INH may 

lead to a functional deficiency of C1-INH. This local C1-1NH functional deficiency may facilitate 

the activation of contactlkinin system, as well as of complement, at the site of affected areas of AD 

brain (Sarvari, et a1 ., 2003) . 

Amyloid plaques and neurofibrillar tangles (NFI's), the neuropathological hallmarks of AD, may 

not be the direct cause of the symptoms, however there is a large body of evidence that AB could be 

implicated in pathogenesis of AD because of its cytotoxicity and the ability to trigger a robust, local 

inflammatory reaction (Cotman, et al ., 1996, Veerhuis, et al ., 2005) . 

Possible beneficial actions of Heparin in AD 

Evidence that AB accumulation is likely to contribute to AD pathology, provides the 

rationale for a therapy based on altering brain AB accumulation and/or reducing its cytotoxic and 

proinflammatory actions . In vitro charged residues within the region 1-11 are critical for AB 

proinflammatory activity (Bergamaschini, et al 2001, Velazquez, et al ., 1997, Webster, et al., 1997) 

thus inhibition of this activity by pharmacological targeting of this region, might be useful to slaw 

progression of neurodegeneration in AD brain. Candidates for such a therapy could be heparin? 

(Leveugle, et al ., 1998, Leveugle, et a1 ., 1994, Tyrrell, et al ., 1999,' Watson, et a1 ., 1997) that binds 
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the I2-17 region of AO . While mast of the studies on the heparin structure and function have 

concentrated on understanding interactions responsible for inhibition of blood coagulation, the 
observation that heparin-containing tissues are those in direct contact with the external environment 
suggests a role in host defence . 

In recent years researches, both in vitro and in vivo, highlighted a broad range of anti-inflammatory 
applications of heparin and of the low molecular weight heparin enoxaparin. 

It has been shown that heparins induce in vitro : 

1) the inhibition of AO production and deposition (Chen, et al ., 1995 Akiyama, 1997, Akiyama, et 
al ., 1492, Arai, T., et al ., 2006, Evin, et al ., 2003, Gardella, et al ., 1990, Gardella, et al ., 1992, 
Grammas, et al ., 2004, Hino, et al., 2001) ; 

2) the removal of metal cations, Zn and Cu, reducing aggregation of AP and the release of reactive 
oxygen species from cells (Curtain, et al ., 2003, Engelherg, 2004, Esler, et al ., 1996, Jiang, et al ., 
1995, Karr, et a1 ., 2004, Kowalik-Jankowska, et al ., 2001, Kozin, et al ., 2001, Liu, et al ., 1999, Van 
Nostrand, 1995) ; 

3) the inhibition of arginine and lysine effects throughout the binding to positively charged 

Apolipoprotein E (ApoEe4) residues, thus minimizing ApoEe4 effects and providing a 

beneficial action in AD pathogenesis (Bazin, et al ., 2002, Dong, et al ., 2001, Libeu, et al ., 

2001, Sadowski, et a1 ., 2004, Saito, et al ., 2003, Shuvaev, et al ., 2000). 

4) the inhibition of A13-dependent activation of complement and conatact/kinin system, , 

and cytotoxic effect of A13 (Velazquez, et a1 ., 1997; Bergamaschini, et al., 2002; 

Bergamaschini, et al . 2004) 

In vivo chronic treatment of APP23 transgenic mice (over-expressing human APP7s1) with a 

prophylactic dose of enoxaparin results in a significant reduction in number and area occupied by 

amyloid deposits in the neocortex, compared to saline-treated APP23 mice(Bergamaschini, et al . . 
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2004) . Furthermore, enoxaparin treatment before and during reperfusion reduces myocardial infarct 
size and tissue inflammatory reaction (Libersan, et al . Cardiovasc Res. 1998) 

Aim of the Study 

Enoxaparin, as well as all LMWHs in clinical use, is a mixture of several saccharides of different 
length, and possibly structure that could have an important role in the biological activity of these 
drugs, as suggested by the demonstration that LMWHs have different antithrornbotic activity. 
In order to determine the relationship between structure and anti-inflammatory activity, 15 
compounds (enoxaparin-derived, and heparin related) have been evaluated for their ability to inhibit 
the AP -dependent activation of the contact system . 

Material and methods 

A(3 peptide yreparation A(3(1-42) (Bachern AG, Bubendorf) was prepared by dissolving lyophilized 
A(3 in high quality I1Od at a concentration of lmg/ml and immediately diluted to 100gg1rn1 with 
PBS (pH 7.4) . 

Eno-derived comnounds nrenaration According to your suggestion, compounds were prepared by 
dissolving lyophilised compounds in high quality 11Od at a concentration of 84mg/ml, and stored 
at 4°C . 

Mixture of plasma /A13(I-42 )/ Coin nound reyaration In preliminary experiments normal Na-
citrated plasma was draw from healthy volunteers, and the level of HK cleavage was evaluated 
trough SDS-PAGE and immunoblotting. Only plasmas with no, or very law, evidence of HK self-
activation (absence of the III band on immunoblotting) were used for the activation/inhibition 
experiments . Suitable plasma samples were 'stored in small aliquots at -70°C until used; plasma 
samples were snap thawed at 37'C immediately before their used, and used only once . 
Freshly solubilized A(3 (50g1) was mixed with a fixed volume of Eno or Erxo-derived compounds, to 
obtain the established weight/weight ratios . Within 5 min, A13-Compound mixtures were added to 
an equal plasma samples and incubated at 37°C for 30 min. The reaction was quenched by adding 
PBS containing soybean hypsin inhibitor (100Rg/rnl), EDTA (10mM), Polybrene (0.05%vol./wt) . 
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Contact systern activation Contact system activation was assessed by measuring the degree of 
cleavage of HK, a suitable marker of contact system activation using densitometric analysis of 
immunostained blotting membranes after SDS-PAGE . This method simultaneously evaluates the 
native protein and its activation fragment. Plasma samples were loaded on 8% acrylamide gel and 
separated by SDS under non-reducing-conditions . -Proteins were transferred to polyvinylidene-
difluoride membranes by electroblotting and HK bands were visualized with polyclonal goat antr 
light chain HK and biotin conjugated rabbit anti goat IgG and an avidin-alkaline phosphatase 
substrate . The blotting membranes were analyzed with a high-performance scanner and Image 
Master software . The level of HK activation was expressed as the percentage of total protein (band 
II + III versus bands I + II + III) . The apparent masses of native HK and its activation fragments 
were Mw 130,000 (band I), 110,000 (band II) and 98,000 (band III). Inter-assay variation was 15%, 
intra-assay variation was 7%. 
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Results 

Experiments were performed comparing compound according to your suggestions as follow : 

Compound 1 vs Compound S (Figure 3) 

Compound 1 inhibits more efficiently than Compound 5 : 
' - Compound l looses activity between 1:25 and 1 :10 ratios ; 
- Compound 5 has no or very low inhibitory activity at 1 :50 ratio and show no inhibition at 

lower weight ratios. 

Compound 2 VS Compound 6 (Figure 4) 

Both the Compounds have inhibitory activity, particularly Compound 2 being more active than 
Compound 6 : 

- Compound 2 looses its activity between 1 :10 and 1:1 ratios ; 
- Compound 6 does not inhibit at all at 1 :10 weight ratio. 

Compound 3 vs Compound 7 (Figure 5) 

Compound 7 show a better inhibitory action than Compound 3 : 
- Compound 7 is able to inhibit HK activation up to 1 :10, but does not inhibits at 1 :1 ratio ; 
- Compound 3 stars to loose activity at weight ratio 1 :25, has a very low activity at 1 :10 and 

has no activity at 1 :1 ratio . 

Compound 4 vs Compound 8 (Figure 6) 

Compound 4 inhibits more efficiently than Compound $: 
- Compound 4 has a strong inhibitory activity up to 1 :I ratio; 
- Compound 8 has no inhibitory activity below 1 :25 ratio. 
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Compound 9 vs Compound 10 vs Compound 11 (Figure 7) 

Compound 11 inhibits better than Compound 9 and 10 . The Compound 9 seems to be better than 
Compound 10 . 

- Compound 11 shows a powerful inhibitory action up to 1:1 ratio; 
- Compound 9 starts to loose activity at 1 :1 ratio; 
- Compound 10 shows no inhibition at 1 :1 ratio. 

Compound 12 vs Combound 13 vs Compound 14 (Figure 8) 

Compound 12 seems to be more efficiently than Compound 13 and 14 that exhibit, a similar 
inhibitory effect : 

- Compound 12 looses its inhibitory activity at weight ratio 1 :10 ; 
- Compound 13 and Compound 14 show a similar activity up to 1 :50 ratio and loose activity 

starting from 1 :25 . 

Compound 15 vs Enoxaparin (Figure 9) 

Enoxaparin has a powerful inhibitory effect than Compound 15 : 
- Enoxaparin retains activity up to weight ratio 1 : 1 ; 
- Compound 15 does not show any activity at ratio 1 :10 . 
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Conclusion 

In previous studies it has been shown that contact/kinin system may be involved in the 
inflammatory reactions in AD brain, and that its activation occurs trough the interaction of HK to 
the negatively charged residues of AB. Enoxaparin, that binds to Al31-42, was able to reduce the 
toxic effect of amyloid both in vitro and in vivo . Since enoxaparin contains a mixture of saccharides 
of different length and possibly structure, to determine the relationship between structure and 
activity , m this study we compare 15 compounds isolated from enoxaparin or enoxaparin like for 
their ability it inhibit A13-dependent activation of contact/kinin system . 

Any of the compounds, per se, increased the activity of A(31-42 on the HK activation 

We found a great variability in the inhibitory activity: compounds 5 and 8 exhibiting the lowest 
activity, whereas compounds 2, 4 and l l retained inhibitory activity even at 1 : l ratio . 

These differences in the inhibitory activity could indicate a specific contribution of each saccharide 
to the overall antrinflammatory activity of enoxaparin; and suggest a possible structure/activity 
relationship . 



i , 

Abbreviation: 

LMWH= low molecular weight heparin 
ENO = enoxaparin 
PK= prekallikrein 

f..XII= Hagernan factor 
HK= high molecular weight kininogen 
C 1-INH = inhibitor of activated complement Cfi 
A(3 = Alzheimer amyloid-13 protein 
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FIGURES 

Figure 1: Schematic rapresentation of the interaction between complement and contact kinin 

cascades. In AD brain, A13-dependent activation of contact-kinin system can lead to activation of 
Complement classical pathway through generation of the activation products of Hageman factor 
(F.XII) . The two systems are passibie of reciprocal- activation and share C1-INH as a major 
inhibitor, thus whatever system is activated first, chronic activation induced by Ali can lead to local 

deficiency of C1-INH. 
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Figure 2. Sequence of Alzheimer AB 1-42 . Residues 9 and Ei 1 are critical for complement 

activation; positively charged residues (H, K) within the 12-18 region are involved in the binding 
to heparin. Negatively charged residues are underlined . 
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Legend to Figures 3-9 

A. A representative Western-blotting analysis of the cleavage of high molecular weight kininogen 

(HK). The AB/compound ratios are reported at the bottom of each lane . 

Inter-assay variation (compound vs compound) : 15% 

Intra-assay variation (AB/compound ratio vs AB/compound ratio) : 7%. 

B. Columns are the level of HK activation at the different AB/compound ratio, expressed as 

percentage of the activation induced by AR alone (1 :0 ratio) . 

Percentage of AB induced activation (T:0 ratio) = 100%. 
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Compound 1 -versus Compound 5 (Figure 3) 

A _ 
SFl 

band i . 

band II 
band III 

-130 KD 

- 110KD 
- 98 KD 

AB/compound ratio 
(weight/weight) 1 :0 1 :50 1 :25 1 :10 1 :1 

SF5 

band I 

band II 
band III 

B 

:0 1 :50 1 :25 1 :10 1 

-130 KD 

- ilOKD 
- 98KD 

0 

120 

100 r 
w 
y 80 

o SF1 
60 - ~ " SF5 

Y 40- i 
x 

20 20 , 
0 

1 :0 1 :50 125 1:10 1 :1 

AR/compound ratio 

1:0 1:54 1 :25 1:10 1.1 
SF I % activatio 100% 59% 0 75% 97% o 101% 
SFS % activatio 100% 60% 100% 100% 0 100% o 
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b 

SF6 

band I 

band II 
band III 

1 :0 1 :50 1 :25 1 :10 1 

B 120 

0 100 

y 80 

R 60 

= 40 

= 20 
, 0 

1 :50 4:25 1 :10 1 :1 

Mlcompound ratio 

-130 KD 

- IIOKD 
- 98KD 

a SF2 
_ ~ SF6 

I 

1:0 1:50 1:25 1:10 1:1 
SF2 % activatio 100% 42% 45% 60% 59% 
SF6 % activatio 100% 75%0 73% 100% 100% 
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Compound 3 versus Compound 7 (Figure 5) 

SF3 
A 

band I 

band II 
band III 

AB/compound ratio 1 :0 1 :50 1:25 1 :10 1:1 
weight/weight 

SI~"7 

band I 

band II 
band III 

B 

-130 KD 

- 110 KD 
- 98KD 

-130 KD 

- 110KD 
- 98KD 

1 :0 1 :50 1 :25 1:10 1 :1 

120 
~ 10p . 

o 
80 , 

' ESF3 60 
`° ~ ~SF7 
Y 40 
°~ 20- , I 

0 - 
I 1 :0 1 :50 1 :25 1 :10 1 :1 

A~/compound ratio 

1 :0 1:50 1 :25 1:10 1:1 
SF3 % activatio 100% 40% 68% 0 100% 100% o 
SF7 % activatio 100% 35% 44% 59% 70% 
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SF8 

band I 

band II 
band III 

:0 1 ;50 1:25 1 :10 1 : . 

B 
120 

0 100 
> 80 

L7 SF4 
60 

N SF8 x 

x 

40 - 

20 j i 

I I 
0 

1 :0 1 :50 1 :25 1 :10 9 ;1 

AP/compound ratio 

-130 KD 

- 1tOKD 
- 98KD 

-130 KD 

- 110KD 
- 98KD 

1:0 1 :50 1 :25 1 :10 1:1 
SF4 % aCtivatio 100%0 35%0 32% 39% 52% 
SP8 % activatio 140% 86% 86% o ' 98% 96% 
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Compound 9 versus Compound 10 versus Compound 11 (Figure 7) 

A 

band I 

band II 
band III 

A(3/compound ratio 
weight/weight 1 :0 1 :50 1 :25 1 :10 1 :1 

EiEE 
, 

band 1 _ 

band II 
band III 

SFl l 

band I 

band II 
band III 

1 :50 1:25 1:10 1 :1 

:0 1 :50 1:25 1 :10 1 : : 

B 

140 
120 

° 100 r 
> ~ - Q SF9 -?: 80 
`° 60 ; I ~ SF10 
Y ~ SF11 2 q0 ~ i 

i 0 20 
0 

1 :0 1 :50 1 :25 1:10 1 :1 

AP/compound ratio 

-130 KD 

- 110KD 
- 98KD 

-130 KD 

- IIOKD 
- 98KD 

-130 KD 

- 110KD 
- 98KD 

1 :0 1:50 1 :25 1:10 1:1 
SF9 % activation 100% 54% 54% 61% 0 86% 
SF 10 % lctivatio 100% 51%0 45% 55% 120% 
SF11 % activatio 100% 50% 0 56% 65% 0 65% 
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Compound 12 versns Componnd 13 versus Compound 14 (Figure 8) 

ESF1il 

band i _ 

band II 
band III 

A(i/compound ratio - 

130 KD 

110 KD 
98KD 

weightlweight 1 :0 1 :50 1:25 1 :10 1 :1 

DEI 
band I 

band II 
band III 

1 :0 1 :50 1 :25 1 :10 1 :1 
SF14 

band I 

band II 
band III 

B 

-130 KD 

- 110KD 
-98KD 

0 1 :50 1:25 1 :10 1 :1 

120 - 

.2 
0 

100 

7 

- 

;.M;- 80 - 

60 - 

40 - 

20 - 
0 

I 

1 :0 1 :50 1 :25 1 :10 1 :1 
A(3/compound ratio 

-130 KD 

- 110KD 
- 98KD 

SFT2 % activatio 100% 64% 64% 83% 89% 
SF13 % activatio 100% 70% 89% 0 95% 94% o 
SF14 % activatio 1005 68% 84% 89% 108% 
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Compound 15 versus enoxaparin (Figure 9) 

A 

120 

c 100 a 
0 80 > 

tc 60 

= 40 
ce 20- 20-

0 -
1 :0 1 :50 1 :25 1:10 1:1 

AR/compound ratio 

ESFKl _ � 

band I -130 KD 

band II 
band III 

- 110 KD 
- 98KD 

AB/compound ratio I :0 1:50 1 :25 1 :10 1 :1 weight/weight 

ENO 

band I -130 KD 

band II - 1 I 0 KD band III 

1 :0 1 :50 1 :25 1 :10 1 :1 

1 :0 1 :50 1:25 1 :10 1:1 15 % activatio 100% 41% 58% l U0% 0 100% f0 % activatio 100°l0 6I% 59% 70% 73% 
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