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ABSTRACT

This paper sets forth an improved delivered dose uniformity (DDU) test for orally inhaled and
nasal drug products (OINDP), which is being proposed as a replacement for the uniformity
tests (between container and through container life) recommended by the U. S. Food and Drug
Administration (FDA) in the following draft Guidances for Industry: (i) Metered Dose Inhaler
(MDI) and Dry Powder Inhaler (DPI) Drug Products Chemistry, Manufacturing, and Controls
Documentation'; and (i7) Nasal Spray and Inhalation Solution, Su?vensz’on, and Spray Drug
Products Chemistry, Manufacturing, and Controls Documentation®.

The test presented here is based on a parametric tolerance interval approach inspired by the
work of Dr. Walter Hauck of Thomas Jefferson University, the content uniformity test in the
Japanese Pharmacopeia (JP XIII), and by the test in the recently revised Stage 4 draft of
Chapter <905> Uniformity of Dosage Units® of the United States Pharmacopeia (USP). A
parametric tolerance interval test (PTI test) uses the information obtained from a sample more
efficiently than the non-parametric tests recommended in the FDA draft Guidances. This
increased efficiency allows the test to provide improved levels of both consumer and producer
protection (in the statistical sense) for single-dose products compared to the FDA draft
Guidance test. For multi-dose products, the proposed test provides the same high consumer
protection as the FDA draft Guidance tests (between container and through container life),
while at the same time mitigating the producer risk.

In the proposed PTI test, an 85% coverage of the 75-125% label claim target interval is defined
as the default limiting quality standard, below which level there is a low probability of
acceptance (<5%). With high confidence, therefore, an accepted batch will have 85% or more
of the doses within the specified target interval. These numbers are based on the minimum
acceptable quality standards implied by the FDA draft Guidances, the manufacturing
capabilities of modern inhalation technology, and the capability of the proposed test.* To
ensure the specified batch coverage with at least 95% confidence, the PTI test uses the
following criteria on the tested sample:

. An acceptance criterion requiring that the sample standard deviation not exceed a
predetermined, sample-size dependent, maximum value.

o An acceptance criterion requiring that an Acceptance Value not exceed a fixed limit.
The Acceptance Value is the sum of the absolute deviation of the sample mean from the
label claim and the sample standard deviation scaled by a sample-size dependent
coefficient.

! Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DP1) Drug Producis Chemistry, Manufacturing, and
Controls Documentation, CDER/FDA, October 1998, (Docket No. 98D-0997)

http:/iwww. fda. gov/cder/guidance/2180.pdf.

¢ Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products Chemistry, Manufacturing, and
Controls Documentation, CDER/FDA, May 1999, (Docket No. 99D-1454)

http//www fda.govicder/guidance/2836.pdf.

3 Pharmacopeial Forum 27(3) p2615.

* For details, see Part 2.
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An additional acceptance criterion requires the sample mean to be within 100+15% of label
claim (for multi-dose products, this criterion applies to each tested life-stage).

These criteria serve to control the dose variability and the extent to which the batch and
individual doses can deviate from the target. Hence, the distribution of doses for a given batch
is well controlled with no need for an absolute limit beyond which no individual sample result
1s allowed (i.e., no "zero tolerance" limit).

The proposed test provides several test plans each using a different sample size. An algorithm
for calculation of other equally acceptable test plans is provided. All of the test plans ensure
the same consumer protection, but have different levels of producer risk. For the producer, this
approach provides flexibility in selecting a test plan most appropriate for a particular product,
and an incentive to improve product quality (i.e., mean on target and low variability), since
with the PTI test, superior product quality is rewarded with the option of reduced testing.

For multi-dose products, control of through-container-life trends is achieved in the PTI test
through a stratified sampling plan, in which one-third of the containers are tested only at the
beginning of the container life, one-third only at the middle of the container life and the
remaining one-third are tested only at the end of the container life. For products that exhibit no
trend or a monotonic trend through container life, testing may be restricted to the beginning and
end life stages. The requirements on standard deviation and Acceptance Value are based on the
total sample (data from all life stages) whereas the requirement for the mean is imposed for
each individual life-stage tested. The proposed stratified sampling plan allows simultaneous
control of both between-container and through-container-life uniformity for multi-dose
products using a single test.

IPAC-RS requests that the proposed test replace the tests entitled "Dose Content Uniformity”,
"Dose Content Uniformity Through Container Life", "Spray Content Uniformity” and "Spray
Content Uniformity Through Container Life" in the above-mentioned draft Guidances for
Industry. Furthermore, in order to expedite the replacement of the draft Guidance tests, and to
facilitate the subsequent public review and comment process, IPAC-RS recommends that the
Agency consider issuing a separate draft Guidance for Industry on Delivered Dose Uniformity
for Orally Inhaled and Nasal Drug Products. The proposed language for the PTI test for
control of DDU in OINDP recommended for inclusion in such a Guidance is contained in the
next section of this paper. In Part I of the paper, a general overview of the test is given. Part II
provides detailed statistical considerations that support the proposed test. Additional technical
details are discussed in the Appendices.

Delivered Dose Uniformity Test Proposal 5(85)
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PROPOSED PARAMETRIC TOLERANCE
INTERVAL TEST FOR DELIVERED DOSE
UNIFORMITY TESTING OF OINDP

The following test is recommended for adoption by the FDA and industry as a standard
procedure /0r control of delivered dose uniformity of orally inhaled and nasal drug products
(OINDP):

Delivered Dose Uniformity

The delivered dose uniformity of orally inhaled and nasal drug products is generally considered
acceptable if at least 85% of the doses in a batch fall within + 25% of the delivered dose label
claim (LC). In order to claim conformance with this requirement, a confidence level of 95%
needs to be demonstrated for the batch. In addition, the sample mean (for each tested life-
stage) must be within £ 15% of the label claim.

The sponsor should determine a test plan and criteria, consistent with the requirements stated
above, that are appropriate for the product in question. Where an auxiliary device is required
for the delivery of the preparation from the container, a separate device is typically used for
each dose, unless it has been demonstrated that an alternative approach provides equivalent
control. The following procedure, using the sample size (n;, n;) and associated acceptability
coefficients (k;, ks, f) of one of the test plans in the Table of Test Plans below, ensures, with
95% confidence, at least 85% coverage of the 100+25% LC target interval. These test plans
use a two-tiered approach.

For products in single-dose containers (i.e., containers that hold a single individually
packaged pre-metered dose unit)

Prepare according to the directions stated in the labeling and measure the amount of drug
delivered for n; doses. The number of pre-metered units per delivered dose determination
should not exceed the number of pre-metered units required for the minimum dose according to
the labeling.

For products in multi-dose containers (i.e., containers that hold multiple doses, whether as
reservoirs or as ordered assemblies of individually packaged pre-metered dose units)

Prepare according to the directions stated in the labeling and measure the amount of drug
delivered for n; doses using a separate container for each dose. One-third of the doses are to be
sampled from the beginning of container life (first dose after preparation) using ny/3 containers,
one-third from the middle of container life (at one-half of the claimed number of deliveries)
using another ny/3 containers, and one-third from the end of the claimed number of deliveries
using the remaining n1/3 containers. For products that have been demonstrated to exhibit no
trend or a monotonic trend through container life, one-half of the doses may be sampled from
the beginning of container life using ny/2 containers, and one-half from the end of the claimed

* As explained in detail in Part 2, the limiting quality definition is based on the standards set by the FDA draft
Guidances, the manufacturing capabilities of modern inhalation technology, and the capability of the proposed
test.

Delivered Dose Uniformity Test Proposal 6(85)
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number of deliveries using the remaining ny/2 containers. A product is monotonic if the level
of the middle life-stage is typically within the range formed by the levels of the beginning and
end life stages. The number of deliveries per delivered dose determination should not exceed
the number of deliveries in the minimum dose according to the labeling.

Express the amount of drug delivered for each dose as a percentage of the delivered dose label
claim. Calculate the Overall Sample Standard Deviation (s), the Overall Sample Mean (m) of
the n; doses, and the Life Stage Sample Mean (mys) for each of the life stages tested (note: for
preparations in single-dose containers, the Overall Sample Mean and the Life Stage Sample
Mean are identical). Accept the batch if:

s £ 258 ky,
| 100-m | +k;s €25, and
[ 100-mys | < 15 for each life stage tested.

If not accepted, proceed with the second tier: Observing the directions stated above, measure
the amount of drug delivered for n,-n, additional doses to obtain a total sample size of n, doses.
Express the amount of drug delivered for each dose as a percentage of the delivered dose label
claim. Calculate the Overall Sample Standard Deviation (s), the Overall Sample Mean (m) and
each of the Life Stage Sample Means (ms) of the n, doses tested. Accept the batch if:

s <25f ko,
1100-m| +k;s < 25, and
E 100-my g 1 < 15 for each life stage tested.

The acceptability coefficients ki, k», and f depend on the sample size and several sets of pre-
calculated acceptability coefficients are provided in the Table of Test Plans below. Other test
plans using different sample sizes and/or different number of tiers are acceptable provided that
85% coverage of the target interval is ensured with 95% confidence.

For products where safety and/or efficacy concemns indicate a need for a higher level of
uniformity, tighter limits on the coverage and/or target interval may be warranted. If there is
adequate clinical evidence to support a lower level of uniformity, less stringent requirements on
the coverage and/or target interval may be acceptable.

Table of Test Plans. Details of 6 two-tiered test plans giving 95% confidence of at least 85%
coverage of the target interval (100£25% LC). See text for application.

Test | Sample Total Acceptability | Acceptability | Factor for Maximum
plan | Size at | Sample size | Coefficient at | Coefficient at Sample Standard
Tier 1 Tier 142 Tier 1 Tier 2 Deviation
11 I Ky ko f

1 10 30 2.09 1.59 0.839

2 12 36 1.95 1.52 0.826

3 14 42 1.85 1.48 0.819

4 15 45 1.81 1.46 0.815

5 18 54 1.72 1.42 0.808

6 24 72 1.59 1.36 0.796

Delivered Dose Uniformity Test Proposal 7(8%5)
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PART 1. OVERVIEW OF PROPOSED TEST

1 Goal

After careful review of the FDA draft Guidances for Industry and an assessment of an
extensive industry data-base on delivered dose uniformity (DDU),® the Dose Content
Uniformity (DCU) Working Group of the ITFG/IPAC-RS Collaboration set a goal of
developing a DDU test that would accomplish the following, compared to the FDA draft
Guidance tests':

e Improved ability to characterize batch quality;
e Same or improved consumer protection; and
e Improved producer protection.

In general, a DDU test should control the mean delivered dose for the batch as well as the
variability of delivered doses in the batch between different containers and, for multi-dose
preparations, within containers (including through-container-life trends). The control should be
relative to the label claim delivery.

Ideally, the desired DDU test should ensure a consistent minimum quality standard for a wide
variety of orally inhaled and nasal drug products. In addition, it would be advantageous for
producers and reviewers if the same test and corresponding criteria could apply to a wide
variety of testing situations, such as routine release testing, validation, stability and
mvestigational studies.

All of the objectives outlined above are accomplished by the proposed Parametric Tolerance
Interval test (PTT test).

2 Elements of Proposed Test

As a measure of batch quality, the PTI test uses coverage, or the proportion of doses that fall
within a specified target interval. Graphically, coverage represents the area under the
distribution curve within a given target interval (see Figure A). For example, the two
distributions shown in Figure A have equal coverage of the indicated target interval, and thus
they are of equally acceptable quality.

Figure A further illustrates the following features of using coverage as a measure of quality:

§ Initial Assessment of the ITFG/IPAC Dose Content Uniformity Database by the CMC Specifications Technical
Team of the ITFG/IPAC Collaboration (Tuly 2000), available at

http:Awww. fda. goviohrms/dockets/ac/Q0/techrepro/3609 reports.htm.

" Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Drug Products Chemistry, Manufacturing, and
Controls Documentation {Docket No. 98D-0997) hitp://www.fda,gov/cder/euidance/2180.pdf, and

Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products Chemistry, Manufacturing, and
Controls Documentation (Docket No. 99D-1454) http//www.fda. gov/eder/suidance/2836.pdf.

Delivered Dose Uniformity Test Proposal 8 (85)
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. 'i’he concept of coverage allows one to express quality in a standard and consistent manner
while focusing on the target (label claim delivery).

o The requirement of minimum coverage allows a trade-off between the mean and variance
(i.e., as the mean dose is drifting off target, the standard deviation needs to become tighter
in order to surpass the minimum coverage).

Target interval ‘ Target interval
) | g |
5 H !
2 l = 1
o ! g |
3
] ! |
Delivered Dose Delivered Dose

Figure A.  Graphs illustrating coverage, which is the proportion of doses in the batch that are
within a specified target interval. The two distributions represented in this figure
have equal coverage of the indicated target interval.

In the proposed PTI test, an 85% coverage of the 75-125% label claim (LC) target interval is
defined as the minimum quality standard®, below which level there is a low probability of
acceptance (<5%). To ensure the specified coverage of each accepted batch with at least 95%
confidence, the PTI test uses the following parametric criteria for the sample:

. An acceptance criterion requiring that the sample standard deviation not exceed a
sample-size dependent maximum value. This requirement controls the batch variability
when the mean is close to the label claim.

. An acceptance criterion requiring that an Acceptance Value not exceed a fixed limit.
The Acceptance Value is the sum of the absolute deviation of the sample mean from the
label claim and the sample standard deviation scaled by a sample-size dependent
coefficient. The Acceptance Value simultaneously controls the batch mean and
standard deviation so that less variability is allowed the more the mean deviates from
the label claim.

Together, these requirements control the coverage and the extent to which individual values
may deviate from the label claim.

In addition, an acceptance criterion of 85-115% LC is imposed on the sample mean to further
control mean deviation from the label claim when variability is low (for a multi-dose product,
this criterion is applied to each tested life-stage, e.g., beginning, middle and end of container
life).

® As explained in detail in Part 2, these numbers are based on the standards set by the FDA draft Guidances, the
manufacturing capabilities of modern inhalation technology, and the capability of the proposed PTI test.

Delivered Dose Uniformity Test Proposal 9 (835)
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In practice, a PTI test would involve the following steps (for a single-dose product):

MEASURE a pre-defined number of doses, n,

CALCULATE (1) sample mean, m, expressed in % LC
(2) sample standard deviation, s, expressed in % LC, and
(3) Acceptance Value® AV = /100-m [ + ks

COMPARE: (1) [100-m [<15;
(2) s < Maximum Sample Standard Deviation (MSSD)"’;
(3) AV <25

2" Tier: If these criteria are not met in the first tier, second tier testing
is performed. In the second tier, the steps are repeated with a larger
sample size and an adjusted coefficient k.

For multi-dose products, control of through-container-life trends is achieved in the PTI test
through a stratified sampling plan that captures both inter- and intra-container variability. One-
third of the containers are tested in the beginning, one-third in the middle, and one-third in the
end of the labeled number of deliveries (if justified for the product, testing the middle life stage
may be waived''). Additional control over container through-life trends is achieved by
applying the criterion for the mean separately to each of the tested life stages.

Using this design, the information for multi-dose products sought by the FDA through two
uniformity tests in the draft Guidances, is captured in a single test.

3 Proposed Test is a Win-win Solution

In order to compare different tests (e.g., FDA and PTI), one has to analyze the operating
characteristics of the tests in question, which is typically accomplished by using computer
simulations. A conventional way of describing operating characteristics of a test is to plot the
probability of acceptance as a function of a quality parameter, such as the batch standard
deviation (see Figure B). The resulting curve is commonly known as an operating
characteristic (OC) curve. For a batch with a given mean, the acceptance probability decreases
as the batch standard deviation increases.

* The sample-size dependent coefficient k is found in the Table of Test Plans, page 7.
1" MSSD is defined as 25f/k. The sample-size dependent coefficients f and k are found in the Table of Test Plans,

?age 7.
! See Part 2, Section 4.2.1.
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Figure B. An operating characteristic {OC) curve.

The bottom-right part of an OC curve refers to batches of high variability. Note that due to
sampling variability, the corresponding probability of acceptance is small but not zero. Thus,
this region of the curve represents the consumer risk that a batch of sub-standard quality may
be accepted due to pure chance. For example, a 95% probability of rejection means that there
1s a 5% probability of accepting a batch of high variability (low uniformity).

The top-left portion of the curve represents batches having a low standard deviation. Due to
sampling variability, the probability to accept such batches is less than 100%, and this region of
the curve represents the producer risk that a batch of acceptable quality may nevertheless be
rejected due to pure chance. For example, a 95% probability of acceptance means that there is
a 5% probability of rejecting a batch of low variability (high uniformity). The producer and
consumer risks defined in this way are also known as probabilities of Type Il and Type I errors,
respectively.

One way to evaluate different tests is to compare the batch quality corresponding to a certain
consumer risk. If the quality of batches released with 5 % probability is improved, then such a
test has improved consumer protection.

Figure C shows a comparison of the operating characteristic curves pertaining to single-dose
products with batch means on target for the FDA dose content uniformity (between container)
test (denoted here as the FDA DCU test'?) and the PTI test using the same n=10/30 sampling
plan (10 observations in 1* tier, total of 30 observations after 2™ tier). As one can see, the OC
curve for the PTI test lies below the OC curve for the FDA DCU test in the region of high
standard deviations. Thus, the proposed test will more likely reject batches of poor uniformity
(high variability) compared to the FDA DCU test, i.e., the consumer risk is reduced. Looking
at it another way, the quality of batches accepted with 5% probability is improved with the PTI
test compared to the FDA test. In other words, consumer protection is improved.

12 See this entry in the Glossary for the exact reference.
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Figure C. Operating characteristic curves for the FDA DCU test and the PTI test using the

n=10/30 sampling plan for single-dose products with mean at target.

Figure D shows a comparison of the operating characteristic curves pertaining to multi-dose
products with batch means on target for the combined application of the FDA dose content
uniformity and dose content uniformity through-container-life tests (denoted here as the FDA
DCU&TCL test' ), and the PTI test using a n=12/36 sampling plan. As can be seen, the OC
curves for the FDA DCU&TCL test and the PTI test intersect in the region of high standard
deviations. Thus, the proposed PTI test will reject batches of poor uniformity (high variability)

with similar confidence as the FDA DCU&TCL test, i.e., the consumer protection is

- 100

comparable.
,;190 ;
S0 NG e R e N
Z 80| L N -} 20
& 70 y---- S
g : :
,g 60 - B N N
5 50 FDADCU N e PTitest -|
8 40 &TCL test ; ’ n=12/36 |
g 30 SRR
g 20
3 10
< 0

6 8 10 12 14 16 18

Batch standard deviation (% LC)

Rejection probability (%)

Figure D. Operating characteristic curves for the simultaneous application of the FDA DCU and
TCL test, and the PTl test using a 12/36 sampling plan, for multi-dose products with mean at

target.

B See this entry in the Glossary for the exact reference. Also see Appendix 1, Section 1.3.
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On the other hand, in the region of low standard deviations, the PTI test curve lies above that of
the FDA test, both for the tests for single-dose products (Figure C) and for multi-dose products
(Figure D). This means that the producer will have a higher probability to pass batches of high
uniformity (low variability) compared to the FDA draft Guidance tests. In other words, the
producer risk is reduced, which creates the win-win solution.

The reason that the consumer protection is improved with the PTI test compared to the test
recommended in the FDA draft Guidances for single-dose products, while on the other hand,
the tests have comparable consumer protection for multi-dose products, is due to the fact that
the draft Guidances recommend a more stringent test for multi-dose products than for single-
dose products. The proposed PTI test provides equal consumer protection for both types of
products, and at the same high level as that implied by the draft Guidances for multi-dose
products.

The proposed test provides several test plans using different sample sizes, starting from
n=10/30. All of the test plans ensure the same consumer protection, but have different levels of
producer risk. This provides an incentive for the industry to improve product quality, since
with the PTTI tact cumneriar nradnet omality ic rewardad with the antinn af gcelenting a nlan with »
VY ARAL BilW 1 X % LWy ﬂ“y\-‘ll\)l FLU\JUW‘ \i““&i‘] A AW YV QWAL VY RRAD ARV VRLAVEL Vs Ovl\/\l‘llls <4 yi&u‘ ¥V ELii G
reduced sample size. The details of six two-tiered sample plans are listed in the Table of Test
Plans (page 7). If a different plan is desired, Appendix 4 provides the algorithm to calculate
acceptability coefficients assuring the same consumer protection for the preferred choice of

sample size.

In summary, the main features of the proposed test are the following:

e A parametric tolerance interval test is proposed to replace the non-parametric tests in
the FDA draft Guidances. The proposed PTI test uses the information obtained from a
sample more efficiently.

¢ The proposed test explicitly defines batch quality in terms of the minimum proportion
of doses within the 75-125% LC target interval (i.e., 85% coverage or more) and
requires this to be ensured with high confidence (i.e., 95% probability) for each batch.

» For single-dose products, the parametric test simultaneously reduces consumer and
producer risks.

¢ For multi-dose products, the consumer protection is maintained at the high level
recommended in the FDA draft Guidances with a simultaneous reduction in the
producer risk.

s The parametric test comprises a number of test plans using different sample sizes, each
providing equivalent consumer protection. Improved quality is rewarded with a
lowered producer risk or with the option of selecting a reduced sample plan.

Delivered Dose Uniformity Test Proposal 13 (85)
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453 PART 2. DETAILS OF PROPOSED TEST
454
455

456 1 Introduction

457 A properly designed test for delivered dose uniformity of orally inhaled and nasal drug

458  products must be applicable to all such products regardiess of particular therapeutic indication
459  or delivery device (i.e. MDI, DPI, single-dose, multi-dose, sprays, efc.).

460

461  On the other hand, it 1s impossible to identify a universal level at which clinical safety or

462  efficacy would be compromised because clinical considerations vary based upon active

463  ingredient and therapeutic indication.

464

465  Therefore, in this proposal dose uniformity is treated purely as a quality issue. Thus, an

466  explicit statement of limiting batch quality 1s the most critical element of a properly designed
467  delivered dose uniformity test. A test may then be designed to ensure with high confidence
468  that a batch at or below the limiting quality is not accepted, thereby protecting the consumer
469  from sub-standard quality batches. There is no intention to imply that this quality standard is
470  generally required for safety or efficacy reasons.

471

472 The present proposal sets forth both the test that assesses batch quality with high confidence,
473  and the limiting quality statement that reflects the quality standards required by the FDA and
474  the manufacturing capabilities of modern inhalation technology. Furthermore, this proposal
475  provides multiple test plans using different sample sizes, each satisfying the limiting quality
476  statement, so that the producer may select the sample size most appropriate for the product in
477  question. Since all test plans provide the same limiting quality, consumer protection is not
478  affected.

479

480  In the final analysis, the specification for a particular drug product could be affected by clinical
481  evidence as well. This could potentially result in a specification that is either more or less strict
482  than that contained in this proposal.

483

484
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2 Desired Properties of DDU Test

2.1 Quality Definition for Delivered Dose Uniformity

The primary purpose of a DDU test is to control dose uniformity of a batch. It would also be
advantageous if the same principles and corresponding criteria could be employed, for
example, in product development, stability investigations and process validations. In practice,
dose uniformity of a batch must be judged based on the properties of a finite representative
sample from the batch.

The fundamental starting point for being able to develop suitable requirements is to define an
end-point (i.e., metric) that describes what is meant by “quality” for DDU. When this has been
done, one needs a limit, which, in terms of the selected quality end-point, defines what quality
should be considered minimally acceptable (i.e. the limiting quality). Once this is
accomplished, a statistical determination is possible of how sample information is best utilized
to decide on the disposition of a batch.

As stated above, the first step in defining the limiting quality is to decide on the metric to be
used for characterizing uniformity. Following Dr. W. Hauck’s approach, this has been defined
in terms of two factors, the target interval and the coverage of the target interval (the proportion
of doses in the batch that are within the interval). The coverage of a target interval is an
appropriate standard metric of quality, as uniformity around a fixed target (delivered dose label
claim) is the ultimate goal. The next step in defining the limiting quality is to decide on
quantitative limits for the metrics. The quality criterion in this case is the width of the target
interval and the true proportion (or coverage) of dose values that fall within this interval
(referring to the batch, not the sample). An example of a limiting quality definition is “not less
than 85% of the doses in a batch fall within the interval 100£25% of the label claim™.

By an appropriate choice of sample acceptance criteria, tests may be devised which provide a
correlation between the actual coverage of the target interval and the probability that a sample
from the batch will comply with these criteria. This is a desired characteristic of a test, because
it provides a transparent link between batch quality and the probability of complying with the
test.

2.2 Consumer and Producer Risks

Once the limiting batch quality has been defined, the hypothesis that the batch fulfills the
defined quality criteria can be tested — at the desired level of confidence — by inspection of a
sample from the batch. In developing the proposed test, the generally accepted confidence
level of 95% has been used.

By back-calculation it is possible to determine sample criteria that will ensure with 95%
confidence that an accepted batch fulfills the limiting quality criteria. That is, a sample
conforming to such sample criteria ensures, with a 5% risk of error, that the batch quality is
equal or superior to the limiting quality. In other words, the limiting quality is the quality at
which an isolated test of a sample from the batch has a low (5%) probability of acceptance.

Delivered Dose Uniformity Test Proposal 15(85)
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Therefore, the consumer is facing a 5% risk that a batch at the limiting quality will be accepted.
This consumer risk of a false acceptance 1s alternatively known as the risk of a Type I error.

In addition to protecting the consumer from sub-standard quality batches, the producer should
be protected from the risk of rejecting acceptable batches. From the sample criteria, it is
possible to calculate the quality of a batch that would be accepted with 95% probability. For
batches with this quality, or better, the probability that a sample would not pass the criteria is at
most 5%. This is called the producer risk of a false rejection, or altemnatively, the risk of a
Type II error.

The quality at which the batch has a 95% acceptance probability (5% producer risk) is, of
course, better than the quality at which it has a 5% acceptance probability (5% consumer risk).
This fact only serves to further protect the consumer, as it is in the producer’s best interest to
manufacture batches with a quality that ensures at least 95% probability of acceptance.

The magnitude of the difference between the quality at 5% and 95% acceptance probabilities is
determined primarily by the following three factors:
» the definition of the limiting batch quality,
o the sample size, and
o the efficiency of the test, i.e., the ability of the test to extract and use the information
obtained from a sample to characterize the batch.

2.3 Parametric vs Non-Parametric Approaches

Both non-parametric and parametric approaches can be used to test for coverage of a target
interval. The dose uniformity tests in the FDA draft Guidances are non-parametric (as are most
commonly used uniformity tests for pharmaceutical products). The proposed test is parametric.

A non-parametric test does not presuppose any particular distribution. The major attribute the
non-parametric FDA uniformity tests use is whether an observation is within or outside a target
interval. In this test, only the count of observations falling within a fixed interval is used to
estimate the population coverage. In cases where a distributional assumption is reasonable, a
non-parametric method is not the most efficient approach.

Assuming that the data do follow a normal distribution, the sample mean and standard
deviation are sufficient statistics to characterize the batch. This means that the information in
the sample can be summarized by the sample mean and standard deviation without any loss of
information. Further, as these statistical parameters can be used to estimate the batch coverage,
limits can be found for the mean and standard deviation that assure (at the selected level of
confidence) that the batch coverage is not less than the limiting quality. A parametric test
based on a sufficient statistic provides a more complete and thorough use of the data, and
therefore provides a more precise estimate of quality, compared to a non-parametric test using
the same sample size.

The assumption of normality used for developing the proposed test can be investigated by
examination of actual data when a large number of observations are available. The database of
OINDP collected by ITFG/IPAC-RS contains 46,816 results for 80 products that demonstrate
that the normality assumption is very reasonable (Appendix 2). At this juncture it will be
assumed that data for all products are normally distributed. However, one of the desired

Delivered Dose Uniformity Test Proposal 16 (85)



576
577
578
579
580
581

582

583
584
585
586
587
588
589

590
591
592
593

594
595
596
597

598
599
600
601
602

IPAC-RS

International Pharmaceutical Aerosol Consortium on Regulation and Science PART 2
e e e

properties of a parametric delivered dose uniformity test must be that consumer protection is
not eroded if the normality assumption is violated. Section 6.3 and Appendix 3 provide
evidence that the proposed parametric test is more conservative in its treatment of non-
normally distributed data as compared to normally distributed data. Thus, the proposed test
does not compromise consumer protection in cases when data are non-normally distributed.

2.4 Proposed Limiting Quality

The target interval selected for the proposed test is 100+25% LC. This target interval was
chosen because the FDA draft Guidance tests use the 100+25% LC interval for the outer limits
criterion, the criterion that predominantly determines the outcome of the FDA uniformity tests
(see Appendix 1).

The coverage of the target interval that defines the limiting batch quality in the proposed test
was set to 85%. This figure resulted from the careful consideration of the following factors:

»  When expressed in terms of coverage of the 75-125% LC target interval, the limiting
quality implied by the FDA DCU test' for single-dose products, as determined at the
95% confidence level, is 78%'°, which is a lower coverage than provided by the
proposed PT] test;

e When expressed in terms of coverage of the 75-125% LC target interval, the limiting
quality implied by the combined application of the FDA DCU&TCL tests'® for multi-
dose products, as determined at the 95% confidence level, is 85%!”, which is equal to
the coverage provided by the proposed PTI test; and

o  85% coverage does not require an unreasonable amount of testing to achieve 95 %
confidence given the current capabilities of inhalation technology and the capabilities of
the proposed test. Higher levels of coverage would require significantly more testing to
achieve 95% confidence.

' See this entry in the Glossary for the exact reference. The FDA DCU test is recommended by the draft
Guidances for all products.

' The draft Guidances do not provide an explicit quality statement regarding uniformity. Therefore, the operating
characteristics of the DCU test were determined prior to the development of the present proposal (see Appendix 1,
section 1.2). This “reverse engineering” approach was used to determine that the limiting quality that is implied
by the FDA DCU test is equivalent to 78% coverage of the 100£25% LC interval.

1 See this entry in the Glossary for the exact reference. The FDA TCL test is recommended by the draft
Guidances in addition to the FDA DCU test for all multi-dose products.

"7 The draft Guidances do not provide an explicit quality statement regarding uniformity. Therefore, the operating
characteristics of the simultaneous application of the DCU and TCL tests were determined prior to the
development of the present proposal (see Appendix 1, section 1.3). This “reverse engineering” approach was used
to determine that the limiting quality that is implied by the FDA DCU&TCL test is equivalent to 85% coverage of
the 100425% LC interval.
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3 Development of the Parametric Tolerance Interval
(PTI) Test

The sections below describe the logic that was followed in developing the proposed test. As
such, many of these sections use general variables (e.g. T, L, k, efc.). The final numerical
values determined for these variables are stated in the beginning of this paper in Section
Proposed Parametric Tolerance Interval Test for Delivered Dose Uniformity Testing of
OINDP.

The fundamental features of the test developed in this section focus on controlling the
variability of a single-dose product. The extension to control of potential through-container-
life trends for a multi-dose product is dealt with in Section 4, Sampling Plans.

3.1 Step 1: Introduction of an Acceptance Value

The type of test proposed herein is referred to as a Parametric Tolerance Interval test (PTI test).
The primary acceptance criterion for this PTI test is described in terms of an Acceptance Value
(AV):

AV = |T-m| +ks
which is required to be not more than a fixed limit (L), i.e. AV<L.

The Acceptance Value is a linear combination of the absolute deviation of the sample mean
(m) from the target (T) and the sample standard deviation (s) scaled by a coefficient (k). The
limit L defines the target interval as T+L. The scaling coefficient k and the sample mean
determine the maximum allowable sample standard deviation. The Acceptance Value together
with the number of observations (n) assesses the quality of the population associated with a
certain acceptance rate. For convenience, the word batch will be used as a synonym for
population.

As discussed previously, in the proposed test, quality is defined as the coverage of the target
interval, i.e. the proportion of the batch that is within the target interval. The coverage of the
target interval is fully defined by the mean and standard deviation of a normal distribution and
may be calculated by integrating the density distribution between the limits of the target
interval'®. The coverage decreases as the mean moves away from the target and/or the standard
deviation increases. To maintain constant coverage, therefore, the standard deviation needs to
be reduced as the mean moves away from the target, representing a classical trade-off between
the mean and variance. This is illustrated in Figure 1, which shows a selection of such iso-
coverage curves for the interval 75-125.

8 See “Coverage” in the Glossary (Appendix 5) for a formula.
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Figure 1. Iso-coverage curves {70-99.7% coverage} for the interval 75-125 for normal
distributions.

The relation between acceptance rate, coverage, L, T, m and s may be illustrated with reference
to Figure 2. Both panels of Figure 2 show a diagram of Standard Deviation versus Mean. The
left panel pertains to sample characteristics, while the right panel pertains to batch
characteristics. It is assumed that the batch is normally distributed with mean p and standard

deviation ©.

Low coverage, Rejection
probability > 95%

istance between |
urves decreases b
:| with increasing n

5

Acceptance
robability > 85%

Sample Standard Deviation, s
Batch Standard Deviation, ¢

TL T T+ TL T Tl

Sample Mean, m Batch Mean, g
Figure 2. Graphical illustration of the mechanics of a PTI test, see text for details.
Graphically, the combinations of sample standard deviations and sample means that fulfill the
criterion for the Acceptance Value (AV<L) are delineated by a triangle which defines the

border of the sample acceptance region (Figure 2, left panel). The base of the triangle spans
T+L, and the height is L/k. A sample with m and s falling within the triangle passes the test,
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659  whereas a sample falling outside the triangle fails the test. For an infinitely large sample,

660  which perfectly reflects the batch characteristics, the triangle would also delineate the quality
661  of batches accepted or rejected by the test. However, because real samples are necessarily

662  limited in size, the association between sample and batch characteristics is imperfect (due to
663  statistical sampling error). For a random sample from a batch within the triangle, there is a
664  certain probability that the sample characteristics nevertheless will be outside the triangle and
665  the batch therefore will be falsely rejected (the producer risk). Similarly, for a batch outside
666  the triangle, there is a probability that the sample characteristics will fall inside the triangle and
667  the batch therefore will be falsely accepted (the consumer risk).

668

669  In the right panel of Figure 2, the upper curve shows the combinations (i, ¢) that correspond to
670  the quality of batches that have exactly 5% probability to provide a sample that passes the test
671  (such a curve is called an iso-probability curve). A batch above this iso-probability curve has
672 less than 5% chance of passing the test. In other words, this curve represents the quality at 5%
673  consumer risk, i.e. the limiting quality.

674

675  The lower curve in the right panel shows the combinations (i, 6) that correspond to the quality
676  at 95% acceptance probability (5% producer risk). A batch below this iso-probability curve
677  has more than 95% probability to provide a sample which passes the test.

678

679  The 5% and 95% acceptance probability curves are derived by calculating the Operating

680  Characteristic (OC) curves'® of the test for different batch means, as illustrated in Figure 3. For
681  each batch mean, the standard deviations giving 5% and 95% acceptance probability {as found
682  from the OC curve) are plotted on the graph of batch standard deviation versus the

683  corresponding mean. By calculating the OC curve for each of a number of different batch

684  means, the iso-probability curves corresponding to 5% and 95% acceptance probability can be
685  constructed.

686
687
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689  Figure 3. Derivation of the 5% and 95% iso-probability curves from Operating Characteristics
690 curves (see text for details).

" The OC curve used here is a plot of acceptance probability versus batch standard deviation for a fixed batch
mean.
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The left panel of Figure 3 shows two OC curves; one for a batch with the mean at target (u=T),
and another for a batch with a mean deviating from the target by an amount of L/2 (u=T-1/2,
which is identical to the curve for p=T+L/2). In Figure 3, left panel, the arrowheads of “A”
represent the two standard deviations giving 5% and 95% acceptance probability when the
mean is at target. The arrowheads of “B” represent the similar quantities when the mean 1is
deviating from the target by =L/2. In the right panel of Figure 3, these standard deviations are
now plotted versus the corresponding batch mean.

3.2 Step 2: Extension to Two-tiered Testing

To reduce the required number of observations when quality is excellent, a two-tiered test is
proposed. The 5% consumer risk for a false acceptance is equally distributed between the two
tiers. The distribution of risk is achieved by using different k values for the two tiers. The k
value used for the first tier (k) is higher, and it restricts the acceptance probability for batches
at the limiting quality to 2.5%. If the batch is not accepted in the 1% tier, 2° tier testing using
additional observations is performed. The k value used for the 2™ tier (ko) 1s lower, and it
allows to accept the remaining 2.5 % of the batches at the limiting quality, for an overall
acceptance probability of 5%.

In the left panel of Figure 2, it can be seen that for a given L, the height of the triangular-
shaped acceptance boundary is controlled by the k value. Because k; and k; are different, the
1% and 2" tier acceptance boundaries differ. Compared to the 1 tier, a larger sample standard
deviation is allowed for acceptance in the 2™ tier because the number of observations is higher
(which provides a better estimate of batch quality).

This is illustrated in Figure 4, which shows the 1% and 2™ tier sample acceptance boundaries
for a two-tiered PTT test (compare with the left panel of Figure 2). This test comprises 24
observations in the first tier (n;), has a total sample size (n,) of 72 observations for both tiers,
and uses L=25, k;=1.59 and k;=1.36.

Figure 5 shows a number of combinations of batch standard deviation and mean which result in
5% (open circles) and 95% (closed squares) acceptance probability for the complete test (i.e.,
2" tier testing is employed if a batch was not accepted in the 1% tier).

Figure 5 also shows two iso-coverage curves for the 75-125% LC target interval: 85% coverage
(thick line) and 94.6% coverage (thin line). (The 85% iso-coverage curve represents the
limiting quality that has been selected for the proposed test). As is evident from Figure 5, there
is a close association between the 5% iso-probability curve and the 85% iso-coverage curve
when the batch mean is off target. However, this association is weaker for batch means close
to target. In the area near the apex of the curve (where batch means are close to the target), the
5 % acceptance probability extends to higher standard deviations than justified by the 85%
coverage. Thus, at this step, the acceptance probability for batches close to target is higher
than 5% for a coverage of 85%.
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Figure 4. Sample acceptance boundaries for 1  Figure 5. Iso-coverage curves and

and 2™ tier using L=25, k,=1.59 and probability to accept for a two-

k,=1.36. tiered n=24/72 PTI test with
acceptance boundaries as per
Figure 4.

This represents a deviation from our goal, namely to design a test that provides close
correlation between acceptance probability and coverage, and which more specifically yields
5% acceptance probability for batches having a coverage of 85%. A PTI test using only the
Acceptance Value as the test criterion does not completely achieve this goal. Therefore, the
PTI test was modified to address this discrepancy, as described in the next section.

3.3 Step 3: Introduction of Maximum Sample Standard
Deviation

The dissociation between the 5% iso-probability curve and the 85% iso-coverage curve in the

vicinity of the target (Figure 5) is due to the fact that the triangular-shaped sample acceptance

boundary (Figure 4) is a simplification of the ideal acceptance criterion. The ideal sample

acceptance criterion has a complex analytical form and can be represented by a triangle with a

rounded, and thus lowered, apex™”.

The complexity of the ideal sample acceptance criterion renders it highly impractical.
Fortunately, the iso-probability curve can be made to trace the iso-coverage curve to a high
degree of accuracy when a criterion that the sample standard deviation may not exceed a
certain maximum is added. This maximum sample standard deviation (MSSD) is conveniently
expressed as a fraction (f) of the height of the triangle:

% This is due to the fact that for means close to target, individual values may fall outside of the target interval on
both sides, which therefore gives a double limitation on the standard deviation, which is not accounted for by the
simple triangle. By contrast, for batch means far off target, individual observations that fall outside of the target
interval are likely to do so on one side only, and a single limitation on the standard deviation is therefore
sufficient.
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The sample acceptance boundary created by simultaneously applying criteria on the
Acceptance Value and the sample standard deviation can graphically be represented by a
truncated triangle, see Figure 6.

The effect on acceptance probability of adding s < MSSD as an acceptance criterion is
illustrated in Figure 7, which shows the same test as in Figure 5 except for the added MSSD
criterion. For this test, using n=24/72, the iso-probability curve accurately traces the iso-
coverage curve, both at 5% and 95% acceptance rate, when the f value is 0.796 (the value of f
varies slightly with sample size).

Thus, by using the two acceptance criteria (for the sample Acceptance Value and the sample

standard deviation), the goal of providing 95% assurance that a batch at the limiting quality
will be rejected by the test, has been achieved.
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Figure 6. Sample acceptance boundaries for 1  Figure 7. Iso-coverage curves and

and 2™ tier using L=25, k=1.59, probability to accept for a two-

kz=1.36 and =0.796. tiered n=24/72 PTI test with
acceptance boundaries as per
Figure 6.

3.4 Step 4: Extension to Multiple Test Plans

The test proposed here allows the producer to choose from a number of possible test plans,
each of which ensures the same limiting quality. The test plans contain a varied number of
observations, starting from n=10/30. This allows for flexibility in testing the great diversity of
orally inhaled and nasal drug products, i.e. solution or suspension pMDIs, pre-metered and
device metered DPIs, aqueous sprays, efc.
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It is the responsibility of the producer to establish the test plan that is most appropriate based
on typical product quality, business needs, and other considerations. An increase in the number
of observations is directly correlated to a decrease in the producer risk and an increase in
required analytical and other resources. A product of excellent uniformity can reap the benefit
of having to test fewer samples without negatively impacting the producer risk. As described
above, the values of ki, k; and f must be varied with sample size to ensure that there is also no
impact on consumer risk, i.e. that a coverage of 85% of the target interval of 100£25% LC is
associated with an acceptance probability of 5% regardless of the sample size.

In developing the test plans, the following constraints were used for each sample size:

o The 1% tier acceptance probability is 2.5% for a coverage of 85% of the target interval
100£25% L.C when the true mean is at 100% LC;

o The sample size required to be tested in the 2™ tier is twice that in the 1% tier, so that the
total sample size, n,, is three times that of the 1*' tier (n; = 3n;); and

e The combined acceptance probability for both tiers is 5% for a coverage of 85% of the
target interval 100+£25% LC.

The acceptance criteria for all test plans are:
For a sample size of n; accept in 1* tier if

[100-m| +k;s €25, and
s<f25/k;

If not accepted, proceed to 2™ tier. For a total sample size of ny, accept in 2" tier if

| 100-m | + kps <25, and
s<f25/k,

Above, m is the sample average (% LC) and s is the sample standard deviation (% LC).

Using simulations, the two acceptability coefficients, k and k,, and the f factor were
determined for a number of sample sizes using the constraints listed above. The algorithm and
computer code used for these calculations are provided in Appendix 4.

Table 1 lists the derived coefficients and provides additional information about certain
properties of the test plans. As designed, all test plans have a 5% acceptance probability for a
coverage of 85% of the target interval 100£25% LC (column vii). The required coverage for
95% acceptance probability is much higher, i.e. between 94.6% and 97.7% for the six listed test
plans (column viii). Note that as coverage decreases (e.g. from 97.7% to 94.6%) the producer
risk can be maintained by using a test plan with an increased number of observations. The
mean number of observations at the 95% acceptance probability is slightly more than twice the
size of the 1* tier sample for all test plans (column xi7).

The batch standard deviation (o) corresponding to 5% and 95% acceptance probabilities for a
batch with the mean at target (u=100% LC) is given in columns ix and x. For an acceptance
probability of 5% (5% consumer risk) the standard deviation is 17.4% LC for all test plans.
The batch standard deviation for an acceptance probability of 95% (5% producer risk) is much
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lower, i.e. between 11.0% and 12.9% LC. Note again that as the batch standard deviation
increases, the number of observations needs to be increased to maintain the producer risk.

Table 1. Details and properties of six two-tiered PTI test plans*

Test | ny | Nyt ke Kz f Coverage (%) of | G=100 (% LC) | Mean number
plan target interval for of observations
for acceptance acceptance | for acceptance
probability of probability of | probability of
5% 95% 5% 95% | 5% 95%
@Gyl ) | v (vi) (vii) (vii) (ix) ) (xi) (i)

0]

1 10130 12.09[158]0839| 85 97.7 174 |1 110 29 22
2 12136 1195115210826| 85 97.0 174 115 35 26
3 14 142 1185714810819 85 | 967 174 | 1171 41 30
4 151451811146 [0815] 85 96.4 174 | 1191 45 33
5 18154 1172(142]0808| 85 95.6 174 | 124 | 53 38
6 24 172 1159113610796 85 94.6 174 | 129 | 71 51

* Note, these are the same test plans provided in the Table of Test Plans (page 7)

[Troe Mean()]| | —X-n=1030 —&—n=1236 ~o—n=14/42
at100%LC ||

| —%-n=15/45 —o-n=18/54 —a—n=24/72

..............

,,,,,,,,,,,,,

Probability to Accept, %

Mean Number of Observations

6 8 10 12 14 16 18 20

Standard Deviation, & (% of LC) Standard Deviation, G (% of LC)

Figure 8. Left panel: OC curves for the PT} tests described in Table 1. Right panel: Mean
number of observations for the tests

In Figure 8, the probability to accept a batch (left panel), and the mean number of observations
needed to reach a decision (right panel), are plotted as a function of the batch standard
deviation for six PTI test plans (for batch means at target). The left panel of F igure 8 shows
that for a given batch quality (here, standard deviation), the producer risk is progressively
lowered as the sample size is increased (provided, of course, that the batch quality is better than
the limiting quality).

The right panel of Figure 8 shows that for each of the PTI test plans, the mean sample size
increases with increasing standard deviation as a consequence of 2™ tier testing becoming
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progressively more common. For a sufficiently low standard deviation, the test is always
passed in the 1* tier. For a sufficiently high standard deviation, the test always proceeds to the

2™ tier.

It is expected that 2™ tier testing will be rather frequent for the PTI test, because the 1% tier
acceptance coefficient, k;, has been set to give only 2.5% acceptance probability for the
limiting batch quality (the corresponding acceptance probability for the complete test,
including 2™ tier testing when required, is 5%). The batch is only accepted if the 1* tier
sample meets this more stringent requirement. By contrast, for the FDA tests, 2™ tier testing is
infrequent and plays an insignificant role with regard to batch quality assessment (see
Appendix 1).

On average, therefore, the proposed PTI test requires a larger sample size than the FDA tests.
This provides a powerful incentive for producers to improve their product quality since sample
size requirements are lower for products of higher quality.

The 1so-coverage and iso-probability curves for the smallest and largest tests listed in Table 1
are given in Figure 9 and Figure 10, respectively. These figures show that the iso-probability
curves follow the indicated iso-coverage curves to a high degree of accuracy for all batch
means. This demonstrates the excellent correlation between batch quality (coverage of the
target interval} and sample acceptance probability that is provided by the proposed PTI test.

o E%AZ:ceptance rate ® 95% Acceptance rate i o 5% Acceptanéé rate B 85% Acceptance rate
meenee 85% cOVEFAGE 75-125 e 97.8% cowerage 75-125 ; e 85% coOVETage 75-125 e 94.6% coverage 75-125
20 20
gy g
wd -
g £
L o 10
a )
@ @ :
5
p 0 e
70 80 90 100 110 120 130 70 80 90 100 110 120 130
Mean, p (%LC) Mean, p {%LC)
Figure 9. PTI test using L=25, ny=10, n,=30, Figure 10. PTi test using L=25, n{=24, n,=72,
k=2.09, k,=1.59, =0.839 k.=1.59, k;=1.36, =0.796
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3.5 Step 5: Introduction of Requirement on Sample
Average

As is evident from Figure 9 and Figure 10, the PTI test with only two acceptance criteria would

accept batches with highly deviating means (up to £25% deviation from the target) if the

standard deviation is sufficiently low to maintain the limiting coverage (85% coverage for 5%

acceptance probability). Even though such batches would comply with the coverage criteria,

the quality may be regarded as inadequate due to the large mean deviation from the target.

Therefore the PTI test was further modified to reject batches with highly deviating means. This
was accomplished by supplementing the two acceptance criteria introduced above with a third
requirement that the sample average (m) be within 100x15% LC. The proposed limit,
100£15% LC, is adopted from the draft Guidance tests. Thus, the acceptance criteria for the
PT1 test at this step appear as follows:

For a sample size of n; accept in the 1% tier if

1100-m| +k;s < 25,
s <£25/k;, and
|100-m|< 15.

If not accepted, proceed to the 2™ tier. For a total sample size of n,, accept in the 2™
tier if

| 100-m | + kp5 < 25,
s <£25/k,, and
|100-m|< 15.

The 1% and 2™ tier sample acceptance boundaries created by simultaneously applying the
criteria on the Acceptance Value, the sample standard deviation, and the sample average can
graphically be represented by triangles truncated at the top and at both flanks, see Figure 11.
The effect on acceptance probability of adding the requirement on sample average is illustrated
in Figure 12, which shows results for the same test as in Figure 7 except for the added criterion
for the sample average. A comparison of these figures clearly shows that batches with large
mean deviations and low standard deviations are no longer accepted.

Note that as with the other acceptance criteria, failure to comply with the criterion for the mean

results in a 2™ tier testing. This provides a better estimate of the true mean for the batch and
hence is statistically justified.

Delivered Dose Uniformity Test Proposal 27 (85)



IPAC-RS
International Pharmaceutical Aerosol Consortium on Regulation and Science PART 2
e e e e e e e e e e S

f -~ 15t tior Acceptance boundary :
e 2063 tiF AcCeptance boundary i

~&— 5% Acceptance rate —#— 95% Acceptance rate

20 "r?'r7"‘;—‘—«‘\“:“:"T""\“\“v"v‘v“r‘r?‘r*w'\' 20
) atale %)
2 15 e 315
LI S RRu ¥ 1t = ey S ©
B 10 [l NN g 10
2 £
[=9 [2]
E ®
& 5 T m 5
s Tt kr 1 -
I Dl
0 : 0
70 80 g0 100 110 120 130 90 100 110
Sample Mean, m {%LC) Batch Mean, u (%LC)
919
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4 Sampling Plans

The sampling plan is an integral part of a test, as it determines what sources of variability will
affect the outcome of the test. Since the primary issue at hand is to exercise contro] over
variability of doses within a batch, it is desired to sample doses in such a way that all of the
potential sources of variability in the batch are suitably represented by the sample.

4.1 Sampling Plan for Single-dose Products

Single-dose products are defined as products in containers that hold a single individually
packaged pre-metered dose unit. The delivery mechanism may be an integral part of the
container or be provided in an auxiliary device. For a single-dose product, the sampling is
straightforward: a representative sample of the containers is tested using the sample size
selected for the product. In the case where an auxiliary device is used to deliver the dose from
the container, superior control over variability is achieved if a separate delivery device is used
to test each dose, because the delivery device may contribute to the overall variability. A
separate device should therefore typically be used to test each dose unless it has been
demonstrated that an alternative test plan provides equivalent control.

4.2 Sampling Plan for Multi-dose Products

Multi-dose products are defined as products in containers that hold multiple doses, whether as
reservoirs or as ordered assemblies of individually packaged pre-metered dose units. The
delivery mechanism may be an integral part of the container or be provided in an auxiliary
device. In the case where an auxiliary device is used to deliver the dose from the container, a
separate delivery device should typically be used to test each dose unless it has been
demonstrated that an alternative test plan provides equivalent control. The word inhaler will
be used to denote the container and delivery device combination. For a multi-dose product, it
is necessary to sample from different life-stages to evaluate possible systematic trends from the
first to the last dose.

The FDA draft Guidances recommend controlling this potential through-container-life
variation by an additional test here denoted as the FDA TCL test”’, used in addition to the FDA
DCU test. In the FDA TCL test, doses from the beginning, middle and end of the container life
are sampled from each of three multi-dose inhalers for pMDIs and DPIs (or from the beginning
and end from each of five multi-dose inhalers for nasal products and inhalation sprays).

In the PTI test, it is proposed to control potential through-container-life variation by suitably
modifying the PTI sampling plan to a stratified sampling of different life stages for multi-dose
products, thus avoiding multiple testing of the uniformity of these products. As described
below, the modified sampling plan takes inter- and intra-inhaler variation, including through-
life trends, into account simultaneously, and achieves a rigorous overall control of product
quality similar to that provided by the combined application of the FDA DCU&TCL tests.

*! See this entry in the Glossary for an exact reference.
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4,21 Stratified Sampling from Different Life-Stages

The objective of a DDU test is to control the overall variability of doses delivered from a batch,
irrespective of the sources of variability. The test should be concerned with delivered dose
relative to the label claim and not relative to the beginning of a particular inhaler (i.e., for batch
control, there is no need to collect beginning, middle, and end doses from the same inhaler, as
recommended in the draft Guidances). One concept, then, is to view the doses from all life-
stages as equally important and test a simple random sample such that each dose at any life-
stage and from any inhaler has an equal chance of being part of the sample. In principle, this
would ensure the same control over the total variability for multi-dose products as that
achieved for single-dose products. However, such a sampling plan would be highly impractical
due to logistical difficulties. A more practical way to achieve similar control over the entire
population of doses would be to employ a stratified sampling plan where different life-stages
provide equal weight.

The proposed sampling plan for multi-dose products therefore specifies, as a default, that one-
third of the doses be sampled from the beginning, one-third from the middle, and one-third
from the end of the claimed number of deliveries (inhaler life), each dose being sampled from a
unique container and delivery device.

The requirement that each dose be sampled from a separate inhaler is essential in order to
maintain a representative sampling of inhalers. The importance of this requirement depends on
the relative magnitude of variation between inhalers and within inhalers. For a case where the
between-inhaler variation is much smaller than the within-inhaler variation, the latter would
define the overall variability. In this case, the requirement to sample from many different
inhalers could be relaxed. However, in order for the proposed test to be generally applicable,
the sampling plan was selected so that each dose is sampled from a unique container and device
combination.

After sampling according to the proposed sampling plan, the mean and standard deviation of
the total sample (composed of doses from different life-stages) are calculated as described
above, and from these the Acceptance Value is derived. The sample standard deviation and
Acceptance Value are then compared to the respective acceptance criteria to evaluate the
acceptability of the batch. It should be noted that any through-life trend that might be present
will inflate the sample standard deviation and thereby also the Acceptance Value. This means
that in order to meet the acceptance criteria, the within-life-stage dose-to-dose variation has to
be proportionally smaller. This mechanism provides an inherent protection against excessive
through-life trends.

The philosophy used here to aggregate different sources of variation and evaluate against a
single metric, in principle follows that of the bioequivalence statistical analysis
recommendations for Dose Content Uniformity Through Container Life*”.

In addition to the protection afforded by the inherent sensitivity of the metrics towards life-
stage trends, it is proposed to further limit life-stage trends by requiring that the mean of each
life-stage be within 100x15% LC (similar to the requirement of the FDA TCL test) (this
guarantees that the overall mean is also within these limits).

2 Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, CDER Draft
Guidance for Industry, 1999.
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For beginning/middle/end testing, sampling plans with n’s divisible by three (e.g., 12/36,
15/45, 18/54, 24/72) are suitable. Beginning is defined as the first dose after preparation of the
inhaler according to the label (e.g., after priming maneuvers when so directed), middle is the
next dose after delivery of half of the claimed number of doses, and end is the last of the
claimed number of doses.

For a product which has been demonstrated to have no trend or a monotonic trend through
container life, it is proposed that testing of the middle life stage be waived. A product is
monotonic if the level of the middle life stage is typically contained within the interval
determined by the levels of the beginning and end life stages. In such cases, one-half of the
doses may be sampled from the beginning and one-half from the end of the container life. The
justification for this is two-fold. Firstly, the sampling plan becomes logistically simpler,
thereby saving analytical resources. Secondly, by testing only the beginning and end of
monotonic products, the test becomes more stringent because the sampling focuses on worst-
case scenarios and avoids diluting of the sample information with doses from the middle life
stage, when this has been shown to be bracketed by the beginning and end doses.

For beginning/end testing, sampling plans with even n’s are suitable (e.g., 10/30, 12/36, 14/42,
18/54, 24/72).
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5 Comparison of PTI Tests with FDA Tests

5.1 Single-dose Products

The operating characteristics of the PTI tests with the small (n=10/30) and large (n=24/72)
sample sizes described in the Table of Test Plans (page 7) were investigated by simulation
using the acceptance criteria described above. The OC curves for batch means at target are
given in Figure 13, which as a comparison also shows the OC curve for the FDA DCU test.
Figure 13 demonstrates that the OC curves for the PT] test (both test plans) are sharper and
provide both improved consumer and producer protection compared to the FDA DCU test.

The batch characteristics giving 5% and 95% acceptance probabilities using these tests are
given in Figure 14. This figure demonstrates that the PTI tests provide better consumer
protection than the FDA DCU test for all combinations of batch mean and batch standard
deviation. This is evidenced by the fact that the iso-probability curves for 5% acceptance for
the PTI test are completely inscribed within the corresponding curve for the FDA DCU test.

.

i ; Lo “True Mean ()} af 100% LC |
[27s J N P i R N T N S S S S
] : ' l ' ‘ i ' ' ' i
| i t I ! L i | ] :‘\: >~‘!

70 oo N A e T e P test = 10730
A~ PTl test n=24/72
e FDA DCU test

Probability to Accept, %

6 8 10 12 14 16 18 20
Standard Deviation, ¢ (% of LC)

Figure 13. Comparison of the OC curve for two of the PTI tests described in the Table of Test
Plans (including the 100£15% LC requirement on the sample average), and the FDA
DCU test
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Figure 14. Comparison of the operating characteristics for two of the PTI tests described in the
Table of Test Plans (including the 100£15% LC requirement on the sample average),
and the FDA DCU test

5.2 Multi-dose Products

The operating characteristics of the tests with the small (n=12/36, i.e., the smallest test divisible
by 3) and large (n=24/72) sample sizes described in the Table of Test Plans (page 7) were
investigated by simulation using the acceptance criteria described above (including the
requirement on the mean applied to each life-stage separately). The OC curves for batch means
at target are given in Figure 15, which as a comparison also shows the OC curve for the FDA
DCU&TCL test. Figure 15 demonstrates that the OC curves for the PTI test (both test plans)
are sharper and provide similar consumer protection and improved producer protection
compared to the FDA DCU&TCL test. The batch characteristics giving 5% and 95%
acceptance probabilities using these PTI tests are given in Figure 16. This figure demonstrates
that the PTI tests provide comparable consumer protection to that of the FDA DCU&TCL tests
for all combinations of batch mean and batch standard deviation. This is evidenced by the fact
that the iso-probability curves for 5% acceptance for the PTI tests trace the corresponding
curve for the FDA DCU&TCL test.
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Figure 15. Comparison of OC curve for two of the PTI tests described in the Table of Test Plans
(including the 100£15% LC requirement on the sample average for each life-stage
separately), and the FDA DCU&TCL tests
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Figure 16. Comparison of the operating characteristics for two of the PT| tests described in the
Table of Test Plans (including the 100£15% LC requirement on the sample average
for each life-stage separately), and the FDA DCU&STCL tests
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6 Sufficiency of PTI Test Criteria

The previous sections discussed the considerations used to develop the proposed parametric
tolerance interval test, which includes criteria for: 1) the Acceptance Value, 2) the sample
standard deviation, and 3) the sample average (applied to each life-stage separately for multi-
dose products). This section presents further considerations demonstrating that these three
criteria are sufficient to achieve efficient and rigorous control over dose uniformity.

6.1 The Parametric Criteria of the PTI Test Replaces the
Zero-tolerance Criterion of the FDA DCU Test

The FDA draft Guidance test includes a so-called “zero-tolerance” requirement, i.e., the
requirement that no observed value in a sample may be outside 100+25% LC. A zero-tolerance
requirement, however, does not provide a safety net against the presence of outlying doses
within the batch. It only provides a safety net against outlying doses within the sample. A
batch may still contain a significant percentage of such doses even when the sample does not.
The reason for this is that, statistically, there will always be a risk that the sample is free from
outlying results (by pure chance) even when such doses exist in the batch. The zero-tolerance
requirement constitutes a simple and correct non-parametric tolerance interval test of a
100+25% LC target interval. However, such a test has a rather flat operating characteristic
curve, which means that the chance to detect (and reject) a batch with an elevated frequency of
outlying doses increases rather slowly with the frequency of outlying doses. The proposed
parametric test has the capability to be more efficient in this respect.

Appendix 1 demonstrates that a batch will meet the FDA zero tolerance requirement with 5%
probability if the coverage is 74%. This means that up to 26% of the values in a batch may
be outside of the interval before the probability that at least one is present in the sample (n=10)
reaches 95%. At the same time, due to the flatness of the OC curve for this criterion, a batch
containing as little as 0.5% of the values outside the interval, has a 5% risk of being rejected
due to this criterion. Thus, this criterion carries a high risk for the producer without providing
the consumer a high protection.

With the parametric criteria of the PTI test, on the other hand, each accepted batch contains less
than 15% values outside the 100+25% LC interval with 95% confidence. Thus, the parametric
criteria of the PTI test afford superior consumer protection against doses outside the target
interval compared to the zero-tolerance criterion of the FDA DCU test.

The combined application of the FDA DCU and TCL tests for a multi-dose product also
achieves 95% confidence that an accepted batch contains less than 15% values outside of this
interval. Thus, the same consumer protection is achieved with the FDA DCU&TCL test as
with the PT1 test. However, the producer risk that a uniform batch is rejected is much higher
with the FDA DCU&TCL tests than with the PTI test.

* The 78% coverage quoted earlier results from the application of all three FDA criteria (i.e., zero tolerance,
+20% limit, and sample mean).
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In Appendix 2 it is demonstrated that overall, real data from orally inhaled and nasal drug
products follow a normal distribution with excellent fit extending far out into the tails of the
distribution. Thus, chance observations located in the extreme tails of the distribution are
expected to occur even for batches with excellent uniformity. This signifies that there exists no
useful limit beyond which a single observation in a sample would constitute evidence that a
batch is unacceptable. Institution of a requirement that depends on chance rather than on batch
quality is not ideal for quality control. In this respect, parametric requirements are superior to
non-parametric ones because they focus on overall batch quality rather than on individual
sample observations.

6.2 The Addition of a Zero Tolerance Criterion to the PTI
Test would be Incongruent with the Parametric
Approach

The limiting quality in the proposed approach is defined as an 85% coverage of the 100+£25%
LC target interval. This implies that doses outside of the target interval are not disallowed.
Because doses outside the target interval are tolerated (at a low, controlled frequency), it would
be inappropriate to add a requirement that a single observation, in a sample, of a dose outside
of the target interval is unacceptable.

The addition of a zero tolerance criterion to the PTI test would degrade the test. Figure 17 and
Figure 18 show the effect on the OC curve of adding a zero-tolerance criterion for the target
interval 100+£25% LC for two of the PTI tests in the Table of Test Plans (page 7) (those using
the lowest and highest numbers of observations, respectively). The graphs clearly show that
the OC curve for the test including the zero-tolerance requirement is less steep than the OC
curve for the test using parametric requirements only. For large standard deviations, there is
only a slight effect on the acceptance rate whereas for low to moderate standard deviations, the
acceptance rate 1s dramatically affected by the zero-tolerance requirement, particularly for the
larger sample size. In fact, the OC curve for the large sample is completely defined by the
zero-tolerance requirement, meaning that the parametric criteria no longer affect the shape or
location of the OC curve.

Ideally, as the sample size increases (and thus information about batch quality becomes more
complete), a proper test should increase the acceptance rate for uniform batches, and decrease
the acceptance rate for batches of low uniformity. Contrary to this goal, a test with a zero-
tolerance criterion has a lower acceptance rate for larger samples compared to smaller samples,
as illustrated by comparison of the OC curves in Figure 17 and Figure 18. Here, the OC curve
for the n=24/72 sample lies lower than the OC curve for the n=10/30 sample for al// standard
deviations. As described further in Appendix 1, a zero-tolerance requirement will always, for
any given quality, decrease the acceptance rate as the number of observations increases. With
a zero-tolerance requirement, every observation carries a random risk to fail, encouraging
minimalistic testing. This has the undesirable consequence that investigations requiring
repeated testing, such as development, stability and validation, are at risk of being under-tested.
Thus, the addition of a zero-tolerance requirement to a parametric test would be counter to the
intent of quality control, as it discourages adequate testing of a batch and thorough assessment
of its true quality.
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1169  The addition of a zero-tolerance criterion to the PTI test would compromise two of the key
1170 elements of the proposed test, namely:

1171

1172 s the higher efficiency (steeper OC curve, i.e., better discriminatory power) compared to
1173 non-parametric tests, and

1174 o the ability to mitigate producer risks by increasing the sample size.

1175

1176 At the same time, the addition of a zero-tolerance criterion would not meaningfully improve
1177  the consumer protection, as the level of consumer protection against acceptance of low quality
1178  batches provided by the parametric criteria of the proposed PTI tests already is superior to that
1179  given by the FDA draft Guidance DCU test for a single-dose product (see Figure 13 above) and
1180  comparable to that given by the FDA DCU&TCL tests for a multi-dose product (see Figure 15
1181  above).

1182

1183  Therefore, it is concluded that the addition of a zero-tolerance criterion to a PTI test is

1184  unwarranted and highly undesirable as it would provide no added value and is associated with
1185  many drawbacks. The elimination of a zero tolerance criterion has been fully compensated for
1186 by the use of the more efficient parametric criteria contained in the PTI tests.

1187

1188
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Figure 17. PTl test using L=25, ny=10, n,=30, Figure 18. PTI test using L=25, n,=24, n,=72,
k4=2.09, k;=1.59, §=0.839, with or ks=1.59, k,=1.36, f=0.796, with or
without a zero-tolerance criterion as without a zero-tolerance criterion as
indicated indicated
1190
1191
1192 6.3 Non-normal Distributions are Treated Conservatively
1193 by PTI Tests
1194

1195 The theoretical foundation for the proposed PTI tests is based on the assumption that doses in a
1196  batch are normally distributed. It is thus important to investigate how non-normal distributions
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are treated by the PTI test, even though there are strong indications that overall, orally inhaled
and nasal drug products are normally distributed (see Appendix 2).

An interesting type of non-normality arises when the basic, normal distribution is contaminated
with values from another distribution. Here, the effect of such contaminating values will be
studied by disturbing a proportion of the values of a normal distribution by another process. To
investigate whether the parametric criteria alone offer protection against disturbances, a
selection of PTI tests for single-dose products were compared with the FDA DCU test, and a
selection of PTI tests for multi-dose products were compared with the FDA DCU&TCL tests.
The draft Guidance tests were used as references, because they contain a zero-tolerance
criterion for values outside of 100+25% LC. To facilitate comparison between the tests, which
all have different OC curves, the standard deviation of the basic distribution (a normal
distribution with the true mean at target) was adjusted for each test to give 95% acceptance rate
in the absence of disturbances.

For the purpose of this exercise, it was assumed that disturbances are positive and that a small
disturbance is more common than a larger one. A simple one-parameter distribution that
fulfills these conditions is the exponential distribution (with density function exp(-x/A)/A, x = 0,
A>0). The parameter A of the distribution equals both the mean and the standard deviation of
the exponential distribution. For example, for A=35% LC, the average size of the disturbances
is +35% LC. However, because a small disturbance is more common than a larger one, the
median disturbance size is lower; in this example, the median is +24% LC (35In(2)).

The simulations were performed as follows. A value was randomly drawn from the basic,
normal distribution. With a certain probability, this value was then disturbed by the addition of
a randomly drawn value from the selected exponential distribution. This was repeated until a
sample size sufficient for final evaluation was reached. The whole procedure was then
repeated several thousand times to obtain sufficient accuracy to draw smooth curves.

Figure 19 compares the density function of an undisturbed normal distribution with those of
normal distributions contaminated with disturbances (A=35% LC) with increasing frequency
(p=5, 10, 15%). As is evident from the figure, the exponentially disturbed distributions have a
heavy right-hand tail and a lower frequency of values near the target.
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Disturbance level:
A= 35%LC

Frequency

80 80 100 120 140 160 180

Figure 19. Density function for a pure normal distribution, and a normal distribution disturbed
by an exponential distribution (A= 35% LC, probability of a disturbance as indicated).

In one set of simulations, the probability of disturbing a value of the normal distribution was
varied (5, 10, 15%) for a fixed level of disturbance (A=35% LC); and in another set, the level of
disturbance (A) was varied (0-100% LC) for a fixed probability (10%).

Figure 20 (left panel: level of disturbance fixed at A=35% LC; right panel: probability fixed at
10%) indicates that both the small and large PTI tests for single-dose products (using no zero-
tolerance criterion) react more sensitively to disturbances than the FDA DCU test (which uses a
zero-tolerance criterion). For all tests, the sensitivity to disturbances increases with increasing
frequency and/or level. The predominant reason why the PTI tests are discriminatory against
disturbances in spite of not using a zero-tolerance criterion is the fact that the standard
deviation is inflated by the presence of deviating values to make it transgress the MSSD
criterion and/or make the Acceptance Value exceed its limit.

Figure 21 shows the results for multi-dose products. The same conclusions as for single-dose
products hold, although the degree of improved control achieved by the PTI tests is less
pronounced. The reason is that compared to the FDA DCU test for single-dose products, the
FDA DCU&TCL combined test for multi-dose products uses a larger sample size and thus
naturally has a greater sensitivity towards disturbances than the FDA DCU test. The PTI tests
behave similarly for both product types.

In Appendix 3, it is further demonstrated that the PTI tests are conservative and that for a fixed
coverage, the probability of acceptance decreases when data are non-normally distributed. This
is shown for the main classes of non-normal distributions potentially encountered in practice
(skewed distributions, multi-modal distributions and heavy-tailed distributions).

These findings show that consumer protection is not eroded when the PTI test is applied to
non-normal data. Thus, it is valid to use the PTI test both for normal and non-normal data.
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Figure 20. Acceptance probability for single-dose products as a function of disturbance
probability (left panel) and disturbance level (1) {right panel). Basic (normal)
distribution with mean at target and standard deviation adjusted (see legend) to give
95% acceptance probability in absence of disturbances. See text for details.
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Figure 21. Acceptance probability for multi-dose products as a function of disturbance
probability (left panel) and disturbance level (A) (right panel). Basic (normal)
distribution with mean at target and standard deviation adjusted (see legend) to give
95% acceptance probability in absence of disturbances. See text for details.
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7 Simulated Production Situation

Although formally described by the operating characteristic curves, the practical capability of a
test may not be immediately apparent. An illustrative way to study the capability of a test is to
try to simulate a realistic production situation, where a series of batches of varying quality is
inspected, and then separately study the quality of batches that were rejected and accepted by
the test under consideration. It should be emphasized that it is not the guantity of rejected
batches, but rather the quality of accepted batches that should be the focus of proper quality
control.

7.1 Simulated Single-dose Product

Figure 22 shows an example for a simulated production of a single-dose product yielding
batches with a long-term (i.e., over many batches) average of 100% LC and a long-term within-
batch standard deviation of 10% LC.

To simulate a production where the true quality of batches varies, the following procedure was
used. For each simulated batch (batch number i), a true mean (y;) was randomly drawn from a
normal distribution with the mean at 100% LC and a standard deviation of 4.5% LC (i.e.
N(100, 4.5)). In other words, the overall product mean (over all batches) is 100% LC and the
standard deviation of batch means is 4.5% LC. Similarly, for each batch the true within-batch
standard deviation (o;) was randomly drawn from a normal distribution N(10, 1.5). That is, the
overall within-batch standard deviation (over all batches) is 10% LC and the variability of the
within-batch standard deviation is 1.5% LC. The figures of 4.5%, 10% and 1.5% are arbitrary
but considered to be realistic.

Thus, by this procedure, each simulated batch has a known true mean (y;) and a known true
standard deviation (o;). Further, assuming that values within a batch follow the normal
distribution N(u;, ;), values can then be randomly drawn from this distribution to simulate a
sample from batch i. Finally, an FDA or a PTI test can be applied to these values.

The above procedure was applied to 5000 simulated batches. Figure 22 (page 43) illustrates
the true properties (i; and o;) of batches that passed or failed the FDA DCU test and two of the
PTI tests (n=10/30 and n=24/72) based on results from a random sample from each batch.

Inspection of the true quality of the batches accepted by the tests shows that there was no
meaningful difference in the true quality of batches accepted by the FDA and PTI tests. The
median coverage of the 75-125% target interval of accepted batches was 98.4% (5 to 95
percentiles: 94.6-99.9% coverage) for the FDA DCU test, 98.3% (5 to 95 percentiles: 94.7-
99.9% coverage) for the small PTI test, and 98.1% (5 to 95 percentiles: 93.9-99.8% coverage)
for the large PTI test. For this simulated situation, the FDA DCU test rejected about 25% of
the batches. The PTI tests rejected 13% (small sample) and 4% (large sample). The FDA
DCU test thus rejected a significantly higher number of batches than the PTI tests, yet the
outgoing batch quality was the same.

The quality of rejected batches, on the other hand, was clearly different. As is illustrated in
Figure 22, the FDA DCU test rejected a significant fraction of batches that are well within the
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region of quality accepted by the FDA DCU test. In contrast, the PTI tests exhibited a better
discrimination between the quality of accepted and rejected batches (of course, this is due to
the fact that the FDA DCU test has a shallower OC curve than the PTI test, see Figure 13).

The higher discriminating power of the PTI test comes at the expense of more testing. For this
particular simulation, the FDA DCU test used on average 11.1 observations per test to assess a
batch. By contrast, the PTI test used on average 20.4 (small test) or 32.7 (large test)
observations per test, due to the 2™ tier testing being invoked for 52% of the batches using the
small PT1 test, and 18% using the large PTI test.

7.2 Simulated Multi-dose Product

Figure 23 shows an example of a simulated production of a multi-dose product, also yielding
batches with a long-term (over many batches) average of 100% LC and a long-term within-
batch standard deviation of 10% LC, again assuming the variability between batch means and
standard deviations to be 4.5% and 1.5%, respectively. For this example, it was assumed that
the within-batch variability originated in equal parts from intra- and inter-container variability
and that there was no systematic through-container-life trend.

Figure 23 illustrates the true properties (i; and o;) of batches that passed or failed the FDA
DCU&TCL combined test and two of the PTI tests (n=12/36 and n=24/72, using equal
sampling in the beginning, middle and end of container life) as judged from a random sample
from each batch.

An inspection of the true quality of the batches accepted by the tests again shows that there was
no appreciable difference in quality of batches accepted by the FDA and PTI tests. The median
coverage of the 75-125% target interval of accepted batches was 98.6% (5 to 95 percentiles:
95.1-99.9% coverage) for the FDA DCU&TCL test, 98.3% (5 to 95 percentiles: 94.5-99.9%
coverage) for the small PTI test, and 98.1% (5 to 95 percentiles: 93.9-99.8% coverage) for the
large PT] test. The FDA DCU&TCL test rejected about 35% of the batches. The PTI tests
rejected 10% (small sample) and 4% (large sample) of the batches. Thus, the FDA DCU&TCL
test rejected a significantly higher number of batches than the PTI tests, with the same outgoing
quality.

Again, the quality of the rejected batches was clearly different. As is illustrated in Figure 23,
the FDA DCU&TCL test rejected a significant fraction of batches that are well within the
region of quality accepted by the FDA DCU&TCL test. In contrast, the PTI tests exhibited a
better discrimination between the quality of accepted and rejected batches. (Again, this is due
to the fact that the FDA DCU&TCL test has a shallower OC curve than the PTI test, see Figure
15).

The FDA DCU&TCL test used on average 17.7 observations per test to assess the batch
quality. By contrast, the PTI test used on average 22.9 (small test) or 32.8 (large test) values
per test, due to 2" tier testing being invoked for 45% of the batches using the small PTT test
and 18% using the large PTI test.
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Figure 22, Comparison of two of the PTl tests described in the Table of Test Plans (including
the 100£15% LC requirement on the sample average), and the FDA DCU test in a
simulated production situation for a single-dose product. Each dot represents the
true properties (i and o) of one simulated batch. The 85% iso-coverage curve {the
limiting quality of the PTI tests) is shown to guide the eye. See text for details.
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1385
1386 CONCLUSIONS
1387
1388
1389 e A parametric tolerance interval test (PTI test) is proposed as a replacement for the
1390 delivered dose uniformity tests in the FDA draft Guidances. The PTI test is more
1391 efficient because it makes more complete and thorough use of the information obtained
1392 from a sample. The ability to reliably estimate the quality of the batch from which the
1393 sample originates is improved, which increases the likelihood for a correct disposition
1394 of the batch.
1395 e For single-dose products, it has been demonstrated that compared to the FDA DCU test,
1396 the PTI test provides superior consumer protection against false acceptance of batches
1397 that do not fulfill the specified limiting quality requirement. Stated in statistical terms,
1398 the PTI test provides a higher coverage of the 100£25% 1.C target interval compared to
1399 the FDA DCU test (i.e., minimum 85% coverage for the PTI test vs 78% coverage for
1400 the FDA DCU test, at the 95% confidence level).
1401 » For multi-dose products, it has been demonstrated that the PTI test provides consumer
1402 protection comparable to that given by the simultaneous application of the FDA DCU
1403 and TCL tests (i.e., minimum 85% coverage of the 100+25% LC target interval, at the
1404 95% confidence level)
1405 s Single-dose as well as multi-dose products are proposed to be tested using a single PTI
1406 test. For multi-dose products, a stratified sampling plan is used, with equal testing of
1407 beginning, middle and end doses (or if appropriate, beginning and end doses) of
1408 different inhalers. The proposed stratified sampling plan allows simultaneous control of
1409 both between-container and through-container-life uniformity for multi-dose products.
1410 Similarly to the FDA TCL test, the mean of each tested life stage is required to be
1411 within £15% of the label claim.
1412 o The proposed test replaces the zero tolerance limit of the FDA draft Guidance with a
1413 parametric limiting quality statement. As a result, the proposed PTI test provides
1414 protection against deviating doses comparable or superior to that given by the FDA
1415 draft Guidance tests.
1416 e The PTI test is applicable for normally as well as non-normally distributed data.
1417 » The PTT test provides superior protection, compared to the FDA draft Guidance tests,
1418 against false random rejections of batches of acceptable quality.
1419 e The proposed PTI test provides flexibility to the producer to choose a test plan that is
1420 most suitable for a particular product without compromising the consumer protection.
1421 ¢ The cost incurred to achieve these advantages is an increased average demand on the
1422 sample size. As a result, the quality of each batch is more thoroughly investigated.
1423 o The proposed PTI test provides a powerful incentive for producers to improve their
1424 product quality since sample size requirements are lower for products of higher quality.
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APPENDICES

1 FDA Draft Guidance Test

1.1 Interpretation of the FDA Tests

The tests listed in the Metered Dose Inhaler and Dry Powder Inhaler Drug Products CMC
Draft Guidance were interpreted as follows:

Dose Content Uniformity (Sections IIL.F.1.i and IILF.2.k)
(This test is referred to as the FDA DCU test)

For each of ten containers, determine one dose. The test is passed if

s  NMT 1 of the 10 values is outside £20% label claim (LC),

» None is outside £25% LC, and

» The average of the 10 values is within £15% LC.
If the test is not passed, twenty additional containers are tested in a 2™ tier provided the 1% tier
average 1s within 15% LC, NMT 3 values are outside +20% LC, and no value is outside £25%
LC. The test is passed if

s  NMT 3 of the 30 values are outside +20% LC,

* None is outside £25% LC, and

o The average of the 30 values is within £15% LC.

Dose Content Uniformity Through Container Life (Sections IILF.1j and III.F.2.i)
(This test is referred to as the FDA TCL test)

For each of three containers, determine one beginning, one middle, and one end dose. The test
is passed if

e NMT I of the 9 values is outside +20% LC,

e None is outside £25% LC, and

* The average of each of the beginning, middle and end values are all within £15% LC.
If the test is not passed, six additional containers are tested in a 2™ tier provided all three 1*' tier
averages are within 15% LC, NMT 3 values are outside £20% LC, and no value is outside
+25% LC. The test is passed if

s NMT 3 of the 27 values are outside +20% LC,

s None is outside £25% LC, and

e The average of each of the beginning, middle and end values are all within £15% LC.

For Nasal Spray and Inhalation Solutions, Suspension, and Spray Drug Products, the CMC
draft Guidance recommends a Spray Content Uniformity test that is interpreted to be equivalent
to the DCU test for MDI/DPI drug products. The Spray Content Uniformity Through
Container Life test differs from the Dose Content Uniformity Through Container Life test in
that one beginning spray and one end spray is sampled from each of 5 containers, otherwise the
corresponding requirements apply.
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1.2 Operating Characteristic Curves for the FDA DCU Test

The FDA DCU test is applied to single-dose products such as capsules and blisters. It is also
applied to multi-dose products, but then in combination with the FDA TCL test. This section
reviews the operating characteristics of the FDA DCU test used alone. Section 1.3 reviews the
simultaneous application of both the DCU and the TCL tests.

The operating characteristic (OC) curve for the FDA DCU test is given in Figure 24 for a
normal distribution with the true mean at the target (100 % LC). OC curves for a true mean
deviating by 5%, 10% and 15% LC from the target are also shown in Figure 24. For
distributions that deviate from the target, the OC curves are shifted towards smaller standard
deviations.

True mean (4)
deviation as indicated

M
!
~0-FDA DCU no deviation |
E
3= FDA DCU 5% devation [
i

Ll |
| ——FDA DCU 10% devation |

|

| —0=—FDA DCU 15% deviation |

Probability to pass, %

4} 5 10 15 20
Standard deviation, G (% of LC)

Figure 24. Operating Characteristic curves for the FDA DCU test based on normal distribution
with batch mean deviation from target and batch standard deviation as indicated.

Another way of illustrating the operating characteristics for the FDA Draft Guidance test is to
employ a graph of batch standard deviation versus batch mean. On such a graph, the batch
quality (as expressed by mean and standard deviation) corresponding to a 5% acceptance
probability (5% consumer risk) and 95% acceptance probability (5% producer risk) can be
outlined. Figure 25 (page 50) shows these iso-probability curves for the FDA DCU test. The
complex curve-form is derived from simultaneously applying the three acceptance rules in the
FDA DCU test:

e Sample mean within 100£15% LC;

* 90% of the sample observations inside 100+20% LC (inner limits);
* No observation in a sample is outside 100+25% LC (outer limits).
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Figure 26 to Figure 28 below show the iso-probability curves for each of these separate
requirements. The upper curve labeled “5% acceptance rate” represents the quality of batches
that have exactly 5% probability to provide a sample that passes the specified requirement of
the test. The lower curve labeled “95% acceptance rate” represents the quality that has exactly
95% probability to provide a sample that passes the specified requirement of the test.

The mean requirement of the FDA DCU test is seen to be responsible for control in the region
of large deviations from the target (compare Figure 25 and Figure 26). For the inner limit
requirement (Figure 27), the 5% iso-probability curve traces an iso-coverage curve of 60.5%
coverage of the interval 80-120% LC. This means that with 95% probability, this component
of the test will reject a batch that has 60.5% of the doses within 80-120% of the label claim.
For the outer limit requirement (Figure 28), the 5% iso-probability curve traces an iso-coverage
curve of 74% coverage of the interval 75-125% LC. This means that with 95% probability, this
component of the test will reject a batch that has 74% of the doses within 75-125% of the label
claim.

Because all three requirements are applied simultaneously, the iso-probability curve for the
complete FDA DCU test (Figure 25) does not trace any particular iso-coverage curve.
However, for batch means not too distant from the target (approximately 100+12% LC), the
150—probabzhty curve for 5% acceptance ?robablhty closely traces the iso-coverage curve for
78% coverage of the interval 75-125%" LC (compare the 78% i iso-coverage curve and the
5% iso-probability curve in Figure 25). This means that with 95% probability, the FDA DCU
test will reject a batch that has 78% of the doses within the interval 75 ~125% LC. For batch
means further away from the target, the test becomes more conservative due to the requirement
on the mean.

% The reason that this coverage (78%) is slightly higher than that given by the outer requirement alone (74%, see
Fzgure 28) is the complex interaction of the requirements with regard to 2° tier testing.

® The 5% 1so-probability curve also traces an iso-coverage curve representing a lower coverage (67%) of a tighter
interval (80-120% LC) for batch means not too distant from the target (approximately 100£12% LC). Hence, in
this region of batch means, the two statements “78% coverage of 75-125% LC” and “67% coverage of 80-120%”
are equivalent.
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Figure 26. Iso-probability curves for the
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Figure 28. Iso-probability and iso-coverage
curves for the outer limits, only
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1.3 Operating Characteristic Curves for the Simultaneous
Application of the FDA DCU and TCL Tests

For multi-dose products, such as pressurized metered dose inhalers, reservoir dry powder
inhalers and multi-cavity blister pack inhalers, the draft Guidances prescribe that uniformity is
tested by application of both the DCU and the TCL tests. These tests can be combined in a
number of different ways. For the present purpose of investigating the operating characteristics
of a combination of these two tests, the following assumptions were made:

* Ten beginning doses are sampled from ten inhalers for the DCU test;

o The first three inhalers used for the DCU test are also sampled in the middle and end of
container life for the TCL test;

s The intra- and inter-inhaler variability are of equal magnitude.

The OC curve for the FDA DCU&TCL test is given in Figure 29 for a normal distribution with
the true mean at the target (100 % LC). OC curves for a true mean deviating by 5%, 10% and
15% LC from the target are also shown in Figure 29.

True mean (4}
deviation as indicated

T o o :
e tabeilon Lol L 1 0 FDA DCUSTCL no deviation
,,,,,,,,,,,,,,,,,,,,,, i :

| {3 FDA DCU&TCL 5% deviation |

|ty FDA DCUSTCL 10% devation
! |

Probability to pass, %

777 nce FDA DCUSTCL 15% deviation
]t :

Standard deviation, ¢ (% of LC)

Figure 29. Operating Characteristic curves for the simultaneous application of the FDA DCU
and TCL test, based on normal distribution with batch mean deviation from target
and batch standard deviation as indicated.

Comparing the OC curves for the FDA DCU&TCL tests (Figure 29) with the OC curves for the
FDA DCU test (Figure 24), it is apparent that the acceptance rate is consistently lower for the
combined tests (given any quality). This is due to the fact that in order to be accepted, both
tests must be passed. For low quality multi-dose products (high standard deviation and/or large
mean deviation), this provides added consumer protection compared to single-dose products.
For high quality multi-dose products (low standard deviation and small mean deviation),
however, this increases significantly the probability to fail a batch due to a random observation,
i.e., the producer risk 1s increased.
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As demonstrated in Figure 30, the simultaneous application of the DCU and TCL tests results
in an acceptance rate of 5% for a coverage of 85% of the 100+:25% LC interval (for mean
deviations within £12% of the target). Compared to the coverage afforded by the FDA DCU
test alone (78%), this demonstrates that the quality requirements in the draft Guidances are
more stringent for multi-dose than for single-dose products.

For multi-dose sprays, simultaneous application of the Spray Content Uniformity and the Spray
Content Uniformity Through Container Life tests results in a limiting coverage of 84% (using
stmilar assumptions as those stated above for DCU&TCL testing).

The limiting coverage implied by the DCU&TCL tests is slightly affected by the assumptions
made in calculating the operating characteristics. Depending on particular assumptions
regarding the relation between intra- and inter-inhaler variability and how the observations are
combined for the two tests, the limiting coverage implied by the FDA tests varies between 78%
and 88%. The assumptions listed in the beginning of this section, which result in a coverage of
85%, are judged to be appropriate and realistic.

[ e 5% Acceptance rate FDA DCUSTCL

e 84.9% coverage 75-125
—m-- 98% Acceptance rate FDA DCUSTCL

N
(4]

[
[

wd
w

SD, g (%LC)
)

oy
—

70 80 90 100 110 120 130
Mean, y (% LC)

Figure 30. Iso-probability curves for the simuitaneous application of the FDA DCU and TCL
tests.

The above analyses of the FDA DCU test and the FDA DCU&TCL tests were performed in
order to establish a baseline for the development of a new, more efficient test that would
provide the same or a better level of limiting quality as the FDA draft Guidance tests.

Given that the FDA DCU test (for a single-dose product) provides a limiting (i.e., at 5%
acceptance rate) coverage of 78% of the 75-125% LC interval, and that the FDA DCU&TCL
tests (for a multi-dose product) provides a limiting coverage of 85%, it was assumed that a
replacement test, aiming to be applicable for both cases, needs to provide a minimum coverage
of 85% (there is no reason to allow a lower limiting coverage for single-dose products than for
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multi-dose products). The proposed PTI test was designed to have a 5% consumer risk of
accepting a batch that has an 85% coverage of a 75-125% LC target interval. Thus, the PTI test
provides higher batch coverage for the same 5% consumer risk for a single-dose product and
equally high coverage for a multi-dose product.

Alternatively stated, with the proposed PTT test, a batch with 78% coverage of the 75-125% LC
target interval has less than 5% acceptance probability, and the consumer risk is thus lower for
a single-dose product with the PTI test than with the FDA DCU test (which would accept such
a batch with 5% probability). For a multi-dose product, the high consumer protection provided
by the FDA DCU%TCL tests is matched by the PT1 test.

1.4 Factors Controlling the Outcome of the FDA Tests

The operating characteristics of the draft Guidance tests were investigated by simulations,
using the following models.

For a single-dose product, it was assumed that observations were normally distributed with the
mean at target. In each round, ten values were randomly selected from the distribution,
representing one dose from each of ten containers, and the FDA DCU test was applied. Second
tier testing and evaluation followed the rules given in the draft Guidance as interpreted above.
The proportion of non-complying samples and the cause for non-compliance are given in Table
2 (the rows labeled “DCU”).

For a multi-dose product, it was assumed that the observations were normally distributed with
the mean at target, that no through-container-life trend existed, and that the overall variation
emanated from both inter- and intra-inhaler variability (of equal magnitude). In each round, ten
inhalers were randomly selected from the distribution of inhalers. From each of these, one
dose was randomly drawn from the distribution of doses, and the FDA DCU test was applied.
From three of these inhalers, a further two doses were drawn to represent middle and end
doses. The nine doses from these three inhalers were subjected to the TCL test. For each test,
second-tier testing was performed according to the rules for the respective test. Evaluation
followed the rules given in the draft Guidance as interpreted above. The proportion of non-
complying samples, and the cause for non-compliance are given in Table 2 (all rows).

Note that the models above for single- and multi-dose products yield exactly the same result for
the DCU part of the testing (which is the complete test for a single-dose product).

For a batch with the true mean at target, the overall rate of non-compliance with the FDA DCU
test (single-dose product) was found to be 1.8, 13.1, and 37.3% for a true batch standard
deviation of 8, 10, and 12 % LC, respectively (Table 2). For the FDA DCU&TCL test (multi-
dose product) the corresponding rates of non-compliance were 3.0, 20.3, and 51.7%. In all
cases, the absolute majority of failures was caused by obtaining a value outside the outer limits.
Yet, for these distributions, the true proportion of values outside 100+:25% LC is 0.2, 1.2 and
3.7%, respectively (i.e., the true coverage is 99.8, 98.8 and 96.3%, respectively). Also note that
the mean requirements of the TCL test lead to a number of rejections, even though the true
mean is on target and no through-container-life trend is present.
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Table 2. Rate (%) and cause of non-compliance with FDA draft Guidance tests
assuming normal distribution, true batch mean at 100% LC and true overall
batch standard deviation (o, % LC) as indicated. For a single-dose product,
only the part labeled DCU applies. For a multi-dose product, the complete

table applies.
Test Cause for non-compliance o=80 o=100 o=120
DCU Failed inner limits* 0.0 0.9 6.1
Failed outer limits* 1.8 12.7 357
Failed inner and/or outer limit* 1.8 13.1 37.3
Failed mean* g.0 0.0 0.0
Failed any DCU criteria* 1.8 13.1 37.3
Total allowed into 2™ tier 05 3.6 8.1
Total failed 2™ tier (any cause) 0.0 1.2 5.9
TCL Failed inner limits* 0.0 1.1 5.1
Failed outer limits* 1.5 10.1 28.3
Failed inner and/or outer limit* 1.6 10.6 285
Failed mean* 0.4 2.6 76
Failed any TCL criteria* 1.8 11.8 31.8
Total allowed into 2™ tier 0.8 3.1 58
Total failed 2" tier (any cause) 0.1 1.0 3.7
DCU & TCL Failed any DCU and/or TCL criteria* 3.0 20.3 51.7

* 2% tier failures are included

Second tier testing is not permitted if the first tier testing results in a value outside the outer
limit requirements. This fact results in the low incidence of the 2™ tier testing as demonstrated
in Table 2.

The results of these simulations demonstrate that it is the zero-tolerance requirement for the
outer limits that to all practical purposes determines the outcome of the FDA tests. It is further
demonstrated that for the same quality (coverage), a multi-dose product fails more frequently
than a single-dose product. Stated in a different way, this demonstrates that the FDA draft
Guidance tests require a higher uniformity for multi-dose products than for single-dose
products.

The critical role of the outer limits requirement is further highlighted by the imbalance between
the requirement that no value is allowed outside 100+25% LC and the allowance of up to 10%
of values outside £20%, as shown for a normal distribution in Table 3. The table demonstrates
that for a distribution with a standard deviation of 12.2% LC, where 1 out of 10 (i.e. 10%)
values are outside the 100+£20% LC interval, 4% of the values are outside the 100425% LC
interval. This explains why the requirement that no observation be allowed outside the outer
limits determines the outcome of the test.
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Table 3. Relation between inner and outer limits (assuming that data are normally
distributed with a mean of 100% LC)

Standard Deviation, % LC % Qutside 100+20% LC % Qutside 100+25% LC
7.1 0.5 0.05
7.8 1 0.1
10.2 5 1.4
12.2 10 4.0

Because some fraction (however small) of the doses in a batch is always outside the outer
limits, the probability of failing the requirement that none may be observed increases steadily
with the number of observations. Thus, the more thorough the investigation, the more certain
is a failure. This is in contrast to the requirement that not more than 10% may be outside the
inner limits; here the more thorough the investigation, the more certain is a correct decision. In
Table 4, some examples showing the probability to observe a value outside the outer limits are
given for different true fractions outside the outer limits and different number of observations.

Table 4. Risk to fail (%) outer limits for different number of observations’.

True fraction (%) outside Corresponding Number of observations, n

outer limits, 100g Coverage (%) 10 16 100 160 | 300 480
0.1 99.9 1 2 10 15 | 26 38
0.3 99.7 3 5 | 26 38 59 76
1.0 99.0 10 15 63 80 | 95 99
3.0 97.0 26 39 95 99 | 100 100

* calculated from 1-(1-q)"

Typically, a stability investigation of three batches would involve about 300 observations (or
480 observations for a multi-dose product). Table 4 shows, for example, that for a hypothetical
product with 0.1% values outside the outer limits (which for a normal distribution with the
mean at target corresponds to 1% values outside the inner limits; compare Table 3) there is a
26% probability to obtain at least one such value if 300 values are observed (38% probability
for 480 observations), while if only 10 (16) values are observed the risk is reduced to 1% (2%),
although the quality of the product is the same.

This constitutes a strong incentive for the industry to minimize the number of observations, ie.
the FDA zero tolerance criterion rewards small investigations and penalizes thorough ones. In
any kind of investigation where many observations are called for (such as development,
stability, validation), this issue will need to be addressed.
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2 Distribution of Data in OINDP Database

The proposed PTI test was developed assuming that delivered dose uniformity data follow a
normal distribution. It is therefore important to investigate whether the assumption of a normal
distribution is valid.

This appendix uses the ITFG/IPAC-RS DCU database to illustrate the actual distribution of
delivered dose data, and compare this to the normal distribution.

The ITFG/IPAC-RS DCU database contains data for 80 products and a total of 46,816
individual determinations. In Figure 31, a histogram showing the overall distribution of these
data is presented. In the same figure, the density function for the standardized normal
distribution is superimposed for comparison. Note that in order to be able to pool all data from
different products and present an overall summary, the data needed to be standardized.
Consider for example a situation where data is available for two batches, both following a
normal distribution but with different means (say, 90 and 110% LC). If these data are
combined and displayed in one histogram, a distribution indicating non-normality (a bi-modal
one) would be obtained. A similar artifact could be obtained due to differences in variability.
To address these concerns, the following approach was used to construct Figure 31. For each
product, the overall mean (m) and standard deviation (s) were calculated, after which each
individual result was standardized [(dose-m)/s] to the mean and standard deviation for the
corresponding product. With this approach, all products are standardized to a mean of zero and
a standard deviation of unity, allowing the data to be pooled in order to illustrate the general
shape of the distribution.
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Figure 31. Histogram over standardized delivered dose data for all products (n=46,816),
compared to the standardized normal distribution.
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Figure 31 shows that the overall distribution of data is symmetrical and that the fit to the
standardized normal distribution is superb. Note specifically that the excellent fit extends far
out into the tails of the distribution.

In addition to the overall illustration for all products in the database, the normality of the
distribution of several individual products was investigated. These were selected to include a
product from each of the main product types to assess potential differences between product
types. Standardized histograms for one CFC MD], one HFA MDI, one pre-metered DPI, one
device-metered DPI, and one non-pressurized nasal spray are presented and compared to the
standardized normal distribution in Figure 32 through Figure 36 below. For each type, the
product with the largest number of available observations was selected.
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Figure 32. Histogram over standardized delivered dose data for a CFC MDI {(n=1,310), compared
to the standardized normal distribution.

Data for the selected CFC MDI product (1,310 determinations from 9 batches) is shown in
Figure 32. The right-hand side appears to follow the theoretical normal distribution to a high
degree of accuracy, while some irregularities can be seen in the left part.
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1799
1800  Figure 33. Histogram over standardized delivered dose data for an HFA MDI {n=2,230),
1801 compared to the standardized normal distribution.
1802

1803 The HFA MDI product presented in Figure 33 (2,230 determinations from 6 batches) shows an
1804  excellent fit to the normal distribution.
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1808
1809  Figure 34. Histogram over standardized delivered dose data for a pre-metered DPI {(n=200),
1810 compared to the standardized normal distribution.

1811 The limited available data (only 200 determinations from 3 batches) for the pre-metered DPI in
1812 Figure 34 follow the normal distribution very well.

1813

1814
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1816  Figure 35. Histogram over standardized delivered dose data for a device-metered DPI (n=3,658),
1817 compared to the standardized normal distribution.
1818

1819  In Figure 35, data for a device-metered DPI is presented (3,658 determinations from 18
1820  batches). This product displays an excellent fit to the normal distribution.
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1823
1824  Figure 36. Histogram over standardized delivered dose data for a non-pressurized nasal spray
1825 {n=1,200), compared to the standardized normal distribution.
1826

1827  In Figure 36, data for a non-pressurized nasal spray is presented (1,200 determinations from 32
1828  batches). This product also displays an excellent fit to the normal distribution.
1829
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For completeness, it was investigated whether the data could be fitted to a log-normal
distribution®. To study this alternative, all individual determinations were log-transformed and
a plot corresponding to Figure 31 was constructed. This is shown in Figure 37 below.
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Figure 37. Histogram over standardized log-transformed delivered dose data (n=46,816),
compared to the standardized normal distribution.

Figure 37 shows that the log-normal assumption also provides a good fit to the data, although
the transformed distribution is slightly skewed to the right. By comparing the results of Figure
31 and Figure 37, it is concluded that the normal distribution provides a marginally better fit to
the data. In addition, as shown in Appendix 3, Section 3.2, the outcome of the PT]I test is
virtually the same for a log-normal and a normal distribution having the same coverage.

In summary, based on the delivered dose data collected by ITFG/IPAC-RS, it has been
demonstrated that the data are well approximated by a normal distribution, both overall and for
individual products of different types. This does not exclude the possibility that products exist
for which the normal assumption is not the best choice. However, results in Appendix 3 show
that the proposed test PTI is appropriate also in such instances, because the consumer
protection is not compromised.

®X s log-normal distributed if Y=log(X) is normal distributed.
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3 Applicability of PTI Test for Non-normally
Distributed Data

The proposed Parametric Tolerance Interval (PTI) test has been developed based on the
assumption that dose delivery data follow a normal distribution. Although the extensive
collected database indicates that data for OINDP products typically are normally distributed
(see Appendix 2), it cannot be ruled out that products exist for which this assumption is not
fulfilled.

For this reason, it is important to investigate the performance of the PTI test for different
potential deviations from normality, to ensure that the improved control provided by the
proposed test is not degraded in situations where non-normal data are evaluated.

Three main types of deviations from normality have been studied to illustrate different
situations of potential interest:

1. Multi-modal distributions.
2. Skewed distributions.
3. Heavy-tailed distributions.

The properties of the PTI test are studied below for each of these three potential situations. The
general capability of the PT1 test is demonstrated by presenting OC curves for the smallest
(n=10/30) and largest (n=24/72) of the test plans given in the Table of Test Plans {page 7).
Because the PTI test behaves similarly for single- and multi-dose products, the investigation
focused on the tests for single-dose products without loss of generality.

3.1 Multi-modal Distributions

A multi-modal distribution is a potential deviation from normality which can arise for different
reasons (a bimodal distribution could occur, for example, when a fill weight adjustment is
made during batch manufacture). It is important to ensure that the PTI test does not reward
such undesirable characteristics; that is, for a fixed coverage the acceptance probability should
not increase if data follow a multi-modal distribution.

As an example of a multi-modal distribution, bimodality was studied because this represents
the worst case (with increasing number of modes, a multi-modal distribution tends to become
less non-normal).

In Figure 38, the density of a normal distribution is compared to the densities of different
bimodal distributions. All distributions in the figure have an overall mean at target (100% LC)
and the same coverage of the target interval. The distance between the modes of the
distribution ranges from £6% (94 and 106% LC modes, representing a very slight non-
normality that is barely distinguishable from a perfectly normal distribution) to +15% (85 and
115% LC modes), where separation of the modes is almost complete.
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The bimodal distributions have been constructed by equally mixing two off-target normal
distributions having the same standard deviation. The coverage of the target interval (75-125%
LC) was varied between 80% and 99.999% by adjusting the standard deviation.

Density

50 60 70 80 80 100 110 120 130 140 150
Dose, % LC

Figure 38. Density for normal distribution (d=0) compared to bi-modal densities with modes at
100+d% LC, d =6, 9, 12, and 15.

In Figure 39, OC curves for the PTI tests are presented for each of the five distributions. Note
that it is the coverage that is displayed on the horizontal axis rather than the standard deviation,
unlike in figures for OC curves in Part 2 of this report. This is necessary since when
comparing different fypes of distributions, there is no one-to-one correspondence between
coverage and standard deviation. For example, both the normal and the most extreme bi-modal
distribution in Figure 38 have the mean at target and the same coverage, but the overall
standard deviation is 15.2% and 16.9%, respectively. For this reason, an OC curve with
coverage rather than standard deviation on the horizontal axis has been used to compare the
distributions.

Figure 39 shows that regardless of the degree of bimodality, the acceptance probability for any
of the PTI tests is always lower for a bimodal distribution than for the unimodal normal
distribution. Thus, there is no situation in which the presence of bimodality compromises
consumer protection.

Further, Figure 39 shows that the PTI tests control distributions with modes separated by less
than approximately +6% to about the same degree as normally distributed data, while for larger
separations, the acceptance probability is significantly reduced. This provides a strong
incentive for manufacturers to avoid this kind of deficiency. Note that for products for which
data follows a distribution with 100+15% modes, there is virtually zero probability of
acceptance.
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Figure 39. OC curve for normal distribution (d=0) compared to those for bi-modal distributions
with modes at 100+d% LC, d = 6, 9, 12, 15 (overall mean at target). PTl tests using
n=10/30 (left panel) and n=24/72 (right panel).

3.2 Skewed Distributions

A distribution of doses may potentially be asymmetrical. For example, if a multi-dose product
with a through-container-life trend shows different variability for beginning and end doses, a
skewed distribution may arise.

As an example of a skewed distribution, a shifted gamma distribution was chosen, with
parameters selected to represent increasing degrees of deviation from normality. A random
variable X is gamma distributed with parameters # and A [denoted as Xe/{n, A)] if it has the
following density function:

n

——x"le™® x20.

I'(n)

Here, I'(n} denotes the gamma function (see the Glossary for definition). The mean of X is

6 =n/A. For small values of 8, the distribution is skewed, while for larger §values, it is fairly
symmetric (in fact, X tends to a normal distribution when 6 approaches infinity). To
investigate a distribution that has the mean at target (100% LC) and which is skewed, a
shifted” gamma distribution Y = (100-6) + 1764, A) is studied. The mean of Y is always at
100, and increased skewness is obtained by decreasing 6. The desired coverage can be
obtained by adjusting 4.

In Figure 40, the density functions for three different gamma distributions (8= 25, 30, 50) are

compared to that of a normal distribution (all with the true mean at target and with the same
coverage).
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Figure 40. Density for normal distribution compared to gamma densities with increasing degree
of skewness (8 = 25, 30, 50).

The most extreme of the gamma distributions (&= 25} presented above is a very skewed
distribution with a sharper mode than the normal distribution. The intermediate case (8= 30)
also shows a marked difference compared to the normal case. When 6= 50, only marginal
differences from the normal distribution can be seen.

In Figure 41, OC curves for the PTI tests are presented for each of the four distributions. The
coverage was varied between 80% and 99.5% by adjusting A

100 100

® 90 R 90
§ 80 - a 80
o 70 & 701
< (%
< 60 < 6 A\
8 50 2 501 \\ \‘\\ normal
£ 40 £ 40 \
a8 30 ~—— normal a2 3 T 50
8 50 2 2 v
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Figure 41. OC curve for normal distribution compared to those for gamma distributions with
increasing degree of skewness, 6= 50, 30 and 25 (mean at target}. PTl tests using
n=10/30 {left panel) and n=24/72 (right panel).
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For the largest test in Figure 41 (right panel), the acceptance probabilities are consistently
smaller for the studied gamma distributions compared to the normal distribution. For the small
test (left panel), the acceptance rates for the gamma distributions are essentially the same as for
the normal distribution for high coverages (above about 95%), and are reduced compared to the
normal distribution for lower coverages.

An interesting special case of a skewed distribution is the log-normal distribution (X is log-
normal distributed if log(X) is normal distributed). The special interest in this distribution
arises from the fact that delivered dose data sometimes is assumed to be log-normal.

In Figure 42, the density functions for a log-normal distribution is compared to that of 2 normal
distribution (both with the true mean at target and with the same coverage).

log-normal ~ / normal

Density

50 60 70 80 90 100 110 120 130 140 150
Dose, % LC

Figure 42. Density for log-normait distribution compared to normal distribution.

The log-normal distribution represents a minor skewness to the left, with marginal differences
from the normal distribution.

In Figure 43, OC curves for the two PTI tests are presented for each of the two distributions.
The coverage was varied between 80% and 99.5% by adjusting the standard deviation.
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1998 | 9
1999  Figure 43. OC curve for normal distribution compared to log-normal distribution {mean at
2000 target). PTI tests using n=10/30 (left panel) and n=24/72 (right panel).
2001

2002  For the larger test in Figure 43 (right panel), the acceptance probabilities are consistently

2003  slightly lower for the log-pormal distribution. For the smaller test (left panel), the acceptance
2004  probabilities are virtually identical for the two distribution types. These results indicate that the
2005  choice between modeling data by either of these distribution types has little practical relevance.
2006

2007 3.3 Heavy-tailed Distributions

2008  For a heavy-tailed distribution, both small and large deviations from the mean are more

2009  common than for a normal distribution, whereas medium deviations are less common. A
2010  heavy-tailed distribution may arise, for example, if a drug formulation is inhomogeneous in
2011  such a way that the drug substance mixture contains rare agglomerates of the active drug in
2012 addition to the intended formulation. In such a case, the error would be non-negative and a
2013 small error would be likely more common than a large one. This may be modeled by

2014  disturbing a proportion of the values of a normal distribution by the addition of an

2015  exponentially distributed error.

2016

2017  The performance of the PTI tests in the presence of exponential disturbances is compared to
2018  that of the FDA tests in Part 2 of the report (Section 6.3). In this appendix, for completeness,
2019  non-normality caused by exponential disturbances is investigated using the same approach as
2020  used for the other types of non-normality (i.e., comparing the acceptance rate for a normal and
2021  non-normal distributions having equal coverage).

2022

2023 In Figure 44, the density of an undisturbed normal distribution is compared to the densities of
2024  normal distributions disturbed to an increasing degree. All distributions in the figure have an
2025  overall mean at target and the same coverage.

2026

2027  The disturbed distributions have been constructed by adding an exponential error to the basic
2028  normal distribution: [(I-p)N(100-Ap, o) + p(N(100-Ap, 6)+Exp(L))], where p is the (small)
2029  proportion of disturbed values and ¢ is adjusted to obtain the desired coverage. Here, N(i, 0)
2030  denotes a normal distribution with mean i and standard deviation 6, and Exp(L) an exponential
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distribution with parameter A. (Note that the mean of the basic normal distribution is adjusted
to retain the overall mean of the disturbed distribution at target). The parameter A, which for
an exponential distribution equals both the mean and the standard deviation, has been set to
35% LC. The resulting distributions are asymmetrical and have heavier right-hand tails and
sharper peaks (shifted to the left) than a pure normal distribution.

Density

/ normal

56 60 70 8 90 100 110 120 130 140 150 160 170 180
Dose, % LC

Figure 44. An undisturbed normal distribution compared to normal distributions affected by an
increasing proportion (p=5, 10, 15%) of exponential disturbances {disturbance level,
A=35% LC).

In Figure 45, OC curves for the PTT tests are presented for the normal distribution and for the
three distributions affected by increasing proportions of exponentially disturbed values.

The right-hand panel of Figure 45 shows that the acceptance probability for the larger PTT test
decreases significantly for high quality products (high coverages) when the normal distribution
is disturbed by an exponential distribution. For the smaller test (left panel), the effect is less
pronounced. For low quality products (low coverages), the acceptance probability for both PTI
tests is approximately the same as for an undisturbed normal distribution with the same
coverage. In particular, for the limiting coverage of 85%, the acceptance probability is
essentially constant at 5%. This indicates that when the PTI test is challenged by a heavy-
tailed distribution, the consumer protection is not degraded.

The PTI test with the larger sample size clearly is more sensitive to disturbed distributions than

the test with the smaller sample size. This should be expected, as the detection of a small
proportion of odd events is generally difficult with a small sample size.
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Figure 45. OC curve for the normal distribution (p=0) compared to those for normal
distributions disturbed by an increasing proportion of exponentially (A=35% LC)
disturbed values (p = 5, 10, 15%). PTI tests using n=10/30 (left panel) and n=24/72
(right panel). (The reason for the missing left part of the OC curves is that the
coverage cannot become higher for these exponentially disturbed normal
distributions due to the presence of the heavy tail).

3.4 Conclusion

Based on the analysis presented above, it can be concluded that in situations with

e multi-modal distributions,
o skewed distributions, and
* heavy-tailed distributions,

the proposed PTI test provides similar or better control compared to situations with normally
distributed data having the same coverage. Thus, the risk for a low quality batch to be accepted
is smaller or equally low when data deviate from the normal distribution. The consumer is thus
well protected in these situations.

Further, it has been shown that for a high quality batch (i.e., a batch with high coverage of the

target interval), the acceptance probability may be significantly reduced when data is non-
normally distributed. This provides producers with an incentive to avoid such situations.
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4 Simulation and Development of PTI Test
Coefficients

4.1 Algorithm

This appendix details the algorithm used for determination of ky, ks, and f for the proposed PTI
test. Before the algorithm can be used, the sample sizes for tier 1 and tier 2 must be specified.
The minimum acceptable coverage level is set to 85% of the target interval 100+£25% LC.

The coefficients ki, k; and f are determined for a selected sample size (e.g. n=10/30) so that the
probability of passing the test at the minimum acceptable level of coverage is 2.5% (for a mean
on target) for the first tier and 5% for both tiers. The algorithm is accomplished in two
iterations. First, initial estimates of k; and k; are determined using simulations (see section 4.3
below) assuming that the mean is 20% off target. This point was chosen so that the maximum
sample standard deviation (MSSD) criterion would have no effect on the calculation of k; and
k, (because the value of f'is unknown at this stage). Using these preliminary estimates of k;
and k,, f is estimated by simulations, assuming an on-target mean. (Recall that MSSD=25f/k).
Once f has been determined, final values for k; and k; are calculated assuming an on-target
mean and the determined f value. This procedure results in coefficients that provide the overall
desired properties, i.e., that iso-probability curves closely follow the corresponding iso-
coverage curves, that the overall acceptance probability for the minimum acceptable coverage
is 5%, and that the 1* tier acceptance probability is 2.5% when the mean is on target.

Here are the three steps required to complete the algorithm. For the given coverage (85%), n;
and n,, and assuming a normal distribution:

) Assuming a mean () of 80% label claim and standard deviation (o) corresponding to
the given coverage, determine k; such that Pr(|100-m| + k;s < 25)=2.5%, where m and s
denotes the mean and standard deviation for an independent sample of n; observations
from the normal distribution N(, 6). Given k;, determine k; such that the overall pass
rate for the test is 5% in this point.

(2)  Assuming an on-target mean (n=100% label claim) and standard deviation (o)
corresponding to the given coverage and using k; and k; calculated in step 1, determine
f so that the overall pass rate of the test is 5%.

(3)  Assuming an on-target mean (u=100% label claim) and standard deviation (o)
corresponding to the given coverage and using f from step 2, determine k; such that
P(]100-m}+k;s<25 and s<25f/k; )= 2.5%. Again, m and s denote the mean and standard
deviation for an independent sample of n; observations from the normal distribution
N(i, o). Using this estimate of k;, determine k; to obtain an overall pass rate of 5% in
this point.
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4.2 Example (n=10/30)
As an example, assume that n;=10, n;=30, and that the minimum acceptable coverage level is
85%.

(1) If the true mean is at 80% of label claim, the standard deviation (o) corresponding to 85%
coverage can be calculated using the equation Pr(755x<125)=85%, where x is normally
distributed with a mean of 80 and standard deviation 6. Under these conditions, 0=4.82.

Given a mean at 80% label claim and 6=4.82, k; and then ks can be determined using
simulations. For this example, k;=2.25 and k,=1.56.

(2) If the true mean is at 100% label claim and a coverage of 85% is assumed, the
corresponding standard deviation is 17.4% LC. Given 6=174, k;=2.25, and k,=1.56 and
assuming that the overall pass rate of the test at this point should be 5%, £=0.839. This
value is determined by simulation.

(3) 1f the true mean is at 100% label claim, 0=17.4, and £=0.839, k, and k, can be determined
using simulation. For this example, k;=2.09 and k,=1.59.

4.3 Basis for Simulation

Simulation techniques have been used to determine the values of k;, ks, and f because it was
not possible to determine all these values analytically for a multi-tiered test. Simulation
techniques have also been used for determining OC curves and iso-probability curves
throughout this report.

To illustrate the technique, consider the example of determining k; in step (1) of the example
above. Given a mean of u=80 and a standard deviation of 6=4.82 and assuming that the data
are normally distributed, it is desired to determine k; so that Pr(j100-m| + k;s < 25)=2.5%. One
way to do this is to generate n;=10 values from a normal distribution with the given mean and
standard deviation and determine whether or not the criterion [100-m| + k;s < 25 is passed for a
given k; value. This can then be repeated for 100,000 samples drawn from the same
distribution. The proportion of samples (out of the 100,000 samples) that pass this criterion is a
good estimate of Pr(|100-m| + k;s < 25). By repeating this for different values of k;, one can
iterate to the k; value which gives Pr(|100-m| + k;s < 25)=2.5%.

For the example above, values of ky=1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3 were initially used
to determine the value of k; giving a result closest to the desired pass rate of 2.5%. It was
determined that the desired value of k; was between 2.25 and 2.50. Next, values of k;=2.25,
2.26,2.27, {...} , 2.50 were used and the pass rate was determined. It was found that k;=2.25
gave a pass rate closest to the desired level of 2.5%.

Values of k; and f were determined in a similar fashion. The criterion being evaluated for k, is
Pr(Pass overall test without MSSD criterion) for step (1) and Pr(Pass overall test with MSSD
criterion) for step (3). For determining fin step (2), the pass rate is evaluated for Pr(Pass
overall test with MSSD criterion).
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4.4 SAS® Code

Included below is a SAS® code which can be used to determine k;, k,, and f for a two-tiered
PTI test and a given sample size. This code has been validated by comparison with two other
mdependently developed programs, which gave identical results. For a computer with 128 MB
RAM, the simulations will take about 1%2 hour. With a memory of 256 MB RAM, about %
hour will suffice.

dm ‘'output; clear; log; clear;’;
******i*****f********i‘***************‘k***********‘k*****‘k***************

w*
*IPAC-RS_PTI_COEFFICIENTS ver 1.0 (DATE 2/2001)

*

*SAS (R) code to compute k1, k2 and f for two-tiered IPAC-RS proposed
*PTI test, providing 0.05 acceptance probability for 85% coverage of
*the 75-125% LC interval for normal distributed data (coverage determined
*by the set values for sd80 and sd100.

*

*User input:

*change nl=10 to desired nl (lst tier sample size)

*change n2=30 to desired n2 (1st and 2nd tier total sample size) (n2>nl)
*change alphal=0.025 to desired alphal (probability for 1st tier
*acceptance) alphal<0.05

*change maxiter=100000 to desired maxiter (number of iterations)

*(note: a lower value for maxiter results in lower precision)
***************i‘******‘k********'k***********i’i—i********************Ir****;

options pageno=1 linesize=80 pagesize=54 mprint;

*User input:

$let nl=10; * Sample size in first tier;
$let n2=30; * Sample size in both tiers combined;
$let alphal=0.025; * Chance to pass at tier 1;

%let maxiter=100000; * Number of iterations

*Constants

Flet s5d80=4.82;
%let mean80=80;
Flet sd100=17.4;
%let meanlQ0=100;

$macro kl; * Macro for finding k1;
$macro searchl(srchval);

*** First time through, get ball-park value for k1. Second time, refine the
search;
data test;

retain seed 1234396;

alpha=&alphal;

5d80=&sd80;

mean80=&mean80;

array x {*} xl-x&nil;

do tryk=&srchval;
do iter= 1 to &maxiter;
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sum=0;
sumsg=0;
do j=1 to &nil;
x{j}=means80 + sdsC*rannor {seed);
sum=sum+x{j};
sumsg=sumsqg+x{3j}*x{5};
end;
sampmean=sum/&nl;
sampstds=sqrt ( {(sumsg-&nl*sampmean*sampmean)/ (&nl-1)) ;
accvalue=abs (100-sampmean) + tryk*sampstd;

if accvalue le 25 then pass=1;
else pass=0;
keep sampmean sampstd accvalue tryk iter pass alpha;
output;
end;
end;
run;

***proc print;
* ok title ‘test’;
*rErun;

proc summary data=test mean n;
var pass;
by alpha tryk;
output out=gummary mean=pass;
run;

proc print;
title 'Summary in search 1°';
run;

*** Now find the one closest to alpha;
data summary;
set summary;
absdiff=abs(pass-alpha);
run;

*** Find 2 values closest to alpha;
proc sort;
by absdiff;
run;
data findit;
set summary (obs=1);
run;
proc print data=findit;
title 'findit in search 1°;
run;
$mend; *searchl;
3let firstz%str{l,1.25,1.5,1.75,2,2.25,2.5,2.75,3);

$searchl (&first);

data findit;
set findit;
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if pass<&alphal then call symput ('goback','1l');
else call symput ('goback','0');

call symput ('newsrch',put(tryk,4.2));
run;

%1f &goback=1l %then %do;

%¥searchl (&newsrch-~0.25 to &newsrch by 0.01);
$end;
%else %do;

%searchl (&newsrch to &newsrch+0.25 by 0.01);
%end;

data ki1;
set findit (keep=tryk rename= (tryk=kl));
run;

proc print data=kl;
title 'k1’';

run;

fmend; *k1;

%k1;

************************&*****************************

********1\-******i************‘k*************************

* &k % ok * kK ok ok
¥*** Now that know what k1l is, try computing k2 ****+
* % ok & % ok k ok %

************i’*****'ir***********************************

***************1\-************************k**************;

¥macro k2; * Macro for finding k2;

**% Make a macro variable for k1 found in earlier search;
data ki1;

set kil;

call symput ('kl',put(kl,4.2));
run;

$macro search2(srchval);
*** First time through, get ball-park value for k2;

data test;
retain seed 1234396;
alpha=0.05;
sd80=&5d80;
mean80=&means(;

array x {*} x1-x&n2;
do tryk=&srchval;
do iter= 1 to &maxiter;
sum=0;

sumsg=0;

suml=0;
sumsqgl=0;
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do j=1 to &n2;
x{j}=mean80 + sd80*rannor (seed);
sum=sumn+x{i};
sumsqg=sumsqg+x{j}*x{i};

if 4 le &nl then do;
suml=suml+x{j};
sumsql=sumsgl+x{j}*x{j};
end;
end;
sampmean=sum/&n2;
sampstd=sqrt { {(sumsg-&n2*sampmean*sampmean) / (&n2-1)) ;
accval2=abs (100-sampmean) + tryk*sampstd;

sampmnl=suml/&nil;
sampstdl=sqrt ( (sumsgl-&nl*sampmnl*sampmnl) / (&nl-1));
accvall=abs (100-sampmnl) + &kl*sampstdl;

if (accvall le 25) or ({(accval2 le 25) then pass=1;
else pass=0;

keep sampmean sampstd sampmnl sampstdl accvall accval2 tryk iter
pass pass alpha;
output ;
end;
end;
run;

***proc print;
*kk title 'test!';
**¥*run;

proc summary data=test mean n;
var pass;
by alpha tryk;
output out=summary mean=pass;
run;

proc print;
title 'Summary in search 2°';
run;

*** Now find the one closest to alpha;
data summary;

set summary;

absdiff=abs (pass-alpha);
run;

*** Find 2 values closest to alpha;
proc sort;

by absdiff;
run;

data findit;
set summary (obs=1) ;

run;

proc print;
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title ‘'findit in search 2';
run;

$mend; *search2;
$let first=%str(l,1.25,1.5,1.75,2,2.25,2.5);

$search2 {(&first);

data findit;
set findit;
if pass<alpha then call symput {'goback®','1');
else call symput ('goback','0');

call symput ('newsrch',put(tryk,4.2));
run; )

%1f &goback=1 %then %do;

$search2 (&newsrch-0.25 to &newsrch by 0.01);
$end;
%else %do;

%$search2 (&newsrch to &newsrch+0.25 by 0.01);
%end;

g$mend; *k2;
%k2;

data ks;
merge findit (keep=tryk rename= (tryk=k2})
k1;
run;

proc print datas=ks;
title ‘ks‘;
mun;

THEARFA IR I I A AT ART IR R Ak TRk R A Ak hokrd kA h kb ke h bk hk ko
AEKAT KR AT A AR AR AR R A A A RAN TR A T A R ek ARk A AR T AR Rk hek o d ke

* %k & * % %k ok

**** Now that know k1l & k2, try computing MSSD *ok ok ok
***+ Use data that are distributed N(100,STD10Q) ****x

Je ok d Kk ek ok kK
LA S SR A RS A RS R EE RS S SRR SRl s S REER R R RS R R SR EEE R R T R XY

****‘k***********i’*********'k***************************;

fmacro MSSD; * Macro for finding MSSD;

*** Make a macro variable for kil and k2 found in earlier search;

data ks;
set ks;
call symput ('kl1l',put(kl,4.2));
call symput (*k2',put(k2,4.2)});
run;

smacro search3{srchval);
***% First time through, get ball-park value for MSSD;
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data test;
retain seed 1234396;
alpha=0.05;
5d100=&s53100;
meanl00=&meanl00;

array x {*} x1-x&n2;

do trymssd=&srchval;
do iter= 1 to &maxiter;
sum=0;
sumsq=0;

suml=0;
sumsgl=0;

do j=1 to &n2;
x{j}=meanl00 + sdi00*rannor (seed);
sum=sum+x{j};
sumsg=sunsqg+x{j}*x{3};

if j le &nl then do;
suml=suml+x{j};
sumsgl=sumsql+x{j}*x{j};
end;
end;
sampmean=sum/&n2 ;
sampstd=sqrt ( (sumsg-&n2*sampmean*sampmean) / (&n2-1)) ;
accval2=abs (100-sampmean) + &k2*sampstd;

sampmnl=suml/&nl;
sampstdl=sgrt ({sumsqgl-&nl*sampmnl*sampmnl)/ (&nl-1));
accvall=abs (100-sampmnl) + &kl*sampstdl;

if (accvall le 25) and (sampstdl le (25/&kl*trymssd)) then
passtl=1l;
else passtl=0;

if passtl or (accval2 le 25 and (sampstd le (25/&k2*trymssd))) then
pass=1;
else pass=0;

keep sampmean sampstd sampmnl sampstdl accvall accval? trymssd iter
pass passtl alpha;
output;
end;
end;
run;

***proc print;
*ok ok title ‘test’;
***run;

proc summary datas=test mean n;
var pass passtl;
by alpha trymssd;
output out=summary mean=pass passtl;
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run;

proc print;
title 'Summary in Search 3';
ran;

*** Now find the one closest to alpha;
data summary;

set summary;

absdiff=abs (pass-alpha) ;
run;

proc sort;
by absdiff;
run;

data findit;
set summary {(obs=1);
run;

proc print;
title 'findit:';
run;

$mend; *search3l;
%let first=%str(0.75,0.775,0.80,0.825,0.85,0.875,0.90);

$search3 (&first) ;

data findit;
set findit;
if pass<alpha then call symput('goback','0');
else call symput ('goback','1'});

call symput (*‘newsrch’,put (trymssd,4.3));
run;

%1if &goback=1 %then %do;

$search3 (&newsrch-0.025 to &newsrch by 0.001);
%end;
%else %do;

%$search3 (&newsrch to &newsrch+0.025 by 0.001);
$end;

$mend; *mssd;
smssd;
data mssd;
set findit (keep=trymssd passtl rename=(trymssd=mssd));
run;
data allparms;
merge mssd ks;

run;

proc print;
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title 'Estimates of k1, k2 and MSSD before redo kil and k2';
title2 "nl=&nl, n2=&n2, Alphal=&alphal, SD80=&sd80, SD100=&sdl100";

var k1l k2 mssd passtl;
format passtl 5.3;
run;

LS AR AR R A SRS AR RS RS R S R R Y e R R ]

LA SR A SRS AR R R RS SRR RS R R ST R RERERE R R R TR R R R R R R R Ry

Wk kR * Kk k ok
**%* Redo estimate of k1, given MSSD * koK ok k
d ok Rk * ke ok ok ok

AR AR SRS R R AR R RS R EEE R R TR R R R g

‘k*i******************‘i‘*i’******************************;

*** Make a macro variable for mssd found in earlier search;

data allparms;

set allparms;

call symput ('mssd’',put(mssd,5.3));
run;

fmacro kla; * Macro for finding k1 on 2nd time through;

¥macro searchla(srchval);

**% First time through, get ball-park value for k1. Second time,

search;

data test;
retain seed 1234396;
alpha=&alphal;
sd100=6&sd100;
meanl00=&meanl0o;

array x {*} x1-x&ni;

do tryk=&srchval;
do iter= 1 to &maxiter;

sum=0;

sumsqg=0;

do 3=1 to &nil;
x{j}=meanl00 + sdl00*rannor (seed);
sum=sum+x{j};
sumsg=sumsqg+x{3 }*x{3};

end;

sampmean=gsum/&nl;

sampstds=sqrt ( (sumsq-&nl*sampmean*sampmean)/ (&nl-1)) ;

accvalue=abs (100-sampmean) + tryk*sampstd;

APPENDIX 4

refine the

if (accvalue le 25) and (sampstd le (25/tryk*smssd)) then pass=1;

else pass=0;

keep sampmean sampstd accvalue tryk iter pass alpha;

output;
end;
end;
run;

***proc print;
il title 'test’;
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FrFrun;

proc summary data=test mean n;
var pass;
by alpha tryk;
output out=summary mean=pass;
run;

proc print;
title 'Summary in redo of search 1';
run;

*** Now find the one closest to alpha;
data summary;

set summary;

absdiff=abs (pass-alpha);
run;

*** Find 2 values closest to alpha;
proc sort;

by absdiff;
run;

data findit;
set summary (obs=1);
run;

proc¢ print data=findit;
title 'findit in search 1';
run;

$mend; *searchla;
%let first:%str(l,1.25,1.5,1.75,2,2.25,2.5,2.75,3);
¥searchla(&first);

data findit;
set findit;
if pass<&alphal then call symput('goback','l');
else call symput('goback','0');

call symput('newsrch',put (tryk,4.2));
run;

%if &goback=1 %then %do;

%¥searchla (&newsrch-0.25 to &newsrch by 0.01};
$end;
%else %do;

$searchla(&newsrch to &newsrch+0.25 by 0.01);
%end;

data k1;
set findit (keep=tryk rename= (tryk=kl));
run;

proc print data=kl;

title 'k1';
run;
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$mend; *kla;

%kla;

LR A S S AL SRR RS R R R RS LSSl R s sat it E

kbbb kbbb hbdrrdhohrdbdokhbodhddhdddkdhdtddddi

gk kK

¥k ok &k

**+% Redo search for k2, given new k1l and MSSD * ok ok ko

gk kK

d ok ok okok

FRAE AT TR AR TR ARF A AT AR AT AR R T AR A AT AT AT I AT AT R A A bkt

******************************'ﬁ*******************’k***'-

$macro k2a; * Macro for finding k2;

**% Make
data k1;

a macro variable for k1 found in earlier search;

set ki;
call symput ('kl1',put(kl,4.2));

run;

$macro searcha(srchval);
*** First time through, get ball-park value for k2;

data test;
retain seed 1234396;

alpha=
sdi00=

0.05;
&sd100;

meanliO=&meanli0o;

array

x {*} x1-x&n2;

do tryk=&srchval;

do

iter= 1 to &maxiter;
sum=0;
sumsg=0;

suml=0;
sumsqgl=0;

do j=1 to &n2;
x{j}=meanl00 + sdl00*rannor (seed);
sum=sum+x{j};
sumsg=sumsg+x{j }*x{3};

if j le &nl then do;
suml=suml+x{j};
sumsgl=sumsql+x{j}*x{3};
end;
end;
sampmean=sum/&n2;
sampstd=sqrt ( (sumsg-&n2*sampmean*sampmean) / (&n2-1)) ;
accval2=abs (100-sampmean) + tryk*sampstd;

sampmnl=suml/&ni;

sampstdl=sqrt { (sumsgl-&nl*sampmnl*sampmni)/ (&nl-1));
accvall=abs (100-sampmnl) + &kl*sampstdl;

if (accvall le 25 and (sampstdl le (25/skl*amssd))) or
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(aceval2 le 25 and (sampstd le (25/tryk*&mssd))) then passsl;
else pass=0;

keep sampmean sampstd sampmnl sampstdl accvall accval?2 tryk iter
pass pass alpha;
output ;
end;
end;
run;

***proc print;
Fkx title 'test’';
***run;

prec summary datastest mean n;
var pass;
by alpha tryk;
Qutput out=summary mean=pass;
run;

proc print;
title 'Summary in search 2°';
run;

*** Now find the one closest to alpha;
data summary;
set summary;
absdiff=abs(pass-alpha);
run;

*** Find 2 values closest to alpha;
proc sort;

by absdiff;
run;

data findit;
set summary (obs=1) ;
run;
proc print;
title 'findit in search 2°';
run;
$mend; *search2a;

$let first:%str(l,l.25,1.5,1.75,2,2.25,2.5);

%¥search2a(&first) ;

data findit;
set findit;
if pass<alpha then call symput ('goback*, '1');
else call symput ('goback','0');

call symput { 'newsrch',put (tryk,4.2));
run;

%1if &goback=1 %then %do;
¥search2a (&newsrch-0.25 to &newsrch by 0.01);
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%end;
%else %do;

%¥search2a(&newsrch to &newsrch+0.25 by 0.01);
%end;

smend; *k2a;

$k2a;
data ks;
merge findit (keep=tryk rename= (tryk=k2))
k1i;
mssd=input (symget {'mssd'),5.3) ;
run;

proc print data=ks;
title 'Final Estimates of k1, k2 and MSSD';
title2 "nl=&nl, n2=&n2, Alphal=&alphal, SD80=&sdB80, SD100=&s3100";
var k1 k2 mssd;
format mssd 5.3 kK1 k2 4.2;
run;
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2853 5 Glossary of Abbreviations, Symbols and Terms
2854
AV Acceptance Value: AV = [100-m | +ks.
bCU Dose Content Uniformity.
DDU Delivered Dose Uniformity. '
H Factor used to calculate MSSD: MSSD = 25f/k.
FDA DCU test The Dose Content Uniformity tests described in Sections /ILF.1.i and IILF.2.h of the
Metered Dose Inhaler and Dry Powder Inhaler Drug Products CMC Draft
Guidance. An identical test for Spray Content Uniformity is described in Sections
HIIF.1.g and III.F.2.p of the Nasal Spray and Inhalation Solution, Suspension, and
Spray Drug Products CMC Draft Guidance.
FDA TCL test The Dose Content Uniformity Through Container Life test, described in Sections
HIF.1jand IILF.2.i of the Metered Dose Inhaler and Dry Powder Inhaler Drug
Products CMC Draft Guidance. The corresponding test for sprays described in
Sections /II.F.].k and II1.F.2.q of the Nasal Spray and Inhalation Solution,
Suspension, and Spray Drug Products CMC Draft Guidance is slightly different.
FDA DCU&TCL test Combined application of both the FDA DCU and the FDA TCL test, see Appendix
1, Section 1.3 for details.
ki, k2 Acceptability coefficients used in calculating the Acceptance Value for i"and 2™
tier.
L Limit for Acceptance Value.
LC Label claim (i.e. the target dose), here, delivered dose label claim.
m Overall Sample mean (arithmetic average).
mg Life-stage sample mean.
u Population mean (i.e., true mean of a batch).
MSSD Maximum Sample Standard Deviation: MSSD = 25f/k.
NMT Not more than.
n, Sample size in the 1* tier.
n; Total sample size for both tiers.
OC curve Operating Characteristic curve.
OINDP Orally Inhaled and Nasal Drug Products.
PTI test Parametric Tolerance Interval test.
s Sample standard deviation.
o Population standard deviation (i.e., true standard deviation of a batch).
SD Standard deviation.
T Target.
n=10/30 n,=10, ny=30.
n=24/72 =24, n,=72.
2855
2856
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Acceptance rate

Consumer protection

Consumer risk

Container

Coverage

Density

Device

Dose

Exponential distribution

Gamma function

Inhaler

Inner limits

Iso-coverage curve

Iso-probability curve

Limiting quality

Non-parametric test

Monotonic

Delivered Dose Uniformity Test Proposal

APPENDIX 5

Same as Probability to accept.

Preventive measures which protect the consumer from batches of product at
or below the limiting quality.

Probability of accepting a batch at the limiting quality (here, 5%).

That which contains the medicinal formulation (e.g., an MDI, DPI, or a
single-dose blister or capsule).

Proportion of the population (batch) that falls within the specified target
interval. For a normal distribution with mean [ and standard deviation o, the
coverage of the 75-125% LC target interval may be calculated from:

125 2
x —
Coverage ;5_,5= —== Iexp[» E——‘j)—}dx

oV2rm 5 20

In statistics, a function f(x} describing the shape of a particular distribution.
For a normal distribution with mean i and standard deviation o, the density
is

1 (x-p)°
€X .
T pl Py ]

That which is used to administer the medicinal formulation.

fx) =

Amount of drug delivered after actuating the inhaler the minimum number of
times specified on the label.

An exponential distribution with parameter A is defined by the density
f(x) = exp(-x/L)Y A, x20, A>0.

The gamma function I'(n) is defined by the integral
I(n) = jt""'e“’dt.
0

When n is a positive integer, I'(n) = (n-1)1.

A combination of the container in which the medicinal formulation is
packaged and the device that dispenses it.

For FDA tests, the 100£20% LC interval.

In the coordinates G-vs-y, a curve passing through those pairs of (i, ©) that
correspond to the same coverage of a given target interval.

In the coordinates G-vs-u, a curve passing through those pairs of (i, G) that
corresponds to the same probability of passing a test,

Batch quality such that a sample has a low (kere, 5%) probability of passing
the test, here 85% coverage of the target interval 100+25% LC.

A test that does not assume data to follow any particular distribution (e. g.a
“counting” test that counts the number of observation within a certain fixed
range).

A multi-dose product is monotonic if the level of the middle life-stage is
typically within the range formed by the levels of the beginning and end life
stages
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Operating Characteristic
curve

OQOuter limits

Parametric test

Probability to accept
{Acceptance probability)

Producer risk
Rejection probability
Sample

Sample size
Sampling plan

Stratified sampling plan

Target

Target interval

Zero tolerance requirement
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A plot of the probability to pass a test as a function of a quality measure for
the batch (e.g., standard deviation, coverage).

For FDA tests, the 100+£25% LC interval.

A test that assumes data to follow a particular distribution (e.g., normal),
which depends on one or more parameters (e.g., mean, standard deviation) of
the distribution.

Probability that a sample randomly drawn from the batch meets the
acceptance criteria of a test.

Probability of rejecting a batch of a quality that exceeds the limiting quality.
Rejection probability = 100% - Acceptance probability.

A finite set of data collected from the population.
The number of data points (observations) used in a test.
Rules describing how a sample is collected.

A sampling plan in which objects of different sub-classes are randomly
sampled in pre-determined proportions.

100% LC.
Here, the interval 75-125% of the label claim.

A requirement that no value outside a pre-defined limit is allowed.
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