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Gene Expression Affymetrix Microarrays:
Pre-process image data = gene-level data
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Batch Effects ini Gene Expression Data

Density estimates of PM probe intensities (CEL files) for 96 NSCLC samples

Red = batch 1
Blue = batch 2
Purple &

Green = outliers?
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(Figure 1 from Owzar et al, Clinical Cancer Research 2008
using data from Beer et al., Nature Medicine 2002)

Typical Study Objectives

s Class Discovery (unsupervised)

= Discover clusters among specimens or among
genes

s Class Comparison (supervised)

= For pre-specified classes, establish whether
gene expression profiles differ overall, and
identify genes responsible for differences

s Class Prediction (supervised)

e Prediction of phenotype using information from
gene expression profile
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Class Discovery Examples

= Discover previously unrecognized
subtypes of lymphoma.

m Cluster temporal gene expression patterns
to gain insight into genetic regulation in
response to a drug or toxin.

Clustering
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Perou, Nature 2001; Sarlie, PNAS 2001;

Sarlie, PNAS 2003 (breast cancer)

Alizadeh et al.,

Nature, 2000 :
(lymphoma) Bittner et al., Nature, 2000 (melanoma)
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Interpretation of
Cluster Analysis Results

m Cluster analyses always produce cluster
structure
» Where to “cut” the dendrogram?
» Which clusters do we believe?

» Different clustering algorithms may find
different structure using the same data

Clustering Method Matters
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Bittner et al., Nature, 2000 (melanoma)
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Clinical Utility of Clusters?

Luminal Subtype A il § B ERBB2+ Basal Subtype Norma

122 breast cancer samples, ~500 “intrinsic” genes
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Class Comparison Examples

m Establish that expression profiles differ
between two histologic subtypes of cancer

» ldentify genes whose expression level
differs between tumors that did versus did

not respond to a drug
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Informative Gene List Instability

= Multiple testing issues

= 10,000 non-informative genes each tested at
0.05 level of significance will produce 500 false
positives

= Typically use smaller testing level (e.g., 0.001)
or more sophisticated procedures such as FDR

m Size of list dependent on stringency of
multiple testing corrections

= Low power under stringent multiple
testing corrections

m Co-regulation of genes

Beyond Gene Lists:
Classifier or Multivariate Score

» Link multiplex marker measurements to
clinical outcome or characteristic

» Mathematical function that associates a
specimen with a class or assigns a
continuous score based on inputted
feature measurements

» Most scores eventually subject to
cutpoints for clinical decision-making
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Class Prediction Examples

= Predict from expression profiles which
patients are likely to experience severe
toxicity from a new drug versus who will
tolerate it well.

= Predict which glioma patients’ tumors will
be sensitive to a new agent versus
resistant

Gene Expression Profile

Clinical Test
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Classification Methods

m Linear Predictor (for 2 classes)

L(X) = WiX; + WoX, + ..o+ WeX

is a weighted combination of important

features to which a classification threshold

Is applied

= Examples: Linear discriminant analysis,
compound covariate predictor, weighted voting
method, support vector machines with inner
product kernel, perceptrons, naive Bayes MVN
mixture classifier

Distance-based

e Examples: Nearest neighbor, nearest centroid

Generalizable to > 2 classes

(Simon, Journal of Clinical Oncology 2005)

Quantifying
“How good is the classifier?”

Estimate percent correct classifications
(“classification accuracy™)

Survival differences or hazard ratios
associated with classification (or with
continuous risk score) of sufficient
magnitude to be clinically meaningful

Value added beyond standard clinico-
pathologic factors
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Classification: Avoiding Pitfalls

» When number of potential features is
much larger than the number of cases,
can always fit a classifier to have 100%
prediction accuracy on data set used to
build it

m Estimating accuracy by “plugging in” data
used to select genes or build a classifier
results in highly overoptimistic estimates
of prediction accuracy

» Internal (e.g., cross-validation,
bootstrapping) and external validation of
classifier are essential (“training” and
“test” sets)

Sample Size Considerations for
Building a Classifier

s Sample size = number of cases, NOT
number of genes measured

» Sample size determination for training set

= Expected accuracy of resulting classifier is +
tolerance of (true) accuracy (Dobbin and
Simon, Biostatistics 2007 ; Dobbin, Zhao and
Simon, Clin Cancer Res 2008)

 Few dozen to few hundred cases required
depending on
= Number of genes
= Largest standardized fold change for informative genes
= Prevalence of each class 18
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There is no substitute for a well-
designed, COMPLETELY
INDEPENDENT validation study.

Steps to Validate Clinical Utility
s Achieve acceptable reproducibility of
classification or score

= Stringent component-wise reproducibility might
not be necessary

= Reference lab versus multiple labs

» COMPLETELY specify

= Specimen acquisition and handling realistic for
clinical use

e Assay platform (e.g., reagents, chip, equipment)
e Technical protocol, including quality criteria
- Data pre-processing

= Form of classifier or risk score, including
cutpoints

April 27, 2009
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Steps to Validate Clinical Utility

m Design prospective study
= Patients representative of target population
(e.g., age, stage)
= Specific treatment context
= Adequate sample size

s Pre-planned analysis to establish fitness for
intended clinical use
= Clinical outcome measure (e.g., overall survival,
distant disease-free survival, tumor response)

» Performance metrics
= Percent accuracy
= Survival curve separation

e Adds value to existing indicators

Summary

s Considerable investment of time and
resources to develop clinically useful
tests

s Expertise required: clinical, laboratory,
biology, statistics, computational

= Attention to clinical feasibility and
affordability

» Clinical impact must be sufficiently
high!
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