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Figure 4. Plot of COMFA-calculated log relative binding affinity (logRBA) versus ob-
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Abstract: Considerable scientific, regulatory and popular press attention has been devoted to the Endo​crine Disrupting Chemicals (EDCs), of which estrogenic chemicals figure prominently. A large number of potential estrogenic EDCs are associated with products regulated by the Food and Drug Administration (FDA), including plastics used in food packaging, phytoestrogens, food additives, pharmaceuticals, cos​metics, etc. Recent legislation mandates the U.S. Environmental Protection Agency (EPA), a sister regu​latory agency, to develop a screening and testing program for potential EDCs in drinking water and food additives. Under the legislation, a large number of chemicals will undergo various in vitro and in vivo assays for their potential estrogenicity, as well as other hormonal activities. There is a crucial need to set priority for these chemicals to reduce the cost and speed the screening and testing process. At the FDA National Center for Toxicological Research (NCTR), quantitative structure-activity relationships (QSARs) is a major component of the Endocrine Disruptor Knowledge Base (EDKB) project – a prototype Toxicological Knowl​edge Base. By integrating experimentation and modeling, a series of QSAR models have been developed and validated in the project. These models are integrated into a "Four-Phase" scheme, with each succes​sive phase eliminating unlikely estrogen receptor (ER) binders, resulting in a priority listing of chemicals for regulatory application. The system performance has been validated using several data sets with known es​trogenic activity and, subsequently, applied to three environmental data sets, identified by the EPA. It has also been used to assess estrogenic activity of chemicals of concern at other Centers within the FDA, namely the Center for Food Safety and Applied Nutrition (CFSAN) and the Center for Drug Evaluation and Research (CDER). The rigorous validation of the integrated system is ongoing via the interagency agree​ment (IAG) between EPA and NCTR. The approach presented here for estrogen is anticipated to be equally applicable for other receptor-mediated, endocrine disrupting mechanisms, e.g., androgen receptor binding, and other toxicity endpoints.
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ment). A fundamental tenet of this paradigm is that effects in laboratory animals can be extrapolated to hu​mans (or other animals). Intrinsic vari​ability in the response of the test spe​cies, and the number of animals tested, limits the resolving power of the affordable protocols to determine a No Observed Adverse Effect Level (NOAEL), the dose which provides no statistically significant increase in adverse effects above the control value. This, together with the need to extrapolate to humans, results in the use of safety factors, generally in the range of two or more orders of magni​tude to determine an allowable dose for non-genotoxic chemicals.

In 1995, the National Center for Toxicological Research (NCTR) reori​ented its strategic goals to begin to alter the paradigm of toxicological research, taking direct aim at in​creasing regulatory efficiency by re​ducing the time, expense and animal use in the regulation process. One primary strategic goal was the devel​opment of knowledge bases, that were defined to be computer-based systems that unify applicable litera​ture and data and provide computa​tional models to predict a chemical’s toxic potential, predict experimental needs and improve regulatory risk assessment capability. The inspira​tion for the Estrogen Knowledge Base (EKB) program came from a center wide challenge issued by then NCTR Director, Dr. Bernard Schwetz, to develop a knowledge base with the capability to extend the predictability of existing data. Scientists within the Division of Re​productive and Developmental Toxi​cology suggested that estrogens might provide an appropriate area to develop a prototype. Knowing that NCTR scientists had been engaged in estrogen related research for more than two decades, Dr. Schwetz posed the questions whether they could recognize an estrogen recep​tor ligand, solely based on chemical structure, and whether models


based on existing data could be used to develop models to make such a prediction. The answers were "no" and, "let’s try," respectively.

The “let us try” subsequently devel​oped into a concept to develop a pro​totype knowledge base to predict estrogenicity, and a grant from FDA's Office of Women’s Health enabled the acquisition of the required com​puter hardware and software.

The earliest models, based on 13 chemicals tested at NCTR, proved very inadequate. Despite the clear statement in endocrinology text​books that a single nuclear receptor protein that exhibited high ligand specificity mediated most estrogenic effects, it became quickly apparent that the estrogen receptor binds chemical structures of surprisingly broad diversity. Next, we used the extensive data published in the litera​ture to build models based on 50-chemical training sets. While these models were much improved, we learned that better models were pos​sible given a proper database.

During the course of our work on the early models, a major scientific and regulatory issue developed sur​rounding environmental chemicals, termed endocrine disrupting chemi​cals (EDCs), suspected of disrupting endocrine function by mimicking natural hormones in experimental animals, wildlife and humans. There was a constantly growing concern among the scientific community, gov​ernment regulators and the public that EDCs in the environment were adversely affecting human and wild​life health (1, 2). Adverse outcomes had been observed in experimental animals and wildlife; potential effects in humans included reproductive and developmental toxicity, carcinogene​sis, immunotoxicity, and neurotoxic​ity, among others (3). The scientific debate surrounding EDCs grew con​tentious, in part owing to the fact that some suspected EDCs are high pro​duction volume, economically impor​tant chemicals. The public and regu​latory concerns led to government


regulatory actions and expanded re​search across Europe, Japan and North America (4, 5). In 1996, the U.S. Congress mandated that the Environmental Protection Agency (EPA) develop a strategy for screen​ing and testing a large number of chemicals found in drinking water, food additives and other sources for their endocrine disruption potential

(4).

In response to Congressional ac​tion, the EPA established the Endo​crine Disruptor Screening and Test​ing Advisory Committee (EDSTAC), which includes scientific expertise from government, academia and in​dustry. EDSTAC recommended a two-tier (Tier 1 screening and Tier 2 testing) strategy to screen and test for estrogenic, androgenic and thy​roid endpoints for a large number of chemicals. To accomplish this, chemicals will be screened (Tier 1) using a multiple-endpoint strategy that includes more than 20 different in vitro and in vivo assays recom​mended by EDSTAC (6). Although more than ~87,000 chemicals were initially selected for evaluation, many were polymers or otherwise unlikely to bind to steroid receptors, leaving about ~58,000 chemicals for evalua​tion in Tier 1. The number that will progress to the testing step (Tier 2) (7) is not known. Processing all chemicals through both tiers, if re​quired, will require many years and extensive resources. Hence, the EPA has adopted an approach re​quiring priority setting before Tier 1 (www.epa.gov/scipoly/oscpendo/), and where QSAR predictions are likely to prove of particular utility.

The EKB multidisciplinary team of researchers developed a plan to meet the newly important challenge for precise and validated predictive models that was reviewed and en​dorsed by the NCTR Scientific Advi​sory Board (SAB) in 1997. The most important finding of the early model building (8-12) effort was that, de​spite decades of testing for estro‑

(Continued on page 3)
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genicity, the existing data were in​adequate to construct robust QSAR models (SETAC chapter) (12). Ac​cordingly, the EKB plan called for developing a model training data set by conducting ER binding measure​ments in a validated assay. The chemicals to be tested would be chosen by the computational chem​ists to obtain a training set spanning the broad range of chemical struc​tures of ER ligands, both agonists and antagonists. Furthermore, there needed to be several types of models ranging from fast and easy classifica​tion methods to rule out inactive chemicals, to highly accurate but time-intensive, three-dimensional QSAR models to quantify binding affinity for active chemicals. As the scope of the EKB project expanded in the late 1990s, to include all Endo​crine Disrupting Compounds, we re​named the prototype knowledge base the Endocrine Disruptor Knowl​edge Base (EDKB). A follow-up sec​ond SAB review occurred in 2000, which supported placing the EDKB database on the WEB (http://edkb. fda.gov). As the program developed, additional funding was provided by the OWH, in 1998 and 2000, by a Cooperative Research and Develop​ment Agreement (CRADA) with the American Chemistry Council (ACC), formerly the Chemical Manufacturer's Association (CMA), and again in 2001, with continued support to 2005, by EPA.

The objective of the EDC priority setting is to rank order a large num​ber of chemicals for more resource​intensive and costly Tier 1 evaluations from most important to least impor​tant. There are a number of criteria that can be used for this purpose, such as production volume, persis​tence and fate in the environment, human exposure levels, etc. Most of the 58,000 chemicals required for as​say have no biological data. Both QSARs and transcription-based high throughput pre-screening (HTPS)


were recommended by the EDSTAC as the primary source of biological effect information for priority setting. However, in a pilot study undertaken by EPA, the HTPS system did not perform well (13), such that the EDKB models could prove critical in EDC screening and testing program.

The compounds assayed at NCTR were selected based on providing uni​form coverage of the diverse chemical structure space of chemicals that bind the receptors, as well as cover​age of an activity range extending down to a million-fold below that of the endogenous hormones. The model training set designed for chemical structure diversity com​prises 130 ER binders and 100 non​binders (14, 15). The large number of inactive chemicals, included in the training sets, enables models to be trained to distinguish active from inac​tive compounds. Many SAR, QSAR and chemometric predictive models were developed using the many pow​erful commercial software packages that are now routinely applied in drug discovery and development. In the end, the rigorous, three-dimensional, QSAR method of Comparative Mo​lecular Field Analysis (CoMFA) was selected for quantitative prediction of receptor binding affinity (16). Three different types of models (structural alerts, pharmacophores and classifi​cation methods) were combined ( 17) to make qualitative prediction (i.e., active or inactive) of ER binding activ​ity.

In the sections that follow, we pre​sent results of integrating the qualita​tive and quantitative predictive models into a sequential "Four-Phase" scheme (18, 19) according to the strength of each type of model. Hier​archical sequencing of the models allows faster models to be used to eliminate the majority of inactive chemicals with an extremely low rate of false negatives. The more time​consuming but more precise models can be used to refine predictions for an increasingly smaller number of r e-


maining chemicals. The application of the more refined models further elimi​nates true negatives, as well as false positives, from earlier models. Re​sults are presented suggesting that the use of this scheme could elimi​nate from testing about 90% of the chemicals of potential concern in the national screening and testing pro​gram. Should the ER-binding models be used for priority setting, the pro​gram begun as a prototype effort will have matured to one of the most sig​nificant uses of QSAR in the regula​tory application.

Currently, the EDKB team is com​pleting models for prediction of bind​ing to the androgen receptor (AR). A validation program is also now under​way via an Interagency Agreement between FDA/NCTR and EPA. A large number of chemicals will be tested blind by the models, for both ER and AR binding, and the predic​tions then compared to assay results from an outside contract laboratory. The validation results will define whether and how model predictions are used in priority setting in the EPA's Endocrine Disruptor Screening and Testing Program.

Quantitative Structure-Activity
Relationships (QSARs)

QSAR modeling employs statisti​cal approaches to correlate and ra​tionalize variations in the biological activity of a series of chemicals with variations in their molecular struc​tures. The molecular structure is often represented by a set of quantities commonly known as structural de​scriptors. QSARs have been applied extensively in a wide range of scien​tific disciplines including chemistry, biology and toxicology (20, 21). In both drug discovery and environ​mental toxicology (22), QSAR models are now regarded as a scientifically credible tool for predicting and classi​fying the biological activities of un​tested chemicals. As we enter the

(Continued on page 4)
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informatics era, QSAR has become essential in the drug discovery proc​ess as a screening and enrichment tool to eliminate, from further develop​ment, those chemicals lacking drug​like properties (23-25) or those chemi​cals predicted to elicit a toxic re​sponse. This developing scenario por​tends the spread of QSAR, beyond the pharmaceutical industry, to human and environmental regulatory authori​ties for use in toxicology (16, 19, 26-30). The EDSTAC considers QSAR as an important part of its priority set​ting process (31). QSARs can be used to evaluate untested chemicals to provide biological data for use in priority setting (32-36).

The basic assumption in every QSAR model is that a chemical’s physical and chemical properties and its biological activities are predicted by its structure (37). Since structural descriptors of a chemical can be de​termined by computational means more efficiently than its biological ac​tivity using in vitro or in vivo ap​proaches, a statistically validated QSAR model is capable of predicting the biological activity of a new chemi​cal in lieu of the time-consuming and labor-intensive processes of chemical synthesis and biological evaluation. Applied judiciously, QSAR can save substantial amounts of time, money and human resources. A major advan​tage of QSARs, to priority setting, is the efficiency of scale when applied to a large number of chemicals. When several endpoints are analyzed simul​taneously, the efficiency of scale of computation is even more pro​nounced.

The first step in developing a QSAR model is acquisition of a train​ing set of chemicals that have known activities. Second, descriptors repre​senting molecular structure of individ​ual chemicals (i.e., hydrophobicity, structural fragments, charged surface area, the number of hydrogen bonds, solubility, and etc.) are calculated. Then, a correlation between descrip​tors and activity for the training set is


evaluated by employing various statis‑

tical approaches to determine the

most statistically significant relation‑

ship (the QSAR model). A proper vali‑

dation is required to ensure the

model’s predictive value for the chemi‑

cals not used in the training set. With

adequately validated performance,

such models can be used to predict

activities of untested potential EDCs. Obtaining a good quality QSAR

model heavily depends on many fac‑

tors, in the approach, particularly on

quality of biological data, descriptor

selection and statistical methods:

(1) Quality of biological data – It is desirable that data come from the same assay protocol, and care is taken to avoid inter​laboratory variability. Any bad data points may corrupt the proper correlation of structure and activity. Rules of thumb for a good QSAR data set are: 1) the dose-response relationship is smooth; 2) the potency (or affin​ity) is reproducible; 3) the activity range spans two or more orders of magnitude from the least ac​tive to the most active chemical in the series; 4) the number of chemicals used to build the QSAR model is sufficiently large to ensure statistical stability; 5) activities of the chemicals are

evenly distributed across the range of activity; and 6) the chemicals selected for the train​ing set possess enough struc​tural diversity to span the range of “chemistry space” associated with the biological activity under study. It is important to note that most toxicity data do not meet all these criteria because of the nature of toxicological research, in which care should be taken in interpreting QSAR results.

(2) Descriptor selection - There are many types of chemical struc​ture descriptors available from commercial software. Obtaining a statistically robust model is very much dependent on how well the selected descriptors can


encode the variation of activity with structure. The more that is known at the molecular level about the biological mechanism of action of the chemicals, the better the chemist is able to s e​lect among the wide variety and types of specific structural de​scriptors. Commercially available molecular modeling programs often include statistical tools to help in evaluating which descrip​tors best encode structure​activity variation. Some of these tools include the genetic algo​rithm (GA) in its various incarna​tions, which employs the evolu​tionary rules of natural selection to select the optimal (i.e., fittest) subset of descriptors amongst its wide set for a particular prob​lem.

Statistical methods – It is also critical that the QSAR method selected to develop the structure​activity correlation be suitable. Although the relationship be​tween a structural descriptor and biological activity may be linear or non-linear, it is still common practice today to employ linear approaches such as multiple (or multivariate) linear regression (MLR) or partial least-squares (PLS) regression to construct the QSAR model. For non-linear modeling, the Polynomial Neural Network (PNN) offers an alterna​tive that combines the best fea​tures of Artificial Neural Networks (ANNs) and MLR/PLS by provid​ing the inherent non-linearity of the ANN with the desired analyti​cal regression equation furnished by MLR and PLS (38). The most common scenario encountered in practice is for the number of pos​sible descriptors to exceed the number of chemicals, a situation that can lead to chance correla​tion. Fortunately, soft modeling methods, such as PLS, reduce the risk of encountering chance correlation by transforming the

(Continued on page 5)

Figure 1. Depiction of the recursive process used by NCTR to develop QSAR models for predicting estrogen receptor binding. The proc​ess starts with an initial set of chemicals from literatures for QSAR modeling. Next, the preliminary QSAR models are used pro​spectively to define a set of chemicals that will further improve model’s robustness and predictive capability. The new chemicals are assayed, and these data are then used to challenge and refine the QSAR models. The process output is the models for use in toxicological regulation. Validation of the model is critical, particularly with respect to confirming minimal false negative predic​tions.

(Continued from page 4)

dimensionality of the regression problem from chemical-descriptor space to so-called chemical​principal components (PCs) space.

QSAR models are useful in re​search for purposes beyond predic​tion (39). Additional benefits that may accrue include: (1) leveraging existing structure-activity data; (2) providing insights into mechanism or identifying an alternative mechanism (e.g., me​tabolism) of action; (3) identifying im​portant chemical structure character​istics; (4) suggesting new design strategies and synthetic targets; (5) narrowing the dose range for a planned assay; (6) assisting in gen​eration of new hypotheses to guide further research; and (7) revealing chemicals that deviate from the QSAR model.

The NCTR
Model Development Process

In the past few years, a number of QSAR models have been developed for ligand binding to the ER (8-11, 40-

44). Most of these QSAR models were constructed using the Compara​tive Molecular Field Analysis (CoMFA). Although a predictive QSAR model is dependent on a num​ber of factors, a training set with a broad representation over the chemis​try space is critical to ensure its pre​dictive capability for a large number of diverse chemicals. Unfortunately, most QSAR models for ER binding, developed previously, were based on data sets available in the literature, which to date had been small data sets with limited structural diversity (8, 42, 43). Although these models yield good statistical results and ex​plain some structural determinants for ER binding, they have limited applica​bility in predicting the ER-ligand bind​ing affinity of chemicals that, in fact, cover a wide range of structural diver​sity.

In order to obtain an adequate training set to develop a more robust QSAR model for regulatory purpose, a recursive process (Figure 1) has been adopted at NCTR by integrating assay and QSAR modeling to deter​mine chemicals for the training set (12, 45) along with the model con-


struction. The process is highly inter​disciplinary, involving computational chemists, biologists and experimental toxicologists. As depicted in Figure 1, the process starts with an initial set of chemicals from literatures for QSAR modeling. Next, the prelimi​nary QSAR models are used pro​spectively to define a set of chemi​cals that will further improve model’s robustness and predictive capability. The new chemicals are assayed, and these data are then used to challenge and refine the QSAR models. Through this process, we identified and as​sayed ~230 chemicals for final model construction. This NCTR data set contains chemicals that were se​lected to cover the structural diversity of chemicals (Figure 2a) that bind to ER with an activity distribution rang​ing over six orders of magnitude (Figure 2b), which is an essential re​quirement for a robust predictive model for structurally diverse estro​gens. The NCTR data set is a highly consistent data set for use in develop​ing models for estrogens.

The assay used in the process to provide ER binding data is a rat uter‑

(Continued on page 6)
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ine cytosol ER competitive binding assay that is considered the gold standard for in vitro ER assays (14, 15). We found a strong linear correla​tion for ER binding affinities among a diverse group of chemicals assayed with ER derived from our rat uterine cytosol and human ERa (46). Further​more, the rat ER binding data also correlated strongly with the results from assays measuring estrogenicity using a downstream event, i.e., a yeast-based reporter gene assay and MCF-7 cell proliferation assay. Impor​tantly, chemicals positive in uterotro​phic responses (in vivo estrogenic activity) are also positive in the ER binding assay, indicating that binding affinity is a good predictor of in vivo activity with few false negatives ob​served (47). These findings demon​strate that ER binding is the major determinant for estrogenic EDCs, and the prediction of the rat ER binding affinity provides an important piece of information for priority setting.

In this process, a model validation step is specifically emphasized to ensure the model’s predictive value for priority setting purposes (12). Internal and external validation were included in the process; each provides a differ​ent level of confidence for the model’s predictivity. Generally, the model is first validated using leave-one-out cross validation. In this method, each chemical in the training set is sys​tematically excluded once from the data set, after which its activity is pre​dicted by a model derived from the remaining chemicals. This internal validation assesses the model’s ex​trapolation within the training set. Sometimes, we employ leave-N-out cross-validation to achieve more ro​bust internal validation; a procedure similar to leave-one-out, but in this one, we systematically exclude one group of chemicals after randomly dividing the training set into N groups. When additional data are available, the model is used to predict other chemicals not used in the training set, but which have known activities


(the testing set). This external valida​tion assesses the model’s predictive capability for untested chemicals.

Several benefits accrue from the integration of the experimental and


modeling efforts. Immediate feedback can be given to the experimentalists so that suspected problems can be rapidly investigated. Also, as the pre‑

(Continued on page 7)
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dictive and diversity models evolve, the modelers can select the chemi​cals for subsequent testing, based on considerations of structural diversity and the activity range. While cross validation using the training set re​mains an important part of the model validation, each new data point di​rectly from the lab become a chal​lenge to the evolving model, the re​sults of which can then be assessed by the joint team of the modeler and experimentalist.

Each time the model is chal​lenged, the result is either further con​firmation of its validity, identification of a limitation or an outlier prediction. Failure of the model will, in turn, pro​vide important information. This may include identification of the need for new data based on a rational under​standing of the dependence of activity on structure. Alternatively, it may help elucidate which of many mechanisms may play an important role in a spe​cific chemical’s response; for exam​ple, delineating agonists from antago​nists, or defining where metabolism may be important. Regardless of the

cause of model failure, in essence, a research hypothesis is spawned that should lead to new data and/or an improved training set, and an improve​ment to what is a living model.

The NCTR
“Four-Phase”
System

Priority setting using QSAR is widely applied in the process of drug discovery. The objective of priority setting in pharmaceutical industry is to increase the chance of finding ac​tive chemicals or "hits" that are more likely to be developed into "leads". Hence, false positives are of great concern. In contrast, a good priority setting method for regulatory applica​tion should generate a small fraction of false negatives (chemicals pre​dicted to fail to bind to their receptor, but which actually bind). False nega‑

(Continued on page 8)
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tives constitute a crucial error be​cause they will receive a relatively lower priority for evaluation, in Tier 1, and may remain in use for many years. Furthermore, the methods should provide reasonable quantitative accuracy for true positives, as those with higher affinities will generally be of higher priority. Based on these considerations, we have developed an integrated computational system that rationally combines different QSAR models into a sequential "Four-Phase" scheme according to the strength of each type of model (Figure 3). A progressive Phase paradigm is used as a screen to reduce the num​ber of chemicals to be considered in each subsequent Phase. Therefore, these four phases work in a hierarchi​cal way to incrementally reduce the size of a data set with increasing pre​cision of prediction. Within each phase, different models have been selected to work complementarily in representing key activity-determining structure features to minimize the rate of false negatives. For predicting ER binding affinity, the models com​prised of these four phases were:

· Phase I: Filtering – Two rejection

filters, molecular weight < 94 or

>1000 and no-ring structure, were

used to significantly, and with

high confidence, eliminate those

chemicals considered unlikely to

bind ER (17). These two filters

were validated on ~2000 chemi‑

cals whose ER activities were

available from the literature.

· Phase I: Active/Inactive Assign​ment – The chemicals passing through Phase I were assigned as YES/NO for ER binding using three different methods, i.e., structural alerts, pharmacophore searching and classification mod​els. While structural alerts iden​tify key 2D structural features as​sociated with ER binding, phar​macophore search identifies 3D sub-structure important for ER binding. Classification models


use pattern recognition to qualita​tively categorize chemicals into active and inactive subsets on the basis of their similarity in phys​icochemical properties. In its cur​rent form, this Phase employs in parallel 11 models, three struc​tural alerts, seven pharmaco​phores, and one classification model to discriminate active from inactive chemicals. To ensure a lower false negative rate in this Phase, a chemical predicted to be active, by any of these models, is subsequently evaluated in the Phase III, while only those pre​dicted inactive, by all 11 models, will be eliminated for further evaluation. Since each method incorporates and weighs differ​ently the various structural fea​tures that endow a chemical with the ability to bind the ER, the combined outputs derived from the three approaches are comple​mentary in minimizing false nega​tives. Moreover, combining the outputs of these 11 models pro​vides a rational means to rank order the chemicals in decreasing order of potential activity (17).

· 
PhaseI: Quantitative Predic​tions – In this Phase, a CoMFA model is used to make a more accurate quantitative activity pre​diction for chemicals from Phase II. Chemicals with higher pre​dicted binding affinity are given higher priority for further evalua​tion in Phase IV. The CoMFA model demonstrated good statis​tical reliability using both internal and external validation (16). A plot of the CoMFA-predicted ver​sus experimental RBAs (as logs), computed for the training-set compounds, is given in Figure 4. The conventional r2 and cross​validated q2 are 0.91 and 0.76, respectively, indicating that the CoMFA model is both internally consistent and highly predictive. Figure 5 shows two different dis​tributions: 1) the range of fold​differences for individual experi​mental data points and 2) the range of fold-differences for CoMFA predicted and experimen​tal means. The predictions fall in a similar range to the experimen​tal data points.

(Continued on page 9)
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· Phase IV: Rule-Based Decision-Making System - In this final stage of the integrated priority setting approach, we propose to use a knowledge-based system, or expert system, to make a prior​ity setting decision. This is a mul​tidisciplinary effort that includes computational chemists, toxicolo​gists and environmental and regulatory scientists from different agencies. The system is useful only after incorporating accumu​lated human knowledge and e x​pertise (i.e., rules). This system can make decisions on individual chemicals based on the rules in its knowledge base, which at this juncture include but are not lim​ited to:

1. Information gained at each phase of the integrated com​putational approach.

2. Information on human expo​sure, environmental fate and other effects, and chemical production level.

3. Chemical structure novelty, that is, when a structure is encountered that is dissimilar to all those that have been used to train and test the models.

The NCTR “Four-Phase” system has been validated by a number of existing data sets, including the NCTR ER binding data set (14), the E​SCREEN assay data (48), the yeast two-hybrid reporter gene assay data (49), and other data sets (41, 50-54). To date, the system has produced no
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false negatives, which is critical in priority setting for regulatory pur​poses. The same integrated scheme is being extended to include end​points of other endocrine disrupting mechanisms (e.g., AR binding) at NCTR.

Regulatory Application

The NCTR “Four-Phase” system is

a primary candidate priority setting

tool for chemical entry to Tier 1

screening. The system was recently

applied to three environmental data

sets, recognized by EPA, as represen‑

tative subsets of potential EDCs:

· HPV-Inerts data set – It contains 623 High Production Volume in​erts (HPV-Inerts), which is a por​tion of the Toxic Substances Control Act (TSCA) Inventory. The EPA is including HPV-Inerts in version 2 of the Endocrine Disrup​tion Priority Setting Database (EDPSD2), and there was a need to prioritize HPV-Inerts for further experimental evaluation. Of 623 chemicals, 166 chemicals were either mixtures or their structures were not available, thus excluding them from prediction. Therefore, 457 chemicals were predicted by this system.

· Walker data set - Walker et al. developed a database that con​tains a large and diverse collec​tion of known pesticides and in​dustrial chemicals, as well as some food additives and drugs (55). The database contains 92,964 Chemical Abstract Serv‑


ice (CAS) Registry numbers of chemicals that will probably have to be evaluated for their potential endocrine disruption. A final data set of 58,391 chemicals was processed by our system after eliminating those chemicals for which structures were not avail​able (55) and/or 3D structures could not be generated (17).

· Validation data set – To validate the NCTR "Four-Phase" system, the EPA provided a list of 6,645 chemicals. The EPA randomly selected 200 chemicals from the list and 50 chemicals from those predicted to be active by the sys​tem for the list. These 250 chemi​cals are going to be assayed. By comparing the assay results with the prediction, we will be able to estimate (assess) the degree of false negatives, false positives and quantitative accuracy associ​ated with the system. With this validation, we hope to establish QSARs as a priority setting tool for regulatory application.

Table 1 summarizes the priority setting results for these data sets us​ing the NCTR “Four-Phase” system. When only the Phase I and II proto​cols are used, the system dramati​cally reduced the number of potential estrogens by some 80-85%, demon​strating effectiveness in eliminating these most unlikely ER binders from further expensive experimentation. The Phase III CoMFA model further reduces the data size by about 5-10%. Importantly, the quantitative

(Continued on page 10)


	Table 1.
Size reduction of three environmental data sets processed by

the NCTR “Four-Phase” system

	
	HPV-Inerts
	Walker
	Validation

	Original Data Size
	457 (100%)
	58,391 (100%)
	6,645 (100%)

	After Phase I and II
	15.7%
	12.0%
	11.0%

	After Phase III
	9.8%
	—–
	4.8%


(Continued from page 9)

binding affinity prediction from Phase III provides an important rank-order value for priority setting.

Concluding Remarks

EDCs have potential adverse ef​fect on human beings and wildlife. The potential of chemicals to interfere with estrogen functions may be re​lated to their ability to mimic estrogen and bind to ER. The potential to mimic estrogen and bind to ER can be quantitatively predicted using com​putational methods such as QSARs. QSARs are an important part of prior​ity setting to determine which chemi​cals should be experimentally evalu​ated first in Tier 1 screening recom​mended by EDSTAC.

In conjunction with EPA, the EDKB project team at the FDA/NCTR has developed a number of QSAR models for prediction of chemical binding to the ER. These models are integrated into a “Four-Phase” scheme, which we have shown to demonstrate efficiency and accuracy for priority setting of potential estro​genic EDCs for use, by regulators, at EPA. We anticipate that the same scheme will be equivalently applicable
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to other mechanisms (e.g., androgen receptor binding) involved in endocrine disruption and other toxicity end​points. The stringent requirement for developing models for toxicity mecha​nisms is appropriately designed train​ing data set similar to the one e m​ployed here for the ER-binding mod​els. Properly validated data allow the structural rules that govern activity to be determined and used to develop robust predictive models.

While the results presented here clearly show both the feasibility and utility of using QSARs for priority set​ting, it is important to note that pre​dictions from any model are intrinsi​cally no better than the experimental data employed for modeling. Any limi​tations of the assay used to generate the training data apply equally to the model’s predictions. Moreover, false negatives and false positives depend on the defined cut-off value to distin​guish active from inactive for the mod​els only providing YES/NO prediction. As the cut-off value is lowered, it is likely that error will increase even for a well designed and executed assay, and false positives and false nega​tives will both increase. Similarly, more false prediction might be intro​duced for chemicals with activity
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close to the cut-off value. The issue for a large number of chemicals, of the rate of false positives and false negatives in predicted values, must be dealt with experimentally by run​ning assays on a sufficiently large number of chemicals to characterize the rates. Therefore, our current model validation process with EPA is an important step to ensure the model’s quality for regulatory applica​tion.
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Glossary

Quantitative structure-activity r e​lationships (QSARs): Technique to quantitatively correlate for a set of chemicals structural descriptors encoding chemical structures or prop​erties with a dependent variable rep​resenting biological activity using, for example, regression methods.

Structural Descriptors: Parame​ters that are used to characterize chemical structure. Categories of de​scriptors commonly used in QSAR include, but are not limited to, spatial, electronic, topological, information​-content, thermodynamic, conforma​tional, quantum mechanical, and shape descriptors.

Regression: Mathematical ap​proaches to generate equations that correlate independent variables (e.g., descriptors) with dependent vari​ables (e.g., biological activity). The equations can be used to predict val​ues of one variable (e.g., biological activity) when given values of the oth​ers (e.g., descriptors). Many types of statistical regression techniques are used to develop QSAR equations.

Training set: The set of chemicals used to develop the QSAR equation for which the biological activity data are known.

Testing set: The set of chemicals for which biological activity are known that is used to challenge the QSAR models developed based on the training set.

Cross-validation (or internal vali​dation): Statistical approaches that are often used to determine predictive effectiveness of a QSAR model de​velop based on a particular training set. For example, in the leave-one-out cross-validation method, each com​pound is systematically excluded once from the training set, after which its activity is predicted by a model de​rived from the remaining compounds. Therefore, the summary of differences between the actual and predicted ac​tivity data for each compound can be used to assess the predictive effec​tiveness. This process only assesses interpolation of the model within the training set. Thus, sometimes it is called internal validation. Internal validation is less rigorous than exter​nal validation.

External validation: A more con​vincing process to evaluate how well


the QSAR equation generalizes for an external testing set. One common practice is to divide the original data into two groups, the training set and the testing set. The training set is used to derive a model, and the model is then used to predict the a c​tivities of the testing set. The sum​mary of differences between the a c​tual and predicted activity data for the testing set can be used to assess the predictive effectiveness of the QSAR model for those chemicals not in​cluded in the training set.

Endocrine Disrupting Compounds (EDCs): An exogenous agent that i n​terferes with the production, release, transport, metabolism, binding, action, or elimination of natural hormones in the body responsible for the mainte​nance of homeostasis and the regula​tion of developmental processes.

High Throughput Screening (HTPS): A general term referring to the automation, often employing robotics, of biological assays to achieve a high volume of separate tests.
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Figure 2. The distribution of (A) chemical classes and (B) binding activity for the NCTR data set. The estrogen receptor binding activity is represented as RBA (Relative Binding Affinity). The RBA for the endogenous ligand, 17ß-estradiol, was set to 100.
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Figure 3. Overview diagram of the NCTR “Four-Phase” approach for priority setting. In Phase I, chemicals with molecular weight <94 or >1000 or containing no ring structure will be rejected. In Phase II, three types of approach (structural alerts, pharmacophores, and classification methods) with total 11 models are used to make a qualitative activity prediction. In Phase III, a 3D QSAR/ CoMFA model is used to make a more accurate quantitative activity predic�tion. Phase IV, an expert system is expected to combine information gained from Phase II and Phase III and other sources to make a decision on priority setting. Different phases are hierarchical; different methods within each phase are complementary.





�





HIGH





�





Page � PAGE �8�





�





Page � PAGE �9�





References





Hileman, B. 1994. Environmental estrogens linked to reproductive abnormalities, cancer. Chem Eng News 72:19-23.


Hileman, B. 1997. Hormone Dis�rupter Research Expands. C & EN:24-25.


Kavlock, R. J., Daston, G. P., DeRosa, C., Fenner-Crisp, P., Gray, L. E., Kaattari, S., Lucier, G., Luster, M., Mac, M. J., Mac�zka, C., Miller, R., Moore, J., Rol�land, R., Scott, G., Sheehan, D. M., Sinks, T., Tilson, H. A.1996. Research needs for the risk a s�sessment of health and environ�mental effects of endocrine dis�ruptors: a report of the U.S. EPA-sponsored workshop. Environ�





Page � PAGE �10�





Page � PAGE �11�





Page � PAGE �12�





Page � PAGE �13�











�





�





The Authors





�


Weida Tong, Ph.D.











Page � PAGE �14�	Regulatory Research Perspectives	Volume 1, Issue 3





The Authors





�











Page � PAGE �15�	Regulatory Research Perspectives	Volume 1, Issue 3





The Authors





�











�





DHHS/FDA/Jefferson Labs


National Center for Toxicological Research 3900 NCTR Road, HFT-1


Jefferson, Arkansas 72079-9502 Telephone: (870) 543-7516


Website address: � HYPERLINK http://www.fda.gov/ ��www.fda.gov/�





Editorial Matters:


Address for editorial matters noted above. Article may be republished without permission.


Credit to Regulatory Research Perspectives


as the source is appreciated.


Managing Editor/Layout: Virginia B. Taylor emai � HYPERLINK ftp://l:vtaylor@nctr.fda.gov ��l:vtaylor@nctr.fda. gov�





Photos/Bill Branham; Anson Photo/V. B. Taylor





NCTR Mission Statement





The mission of the National Center for Toxicological Research is to conduct peer-reviewed scientific research that supports and anticipates the FDA's cur�rent and future regulatory needs. This involves fundamental and applied re�search specifically designed to define biological mechanisms of action underly�ing the toxicity of products regulated by the FDA. This research is aimed at un�derstanding critical biological events in the expression of toxicity and at develop�ing methods to improve assessment of human exposure, susceptibility and risk.





Regulatory Research Perspectives�Editorial Board





Norris Alderson, Ph.D. – Office of the Commissioner (OC) Daniel A. Casciano, Ph.D. – National Center for Toxicological Re�search (NCTR)


Thomas A. Cebula, Ph.D. – Center for Food Safety and Applied Nutri�tion (CFSAN)


Lireka P. Joseph, Ph.D. – Center for Devices and Radiological Health (CDRH)


Joanne N. Locke – Office of the Commissioner (OC)


Edward E. Max, Ph.D. – Center for Biologics Evaluation and Re�search (CBER)


Michael C. Olson – Office of Regulatory Affairs (ORA)


Frank D. Sistare, Ph.D. – Center for Drug Evaluation and Research (CDER)


Mary S. Wolfe, Ph.D. – National Institute of Environmental Health Sci�ence (NIEHS)


Linda D. Youngman, Ph.D. – Center for Veterinary Medicine (CVM) Hal Zenick , Ph.D. – Environmental Protection Agency (EPA)








