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Abstract

We have developed Quantitative Structure-Activity
Relationship (QSAR) models based on Comparative
Molecular Field Analysis (CoMFA) for 31 estrogenic
chemicals whose relative binding affinity (RBA) is available
for both ER-a and ER-B. The models demonstrated a

significant correlation (#2>0.95) between the CoMFA-
calculated steric/electrostatic fields and corresponding RBA
data and a good predictive capability (42>0.6) based on cross-
validation. The CoMFA models and contour plots obtained
for ER-o. and ER-B suggest a close similarity between the
receptors in terms of mode of binding and provide a rational
basis for ligand selectivity.

Introduction

Recently published information on the nucleotide and
corresponding amino acid sequences of the estrogen receptor
(ER-B) cDNA indicates a close homology with the previously
described ER-a (1-3). Nevertheless, the expression patterns of
ER-a and ER-f across tissues as well as their ligand binding
patterns were found subsequently to exhibit notable
differences (4). The potential significance of these findings,
including the ligand selectivity, has also been explored (5).
This latter issue is important in considering the activity of
numerous endogenous estrogens as well as the xenoestrogens
including phytoestrogens, environmental chemicals and
estrogenic drugs.

For the last decade, drug discovery efforts have
employed computer-based QSAR molecular models to
describe ligand-receptor interactions and to predict those
chemical structures that possess the most desired
pharmacological characteristics (6). More recently, such
models are finding use to predict the RBAs of xenoestrogens
(7,8), some of which disrupt development and reproduction in
wildlife (9). Here we report a three-dimensional QSAR based
on CoMFA methodology (10) in order to identify and
differentiate structural features of estrogens responsible for
ligand binding to ER-a and ER- f.

Materials and Methods

Data sets for analysis

The RBA data used as the training set to construct the
CoMFA models included both human ER-a and rat ER-B
subtypes (4). The 31 chemicals (Table 1) comprised 19
steroids, several synthetic estrogens, several phytoestrogens,
and two environmental estrogens. By encompassing both
Received: 05/13/97

structural diversity and a wide range of RBAs, this training
set was designed to yield robust models that can correlate the
variances in RBA with chemical structure (as encoded in the
steric/electrostatic CoMFA fields) and, moreover, identify
differences between the ER-o and P subtypes better than less
diverse data sets.

Molecular modeling

Chemical structures were generated from the Sybyl
6.3 fragment database (11) or obtained from the Cambridge
Structural Database (CSD) (12). The global minimum-energy
conformation of each molecule was computed in three steps:
(i) the geometry of each molecule was optimized to its nearest
local minimum-energy conformation to an energy gradient of
0.001 kcal/molA; (ii) these energy-minimized structures were
then subjected to conformational analysis using a systematic
search over all rotatable bonds at 10" increments; and finally
(iii) the molecules were reminimized after the rotated torsion
angles were set to the minimum-energy values identified in
step (ii). All atomic partial charges were computed using the
Gasteiger-Marsili method (13).

CoMFA alignment

CoMFA requires each molecule to be aligned to
ensure maximal superposition of the steric and electrostatic
fields of the training-set compounds. Most alignment rules
employ a least-squares fitting of pharmacophoric elements
between a designated template molecule (E, for this study) and
the other molecules in the training set. For the steroidal
compounds, these pharmacophoric elements were the
centroids of the A-, B-, C- and D-rings (Figure 1). For the
triphenylethylene anti-estrogens, the pharmacophoric elements
were the centroids of the A- and C-rings and the C-1 of the B-
ring which correspond to the centroids of the A- and D-rings
and the C7 of the B-ring, respectively, of E, (8). Alignment of
the triphenylene anti-estrogens in this way provided maximal

4022



RAPID COMMUNICATIONS

overlap of their rings and their substituents with the steroidal
ICI 164,384 anti-estrogen. Similar considerations were
applied for the alignment of the phytoestrogens and the
xenoestrogens. For example, the pharmacophoric element for
bisphenol A and methoxychlor were the centroids of the A-
and B-rings and the vertex carbon atom of CPh,.

) o
17B-estradiol (E2) 4-Hydroxytamoxifen \I\
N(CHa)2

HiCO. OCH;
Cla

Methoxychlor

Genistein

Figure 1: Structure of several chemicals in the training set

After alignment, the molecules were placed in a
three-dimensional cubic lattice with 2 A spacing. The steric
(van der Waals) and electrostatic (Coulombic) fields were
calculated for each molecule at each mesh point using an sp’
carbon probe with +1.0 charge. Any calculated steric and
electrostatic energies that were greater than 30 kcal/mol were
truncated to this value.

PLS-OSAR

To form the basis for a predictive statistical model,
the method of partial least squares (PLS) regression (14) was
used to analyze the training set of 31 compounds by
correlating variations in their biological activities with
variations in their respective steric and electrostatic fields.
The optimum number of principal components (PCs),
corresponding to the smallest standard error of prediction, was
determined by the leave-one-out (LOO) cross-validation
procedure (15). In this method, each compound is
systematically excluded once from the data set, after which its
activity is predicted by a model derived from the remaining 30
compounds. Combining the 31 predictions allows the
calculation of a cross-validated 72 (termed g2 hereafter).
Using the optimal number of PCs, the final PLS analysis was
carried out without cross-validation to generate a predictive
QSAR model with a conventional correlation coefficient r2.
The r2 and g2 parameters are two key measures of
significance of the CoMFA model. The 2 value is a measure
of the model’s goodness of fit to the training-set activity data

while the g2 value is a measure of the model’s predictive
ability. A model for which 2 > 0.9 and g2 > 0.5 is generally
considered to be both internally self-consistent and predictive
(10).

Results

3D-QSAR/CoMFA models constructed separately for
the ER-o and ER-p RBAs (Figure 2) yielded similar
statistical results. Statistically significant values of g2 (>0.6)
and 2 (>0.95) were obtained for both models, indicating good
self-consistency and predictive ability. The contributions from
the steric fields (40%) and electrostatic fields (60%) were
identical in both models. Both models required only 4 PCs to
optimally explain the variance in biological activity.
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Figure 2: Plot of observed log RBA versus CoOMFA calculated
log RBA for ER-o and 8

In order to increase the precision and predictive
ability of the QSAR models, several factors were considered
while developing these COMFA models, such as reducing the
lattice spacing and/or the value of the filtering energy.
Reducing these two parameters did improve the g value
slightly but not enough to justify the extra computing time.

The effects of hydrophobic/hydrophilic character was
also evaluated by adding values of the octanol/water partition
coefficient (logP) to the CoMFA field descriptors for each
compound in the training set. These logP values were
calculated using the Ghose-Crippen method (16) available in
Sybyl 6.3. The contribution of the logP descriptor to this
CoMFA model was insignificant (3%) compared that of the
steric and electrostatic fields (39% and 58%, respectively),
indicating that the observed variations in the ER binding
affinity among the training-set compounds are not explained
by differences in their hydrophobic/hydrophilic character.

The original COMFA models (i.e., 2 A lattice spacing,
1.0 Kcal/mol filtering energy, no logP descriptors) were
employed to derive color contour plots for both ER subtypes.
To demonstrate the applicability of these CoMFA models to
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compounds not included in the training set, the RBAs of test-
set compounds were predicted for both receptors. The
reasonable agreement between the predicted and observed
RBAs (recorded as “less than” values) substantiates the fitness
of the CoOMFA model beyond the training set (Table 2).

Table 1: Observed and CoMFA-calculated log RBA values for
binding to ER-o and ER-f.

log RBA (o) log RBA (B)

Compounds Obs. Cal. | Obs. Cal
17B-Estradiol (E,) 200 1.50 | 2.00 147
Estriol 1.15 1.43 1.32 1.37
Estrone 1.78 1.29 1.57 1.03
2-Hydroxy-E, 0.85 1.47 1.04 1.40
4-Hydroxy- E, 1.11 1.21 0.85 1.18
Moxestrol 1.63 1.59 | 0.70 0.72
ICI 164,384 1.93 1.82 | 222 216
17a-Estradiol 1.76 1.74 1.04 1.37
3o-Androstanediol -1.15 -1.03 | -0.52 -0.55
3B-Androstanediol 048 -0.12 | 0.85 0.10
4-Androstenediol -0.30 -0.55 | -0.22 -0.25
5-Androstenediol 0.78 0.25 1.23 0.77
Dehydroepiandrosterone | -1.40 -049 ! -1.15 -045
Sa-Dihydrotestosterone | -1.30 -1.76 | -0.77 -1.26
Nandrolone -2.00 -149 | -0.64 -1.07
Norethindrone -1.15 -1.33 | -2.00 -1.37
Norethynodrel -0.16 -0.36 | -0.66 -0.66
Testosterone -2.10 -231 | -2.10 -2.26
Progesterone -3.50 -321 | -3.50 -3.22
Diethylstilbestrol 2,67 260 | 247 253
Hexestrol 2.48 2.68 2.37 2.64
Dienestrol 2.35 2.61 2.61 2.75
Tamoxifen 0.85 1.25 0.78 1.07
4-Hydroxy-tamoxifen 225 1.78 | 2.53 2.12
Clomifene 1.40 1.12 1.08 0.83
Coumestrol 197 222 | 227 2.64
Genistein 0.70 0.81 1.56 1.52
[B-Zearanol 1.20 1.47 1.15 1.21
Nafoxidine 1.64 1.47 120 097
Bisphenol A -1.30  -1.14 | -048 -0.18
Methoxychlor -2.00 -191 | -0.89 -0.68

Discussion

The CoMFA training set of 31 compounds covered at
least seven structural classes, including mammalian, plant,
synthetic and environmental estrogens and a complete
estrogen antagonist. For both ER subtypes, CoOMFA predicted
RBA values are in good agreement with the corresponding
experimental values. A distribution of residuals (ie.,
differences between observed and calculated RBAs) was

obtained ranging from 0.00 for norethynodrel (ER-B) to 0.75
for 3B-androstanediol (ER-B). The large residual for 3p-
androstanediol compared with 3a-androstanediol is curious
and will require further examination by incorporating more
30- and 3B-substituted steroids. Consistent with previous
QSAR and 3D-QSAR models for ER binding derived by us
(8) and by other workers (7), the electrostatic field component
made a slightly larger contribution than the steric field
component to both CoMFA models. This finding might be
related to observations that polar amino residues are well-
represented in the hormone binding domain of ERs (1,17). An
initial inspection of the CoMFA-calculated steric/electrostatic
field contributions and corresponding regression models
obtained for ER-o. and ER-$ would suggest a close similarity
in the structural requirements for ligand binding. The ER-a
and ER-B contour plots (Figure 2) are nearly identical on the
left-hand side indicating that, for example, substitutions at the
3-position of the A-ring would affect binding to ER-o and ER-
B about equally. Consistent with this deduction, the RBAs for
2-hydroxy-E, and 4-hydroxy-E, (Table 1) are proportionately
the same for ER-a and ER-B compared to their respective
RBAs for E,. Also, both ERs are sensitive to adding steric
bulk in the vicinity of the 17a-position on the steroid ring.
However, closer examination of the respective CoMFA
contour plots for ER-a and ER- reveals subtle differences in
their structural characteristics for binding that nevertheless
may be biologically relevant. Of particular note, the green
domain near the 170 position of E, is larger for ER-o than
ER-B. This distinction suggests that increasing steric bulk in
this region will enhance the binding affinity more for ER-a
than for ER-B, consistent with the experimental findings for
moxestrol and norethynodrel (Table 1).

Table 2: CoMFA-predicted log RBA values for the test set

log RBA (o) log RBA (B)

Compounds Obs. Cal. Obs. Cal.
Sa-androstanedione <20 -195 | <2.0 -2.11
5B-androstanedione <2.0 -2.10 | <20 -232
4-androstenedione <20 222 | <20 -2.50
corticosterone <-3.0 241 | <30 -2.05

The present 3D-QSAR models will enable us to better
quantify and visualize the unique specificity of different ER
subtypes for various ligands. They will also further
mechanistic studies of estrogen action and enable mass
screenings of a large number of xenoestrogens for RBA values
in order to prioritize them for further studies of possible
estrogenicity.
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ER-alpha

Figure 3 : CoMFA steric and electrostatic contour plots for
estrogen binding to ER-a and ER-B (an E, molecule is placed
inside the field for visualization purposes). Enhanced RBA
(ie., higher binding affinity) is associated with
adding/subtracting steric bulk from green/yellow regions and
with adding/subtracting positive charge in the blue/red
regions. The absence of color represents regions that were
unexamined by the current dataset.
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