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The techniques of combining the results of multiple classification models to produce a single prediction
have been investigated for many years. In earlier applications, the multiple models to be combined were
developed by altering the training set. The use of these so-called resampling techniques, however, poses the
risk of reducing predictivity of the individual models to be combined and/or over fitting the noise in the
data, which might result in poorer prediction of the composite model than the individual models. In this
paper, we suggest a novel approach, named Decision Forest, that combines multiple Decision Tree models.
Each Decision Tree model is developed using a unique set of descriptors. When models of similar predictive
quality are combined using the Decision Forest method, quality compared to the individual models is
consistently and significantly improved in both training and testing steps. An example will be presented for
prediction of binding affinity of 232 chemicals to the estrogen receptor.

INTRODUCTION

The Decision Tree method determines a chemical’s activity
through a series of rules based on selection of descriptors.
These rules are operated by using IF-THEN expressions
and displayed as limbs in the form of atree containing, in
most cases, only binary branching. For example, a simple
rule could be “IF molecular weight> 300, THEN the
chemical is active”. The rules provide intuitive interpretation
of biological questions with respect to the relationship and/
or association between descriptors, that is more appealing
for some users than a nonlinear “black box” such as an
artificial neural network (ANN). One major advantage of
Decision Tree is speed of model development and prediction.
In the case of the now widespread use of combinatory
synthesis in conjunction with high throughput screening
(HTS) in drug discovery, Decision Tree offers advantages
to quickly process a large volume of data and provide
immediate feed back to narrow down the number of
chemicals for synthesis and evaluation.1,2

The automatic tree construction in Decision Tree dates
back to the early 1960s.3 The Classification and Regression
Tree (CART) developed by Breiman et al.4,5 is widely used
in various disciplines. Depending on the nature of the activity
data, the tree can be constructed for either regression or
classification. Each end node (“leaf of the tree”) of a
regression tree gives a quantitative prediction, while the
classification tree gives categorical predictions. The clas-
sification tree is most commonly used in data analysis, where
the endpoint is usually binomial (i.e. yes/no or+/-). Since
tree-construction methods are recursive in nature, it is also

called recursive partitioning (RP) in pattern recognition.
Whether Decision Tree is more accurate than other similar

techniques depends on the application domain and the
effectiveness of the particular implementation. Lim and Loh6

compared 22 Decision Tree methods with nine statistical
algorithms and two ANN approaches on 32 data sets. They
found no statistical difference among the methods evaluated.
For classification of estrogen ligands into active and inactive
groups, we found that Decision Tree gives comparable results
compared to K-Nearest Neighbor (KNN), Soft Independent
Modeling of Chemical Analogy (SIMCA), and ANN.7 It
appears that the nature of descriptors used, and more
particularly the effectiveness in which they encode the
structural features of the molecule related to the activity, is
far more critical than the specific method employed.

Evaluating different ways for tree construction and imple-
mentation has been a major focus for improving Decision
Tree performance. Some representative researches include
AID,3 CHAID,8 C4.5,9,10 S-Plus tree,11 FACT,12 QUEST,13

IND,14 OC1,15 LMDT,16 CAL5,17,18and T1.19 Decision Tree
methods are also applied in the drug discovery field, such
as (1) Statistical Classification of Activities of Molecules
(SCAM) developed by Young et al.1,2 for generation of SAR
rules using the binary descriptors in a sequential screening
approach; (2) combining RP with simulated annealing (RP/
SA) reported by Blower et al.20 to identify combination of
descriptors that give the best tree models; and (3) a novel
regression tree based on artificial ant colony systems
developed by Izrailev and Agrafiotis.21

In this paper, a novel approach is explored that classifies
a new chemical by combining the predictions from multiple
classification tree models. This method is named Decision
Forest, and a model consists of a set of individually trained
classification trees that are developed using unique sets of
descriptors. Our results suggest that the Decision Forest
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model is consistently superior to any individual trees that
are combined to produce the forest in both training and
validation steps.

DECISION FOREST

Methodological Consideration.Combining (or ensemble
or consensus) forecast is a statistical technique that combines
the results of multiple individual models to reach a single
prediction.22 The overall scheme of the technique is shown
in Figure 1, where the individual models are normally
developed using an ANN23-25 or Decision Tree.26,27 A
thorough review of this subject can be found in a number of
papers.28-30

In most cases, individual models are developed using a
portion of chemicals randomly selected from the original data
set.31 For example, a data set can be randomly divided into
two sets, 2/3 for training and 1/3 for testing. A model
developed with the training set will be accepted if it gives
satisfactory predictions for the testing set. A set of predictive
models is generated by repeating this procedure, and the
predictions of these models are then combined when predict-
ing a new chemical. The training set can also be generated
using more robust statistical “resampling” approaches, such
as Bagging32 or Boosting.33

Bagging is a “bootstrap” ensemble method by which each
model is developed on a training set that is generated by
randomly selecting chemicals from the original data set.32

In the selection process, some chemicals may be repeated
more than once, while others may be left out so that the
training set is the same size as the original data set. In
Boosting, the training set for each model is also the same
size as the original data set. However, each training set is
determined based on the performance of the earlier model-
(s); chemicals that are incorrectly predicted by the previous
model are chosen more often than chemicals that were
correctly predicted in the next training set.33 Boosting,
Bagging, and other resampling approaches have all been
reported to improve predictive accuracy.

The resampling approaches use only a portion of the data
set for constructing the individual models. Since each
chemical in a data set encodes some SAR information,
reducing the number of chemicals in a training set for model
construction will weaken most individual models’ predictive

accuracy. It follows that reducing the number of chemicals
also reduces the improvement in a combining system gained
by the resampling approach. Moreover, Freund and Schapire
reported that some resampling techniques could be at risk
of overfitting the noise in the data, which leads to much
worse prediction from multiple models.33

The idea of combining multiple models implicitly assumes
that one could not identify all aspects of the underlying
variable relationship, and thus different models are able to
capture it for prediction. Combining several identical models
produces no gain. The benefit of combining multiple models
can be realized only if individual models give different
predictions. An ideal combined system should consist of
several accurate models that disagree in prediction as much
as possible. Thus, the important aspects of the Decision
Forest approach were as follows:

1. Each individual model in Figure 1 is developed using
adistinctset of descriptors that was explicitly excluded from
all other models, thus ensuring each individual model’s
unique contribution to making prediction.

2. The quality of all models in Decision Forest is
comparableto ensure that each model significantly contrib-
utes to the prediction.

Decision Forest Algorithm. The development of the
Decision Forest algorithm consists of the following steps:

1. The algorithm can be initiated with either a predefined
N to determine the number of models to be combined or a
misclassification threshold to set a quality criterion for
individual models. The former case is illustrated in this paper.

2. A tree is constructed without pruning. The tree identifies
the minimum number of misclassified chemicals (MIS) for
a given data set.MIS then serves as a quality criterion to
guide individual tree construction and pruning in the fol-
lowing iterative steps 3-6.

3. A tree is constructed and pruned. The extent of pruning
is determined by theMIS. The pruned tree assigns a
probability (0-1) to each chemical in the data set.

4. The descriptors used in the previous model are removed
from the original descriptor pool, and the remaining descrip-
tors are used for the next tree development.

5. Steps 3 and 4 are repeated until no additional model
with misclassificationse MIS can be developed from the
unused portion of the original pool of descriptors.

6. If the total number of models is less thanN, theMIS is
increased by 1, and the steps 3-5 are repeated. Otherwise,
multiple decisions from individual trees are combined using
a linear combination method, where the mean value of the
probabilities for all trees is used to determine the classifica-
tion of a chemical. A chemical with the mean probability
larger than 0.5 is designated as active, while a chemical with
a mean value less than 0.5 is designated as inactive.

MATERIALS AND METHODS

Tree Development.In the present application, the devel-
opment of a tree model consists of two steps, tree construc-
tion and tree pruning. In the tree construction process, a
parent population is split into two children nodes that become
parent populations for further splits. The splits are selected
to maximally distinguish the response descriptors in the left
and right nodes. Splitting continues until chemicals in each

Figure 1. A schematic presentation of combining the predictions
of multiple Decision Tree models.
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node are either in one activity category or cannot be split
further to improve the model. To avoid overfitting the
training data, the tree needs to be cut down to a desired size
using tree cost-complexity pruning. The method for the tree
development is described by Clark and Pregibon11 as
implemented in S-Plus, which is a variant of the CART
algorithm. It employs deviance as the splitting criterion. The
Decision Forest is written in S language and run in S-Plus
software.

Model Assessment.Misclassification and concordance are
used to measure model quality. Misclassification is the
number of chemicals misclassified in a model, while con-
cordance is the number of correct predictions divided by the
total number of predictions.

NCTR Data Set. A large and diverse estrogen data set,
called the NCTR data set,34,35 was used in this study (Table
1). The NCTR data set contains 232 structurally diverse
chemicals,36 of which 131 chemicals exhibit estrogen receptor
binding activity,7 while 101 are inactive37 in a competitive
estrogen receptor binding assay.

Descriptors.More than 250 descriptors for each molecule
were generated using Cerius 2 software (Accelrys Inc., San
Diego, CA 92121). These descriptors were categorized as
(1) conformational, (2) electronic, (3) information content,
(4) quantum mechanical, (5) shape related, (6) spatial, (7)
thermodynamic, and (8) topological. The descriptors were
preprocessed by removing those with no variance across the
chemicals. A total of 202 descriptors were used for the final
study.

RESULTS

Figure 3 gives a plot of misclassification versus the number
of combined decision trees. The number of misclassifications
varies inversely with the number of decision trees. The
reduction in misclassification is greatest in the first four
decision trees combined, where more than 1/2 the misclas-
sifications were eliminated. A decision forest comprising
seven trees eliminated about 2/3 of the misclassification of
the initial decision tree.

Table 2 provides more detailed results on the decision
forest and the decision trees combined. Based on misclas-
sifications, all decision forest combinations perform better
than any individual decision tree. Of 202 original descriptors,
88 were ultimately used for the decision forest combining
seven decision trees. The progressive decrease in misclas-
sifications as decision trees are successively added to the
forest demonstrates how each distinct descriptor set contrib-
utes uniquely to the aggregate predictive ability of the forest.
Generally, decision trees with fewer “leaves” are expected
to perform better because the descriptors are better able to
encode the functional dependence of activity on structure.
Table 2 also shows the expected trends of both more
descriptors and more leaves in the later decision trees as the
descriptors that are better able to encode the activity in the
previous models are successively removed from the descrip-
tor pool.

Table 3 gives a comparison of decision tree with decision
forest as measured by chemicals predicted as active that are
actually inactive (false positives) and chemicals predicted
as inactive that are actually active (false negatives). The
decision tree being compared corresponds to that in the first

row of Table 2 that has 17 misclassifications. The Decision
Forest being compared in Table 3 corresponds to the bottom
row in Table 2 where seven decision trees are combined and
for which there are five misclassifications. In the Table 3
comparison, the decision tree utilizes 10 descriptors and
produces nine false negatives and eight false positives. In
contrast, the Decision Forest utilizes 88 unique descriptors
and produces four false negatives and one false positive, a
marked improvement in the prediction performance com-
pared to the decision tree. There are 13 chemicals that have
contrary activity classification between the decision tree and
forest, of which 12 chemicals are correctly predicted by the
forest and one is misclassified.

Among the many schemes to combine multiple decision
trees, we evaluated linear combination and voting. The voting
method uses the majority of votes to classify a chemical.
The linear combination method uses the mean of probabilities
of the individual decision trees. We found the two methods
to produce the same results (results not shown) and chose
linear combination because a tie vote is not usable.

Decision Forest assigns a mean probability of the com-
bined trees using the linear combination approach. Figure 4
shows the concordance results of the Decision Forest
prediction of the NCTR data set in 10 even intervals between
0 and 1. Analysis shows that the interval 0.7-1.0 has an
average concordance of 100% of true positives, and the
interval 0.0-0.3 has an average concordance of 98.9% true
negatives. The vast majority of misclassifications occur in
the 0.3-0.7 probability range where the average concordance
is 78%.

A more robust validation of the predictive performance
was conducted by dividing the NCTR data set into a training
component comprising two-thirds, or 155, of the chemicals
and a testing component comprising the remaining 77
chemicals. Both Decision Forest and Decision tree models
were constructed for a random selection of the training set
and then used to predict the testing set. This was repeated
2000 times to give the concordance results shown in Figure
5. Figure 5 gives on theY-axis the number of times out of
2000 that a model attained the concordance value given on
the X-axis. The consistently better predictive average con-
cordance of the Decision Forest is readily discernible, as is
the narrower distribution for prediction of the training set
versus the test set. Both leave-one-out and leave-10-out
validation tests were also performed and showed a similar
trend (results not shown).

DISCUSSION

We presented a novel combining forecast approach, named
Decision Forest that combines predictions of individually
trained Decision Trees, each developed using unique descrip-
tors. The method was illustrated by classifying 232 chemicals
into estrogen and non-estrogen receptor-binding categories.
We demonstrated that Decision Forest yielded better clas-
sification and prediction than Decision Tree in both training
and validation steps.

A SAR equation can be generalized as Bio) f (D1, D2,
..., Dn), where Bio is biological activity data (binomial data
in classification) and D1 to Dn are descriptors. This equation
implies that the variance in Bio is explained in a chemistry
space defined by the descriptors (D1 ... Dn). Accordingly,
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Table 1. NCTR Data Set, 232 Chemicals with Estrogen Receptor Binding Data

Inactives
1,3-dibenzyltetramethyldisiloxane butylbenzylphthalate hexachlorobenzene
1,6-dimethylnaphthalene caffeine hexyl alcohol
1,8-octanediol carbaryl isoeugenol
2,2′,4,4′-tetrachlorobiphenyl carbofuran lindane (gama-HCH)
2,2′-dihydroxy-4-methoxybenzophenone catechin melatonin
2,2′-dihydroxybenzophenone chlordane metolachlor
2,3-benzofluorene cholesterol mirex
2,4,5-T chrysene naringin
2,4-D (2,4-dichlorophenoxyacetic acid) chrysin n-butylbenzene
2-chlorophenol cineole nerolidol
2-ethylphenol cinnamic acid o,p′-DDD
2-furaldehyde corticosterone o,p′-DDE
2-hydroxy biphenyl dexamethasone p,p′-DDD
2-hydroxy-4-methoxybenzophenone di-2-ethylhexyl adipate p,p′-DDE
3,3′,4,4′-tetrachlorobiphenyl dibenzo-18-crown-6 p,p′-DDT
4,4′-diaminostilbene dieldrin p,p′-methoxychlor
4,4′-dichlorobiphenyl diethyl phthalate p,p′-methoxychlor olefin
4,4′-methylenebis(2,6-di-tert-butylphenol) diisononylphthalate phenol
4,4′-methylenebis(N,N-dimethylaniline) di-i-butyl phthalate (DIBP) progesterone
4,4′-methylenedianiline dimethyl phthalate prometon
4′,6,7-trihydroxy isoflavone di-n-butyl phthalate (DBuP) quercetin
4-amino butylbenzoate dopamine sec-butylbenzene
4-aminophenyl ether endosulfan, technical grade simazine
6-hydroxy-2′-methoxy-flavone epitestesterone sitosterol
7-hydroxyflavone ethyl cinnamate suberic acid
alachlor etiocholan-17â-ol-3-one taxifolin
aldosterone eugenol testosterone
aldrin flavanone thalidomide
amaranth flavone trans,trans-1,4-diphenyl-1,3-butadiene
atrazine folic acid trans-4-hydroxystilbene
benzyl alcohol genistin triphenyl phosphate
bis(2-ethylhexyl)phthalate heptachlor vanillin
bis(2-hydroxyphenyl)methane heptaldehyde vinclozolin
bis(n-octyl)phthalate hesperetin

Actives
1,3-diphenyltetramethyldisiloxane 4-n-octylphenol ethynylestradiol
16â-hydroxy-16-methyl-3-methyl 4-phenethylphenol fisetin

ether-17â-estradiol 4-sec-butylphenol 3′-hydroxy flavanone
17R-estradiol 4-tert-amylphenol 4′-hydroxy flavanone
17-deoxyestradiol 4-tert-butylphenol 3,6,4′-trihydroxy flavone
2,2′,4,4′-tetrahydroxybenzil 4-tert-octylphenol formononetin
2,2′-methylenebis(4-chlorophenol) 6R-OH-estradiol genistein
2,3,4,5-tetrachloro-4′-biphenylol 6-hydroxyflavanone heptyl p-hydroxybenzoate
2′,4,4′-trihydroxychalcone 6-hydroxyflavone hexestrol
2,4′-dichlorobiphenyl 7-hydroxyflavanone HPTE
2,5-dichloro-4′-biphenylol R,R-dimethyl-â-ethyl allenolic acid ICI 164384
2,6-dimethyl hexestrol R-zearalanol ICI 182780
2-chloro-4-biphenylol 3R-androstanediol kaempferol
2-cholor-4-methyl-phenol 3â-androstanediol kepone
2-ethylhexyl-4-hydroxybenzoate apigenin mestranol
2-hydroxy-estradiol aurin methyl 4-hydroxybenzoate
2-sec-butylphenol baicalein m-ethylphenol
3,3′,5,5′-tetrachloro-4,4′-biphenyldiol benzophenone, 2,4-hydroxy monohydroxymethoxychlor
3,3′-dihydroxyhexestrol benzyl 4-hydroxybenzoate monohydroxymethoxychlor olefin
3′,4′,7-trihydroxy isoflavone â-zearalanol monomethylether hexestrol
3-deoxyestradiol â-zearalenol morin
3-deoxyestrone biochanin A moxestrol
3-hydroxyestra-1,3,5(10)-trien-16-one bis(4-hydroxyphenyl)methane myricetin
3-methylestriol bisphenol A nafoxidine
3-phenylphenol bisphenol B naringenin
4-(benzyloxyl)phenol chalcone n-butyl 4-hydroxybenzoate
4,4′-(1,2-ethanediyl)bisphenol clomiphene nonylphenol
4,4′-dihydoxybenzophenone coumestrol nordihydroguaiaretic acid
4,4′-dihydroxy stibene daidzein norethynodrel
4,4′-sulfonyldiphenol dienestrol n-propyl 4-hydroxybenzoate
4′,6-dihydroxyflavone diethylstilbestrol o,p′-DDT
4-chloro-2-methyl phenol diethylstilbestrol dimethyl ether phenol red
4-chloro-3-methylphenol diethylstilbestrol monomethyl ether phenol, P-(R,â-diethyl-p-methylphenethyl)-,mes
4-chloro-4′-biphenylol dihydrotestosterone p-cumyl phenol
4-cresol dihydroxymethoxychlor olefin phenolphthalein
4-dodecylphenol dimethylstibestrol phenolphthalin
4-ethyl-7-OH-3-(p-methoxyphenyl)di- diphenolic acid phloretin

hydro-1-benzopyran-2-one doisynoestrol prunetin
4-ethylphenol droloxifene rutin
4-heptyloxyphenol equol tamoxifen
4-hydroxychalcone estradiol toremifene
4-hydroxybiphenyl estriol triphenylethylene
4′-hydroxychalcone estrone zearalanone
4-hydroxyestradiol ethyl 4-hydroxybenzoate zearalenol
4-hydroxytamoxifen
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Decision Forest can be understood as a pooling result of SAR
models that predict activity within their unique chemistry
spaces. Since each SAR model is developed using a unique
set of descriptors, the difference in their prediction is
maximized. Thus, it is safe to assume that combining multiple
valid SAR models that use unique sets of descriptors into a

single decision function should provide better estimation of
activity than that separately predicted by the individual
models.

A number of commercial software packages, including
CODESSA (Semichem, Shawnee, KS), Cerius2 (Accelrys
Inc., San Diego, CA), and Molconn-Z (eduSoft, LC, Rich-
mond, VA), enable a large volume of descriptors to be
generated for SAR studies. Decision Forest takes advantage
of this large volume of descriptors by aggregating the
information of structural dependence on activity represented
from each unique set of descriptors. Unlike the resampling
techniques used in most combining forecast approaches, all
training chemicals are included in each decision tree to be
combined in the Decision Forest, thus maximizing the SAR
information.

It is important to note that there is always a certain degree
of noise associated with biological data and particularly the
data generated from a HTS process. Thus, optimizing SAR
models inherently risks over fitting the noise, a result most
often observed using ANNs. Since the combination scheme

Figure 2. Flowchart of the Decision Forest algorithm. The
parameterMIS determines the number of misclassified chemicals
allowed in pruning.

Figure 3. Relationship of misclassifications with the number of
trees combined in Decision Forest.

Table 2. Results of Seven Individual Trees and Their Combination
Performance

misclassifications in

tree ID no. of descriptors used no. of leafs each tree combination

1 10 13 17 17
2 10 13 19 14
3 12 15 17 13
4 12 14 17 8
5 15 18 19 7
6 16 19 20 6
7 13 17 18 5

Table 3. Comparison of Model Performance between Decision
Tree and Decision Forest

decision tree
predictiona

decision forest
predictiona

A I A I

expt results A) 131 122 9 127 4
I ) 101 8 93 1 100

a A ) active; I ) inactive.

Figure 4. Distribution of active/inactive chemicals across the
probability bins in Decision Forest. The probability of each chemical
was the mean value calculated over all individual trees in Decision
Forest. A chemical with probability larger than 0.5 was designated
as active while less than 0.5 was inactive.
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of Decision Forest is not a fitting process, some noise
introduced by individual SAR models will be canceled when
combining predictions. Moreover, using Decision Tree to
construct Decision Forest offers additional benefits because
the quality of a tree can be adjusted in the pruning process
using theMIS parameter as a figure of merit for model
quality. TheMISparameter is an indicator of noise, enabling
the modeler a way to reduce over fitting of the noise.

Decision Forest can be used for priority setting in both
drug discovery and regulatory applications. The objective
of priority setting is to rank order from most important to
least important a large number of chemicals for experimental
evaluation. The purpose of priority setting in drug discovery
is to identify a few lead chemicals but not necessarily all
potential ones. In other words, relatively high false negatives
are tolerable, but false positives need to be low. In the
example we presented, chemicals predicted to be active with
probability > 0.7 were shown to have 100% concordance
with experimental data, thus demonstrating its use for lead
selection.

In contrast, a good priority setting method for regulatory
application should generate a small fraction of false nega-
tives. False negatives constitute a crucial error, because they
will receive a relatively lower priority for experimental
evaluation. In the example we presented, chemicals predicted
to be inactive with probability< 0.3 were shown to have
98.9% concordance with experimental data, thus demonstrat-
ing its use for regulatory application.
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