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A large number of natural, synthetic and environmental chemicals are capable of disrupting the endocrine systems of
experimental animals, wildlife and humans. These so-called endocrine disrupting chemicals (EDCs), somemimic the
functions of the endogenous androgens, have become a concern to the public health. Androgens play an important
role in many physiological processes, including the development and maintenance of male sexual characteristics.
A common mechanism for androgen to produce both normal and adverse effects is binding to the androgen receptor
(AR). In this study, we used Comparative Molecular Field Analysis (CoMFA), a three-dimensional quantitative
structure–activity relationship (3D-QSAR) technique, to examineAR-ligand binding affinities. ACoMFAmodelwith
r 2 ¼ 0:902 and q 2 ¼ 0:571was developed using a large training data set containing 146 structurally diverse natural,
synthetic, and environmental chemicals with a 106-fold range of relative binding affinity (RBA). By comparing the
binding characteristics derived from the CoMFA contour map with these observed in a human AR crystal structure,
we found that the steric and electrostatic properties encoded in this training data set are necessary and sufficient to
describe the RBAofAR ligands. Finally, theCoMFAmodelwas challengedwith an external test data set; the predicted
results were close to the actual values with average difference of 0.637 logRBA. This study demonstrates the utility
of this CoMFAmodel for real-world use in predicting the AR binding affinities of structurally diverse chemicals over
a wide RBA range.

Keywords: QSAR; CoMFA; Androgen receptor; Endocrine disrupting chemicals; Androgen; Environmental
chemicals

INTRODUCTION

A number of environmental chemicals, by mimicking natural hormones, can disrupt crucial

endocrine functions in experimental animals, wildlife and humans [1,2]. These chemicals,

termed endocrine disrupting chemicals (EDCs), may exert adverse effects through a variety
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of mechanisms, including binding to nuclear receptors such as the androgen receptor (AR).

The scientific debate surrounding EDCs has grown contentious, in part owing to the fact that

some suspected EDCs are high production volume and economically important chemicals,

and that they may act at low and environmentally relevant doses. Both public and regulatory

concerns led to government regulatory interest [3,4] which promoted increased research

activity across Europe, Asia, and North America. In response to Congressional action, the

U.S. Environmental Protection Agency (EPA) developed and is implementing a plan to

screen and test for androgenic, estrogenic, and thyroid endpoints for a large number of

chemicals, many of which occur in drinking water and food supplies [5].

Androgens play an important role in many physiologic processes, including the

development and maintenance of male sexual characteristics, such as muscle and bone mass,

prostate growth, spermatogenesis, and male hair pattern. While there may be several

mechanisms of action for androgenic effects, the binding to AR is considered to be a

necessary step for receptor-mediated androgenic action, including toxicity, for both agonists

and antagonists. The AR is a member of the nuclear receptor superfamily that includes the

steroid receptors, as well as the vitamin D, thyroid, retinoic acid, and orphan receptors.

Several laboratories have assayed chemicals to determine their AR binding affinities [6–8].

Studies of the structure–activity relationships (SAR) of chemicals binding to AR can provide

information on the structural features required for androgenic actions. These can also provide

guidance for regulators in their evaluation of potential androgenic EDCs and for studies of

AR-related diseases in drug discovery.

Computer-based SAR analysis is now routinely used to predict the pharmacological

activity of chemicals [9,10]. In the EDC research, both qualitative and quantitative SAR

models have been developed for ligand binding to various hormone receptors [11]. The

largest number of QSAR models in the published literature are for estrogen receptor (ER)

binding [12–20]. A few papers have reported QSAR models for other nuclear receptors

[21–23]. Previous AR QSAR models have limited predictive capabilities for a number of

reasons. They normally use small training sets that, in consequence, have limited structural

diversity. Furthermore, these models have not been validated by an independent external test

set to demonstrate their capability for predicting chemicals not included in the training set.

In this paper, we report a ComparativeMolecular Field Analysis (CoMFA) model based on

a large number (146) of chemicals selected to span a broad range of both chemical structural

categories and affinities, and to include natural, synthetic, and environmental chemicals.

MATERIALS AND METHODS

AR Binding Assay and Training Data Set

The AR binding affinity for 146 chemicals was determined with an AR competitive binding

assay using a recombinant rat AR ligand binding domain protein commercially available

from PanVera [24]. The detailed assay protocol is described elsewhere [6]. Briefly, a

chemical’s binding activity was determined by competing with radiolabeled [3H]-R1881 for

AR. The IC50 (50% inhibition of [3H]-R1881 binding) for each competitor was determined.

The relative binding affinity (RBA) for each competitor was calculated by dividing the IC50

of R1881 by the IC50 of the competitor and multiplying by 100 ðRBA ¼ 100 for R1881Þ:
The validated assay incubation conditions were 18–20 h at 48C using 1 nM [3H]-R1881 and

1.84 AR concentrations. The competing chemical concentrations ranged from 4:28 £ 1029 M

to 4:28 £ 1024M: All assays were replicated a minimum of two times; the IC50 values are the

means of the replicate values. The training data set used in this study was designed to reflect
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both the structural diversity of AR ligands and the wide range distribution of AR binding

affinities; this is necessary for building a robust and valid QSAR model. The training

chemicals have an AR logRBA range of about 6 units (Table I). The diverse classes of

chemicals in the training set are shown in Fig. 1, while their logRBA distribution is shown in

Fig. 2.

Molecular Modeling

The CoMFA descriptors and the development of a CoMFA model are dependent on the

3-dimensional (3D) structures of chemicals, i.e. the conformation of the molecules.

Therefore, before constructing a CoMFA model, the conformations of each molecule in the

training data set need to be generated. In this study, the relevant low energy conformation for

each molecule was chosen for alignment onto the template structure, R1881. Molecular

structures were constructed using the Sybyl 6.7 fragment database [25]. Structures were fully

geometrically optimized using the standard Tripos force field [26] and the conjugate-gradient

minimizer was used to minimize energy differences with a convergence criterion of

0.001 kcal/mol. The partial charge for every atom in a molecule was calculated using the

Gasteiger–Marsili method [27].

CoMFA Alignment

CoMFA has been used widely to relate chemical structures to their chemical and biological

properties [28–31]. The hypothesis of CoMFA is that the differences among chemicals in a

target property, such as binding affinity, are often correlated with the differences in the non-

covalent fields surrounding their structure. These fields, i.e. the steric (Lennard–Jones) and

electrostatic (Coulombic) fields, are calculated at regular intervals throughout a defined

region. While there are many adjustable parameters in CoMFA, the most important factor is

the relative alignment of the individual molecules when their fields are calculated. Most

alignment rules employ a least-squares fitting of pharmacophoric elements between a

template molecule and other molecules in the training data set. In this study, we investigated

the SAR of 146 diverse AR ligands from different structural classes. The selection of an

appropriate template structure and the alignment of these diverse ligands to the template are

important for developing a reliable CoMFA model. R1881 was used as the template

structure, given that (i) it is one of the highest affinity AR ligands; (ii) its structure is rigid;

and (iii) its binding conformation in the AR binding site has been determined in 3D space by

single crystal X-ray crystallography [32]. The rationale and results of the alignment of all

145 chemicals onto the template structure are summarized in Table II.

Generating CoMFA Fields

The CoMFA fields are the interaction energies between a probe atom (or a molecule) and a

set of aligned molecules, which are used to establish the three-dimensional quantitative

structure–activity relationship (3D-QSAR) equations. To generate the CoMFA fields, a probe

atom is systematically moved from one point to another for each aligned molecule within a

defined 3D grid. At each grid point, the interaction energy is calculated between the probe

and the target molecule. In this study, the 146 aligned molecules were placed in a 3D cubic

lattice with 2 Å spacing and 2704 grid points ð16 £ 13 £ 13Þ: The steric (van der Waals) and

electrostatic (Coulombic) interaction energies were calculated for each molecule at each grid

point using a sp3 carbon probe with a þ1.0 charge. Energies greater than þ40 kcal/mol
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TABLE I Experimental and CoMFA-calculated logRBA for 146 compounds

CoMFA

Name Measured Fitting LOO

1,3-Diphenyltetramethyldisiloxane 2 3.13 2 2.67 2 1.07
11-keto-Testosterone 0.54 1.01 1.28
16b-OH-16a-Me-3-Me-Estradiol 2 2.08 2 1.61 2 1.03
17a-Estradiol 2 2.40 2 1.49 2 0.68
17-Deoxyestradiol 2 2.13 2 1.90 2 1.79
1-Methoxy-4-[1-propenyl]benzene 2 3.19 2 3.10 2 2.93
2-(4-Nitro-benzyl)-isoindole-1,3-dione 2 2.46 2 2.42 2 3.01
2-(4-OH-Benzyl)-isoindole-1,3-dione 2 2.76 2 3.21 2 3.37
2,20,4,40-Tetrachlorobiphenyl 2 1.74 2 1.84 2 2.23
2,3,4,5-Tetrachloro-40-biphenylol 2 1.73 2 1.80 2 2.12
2,4,5-T 2 3.18 2 2.79 2 2.39
2,40-Dichlorobiphenyl 2 1.72 2 2.18 2 2.58
2,4-Dihydroxybenzophenone 2 2.53 2 2.26 2 2.31
2-Benzyl-isoindole-1,3-dione 2 3.12 2 3.15 2 2.62
2-OH-Estradiol 2 1.44 2 0.82 2 0.59
2-sec-Butylphenol 2 2.52 2 2.14 2 1.95
3,30,5,50-Tetrachloro-4,40-biphenyldiol 2 2.10 2 1.71 2 1.64
3,30-Dihydroxyhexestrol 2 2.08 2 1.88 2 1.53
3,4-Diphenyltetrahydrofuran 2 1.98 2 1.97 2 2.50
3a-Androstanediol 2 0.81 2 0.18 0.10
3b-Androstanediol 0.36 0.48 0.53
3-Chlorophenol 2 3.17 2 2.79 2 2.52
3-Deoxyestradiol 0.54 2 0.65 2 1.10
3-Methylestriol 2 2.25 2 2.57 2 2.70
4-(3,5-Diphenylcyclohexyl)phenol 2 2.27 2 2.28 2 1.86
4,40-Dihydoxybenzophenone 2 2.67 2 2.88 2 2.98
4,40-Dihydroxystilbene 2 2.44 2 1.81 2 1.63
4,40-Sulfonyldiphenol 2 3.09 2 2.91 2 2.13
4-Amino butylbenzoate 2 2.85 2 3.46 2 3.64
4-Androstenediol 2 0.31 2 0.14 2 0.03
4-Androstenedione 2 0.62 2 1.48 2 2.03
4-Benzyloxylphenol 2 2.89 2 2.79 2 2.29
4-Chloro-2-methyl phenol 2 2.59 2 2.56 2 2.71
40-Chloroacetoacetanilide 2 3.46 2 3.35 2 2.82
4-Dodecylphenol 2 1.81 2 1.67 2 1.57
4-Heptyloxybenzoic acid 2 2.74 2 2.56 2 1.96
4-Heptyloxyphenol 2 1.69 2 1.82 2 1.97
4-Hydroxybenzophenone 2 2.78 2 2.67 2 2.66
4-Hydroxybiphenyl 2 1.43 2 1.91 2 2.42
40-Hydroxychalcone 2 2.27 2 1.91 2 1.89
4-Hydroxychalcone 2 2.19 2 1.99 2 2.18
4-Hydroxy-tamoxifen 2 1.49 2 1.62 2 1.66
4-n-Octylphenol 2 1.80 2 1.76 2 1.81
4-OH-Estradiol 2 0.91 2 0.82 2 0.79
4-sec-Butylphenol 2 2.44 2 2.59 2 2.68
4-tert-Amylphenol 2 2.39 2 2.09 2 2.00
4-tert-Butylphenol 2 2.67 2 2.59 2 2.51
5,6-Didehydroisoandrosterone 2 1.98 2 1.89 2 1.54
5a-Androstane 2 3.32 2 2.25 2 1.51
5a-Androstane-17b-ol 1.45 0.13 2 0.20
5a-Androstane-3,11,17-trione 2 1.64 2 1.22 2 0.75
5a-Androstane-3b-ol 2 0.74 2 1.93 2 2.36
6a-Me-17a-OH-Progesterone 2 0.41 2 0.27 2 0.12
6a-Me-17a-OH-Progesterone acetate 0.94 0.77 2 2.17
6-Hydroxyflavanone 2 1.78 2 2.02 2 2.16
6-Hydroxyflavone 2 2.77 2 2.45 2 2.32
Aldrin 2 2.02 2 1.86 2 1.27
Androstenediol 2 0.66 0.37 0.81
Androsterone 2 2.12 2 2.39 2 2.13
Aurin 2 1.70 2 1.36 2 0.86

H. HONG et al.376



TABLE I – continued

CoMFA

Name Measured Fitting LOO

Bis(n-octyl) Phthalate 2 3.28 2 3.40 2 3.16
Bisphenol A 2 2.39 2 2.18 2 1.68
Bisphenol B 2 2.09 2 1.93 2 1.81
Butylbenzylphthalate 2 2.07 2 1.84 2 1.84
b-Zearalanol 2 1.72 2 1.71 2 2.38
b-Zearalenol 2 2.09 2 2.26 2 2.63
Carbaryl 2 3.12 2 3.02 2 2.81
Chalcone 2 2.32 2 2.00 2 2.06
Chlordane 2 1.51 2 1.90 2 2.40
Clomiphene 2 1.64 2 1.77 2 2.13
Corticosterone 2 1.87 2 1.49 2 0.09
Cortisol 2 2.77 2 2.52 2 0.89
Cyproterone acetate 2 0.32 2 0.95 2 1.38
Dexamethasone 2 2.42 2 2.26 2 1.57
Dibutyl adipate 2 2.73 2 2.64 2 2.92
Diethyl phthalate 2 3.44 2 3.23 2 2.48
Diethylstilbestrol (DES) 2 1.66 2 1.79 2 1.86
Dihydrotestosterone (DHF) 2.14 1.18 0.60
Dihydrotestosterone benzoate 0.07 0.07 2 0.90
Dihydroxymethoxychlor olefin 2 1.31 2 1.22 2 1.21
DiisoButyl phthalate (DIBP) 2 2.22 2 2.19 2 2.13
Diisobutyl adipate 2 2.84 2 2.73 2 2.81
Diisononylphthalate 2 3.56 2 3.56 2 3.11
Dimethylstilbestrol (DMS) 2 1.66 2 1.71 2 1.91
Di-n-Butyl phthalate (DBuP) 2 1.95 2 2.10 2 2.31
Endosulfan (technical grade) 2 1.87 2 2.44 2 2.94
Enzophenone 2 2.63 2 2.68 2 2.80
Epitestesterone 2 1.00 2 1.09 2 0.91
Equol 2 2.39 2 2.26 2 2.63
Estradiol (E2) 2 0.12 2 0.70 2 0.86
Estriol (E3) 2 3.15 2 2.93 2 2.35
Ethylparathion 2 2.05 2 2.17 2 1.97
Ethynylestradiol (EE) 2 1.42 2 1.05 2 0.81
Etiocholan-17b-ol-3-one 2 0.10 2 0.13 2 0.04
Fenpicionil 2 1.61 2 1.41 2 1.66
Flavanone 2 2.25 2 2.56 2 2.58
40-Hydroxyflavanone 2 2.48 2 2.39 2 2.06
Flavone 2 2.40 2 2.80 2 2.97
Flutamide 2 2.42 2 2.49 2 1.06
Genistein 2 2.44 2 2.68 2 2.04
Heptachlor 2 1.64 2 1.23 2 1.11
Hexestrol, monomethyl ether 2 1.63 2 1.67 2 1.97
HPTE 2 1.47 2 1.76 2 1.84
Igepal CO-210 2 1.78 2 1.83 2 2.60
Isoeugenol 2 2.81 2 2.55 2 2.35
Kepone 2 1.58 2 1.53 2 1.62
Lindane (Gama–HCH) 2 2.12 2 2.17 2 2.11
Linuron 2 2.25 2 2.49 2 2.76
Methylparathion 2 2.26 2 2.55 2 2.54
Methyltestosterone 1.28 1.26 1.15
Methyltrienolone (R1881) 2.00 1.45 0.77
Metolachlor 2 2.61 2 2.72 2 2.46
Mibolerone 2.27 2.36 1.56
Monohydroxymethoxychlor olefin 2 1.84 2 1.81 2 1.79
Nafoxidine 2 1.63 2 1.55 2 2.38
Nonylphenol 2 1.57 2 1.72 2 1.88
Nordihydroguaiaretic acid 2 2.28 2 2.51 2 3.84
Norethindrone 0.41 0.91 1.11
Norethynodrel 2 0.70 0.41 1.03
Norgestrel 1.22 1.15 0.52
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TABLE I – continued

CoMFA

Name Measured Fitting LOO

o,p0-DDD 2 1.52 2 1.57 2 1.64
o,p0-DDE 2 1.81 2 1.91 2 2.04
o,p0-DDT 2 1.69 2 1.72 2 1.75
p,p0-DDD 2 1.70 2 1.68 2 1.63
p,p0-DDE 2 1.70 2 2.06 2 2.22
p,p0-DDT 2 1.76 2 1.82 2 1.77
p,p0-Methoxychlor 2 1.94 2 2.42 2 2.51
p,p0-Methoxychlor olefin 2 2.20 2 2.50 2 2.58
p-Cumyl phenol 2 2.11 2 1.94 2 1.87
Procymidone 2 2.61 2 2.97 2 2.82
Progesterone 2 0.70 2 0.72 2 0.48
Promegestone 2 0.64 2 0.47 0.56
Propanil (DCPA) 2 2.22 2 2.30 2 2.44
Propyl parabene 2 3.00 2 2.81 2 2.35
Spironolactone 2 0.35 2 0.13 0.79
Tamoxifen 2 1.59 2 1.47 2 1.29
Testosterone 1.28 0.69 0.48
Testosterone propionate 2 0.79 2 0.86 2 1.03
Trans-4-Hydroxystilbene 2 2.13 2 2.27 2 2.37
Trenbolone 2.05 1.53 0.73
Triphenyl phosphate 2 1.69 2 1.66 2 2.97
Triphenylethylene 2 1.98 2 2.07 2 2.07
Triphenylsilanol 2 2.05 2 2.33 2 2.80
Vinclozolin 2 2.50 2 2.74 2 2.64
Zearalanone 2 2.14 2 1.73 2 1.20
Zearalenol 2 1.64 2 1.79 2 2.11

FIGURE 1 Chemical class distribution of the training set.
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or less than240 kcal/mol, which are considered to be inside the van der Waals surface, were

truncated to the values of þ40 kcal/mol and 240 kcal/mol, respectively.

PLS-QSAR

To form the basis for a predictive statistical model, the method of partial least squares (PLS)

regression [33] was used to analyze the training data set of 146 chemicals by correlating

variations in the AR logRBA with variations in their respective steric and electrostatic

energies. In the PLS regression, the logRBA was the dependent variable while the energies

were independent variables. The optimum number of principal components (PCs),

corresponding to the smallest standard error of prediction, was determined by the leave-one-

out (LOO) cross-validation procedure [34]. In this investigation, each chemical was

systematically excluded once from the training set, after which its logRBA was predicted

using the model derived from the remaining 145 chemicals. Combining the 146 predictions

allows the calculation of a cross-validated r2 (called q2 hereafter to differentiate it from the

correlation coefficient r2). Using the optimal number of PCs, the final PLS analysis was

carried out using all 146 chemicals without cross-validation to build a predictive QSAR

model. This model was then evaluated using r2. The r2 and q2 parameters are two key

measures of robustness of a QSAR model; the r2 value is a measure of a model’s goodness to

fit the training set, while q2 value is a measure of a model’s predictive power. A model with

r 2 . 0:9 and q2 . 0:5 is generally considered to be both internally self-consistent and

predictive [35].

RESULTS AND DISCUSSION

CoMFA Results

The logRBA values calculated by CoMFA for the 146 chemicals are listed in Table I under

“Fitting”. The CoMFAmodel has a r 2 ¼ 0:902with a SE of 0.389. The relative contributions

of the steric and electrostatic fields are 0.522 and 0.478, respectively, similar to those we

reported for ER CoMFA models [12,14,19,20].

To evaluate the predictive power of this CoMFA model, a conventional LOO cross-

validation was conducted. The predicted logRBA using LOO for the 146 chemicals are also

summarized in Table I under “LOO”. The parameter for measuring predictive power of

FIGURE 2 AR binding affinity distribution (expressed as logRBA) of the training set.
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a QSAR model, q2, can be calculated from the residual between the predicted and

experimental data. The q2 for this CoMFA model is 0.571, indicating a good predictive

power.

The statistical results of the CoMFA model are summarized in Table III.

CoMFA Coefficient Contour Map

The results of QSAR analysis by CoMFA, with its thousands of terms, is generally

represented in the form of a 3D coefficient contour map. It is a valuable output from a

CoMFA model in terms of studying regional specificity of molecular feature related to

biological activity, which plays a large role in drug discovery, especially for lead

optimization. It illustrates which areas in space around the molecules are associated with

variation of biological activity. The contour map of the CoMFA model is plotted in Fig. 3.

The structure of R1881 was placed in the map for reference. In Fig. 3, the green polyhedra are

the regions where more bulky groups are expected to increase AR binding affinity while

the yellow polyhedra are the regions where less bulky groups enhance AR binding affinity.

A more positively charged group in the blue regions or a more negatively charged group in

the red regions shows increased AR binding affinity.

To further verify the reliability and biological relevance of the CoMFAmodel, the CoMFA

contour map was superimposed on the AR binding site of the X-ray crystal structure of the

human AR binding domain [31] based on their common reference structure of R1881.

Comparing the CoMFA contour map with the X-ray crystal structure reveals that the CoMFA

contour map is consistent with the 3D shape of the AR binding site (Fig. 3). For example,

the green regions (A, B, and C) where bulky groups favor binding correspond to the regions

of the active site where unfilled spaces exist. This indicates that a bulky group in these

regions increases the van de Waals interaction between a ligand and the AR, thus increasing

the AR binding affinity.

The binding-favored negative charge regions (the red polyhedra) around the 3-keto and

17bZOH groups indicate a positive contribution to the affinity by either forming H-bonds

between the ligand and AR or through electrostatic interaction between the negative charges

of the ligand and the positive charges of amino acid residues of AR. In a SAR study in

conjunction with the close examination of the ligand-AR crystal structures, we found that the

17bZOH forms two H-bonds with Asn705 and Thr877 while the 3-keto forms a H-bond with

Arg752 [6]. This H-bond network is consistent with the CoMFA contour map. In addition,

Arg 752 and Gln 711 are located near the red polyhedra of the contour map (Fig. 3). Arg is an

amino acid residue with positive charge, indicating that a negative charge group placed

around Arg will increase binding. This is consistent with the CoMFA results that the red

polyhedra are the region where negative charge favors binding.

TABLE III Summary of the CoMFA statistical results

Statistics CoMFA

r 2 0.902
q 2 0.571
SEE 0.389
F-value 156.953
PCs 8
Contributions (%)
Steric 0.522
Electrostatic 0.478
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Prediction of Test Chemicals

AR, like ER [13], binds a wide range of chemical structures with varying affinities. This

characteristic helps explain why diverse environmental chemicals can act, via AR, as androgenic

or anti-androgenic endocrine disruptors [6]. The data presented here demonstrate this range of

structural and affinity diversity. Consequently, the challenge in developing AR QSARmodels is

not only in constructing a statistically sound model (robust in both training and cross-validation

steps) for such structurally diverse androgens, but more importantly in developing a model with

the capability to accurately predict the activity of chemicals not included in the training set.

Thus, we validated our CoMFA model by predicting the AR binding affinity of an external

validation data set. This test set contained 8 chemicals with experimental binding data from

another laboratory. They were neither tested in our assay nor included in the training set.

Waller et al. [22] reported the AR binding affinities for 28 chemicals using a competitive AR

binding assay [7]. Of these 28 chemicals, 20 were also tested in our laboratory. Comparing the

assay results from both labs for these 20 shared chemicals, we found that both assays are

comparable [6]. Thus, the remaining 8 chemicals were used to challenge the model. It is

important tonote that there are somedifferences in the assaysusedby the two laboratories,which

result a systematic shift found by comparing data from the 20 common chemicals [6]. Therefore,

the CoMFA-predicted logRBAs in this study have to be converted to the scale of Waller’s AR

binding data in order to compare with the measured values. Converting our logRBA values to

Waller’s values was based on the relationship between the logRBA of the active chemicals in

the assays fromboth laboratories. The equationwas logRBA (Waller) ¼ 1.09 logRBA(NCTR)

2 0.23 with the r 2 ¼ 0:92 [6]. The prediction results for the 8 chemicals are listed in Table IV.

FIGURE 3 Superposition of the CoMFA contour map over the ligand binding site of the AR crystal structure by
superimposing their common R1881 structures that presented as a ball and stick model. The AR protein is shown in a
stick model with highlighting Gln711 and Arg752. For the CoMFA contour map, greater values of RBA are
correlated with more bulky group near the green regions, less bulky groups near the yellow regions, more positive
charge groups near the blue regions, and more negative charges near the red regions.
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Seven of the 8 chemicals had a prediction error (the difference between the measured and

predicted logRBA) less than 1 logRBA unit, i.e. less than a 10-fold error. 17a-
hydroxyprogesterone had an error of 1.48 logRBA unit. Four predictions were higher than

measured values and four were lower, suggesting the systematic error in prediction is low. The

average prediction error for the external test data set is 0.63 logRBA unit. This demonstrates

that the 3D-QSAR CoMFA model reported in this study has good predictive power. However,

it would be useful to have a larger external data set for validation of our model.

CONCLUSION

QSAR is useful for evaluation of toxicity and/or discovery of lead chemicals in drug design.

In this paper, a 3D-QSAR CoMFA model was developed using, to the best of our knowledge,

the largest and most diverse data set that has been reported for chemical binding to the AR.

This study confirms and also enhances our understanding of androgen ligand chemicals in the

context of SAR across a wide range of RBAs and diverse chemical classes.

1. The reported CoMFA model is statistically significant with r 2 ¼ 0:902 and q2 ¼ 0:571;
demonstrating a sound SAR for AR binding affinity. This illustrates that the diverse AR

ligands share structural commonalities important for AR binding. The model should be

useful for identification of potential AR ligands and guiding synthesis of chemicals with

increased or decreased affinity for AR.

2. The AR binding-important regions derived from the CoMFA model are consistent with

the physical structure of the AR ligand binding site and the charge distribution of amino

acid residue that obtained from the X-ray crystal structure of the AR binding domain

bound with R1881. The CoMFA contour map correctly identifies the regions where

positive/negative charge groups and more/less bulky groups increase or decrease the AR

binding affinity for a chemical.

3. We demonstrated that the CoMFA model generated in this study has a reasonable

predictive capability to estimate the AR binding affinity of an external testing data set.
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TABLE IV CoMFA prediction result for the external testing data set

Name
logRBA
(Waller)

Predicted logRBA
(NCTR)

Predicted logRBA
(Waller) D logRBA

Fold
Difference*

2,20,4,40,5,50-Hexachlorobiphenyl 2 3.70 2 2.33 2 2.77 2 0.93 8.52 (2)
Hydroxy-flutamide 2 0.95 2 1.22 2 1.56 0.61 4.07 (+)
Vinclozolin metabolites (M1)† 2 2.63 2 1.61 2 1.98 2 0.65 4.42 (2)
Vinclozolin metabolites (M2)‡ 2 1.20 2 1.38 2 1.73 0.53 3.42 (+)
Anadarone 2 2.70 2 2.32 2 2.76 0.06 1.14 (+)
17a-Hydroxyprogesterone 2 3.40 2 1.55 2 1.92 2 1.48 30.23 (2)
Hydroxylinuron 2 2.91 2 3.08 2 3.59 0.68 4.76 (+)
2,20,40,5,50-Pentachloro-4-biphenylol 2 2.79 2 2.27 2 2.70 2 0.09 1.22 (2)

* þ , increase; 2 , decrease.
†M1: 2-[[3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid.
‡M2: 30 ,50-dichloro-2-hydroxy-2-methylbut-3-enanilide.
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