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Al/ML is taking the world by storm!
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Al/ML PerfOfgance Evaluation

If you don’t measure Al/ML device

performance, you won’t know

* How accurate, reliable, safe and
effective it is,

* How to label it,

How to improve it.




Learning Objectives

* Explain who we are at OSEL, DIDSR

* Describe regulatory science challenges and
gaps in medical Al/ML

* Describe OSEL Al/ML research program
activities to address these gaps



i —  Office of Science and ﬂ
@ __—f Engineering Labs (OSEL)

Mission Statement

Accelerating patient access to
innovation, safe and effective
medical devices through best-in-
the-world regulatory science.

An OSEL e_mploye_e_



What OSEL/DIDSR Does

* Division of Imaging, Diagnostics,
and Software Reliability (DIDSR)

* Conduct regulatory science
research for a variety of imaging,
Al/ML, MXR, and diagnostic
devices.

* Develop approaches for assessing
imaging and big-data
technologies.
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A Collaborative Approach to
Al/ML-enabled devices at CDRH
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Knowledge Check

What are some reasons to measure the
performance of Al/ML-enabled medical devices?

Ensure that these systems are safe and effective

Characterize accuracy and precision, across a diverse patient population
Labeling

Understand how to improve the Al device

All of the above
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OSEL Al/ML Program

* AI/ML program
— Regulatory science research
— Developing robust Al/ML test methods
— Evaluating methodologies for assessing Al/ML

* Al/ML team identified regulatory gaps
— Not all Al/ML knowledge gaps
— Important ones to support FDA regulatory mission



Regulatory Science Gaps ﬂ
and Challenges

Limited labeled training and test data
Bias, equity, and generalizability
Ground truth and metrics for performance estimation

Evolving algorithms — How to maintain safety and effectiveness
for devices with a predetermined change control plan (PCCP)

Emerging clinical application of Al/ML
Data Drift and Postmarket Al/ML Performance Monitoring



Regulatory Science Gaps ﬂ
and Challenges

* Limited labeled training and test data



Limited labeled training and test data

 Need for:

— Fundamental understanding of limitations of smaller
datasets; and

— Novel techniques to enhance Al/ML algorithm
training and testing when real-world datasets are
limited in size



Use of synthetic data for Al training and testing

e Al algorithms require large training data sets for high performance

* Limited annotated data sets for medical images
Test (n=361)

* In-silico images may help 1.0
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Badano et al., JAMA Network Open 2018.

Cha et al., “Evaluation of data augmentation via synthetic images for improved breast mass
detection on mammograms using deep learning,” Journal of Medical Imaging 2020



REALYSM: Simulations-based testingfid
for Al devices

Goal: Generate realistic simulated data

Badano et al. The stochastic

digital human ... ArXiv

where real patient examples are unavailable preprint 2023.
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Regulatory Science Gaps ﬂ
and Challenges

* Bias, equity, and generalizability



Bias, equity, and generalizability ﬂ

* There is a need for methods to understand,
analyze and minimize performance differences
of Al/ML-enabled devices among subgroups



Pediatric-Specific Evaluations for Deep Learning
CT Image Reconstruction and Denoising

 Deep learning image reconstruction (DLIR) models primarily trained on adults.

* Do pediatric patients benefit equally from adult-trained DLIR models?

e PEDiatric CT Evaluation ToolKit (PED-ETK) Cose (4] Prantom
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Pediatric-Specific Evaluations for Deep Learning
CT Image Reconstruction and Denoising

Deep learning image reconstruction (DLIR) models primarily trained on adults.

Do pediatric patients benefit equally from adult-trained DLIR models?
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Regulatory Science Gaps ﬂ
and Challenges

* Ground truth and metrics for performance estimation



Ground truth and metrics for ﬂ
performance estimation

* A need to understand how to determine the level

of truth needed to evaluate Al-enabled devices in a
least burdensome fashion

* Metrics used to determine Al/ML performance

* Determination of acceptable performance criteria



MIDRC: Task-specific Performance Evaluation Metric
Selection Tools for Machine Learnlng Algorithms

DECISION TREE STARTING POINT: Task Selection Select type of Reference Standard Select type of ML Algorithm output

[ TS —_——

SUGGESTED EVALUATION METHODS DETAILS ON EACH EVALUATION METHOD DETAILS ON SPECIFIC METRICS REFERENCES, RESOURCES and LINKS TO
KNOWN EVALUATION SOFTWARE PACKAGES

ﬁm Drukker et al., “The Medical Imaging and Data Resource

Center (MIDRC) Technology Development Project (TDP)
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Regulatory Science Gaps ﬂ
and Challenges

* Evolving algorithms — How to maintain safety and effectiveness
for devices with a predetermined change control plan (PCCP)



Evolving algorithms ﬂ

How to maintain safety and effectiveness for devices with a
predetermined change control plan (PCCP)

Our stakeholders would like a more flexible pre-market regulatory
process to allow for periodic modifications of Al/ML algorithms over
time and evolving Al algorithms without the need for a new regulatory

submission.

Many open questions related to the regulation of such devices.



How can we reuse an existing test dataset to validate ﬂ
sequential algorithmic modifications?
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How can we reuse an existing test dataset to validate ﬂ
sequential algorithmic modifications?
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Methods that allow for valid test data
reuse restrict the amount of information
leaked with each query by

(a) perturbing the query result with
random noise = differential privacy

(b) restricting the number of bits of
information returned.




How can we reuse an existing test dataset to validate
sequential algorithmic modifications?

Attempt # 1, 2, ... { ~ Methods that allow for valid test data
reuse restrict the amount of information
leaked with each query by

Algorithmic
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Regulatory Science Gaps ﬂ
and Challenges

* Emerging clinical application of Al/ML



Emerging clinical application of AI/MLﬂ

Device sponsors continue to think of new ways to utilize Al/ML in
medical practice, including:

— Automating patient referrals,

— Triaging patients,

— Reading images autonomously,

— Large language models (LLMs) applied to medical records,
— Etc.

We need methods for evaluating these new and different uses of Al



A Modeling Tool for Streamlined Assessment of
Emerging Radiological Computer-Assisted Triage
(CADt) and Notification Software
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* 30+ FDA-approved CADt devices since 2018 .o A radiclogis
oooo
 Why CADt devices? k —_—

o Faster diagnosis and treatment for With CAD! dex emptive-resume priority (PRIO)

time sensitive diseases e.g. stroke

 How effective is a CADt device?

- Use queueing theory to quantify the

Thompson et al., “Wait-Time-
Saving Analysis and ...,” SPIE Ml,
2022

amount of time savings



A Modeling Tool for Streamlined Assessment of [l
Emerging Radiological Computer-Assisted Triage
(CADt) and Notification Software
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A Modeling Tool for Streamlined Assessment of
Emerging Radiological Computer-Assisted Triage
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Regulatory Science Gaps ﬂ
and Challenges

* Data Drift and Postmarket Al/ML Performance Monitoring



Data Drift and Postmarket Al/ML =
Performance Monitoring

e Data acquisition systems and protocols, and patient populations
change over time and by site

* Al/ML device users, such as radiologists, and patients want to know
that the Al products they are using will be accurate and reliable even
as practice and patient populations change

 We need planned and standardized methods for detecting changes to
the inputs of Al devices, monitoring the accuracy of their outputs, and
mitigating effects of those drifts



[ ] (] [ ] FDA
Online Recalibration .

* Model updates can protect against changes in the environment, and learn from

accumulating data.
 However, algorithmic modifications also carry the risk of deteriorating model

performance.
 We design an online

Underlying Model reviser at

|OgI.S'FIC recalibration and prediction model S  Updated
revision procedure that at time t: A (P00  prediction
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Feng et al., “Bayesian logistic el - / K_A
regression for online recalibration Neural Tree-based Online logistic regression with Calibration ROC

network model parameters 0, curve

and revision ...,” JAMIA 2022.



Knowledge Check ﬂ

Which of the following can be considered emerging
applications of Al/ML in medical imaging?

1. Computer aided diagnosis or detection Al systems
2. Autonomous Al systems for patient referral

3. Systems for patient triage, rule-in, or rule-out



Knowledge Check ﬂ

Which of the following can be considered emerging
applications of Al/ML in medical imaging?

1. Computer aided diagnosis or detection Al systems
(first CAD systems approved by FDA in 1990s)

2. Autonomous Al systems for patient referral

3. Systems for patient triage, rule-in, or rule-out



Putting Tools in
Hands of Stakeholders



Regulatory Science Tools (RST)

Publications

Regulatory
Science Tools —
Science-based
approaches to
help assess new
devices

MDDT -
Regulatory
acceptance for
a defined
Context of Use
(Cou)

Standards-
Broad and
regulatory
acceptance
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Al/ML Relevant RSTs

iIMRMC: Multi-Reader Multi-  Statistical tools (java GUI and R package} o

Modet

Case Reader Studies analyze, size, and simulate multi-reader multi-

case {MRMC}) reader studies

iRoeMetz Application A java application used to simulate reader
scores for multi-reader multi-case (MRMC)

reader studies

Catalog of Regulatory Science Tools to Help
Assess New Medical Devices

f =i

www.fda.gov/medical-devices/science-and-
research-medical-devices/catalog-regulatory-

Model

Imaging reader studies, Artificial GitHub (2
intelligence/machine learning
Imaging reader studies, Artificial GitHub 2

intelligence/machine fearning

FDA

science-tools-help-assess-new-medical-
devices

VICTRE: Breast Mass
Generation Software

VICTRE: Digital
Mammography Regions of
Interest (ROIs)

VICTRE: Model Observers
(MO}

VICTRE: Virtual Imaging
Clinical Trials for Regulatory
Evaluation

VICTRE: Multi-modality
Anthropomorphic Breast
Phantom

VICTRE_MCGPU: Pivotal
Study Simulations

A modeling software that randomly generates
main body of breast masses including random
branching spicules grown out from the mass
surface

VICTRE ROI patches for digital mammography
of breast density categories with
microcalcification cluster and spiculated mass
inserted signals.

Computer model chserver functions te perform
location-known lesion detection tasks

An entirely in-silico imaging clinical trial
replicating a premarket study.

A digital breast phantom with modifiable
parameters including phantom voxel size
(resolution)} and breast density

A simulation tool that replicates a Siemens
Mammomat Inspiration system for VICTRE

Model

Dataset

Model

Model

Phantom, Virtual

Model

Medical imaging and diagnostics

Medical imaging and diagnostics

Medical imaging and diagnostics

Medical imaging and diagnostics

Medical imaging and diagnostics

Medical imaging and diagnostics
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Medical Device Development Tools (MDDTs) ﬂ

Qualification of Medical Device
Development Tools

Guidance for Industry, Tool
Developers, and Food and Drug
Administration Staff

Document issued on: August 10, 2017

The draft of this guidance document was issued on November 14, 2013.

For questions regarding this document, contact MDDT (@ fda.hhs.gov.

www.fda.gov/regulatory-information/search-fda-guidance-
documents/qualification-medical-device-development-tools



http://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-medical-device-development-tools

Summary W

Active research from OSEL has been

— ldentifying and addressing critical gaps in device evaluation
of medical Al/ML

— Putting methodology and tools into the hands of
stakeholders
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