

Use of Phytase 50104 Enzyme Preparation to Increase the Availability of Phytin-Bound Phosphorus in Poultry Diets

Filed by
BASF Enzymes LLC
3550 John Hopkins Court
San Diego, CA 92121

December 7, 2021

Table of Contents

PART 1	: SIGN	ED STATEMENTS AND CERTIFICATION	1
A.		Claim Regarding GRAS Status	1
B.		Name and Address of Notifier	1
C.		Name of Notified Substance.	1
D.		Intended Conditions of Use	3
E.		Basis for Conclusion of GRAS Status	3
F.		Premarket Approval Exemption	3
G.		Statement of Availability of Data and Information	3
H.		Statement of Exemption from FOIA Disclosure	4
I.		Certification	7
PART 2	2: IDEN	TITY, METHOD OF MANUFACTURE, SPECIFICATIONS, ANI	O PHYSICAL
		AL EFFECT	
A.		Scientific Data that Identifies the Notified Substance	
	1.	Enzyme identity	8
	2.	Source organism	11
B.		Method of Manufacture	13
	1.	Production organism	13
	2.	Manufacturing process	
C.		Composition and Specifications	30
	1.	Finished product composition	30
	2.	Finished product specifications	31
	3.	Analytical methods	32
	4.	Stability	33
D.		Physical or Technical Effect.	38
	1.	Published utility data	39
	2.	Unpublished, corroborative utility data	
	3.	Dose discussion	
	4	Recommendation for Use	52

PART 3	3: TARC	GET ANIMAL AND HUMAN EXPOSURE	53
A.		Target Animal Exposure	53
	1.	Target animal consumption	53
	2.	Amount of other substance that is expected to be formed in or on foo	d because
		of the use of the notified substance	53
	3.	Amount of other substance that is present with the notified substa	nce either
		naturally or due to its manufacture	54
B.		Human Exposure	57
	1.	Potential human exposure to residues in edible animal tissues	57
PART 4	: SELF	-LIMITING LEVELS OF USE	58
PART 5	: EXPE	RIENCE BASED ON COMMON USE IN FOOD BEFORE 1958	59
PART 6	5: NARI	RATIVE	60
A.		Introduction	60
B.		Safety of Phytase	60
	1.	History of safe use	60
	2.	Assessment of allergenic potential	61
C.		Safety of the Production Organism	62
	1.	History of safe use	62
	2.	Absence of pathogenicity and toxicity	63
	3.	Safe strain lineage	66
D.		Safety of the Donor Organism	68
	1.	Introduction	68
	2.	Taxonomy	69
	3.	Laboratory use of E. coli K-12	69
	4.	Risk assessment of E. coli K-12	70
	5.	Summary	71
E.		Safety of the Inserted Genetic Material.	72
F.		Safety of the Manufacturing Process	75

BASF Enzymes LLC Page ii of iv

G.		Safety Studies	75
	1.	Test article production – VR003 (phytase 50104 enzyme)	75
	2.	Genotoxicity studies	76
	3.	Oral toxicity studies	79
	4.	Worker safety studies	81
	5.	Safety margin calculation	82
Н.		Safety of the CIBENZA® PHYTAVERSE® L10 Phytase Enzyme an	ıd the
		CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	82
	1.	To animals	82
	2.	To humans	84
I.		Results and Conclusion	85
PAR7	7: LIST (OF SUPPORTING DATA AND INFORMATION	88
A.		List of Appendices	88
B.		List of References.	89
List o	f Figures		
	Figure 1	. pH Profile of the Phytase 50104 Enzyme	10
	Figure 2	. Thermal Tolerance of the Phytase 50104 Enzyme	11
	Figure 3	. Strain lineage	14
	Figure 4	. Construction ofBD50104	17
	Figure 5	. Plasmid map of (b) (4)_BD50104	18
	Figure 6	: Diagram of the fermentation process	27
	Figure 7	. Diagram of the recovery process	28
	Figure 8	. CIBENZA® PHYTAVERSE® G10 Phytase Enzyme granulation flowchar	t 30
	Figure 9	. Microfiltration and ultrafiltration	55
	Figure 1	0. Safe strain lineage originating from <i>P. fluorescens</i> MB101	67
	Figure 1	1. Pariza and Johnson decision tree.	74

BASF Enzymes LLC Page iii of iv

List of Tables

Table 1. Naming Convention Used in the Notice	2
Table 2. Components of (b) (4)_BD50104 expression vector	19
Table 3. Phytase Dose Analysis - Pieniazek et al. (2017) Experiment 1	49
Table 4. Phytase Dose Analysis - Pieniazek et al. (2017) Experiment 2	50
Table 5. Phytase Dose Analysis - Corroborative Study at (b) (4)	50
Table 6. Phytase 50104 enzyme intake estimate and safety margin	53
Table 7. Potential (b) (4) estimate and safety margin in broilers	56
Table 8. Human and animal food enzymes derived from P. fluorescens MB101 st	train
lineage	68
Table 9. Results of worker safety studies using VR003	82

BASF Enzymes LLC Page iv of iv

PART 1: SIGNED STATEMENTS AND CERTIFICATION

A. Claim Regarding GRAS Status

This GRAS Notice is submitted in accordance with 21 CFR Part 570, Subpart E – Generally Recognized as Safe (GRAS) Notice. BASF Enzymes LLC hereby notifies the FDA of the determination by BASF Enzymes LLC and an external expert that the phytase 50104 enzyme preparation (marketed as CIBENZA®¹ PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme), produced from *P. fluorescens* strain BD50104, which expresses a gene encoding the phytase 50104 enzyme, is generally recognized as safe (GRAS), based on scientific procedures, when used as intended in animal food.

B. Name and Address of Notifier

Jonathan McDonough Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121

C. Name of Notified Substance

The notified substance being addressed in this submission is the phytase 50104 enzyme preparation, which is marketed as CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme.

The table below is provided to help clarify the different names that are used in this notice.

BASF Enzymes LLC Page 1 of 98

¹ ©CIBENZA and PHYTAVERSE are trademarks of Novus International, Inc. and are registered in the United States and/or other countries.

Table 1. Naming Convention Used in the Notice

Name	Definition		
Phytase 50104 enzyme	The final enzyme preparation. It is either a liquid or a granular		
preparation	formulation and is marketed as CIBENZA® PHYTAVERSE®		
	L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10		
	Phytase Enzyme, respectively.		
CIBENZA® PHYTAVERSE®	The liquid formulation of the phytase 50104 enzyme		
L10 Phytase Enzyme	preparation and has a guaranteed minimum phytase activity of		
	10,000 U/g.		
CIBENZA® PHYTAVERSE®	The granular formulation of the phytase 50104 enzyme		
G10 Phytase Enzyme	preparation and has a guaranteed minimum phytase activity of		
	10,000 U/g.		
Phytase 50104 enzyme	The specific phytase enzyme that is expressed by <i>P. fluorescens</i>		
	strain BD50104.		
Phytase 50104 protein	The specific phytase protein that is expressed by <i>P. fluorescens</i>		
	strain BD50104.		
Phytase 50104 gene	The specific phytase gene that encodes the phytase 50104		
	protein.		
VR003	The lyophilized test article used to determine the safety of		
	phytase 50104 enzyme in toxicology and genotoxicology		
	studies. It was prepared following a process representative of		
	the manufacturing process (including raw materials) for the		
	commercial enzyme, up to but not including the final		
	formulation step.		
PHYTAVERSE® L44 Liquid	The formulated phytase 50104 enzyme concentrate. It is used		
Formulation	to make the liquid and granular formulations of the phytase		
	50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE®		
	L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10		
	Phytase Enzyme, respectively).		

BASF Enzymes LLC Page 2 of 98

D. Intended Conditions of Use

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme will be added in a post-pelleting application to complete pelleted feeds. CIBENZA® PHYTAVERSE® G10 Phytase Enzyme will be added to complete mash feeds, complete pelleted feeds, and premixes.

Proposed levels of use: The recommended level of supplementation in a complete feed is 500 to 2000 U/kg of feed.

Animal species intended: CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme is intended for use in poultry.

Purpose for which the substance is used in feed: CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme will be used to increase the availability of phytin-bound phosphorus in poultry diets.

E. Basis for Conclusion of GRAS Status

The statutory basis for the conclusion of GRAS status for the phytase 50104 enzyme preparation, which is marketed as CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, is based upon scientific procedures, as described in this submission.

F. Premarket Approval Exemption

It is the notifier's view that the notified substance is not subject to the premarket approval requirements of Federal Food, Drug, and Cosmetic Act based on the notifier's conclusion that the phytase 50104 enzyme preparation, which is marketed as CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, is GRAS under the conditions of intended use.

G. Statement of Availability of Data and Information

The data and information that are the basis for BASF Enzymes, LLC conclusion of GRAS status are available for FDA's review. Upon FDA's request, FDA may review and copy the data and information during customary business hours at the address provided below and the notifier will provide FDA with a complete copy of the data and information in either electronic format or

BASF Enzymes LLC Page 3 of 98

by paper copy. Requests for copies and arrangements for review of materials cited may be directed to:

Jonathan McDonough Senior Regulatory Affairs Specialist BASF Enzymes LLC 3350 John Hopkins Court San Diego, CA 92121

H. Statement of Exemption from FOIA Disclosure

The following information is exempt from FOIA Disclosure:

Information	Reason for Exemption from FOIA
	Disclosure
Appendix 1: Phytase 50104 Enzyme Amino	The native appA protein from E. coli K-12 was
Acid Sequence	protein engineered to create the phytase 50104
	enzyme. The specific amino acid changes are
	considered confidential business information;
	therefore, the amino acid sequence of the
	phytase 50104 protein is also considered
	confidential business information.
Appendix 2: Alignment of the Mature Amino	The native appA protein from E. coli K-12 was
Acid Sequences for Phytase 50104 Protein	protein engineered to create the phytase 50104
and the Native E. coli K-12 and B appA	enzyme. The specific amino acid changes are
Proteins	considered confidential business information;
	therefore, the amino acid sequence alignment
	of the three phytases is also considered
	confidential business information.
Appendix 3: Phytase 50104 Gene Nucleotide	The native appA protein from E. coli K-12 was
Sequence	protein engineered to create the phytase 50104
	enzyme. The specific nucleotide changes are
	considered confidential business information.

BASF Enzymes LLC Page 4 of 98

Appendix 4: Alignment of the Mature Amino	The native appA protein from E. coli K-12 was
Acid Sequences for Phytase 50104 Protein	protein engineered to create the phytase 50104
and the Native E. coli K-12 appA Protein	enzyme. The specific amino acid changes are
r.	considered confidential business information;
	therefore, the amino acid sequence alignment
	of the two phytases is also considered
	confidential business information.
Appendix 5: Bioinformatics Analysis of	This appendix contains confidential
Plasmid (b) (4)_BD50104	information related to our production strain,
1 asimu (0) (4)_DD30104	specifically our expression plasmid.
Appendix 6: Stability of the Gene and	
71	This appendix contains confidential information specific to our production
the Expression Plasmid (b) (4)_BD50104 in <i>Pseudomonas</i>	
	organism.
fluorescens BD50104 and Determination of	
the Phytase 50104 Gene Copy Number in	
Strain BD50104	
Appendix 7: Plasmid Mobilization Analysis	This appendix contains confidential
for Pseudomonas fluorescens Strain BD50104	information specific to our production
	organism.
Appendix 8: Whole Genome Sequence	This appendix contains confidential
Analysis of Pseudomonas fluorescens	information specific to our production
DC454: Known Antimicrobial Resistance	organism.
Genes	
Appendix 9: Characterization of the (b) (4)	This appendix contains confidential
Gene Deletion Region in the Host	information specific to our production
Chromosome	organism.
Appendix 11: List of Raw Materials used in	This appendix contains all raw materials used
the Manufacturing of Phytase 50104 Enzyme	in the manufacturing of the phytase 50104
Preparation	enzyme preparation. The raw materials used in
	fermentation and in recovery are considered
	confidential business information (including

BASF Enzymes LLC Page 5 of 98

	any Supplier information such as provided
	CoA). The raw materials used to formulate the
	products of commerce are not confidential and
	have been disclosed in Part 2 Section C.1.
Appendix 12: Detailed Manufacturing	This appendix contains detailed information
Information: Fermentation, Recovery, and	on the manufacturing process of the phytase
Formulation	50104 enzyme preparations. This information
	is considered confidential business
	information.
Appendix 13: Final Product Composition and	Although the raw materials used to formulate
TOS Calculation	the products of commerce are not confidential,
	the amounts in which they are added are
	considered confidential business information.
	This includes data from the individual lots
	related to the TOS Calculation.
Appendix 14: Stability Study Data	This appendix contains confidential
	information detailing the rate of activity loss of
	the enzyme which could create a competitive
	disadvantage.
Appendix 28: Characterization of the DNA	This appendix contains confidential
(b) (4) xpression Cassette) Inserted into the	information specific to our production
Host Chromosome	organism.

BASF Enzymes LLC Page 6 of 98

I. Certification

On behalf of BASF Enzymes LLC, I certify to the best of my knowledge, the GRAS Notice is a complete, representative, and balanced submission that includes unfavorable information, known to me, and BASF Enzymes LLC, and pertinent to the evaluation of safety and GRAS status of the phytase 50104 enzyme preparation, which is marketed as CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, under the conditions of intended use (*i.e.*, to increase the availability of phytin-bound phosphorous in poultry diets).

Signed,

Digitally signed by FieldiR Date: 2021.12.07

Roderick Fielding

Date:

Enzyme Production and Supply Chain Manager BASF Enzymes LLC

BASF Enzymes LLC Page 7 of 98

PART 2: IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT

A. Scientific Data that Identifies the Notified Substance

1. Enzyme identity

a) Identity

The phytase 50104 enzyme is a 6-phytase as defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB).

Common Name: Phytase Name: 6-phytase

Systematic Name: Myo-inositol-hexakisphosphate 4-phosphohydrolase Other names: 4-phytase; phytate 6-phosphatase; myo-inositol-

hexakisphosphate 6-phosphohydrolase (name based on 1L-numbering

system and not 1D-numbering)

IUBMB Number: 3.1.3.26 CAS Registry No.: 9001-89-2

Reaction: myo-inositol hexakisphosphate + $H_2O = 1D$ -myo-inositol 1,2,3,5,6-

pentakisphosphate + phosphate

b) Amino acid sequence

Phytases from the microorganism *E. coli*, including *E. coli* strain K-12 and *E. coli* B, encode for phytase via the (b) (4) gene. The phytase protein, designated as phytase 50104, is encoded by the modified (b) (4) gene derived from *E. coli* strain K-12 and is 411 amino acids in length. The identity of the protein as expressed in the production organism, *P. fluorescens* strain BD50104, has been independently confirmed by amino acid sequence analysis and by amino acid composition analysis. The amino acid sequence for the phytase 50104 protein is provided in Appendix 1.

Since the phytase 50104 enzyme in the CIBENZA® PHYTAVERSE® L10 and G10 Phytase Enzyme products is an *E. coli* based appA phytase, its amino acid sequence is similar to the amino acid sequences of the five *E. coli* based appA phytases listed in the Association of American Feed Control Officials (AAFCO) Official Publication (OP) Table 30.1 and Section 101 (Association of American Feed Control Officials (AAFCO), 2021c) and on FDA Center for

BASF Enzymes LLC Page 8 of 98

Veterinary Medicine's (CVM's) Current Animal Food GRAS Notices Inventory (FDA Center for Veterinary Medicine, 2019a) (see Appendix 2).

c) Enzyme substrate

The phytase 50104 enzyme in the CIBENZA® PHYTAVERSE® L10 and G10 Phytase Enzyme products is specific for several salt forms of phytic acid, known as phytate or phytin. Like all phytases (including those listed in the 2021 AAFCO OP and on FDA CVM's Current Animal Food GRAS Notices Inventory), it catalyzes the stepwise hydrolysis of phosphate monoesters from the inositol ring of phytate (Association of American Feed Control Officals (AAFCO), 2021b; Association of American Feed Control Officals (AAFCO), 2021c; FDA Center for Veterinary Medicine, 2019a; Lei, X.G. and Stahl, C.H., 2001; Wodzinski, R.J. and Ullah, A.H., 1996). The phytase 50104 enzyme is an *E. coli* based appA phytase, and *E. coli* appA phytases exhibit specific activities that are among the highest of all reported phytases (Lim, D. *et al.*, 2000). In addition, it possesses dramatically lower activity on other phosphate-containing substrates such as AMP, ADP, ATP, fructose 1,6-bisphosphate, and glucose 6-phosphate compared to its action on phytate (Greiner, R. *et al.*, 1993; Wyss, M. *et al.*, 1999).

d) Characteristic properties

Catalytic Activity

The phytase 50104 enzyme in CIBENZA® PHYTAVERSE® L10 and G10 Phytase Enzyme products, like other *E. coli* based appA phytases, is a 6-phytase and, therefore, catalyzes initial phosphate ester bond hydrolysis of phytate at position 6 on the inositol ring (Greiner, R. *et al.*, 1993). This initial reaction is extremely rapid and likely represents the major hydrolysis event monitored during initial rate measurements for the phytase 50104 enzyme. In addition, *E. coli* appA phytase catalyzes the removal of additional phosphates from the inositol ring as follows:

D-Ins(1,2,3,4,5)P₅ + H₂O
$$\rightarrow$$
 D-Ins(2,3,4,5)P₄ + P_i
D-Ins(2,3,4,5)P₄ + H₂O \rightarrow D-Ins(2,4,5)P₃ + P_i
D-Ins(2,4,5)P₃+ H₂O \rightarrow D-Ins(2,5)P₂ + P_i
D-Ins(2,5)P₂+ H₂O \rightarrow D-Ins(2)P + P_i

The final reaction, conversion of D-Ins(2,5)P₂ to D-Ins(2)P occurs very slowly (Greiner, R. et al., 1993; Wyss, M. et al., 1999).

BASF Enzymes LLC Page 9 of 98

pH Performance

The pH performance of the phytase 50104 enzyme was determined, and the pH optimum range was between pH 4 to 4.5 (see Figure 1 below). This is also very similar to the properties reported in the literature for *E. coli* K-12 appA phytase (Golovan, S. *et al.*, 2000; Greiner, R. *et al.*, 1993). In addition, as previously reported for *E. coli* phytase, it does not require calcium or other cofactors for catalytic activity (Greiner, R. *et al.*, 1993).

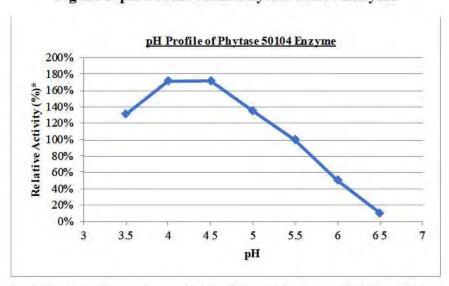


Figure 1. pH Profile of the Phytase 50104 Enzyme

^{*}Relative % activity to the standard conditions of the assay, which is a pH of 5.5.

(b)(4)

(b) (4) Please see Figure 2 below.

BASF Enzymes LLC Page 10 of 98

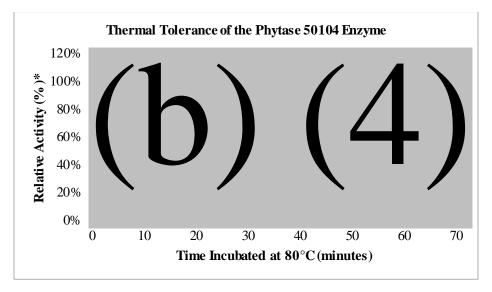


Figure 2. Thermal Tolerance of the Phytase 50104 Enzyme

Side Activities

The phytase 50104 enzyme preparation was analyzed for a variety of side activities (i.e., cellulase, xylanase, alpha-amylase, protease, and phosphatase). Enzyme activity was not detected or was below limit of quantitation of the assays when testing for cellulase, xylanase, alpha-amylase, and protease activities. The only significant activity – consistent with a similar published observation made for *E. coli* K-12 app A phytase – is phosphatase (Greiner, R. *et al.*, 1993). The phosphatase activity is expected as phytase belongs to the phosphatase enzyme family, and it is not expected to have any negative effects in poultry diets.

2. Source organism

a) Taxonomic source

The phytase 50104 enzyme in CIBENZA® PHYTAVERSE® L10 and G10 Phytase Enzyme products is produced from *Pseudomonas fluorescens* strain BD50104. The taxonomic designation for strain BD50104 is as follows:

Domain Bacteria

Phylum BXII Proteobacteria

Class III Gammaproteobacteria

BASF Enzymes LLC Page 11 of 98

^{*}Relative % activity to the T=0 (i.e., no incubation at 80°C).

Order VII Pseudomonadales

Family I Pseudomonadaceae

Genus I Pseudomonas

Species fluorescens

Biovar I

For further information on the construction of the production organism, *P. fluorescens* BD50104 please see Part 2 Section B.1.

b) Part of plant or animal used as source

The source organism is a microorganism, therefore there is no part of a plant or an animal to identify.

c) Any known toxicants

Strains of *P. fluorescens* are commonly found on plant surfaces, as well as decaying vegetation, soil, and water (Balows, A., 1992). The ubiquitous nature of *P. fluorescens* on the surface of plants typically grown for human consumption (OECD, 1997) suggests that *P. fluorescens* has been widely consumed by humans for many years. *P. fluorescens* is not reported to be a causative agent of human food poisoning or other disease related to food ingestion (EFSA and ECDC, 2017; EFSA Panel on Biological Hazards (BIOHAZ) *et al.*, 2019; FDA, 2018). Derivatives of *P. fluorescens* MB101, i.e., the parental strain of *P. fluorescens* BD50104, have been used safely as production organisms for food use enzymes for many years (FDA Center for Food Safety and Applied Nutrition, 2003a; FDA Center for Food Safety and Applied Nutrition, 2015).

The Organisation for Economic Co-operation and Development (OECD) and the European Food Safety Agency (EFSA) have conducted literature reviews regarding the safety of *P. fluorescens* (EFSA BIOHAZ Panel *et al.*, 2017; EFSA Panel on Biological Hazards (BIOHAZ) *et al.*, 2019; OECD, 1997). Both OECD and EFSA found that *P. fluorescens* can be an opportunistic pathogen in immunocompromised individuals. Also, internal literature reviews were conducted to evaluate relevant safety information of *P. fluorescens*. The result of the searches further supports the information found by OECD and EFSA that *P. fluorescens* can be an opportunistic pathogen in immunocompromised individuals (see Part 6 Section C.2 for more detail). In addition, published

BASF Enzymes LLC Page 12 of 98

studies have evaluated the pathogenicity and toxigenicity of *P. fluorescens* in mice; no evidence of pathogenicity or toxigenicity was observed under the conditions of the test (George, S.E. *et al.*, 2000; George, S.E. *et al.*, 1999). Moreover, the pathogenic and toxigenic potential of orally administered *P. fluorescens* biovar I, strain MB101 was evaluated in Balb/c mice (Landry, T.D. *et al.*, 2003). (Please note that strain MB101 is the parental strain of *P. fluorescens* BD50104.) Under the conditions of the study, there was no evidence of pathogenicity or toxigenicity from *P. fluorescens* strain MB101.

Moreover, published (Pieniazek, J. *et al.*, 2017) and corroborative utility studies conducted with the granular formulation of the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) demonstrated that the product is safe for use in poultry. Please see Part 2 Section D for more information on these studies.

Lastly, toxicology and genotoxicity tests conducted using many different enzyme preparations produced by *P. fluorescens* MB101 derivatives have determined that the test materials do not contain toxic or genotoxic substances (FDA Center for Food Safety and Applied Nutrition, 2015; Halich, R. *et al.*, 2012; Landry, T.D. *et al.*, 2003). Toxicology and genotoxicity studies were conducted using test material of the phytase 50104 enzyme produced by *P. fluorescens* BD50104 (i.e., lyophilized phytase 50104 enzyme preparation without formulation ingredients, also known as VR003). These published safety studies also demonstrate that the test material does not contain any toxic or genotoxic substance (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015).

It can be concluded then that *P. fluorescens*, including those strains derived from MB101, are non-toxigenic and non-pathogenic. Please see Part 6 Section C.2 for more information on the absence of pathogenicity and toxicity.

B. Method of Manufacture

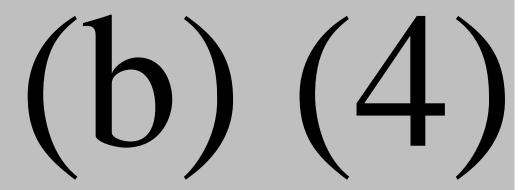
1. Production organism


This section describes the historical activities associated with the construction of *P. fluorescens* BD50104, the origin of the phytase 50104 gene, the construction of the expression plasmid, and the methodology used to introduce the latter into the recipient strain *P. fluorescens* DC454. For a discussion on the safety of the production organism, please see Part 6 Section C.

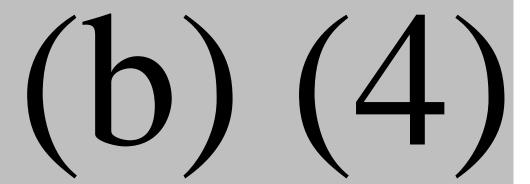
BASF Enzymes LLC Page 13 of 98

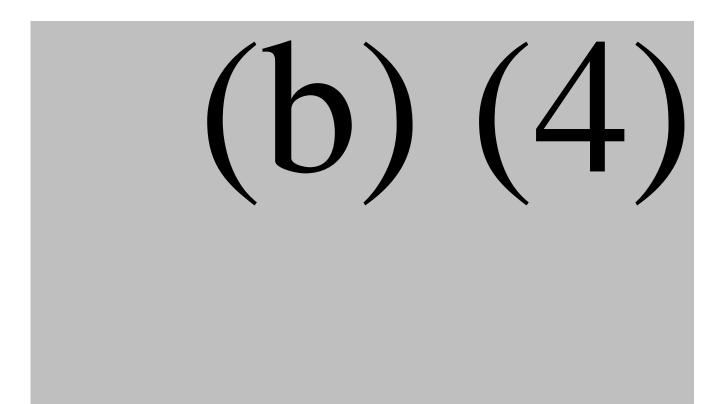
a) Recipient microorganism


BASF Enzymes LLC Page 14 of 98


b) Origin of phytase 50104 gene

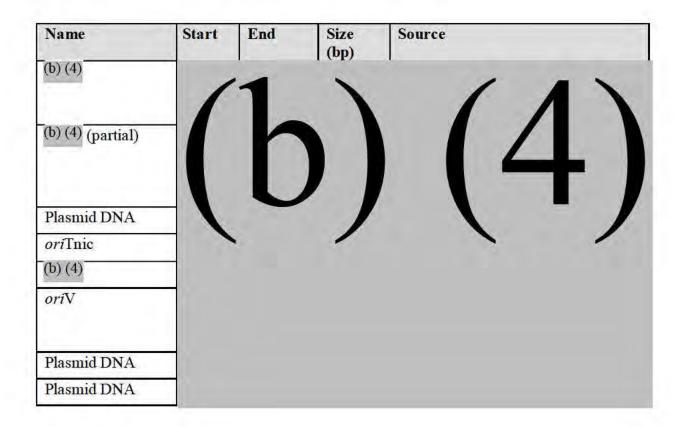
The phytase 50104 gene was derived from the native *E. coli* K-12 (b) (4) gene encoding the phytase enzyme. The native gene was previously cloned and sequenced (b) (4) (b) (4) To produce the phytase 50104 gene, the native gene from *E. coli* K-12 strain MG1655 (b) (4) was modified for (b) (4) encountered during the production of manufactured feed. The nucleotide sequence for the phytase 50104 gene is provided in Appendix 3.


c) Construction of the expression vector

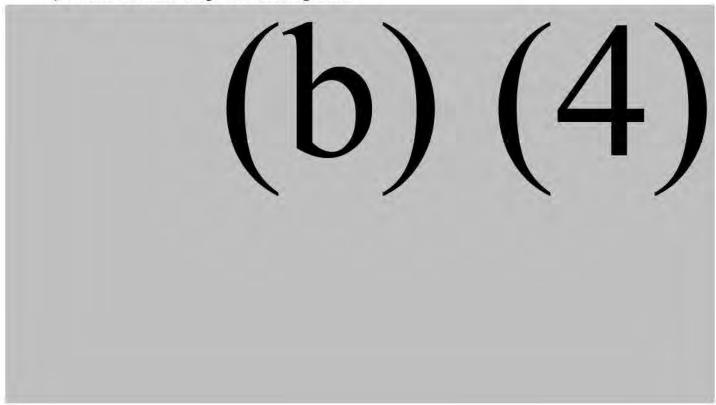

BASF Enzymes LLC Page 15 of 98

BASF Enzymes LLC Page 16 of 98

BASF Enzymes LLC Page 17 of 98

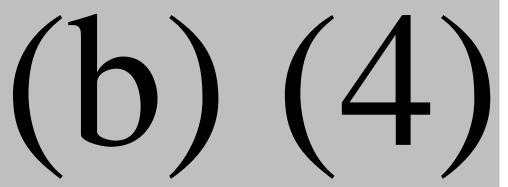


BASF Enzymes LLC Page 18 of 98


Table 2. Components of (b) (4)_BD50104 expression vector

Name	Start	End	Size	Source
Plasmid DNA		1	(bp)	
(b) (4) erminator		4		/ 4
(o) (4) erminator				
(b) (4) gene	-			
0	ALL I			
	AN			
(b) (4) promoter				
4.55	-			
tac				
RBS	<u> </u>			
Phytase 50104	-			
gene	_			
Nonfunctional				
DNA Terminator region	-			
Terminator region				
Plasmid DNA	<u></u>			
Plasmid DNA	4			
Tiasinia DIVA				
Plasmid DNA				
repC	-			
repA	-			
	-			
Plasmid DNA				
(b) (4) partial)	-			
, , , , , , , , , , , , , , , , , , ,				
repB				

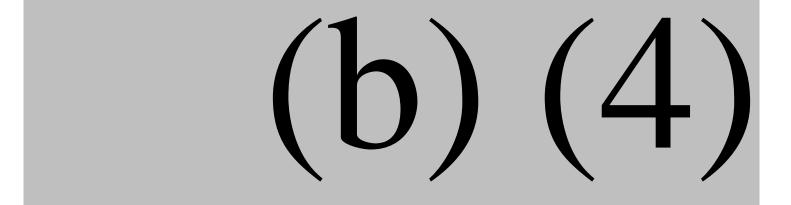
BASF Enzymes LLC Page 19 of 98



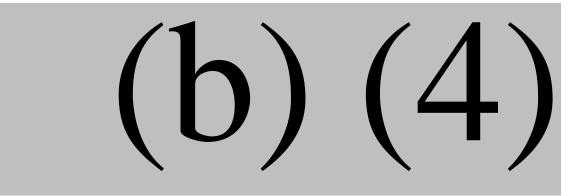
d) Construction of the production organism

BASF Enzymes LLC Page 20 of 98

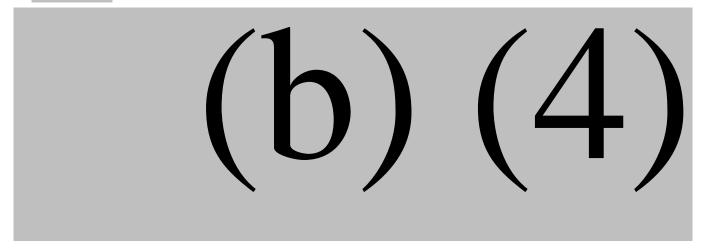
e) Genetic stability and gene conv number

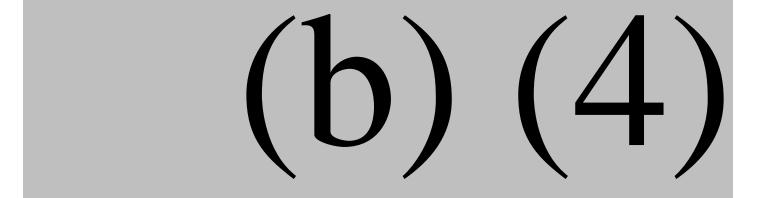


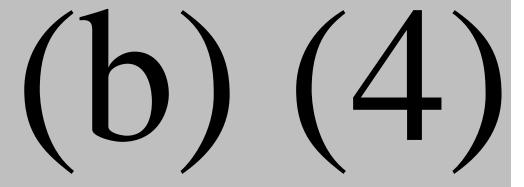
f) Absence of transformable DNA

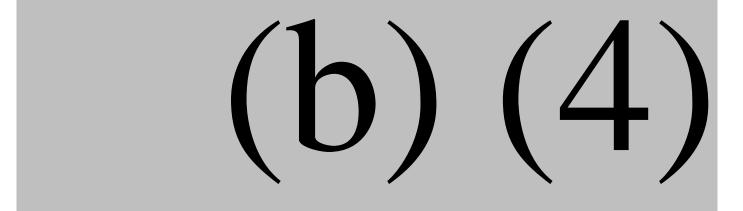

Among the criteria suggested by the Organization for Economic Co-operation and Development (OECD) is that vectors or plasmids used in modifying a microorganism used for industrial applications should be poorly mobilizable (OECD, 1992). This criterion has been widely adopted and has also been recommended elsewhere (EU Scientific Committee for Food, 1992; NIH, 2019).

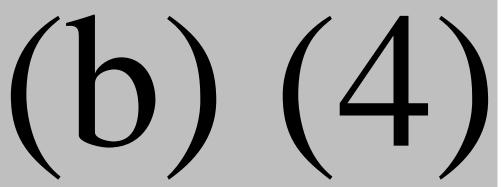
(b) (4)

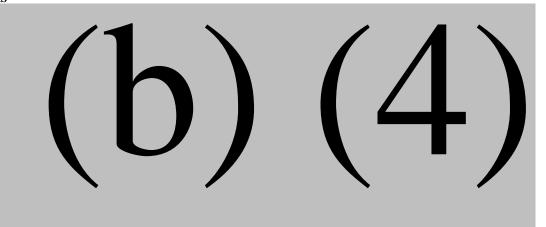

BASF Enzymes LLC Page 21 of 98


g) Absence of antibiotic resistance

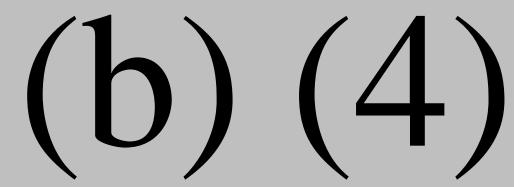

(b) (4)_BD50104 (see Appendix 5 for further information).


BASF Enzymes LLC Page 22 of 98

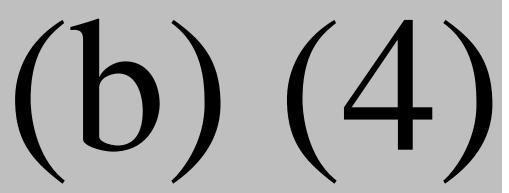

h) Absence of production organism


BASF Enzymes LLC Page 23 of 98

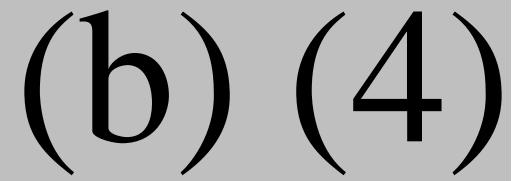
2. Manufacturing process


a) Raw materials

BASF Enzymes LLC Page 24 of 98

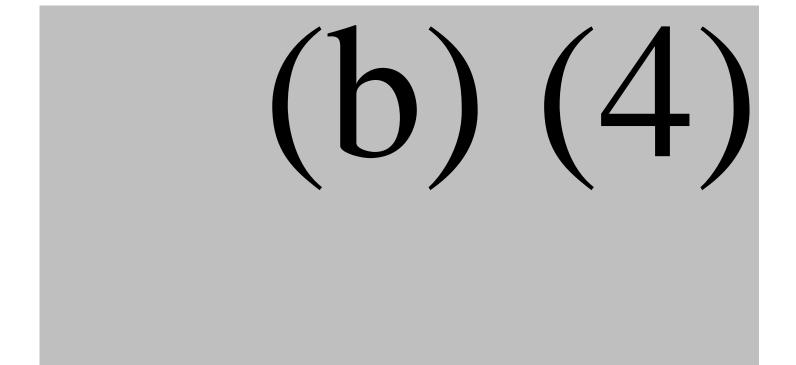

(b) (4)

BASF Enzymes LLC Page 25 of 98

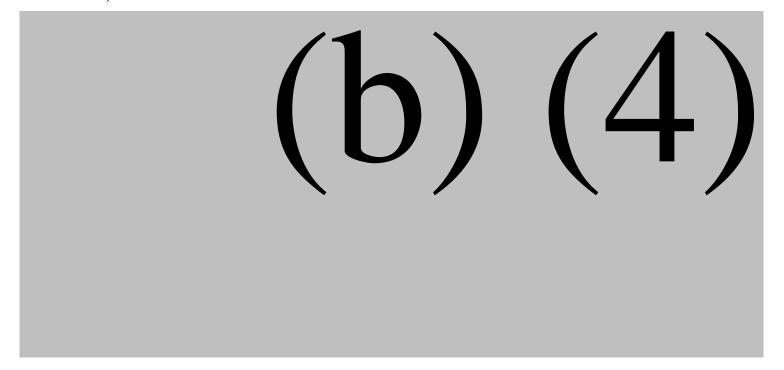


BASF Enzymes LLC Page 26 of 98

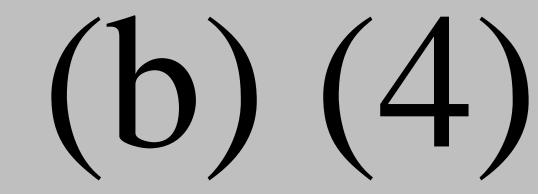
Figure 6: Diagram of the fermentation process



BASF Enzymes LLC Page 27 of 98



(b) (4)


BASF Enzymes LLC Page 28 of 98

e) Formulation

BASF Enzymes LLC Page 29 of 98

C. Composition and Specifications

1. Finished product composition

The products of commerce are CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (a liquid product) and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (a granular product). All raw materials used in the final formulation are either approved food additives published in 21 CFR 573, substances that are Generally Recognized as Safe (GRAS) for the intended use, or are otherwise acceptable ingredients for use in animal food, such as those defined in the most recent AAFCO OP (2021) and comply with prescribed limits.

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme is formulated with the following ingredients (in order of predominance): water, liquid *P. fluorescens* fermentation product, salt, sugar, sodium citrate, potassium sorbate, sodium benzoate, and sodium propionate. CIBENZA® PHYTAVERSE® L10 Phytase Enzyme is sold with a minimum phytase enzyme guarantee of ≥10,000 U/g on an as is basis.

BASF Enzymes LLC Page 30 of 98

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme is formulated with the following ingredients (in order of predominance): wheat flour, sugar, dried *P. fluorescens* fermentation product, sodium citrate, salt, potassium sorbate, sodium benzoate, and sodium propionate. CIBENZA® PHYTAVERSE® G10 Phytase Enzyme is sold with a minimum phytase enzyme guarantee of ≥10,000 U/g on an as is basis.

The composition for each of the products are provided in Appendix 13. It is possible that other commercial forms of the phytase 50104 enzyme preparation could be developed using other suitable feed grade carriers or preservatives in the future, if there is a market need.

The percent total organic solids (TOS)² for the phytase 50104 enzyme preparation is 1.3 ± 0.4%. The TOS was calculated for the liquid product (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme) and is applied to the granulated product (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme), because they are both made from the same formulated, phytase 50104 enzyme concentrate (i.e., PHYTAVERSE® L44 Liquid Formulation) and formulated to have a guarantee minimum phytase activity of 10,000 U/g on an as is basis.

2. Finished product specifications

The formulated, phytase 50104 enzyme concentrate (i.e., PHYTAVERSE® L44 Liquid Formulation) has established specifications, which include purity criteria recommended for enzyme preparations as described in the Food Chemical Codex (FCC) (U.S. Pharmacopeial Convention, 2021) and conforms to the general specifications for enzyme preparations used in food processing as proposed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) (FAO/WHO, 2006). The formulated, phytase 50104 enzyme concentrate is used to make the products of commerce (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme). The products of commerce also have established manufacturing and product specifications.

Additionally, the absence of production organism in the final product is a specification even though it is not included in FCC or JECFA specifications. As mentioned in Part 2 Section B.1.h, the phytase 50104 enzyme preparation is tested according to SOP QC0214 for the absence of production organism.

BASF Enzymes LLC Page 31 of 98

 $^{^{2}}$ TOS (%) = [100 – (water, % + residue on ignition, % + diluents, % (i.e., formulation ingredients)]. The residue on ignition was determined per USP 37 <281>.

Lastly, the phytase 50104 enzyme preparation is sold with a minimum enzyme activity. Both products, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, are sold to have a minimum phytase enzyme activity guarantee of 10,000 U/g (according to the method ISO 30024; see Part 2 Section C.3 below for more information on the method).

Provided in Appendix 10 are three Certificates of Analysis for each product of commerce that show testing results for conformance with the purity criteria recommended for enzyme preparations as described in the FCC (U.S. Pharmacopeial Convention, 2021) and with the general specifications for enzyme preparations used in food processing (FAO/WHO, 2006), along with testing results for the absence of production organism, and enzyme activity.

3. Analytical methods

The phytase method, ISO 30024 (Reference number ISO 30024:2009(E); Animal feeding stuffs – determination of phytase activity) is used as the standard method for product release of the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme).

In summary, phytase releases phosphate from the substrate myo-inositol hexakisphosphate (phytate). In the laboratory, the amount of released inorganic phosphate is determined spectrophotometrically by measuring the formation of a yellow complex with an acidic molybdate/vanadate reagent. The optical density (OD) of the yellow complex is measured at a wavelength of 415 nm, and the inorganic phosphate released is quantified from a phosphate standard calibration curve. One phytase unit (U) is defined as the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the reaction conditions specified by the International Standard procedure.

The phytase method ISO 30024 is a validated, analytical method and has been verified by BASF Enzymes LLC and Novus International, Inc. for product release. The verification protocols were based upon the guidelines provided in the VICH text on Validation of Analytical Procedures:

Methodology and the United States Pharmacopoeia, USP 37/NF32 (2014) and provide data on the linearity and range, limit of detection, limit of quantitation, precision (repeatability), and intermediate precision. Both companies adopted the ISO method for internal use via standard operating procedures.

BASF Enzymes LLC Page 32 of 98

A license to the ISO phytase method, ISO 30024 (Reference number ISO 30024:2009(E); Animal feeding stuffs – determination of phytase activity) was purchased for and provided to Dr. Michaela Alewynse (Division on Animal Feeds in the FDA's Center for Veterinary Medicine).

4. Stability

a) Finished product stability

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme

The storage stability of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme was determined using three independent lots of formulated product. The product was stored at elevated temperatures (30 and 40°C), at ambient temperature (25°C), and under refrigeration (5°C) and tested over a 24-month period. To reduce the variability in the data obtained at different time points, the activity results were normalized using samples of the same three lots of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme which were stored frozen at -20°C. After 24 months of storage, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme retains 97-98% activity when stored under refrigerated conditions (5°C), retains 64-97% activity at room temperature (25°C), and retains 59-78% activity at elevated temperature (30°C). Appendix 14 provides summary data on the stability studies conducted on 3 lots of the CIBENZA® PHYTAVERSE® L10 Phytase Enzyme.

Based on the results of the study described above, it is concluded that CIBENZA® PHYTAVERSE® L10 Phytase Enzyme will maintain a guaranteed minimum phytase activity of 10,000 U/g when stored for 18 months at 25°C or lower in an unopened container.

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

The storage stability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was determined using three independent lots of granulated product. The product was stored at 25°C, 60% RH; 30°C, 70% RH; and 40°C, 75% RH, and tested over an 18-month period. To reduce the variability in the data obtained at different time points, the activity results were normalized using samples of the same three lots of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, which were stored frozen at -20°C. After 18 months of storage, CIBENZA® PHYTAVERSE® G10 Phytase Enzyme retains 84-98% activity when stored at 25°C, 60% RH, retains 73-80% activity when stored at 30°C, 70% RH, and retains <50% activity when stored at 40°C, 75% RH. Appendix 14 provides summary

BASF Enzymes LLC Page 33 of 98

data of the stability studies conducted on 3 lots of the CIBENZA® PHYTAVERSE® G10 Phytase Enzyme.

Based on the results of the study described above, it is concluded that CIBENZA® PHYTAVERSE® G10 Phytase Enzyme will maintain a guaranteed minimum phytase activity of 10,000U/g for 18 months when stored at room temperature in an unopened container.

b) Stability and homogeneity in premix

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme is applied to complete feed via a post-pellet liquid application. Therefore, stability and homogeneity studies in premix are not applicable.

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme is recommended for use in premix. Therefore, stability and homogeneity studies were conducted with CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in premix. Phytase activity in premixes was determined based on the method ISO 30024 in association with dilution method VDLUFA 27.1.3 (Preparation of Mineral Feed and Premixtures for the Determination of Phytase Activity)."

A premix stability study was conducted using CIBENZA® PHYTAVERSE® G10 Phytase Enzyme. Three batches of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (lot n°s P23941, P26641, and RO15271001) were used at two inclusion levels in premix to theoretically provide 500 and 500 U/kg in a completed feed. The stability of each of the three batches of the test article at two inclusion levels was determined by monthly measuring of phytase activity in composite samples obtained at mixing and after storage at ambient conditions from 0 to 6 months. According to the results of the stability study in vitamin-mineral premix, CIBENZA® PHYTAVERSE® G10 Phytase Enzyme:

- Was stable over time (up to 6-months storage at ambient conditions) for all three batches at both inclusion levels, as demonstrated by slopes of linear regressions of phytase activity over time not being significantly different from 0 (flat line).
- Presented a good stability (±10% of 0-month value) up to 6-months storage also for all three batches at both inclusion levels. Higher variations at intermediate points were

BASF Enzymes LLC Page 34 of 98

considered to be within the range of expected values considering stability within the batch rather than real activity changes.

The premix stability study report is provided in Appendix 15, and the sources of the vitamins and minerals used in the study are provided in Appendix 16.

A premix homogeneity study was conducted using CIBENZA® PHYTAVERSE® G10 Phytase Enzyme. Three lots of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (lot n°s P23941, P26641, and RO15271001) were used at two inclusion levels in premix to theoretically provide 250 and 500 U/kg in a completed feed. The homogeneity of each of the three batches of the test article at two inclusion levels was determined by measuring phytase activity in 10 subsamples taken at different location points of the mixer. According to the results of the homogeneity in premix, CIBENZA® PHYTAVERSE® G10 Phytase Enzyme:

• Presented a good mixing homogeneity (CV% 8% to 12%), with actual CVs below or close to the CV of the method itself for all three batches and at both inclusion levels.

The premix homogeneity study report is provided in Appendix 17, and the sources of the vitamins and minerals used in the study are provided in Appendix 16.

c) Stability and homogeneity in feed

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme

A three-month stability study was conducted to evaluate the stability of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme in feed when applied via a post pellet liquid application. Phytase activity in pelleted feed was determined by the method ISO 30024. Three batches of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (lot n°s CV002C2, 190CV005A3, and PHY-50104-PO030-F4) at two concentrations (250 and 500 U/kg) were added to feed via a post pellet application. For each batch and dose, the stability of the test article was determined by measuring phytase activity in unique feed samples after 0, 1, 2 and 3-months storage at ambient conditions. According to the results, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme:

• Was stable over time (1, 2 and 3-months storage at ambient conditions) for all three batches (A & B & C) at both concentrations tested (250 & 500 U/kg) as demonstrated by the slope

BASF Enzymes LLC Page 35 of 98

- of linear regressions of phytase activity over time not being significantly different from 0 (flat line, no significant loss of activity).
- Presented good stability (in general ±10% of 0-month value) up to 3-months in pelleted feeds for all three batches (A & B & C) at both concentrations tested (250 & 500 U/kg).

The stability study report is provided in Appendix 18, and the sources of the vitamins and minerals used in the study are provided in Appendix 19.

Homogeneity of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme in feed when applied via a post pellet liquid application was also evaluated. Three batches of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (lot n°s CV002C2, 190CV005A3, and PHY-50104-PO030-F4) at the lowest recommended dose (250 U/kg) were added to feed via a post pellet application. For each batch, the homogeneity was determined by measuring phytase activity in 10 subsamples taken at different time points at bagging. Phytase activity in pelleted feed was determined by the method ISO 30024. According to the results of the homogeneity study in feed, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme:

• Presented good mixing homogeneity (CV ~7 to 11%), with actual CVs below or close to the CV of the method itself (10%) for all 3 batches tested in pelleted form (post pellet liquid application).

The homogeneity study report is provided in Appendix 20, and the sources of the vitamins and minerals used in the study are provided in Appendix 19.

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

A three-month stability study was conducted to evaluate the stability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in feed. Three batches of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (lot n°s P23941, P26641, and RO15271001) at two concentrations (250 and 500 U/kg) were added to make mash and pelleted feeds. For each batch, dose, and form, the stability of the test article was determined by measuring phytase activity in unique feed samples after 0, 1, 2 and 3-months storage at ambient conditions. According to the results, CIBENZA® PHYTAVERSE® G10 Phytase Enzyme:

BASF Enzymes LLC Page 36 of 98

- Was stable over time (1, 2, and 3-months storage at ambient conditions) for all three batches, for both feed forms, and at both concentrations tested as demonstrated by the slope of linear regressions of phytase activity over time not being significantly different from 0 (flat line, no significant loss of activity).
- Presented good stability (in general $\pm 10\%$ of 0-month value) up to three months in feeds for all three batches, for both forms, and at both concentrations tested.

The stability study report is provided in Appendix 21, and the sources of the vitamins and minerals used in the study are provided in Appendix 19.

Homogeneity of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in feed was also evaluated. Three batches of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (lot nos P23941, P26641, and RO15271001) at the lowest recommended dose (250 U/kg) were added to make mash and pelleted feeds. For each batch and form, the homogeneity was determined by measuring phytase activity in 10 subsamples taken at different location points of the mixer (mash) or at bagging (pelleted). Phytase activity in pelleted feed was determined by the method ISO 30024. According to the results of the homogeneity study in feed, CIBENZA® PHYTAVERSE® G10 Phytase Enzyme:

• Presented good mixing homogeneity (CV ~7 to 15%), with actual CVs below or close to the CV of the method itself (10%) for all 3 batches tested in mash and pelleted forms.

The homogeneity study report is provided in Appendix 22 and the sources of the vitamins and minerals used in the study are provided in Appendix 19.

d) Thermostability

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme is applied to complete feed in a post-pelleting application. Therefore, thermostability is not applicable.

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme is recommended for use in pelleted feeds. Therefore, a thermostability study with CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was conducted to determine recommended temperature conditions when pelleting feed.

BASF Enzymes LLC Page 37 of 98

Three lots of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (lot n°s P23941, P26641, and RO15271001) at two concentrations (250 and 500 U/kg) were used for the study. The temperatures used to evaluate the temperature conditions when pelleting feed are as follows: 65°C, 75°C, 85°C, 88°C, and 90°C. The conditioning time (also known as the retention time) used in the study is approximately 60 seconds. The results of the study demonstrate that CIBENZA® PHYTAVERSE® G10 Phytase Enzyme retains greater than 85% of the initial phytase activity when pelleted feed is made using a pelleting temperature of 85°C and a conditioning time of approximately 60 seconds.

The thermostability study report is provided in Appendix 25, and the sources of the vitamins and minerals used in the study are provided in Appendix 24.

D. Physical or Technical Effect

The purpose of using phytase as an ingredient in poultry feed is to increase the availability of phytate bound phosphorus in the animal diet and to decrease the phosphorus contribution to manure, which results in the pollution of surface water. The bioavailability of plant phosphorus is limited in common feedstuffs because 1) most of the phosphorus present in plant related feedstuffs is in the form of an organic complex called phytic acid or phytate, and 2) monogastrics such as poultry lack endogenous phytase at the level needed to hydrolyze phytate (Nys, Y. *et al.*, 1996). The chemical name for phytate is myo-inositol 1,2,3,4,5,6-hexakisphosphate, an inositol ring with six phosphate radicals. Phytase liberates phosphorus by cleaving the ortho-phosphate groups from the phytate organic complex.

Like all phytases (including those listed in the 2021 AAFCO OP and on FDA CVM's Current Animal Food GRAS Notices Inventory), the phytase 50104 enzyme, an appAE. coli based phytase, catalyzes the stepwise hydrolysis of phosphate monoesters from the inositol ring of phytate (Association of American Feed Control Officals (AAFCO), 2021b; Association of American Feed Control Officals (AAFCO), 2021c; FDA Center for Veterinary Medicine, 2017; FDA Center for Veterinary Medicine, 2019a; Lei, X.G. and Stahl, C.H., 2001; Wodzinski, R.J. and Ullah, A.H., 1996). Therefore, the phytase 50104 enzyme will, like other phytase, increase the availability of phytin-bound phosphorus in poultry diets.

Numerous studies have been published demonstrating the effectiveness of *E. coli* based phytases to increase phosphorus availability from phytate in animal feed (Adeola, O. *et al.*, 2004;

BASF Enzymes LLC Page 38 of 98

Jendza, J.A. *et al.*, 2006; Selle, P.H. and Ravindran, V., 2007; Zeng, Z.K. *et al.*, 2014). Within the field of poultry nutrition, experts qualified by scientific training and experience to evaluate safety of feed ingredients generally recognize that the addition of appA *E.coli* based phytases, at appropriate levels to increase digestibility of phytin-bound phosphorus or to increase phosphorus availability from phytate in poultry diets, is safe. There are several published papers to support the utility of *E. coli* based phytases for use in poultry diets (Onyango, E.M. *et al.*, 2005; Pillai, P.B. *et al.*, 2006; Ribeiro, V. *et al.*, 2016).

Additionally, to demonstrate the utility of the phytase 50104 enzyme preparation to increase the availability of phytin-bound phosphorus in poultry diets, CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was used in three different poultry feeding experiments. The diets used in the studies were representative of U.S. corn and soybean meal diets for poultry. Two of the poultry feeding experiments were published providing pivotal evidence for the utility of phytase 50104 enzyme preparation (Pieniazek, J. *et al.*, 2017). The third experiment is considered corroborative. These three poultry feeding experiments are described below.

Please note that the three poultry feeding experiments described below were conducted with the granulated product form of the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme). The liquid product (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme) and the granulated product (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) are sister products, because they are both made from the same formulated, phytase 50104 enzyme concentrate (i.e., PHYTAVERSE® L44 Liquid Formulation) and formulated to have a guaranteed minimum phytase activity of 10,000 U/g.

1. Published utility data

The two poultry feeding experiments (Experiment 1 and Experiment 2) described below are published in Pieniazek, J. *et al.* (2017). The published paper is provided in Appendix 25.

a) Experiment 1

In this experiment, the effects of increasing levels of the commercial, dry product form of phytase 50104 enzyme preparation, i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, were determined using 576 male Cobb 500 broilers fed diets deficient in available phosphorus (aP) in a 21 day battery study.

BASF Enzymes LLC Page 39 of 98

1. Experimental Design

Five hundred and seventy-six male Cobb 500 broilers were weighed, wing banded, and allotted to battery cages on day of hatch. Eight broilers were placed per replicate pen, and 12 replicate pens were used per treatment for a total of 72 pens. The negative control (NC) group had diets formulated with an aP of 0.23% and 0.19% in the starter and grower rations, respectively. The P deficiency was intentionally created to determine P equivalency values for phytase doses. There were two positive (PC) control groups. PC1 contained 0.12% more aP compared to the NC for starter and grower rations to give a total of 0.35% aP and 0.31% aP, respectively. PC2 contained 0.22% more aP than the NC in starter and grower rations to give a total of 0.45% aP and 0.41%, respectively. Three levels of phytase were supplemented to the NC diet at 250, 500, and 2,000 U/kg.

Corn-soybean meal diets with supplemental fat were formulated to be both deficient and sufficient in aP. The diets met all other nutrient requirements. Titanium dioxide at 0.4% was added at the expense of corn in the final dietary phase for use as an indigestible marker for the determination of nutrient digestibility. Basal diets were formulated and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was added over the top to the basal diet during mixing and before pelleting. Diets were mash feed that was steam conditioned for 20 seconds and pelleted at 85°C. CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was added to deliver 250, 500, and 2,000 U/kg of phytase to the experimental diets.

Broilers were fed a starter diet through day 14 and a grower diet from day 15 to 21. Grower and finisher diets were fed as pellets, while starter diets were crumbled post pelleting. Pelleted samples of all diets and treatment were analyzed for phytase recovery and nutrient content.

Mortalities were collected, recorded and weighed daily. Broilers and feed were weighed weekly on days 7, 14, and 21 for the calculation of body weight (BW) and mortality corrected feed conversion ratio (FCR). On day 20 fecal matter was collected for 24 hours for the determination of total tract AME. On day 21 all remaining birds were euthanized and right tibias were removed and pooled per replicate pen for determination of bone ash. Tibia ash was determined on fat free dry matter basis. Bones were dried at 105°C for 24 hours then ashed at 600 °C for 24 hours. Bones were weighed pre- and post ashing. Ileal contents were collected and pooled per replicate pen for the determination of amino acid digestibility. Ileal contents were removed from four centimeters posterior to Meckel's Diverticulum and four centimeters anterior to the ileal-cecal junction.

BASF Enzymes LLC Page 40 of 98

Samples were freeze dried prior to analysis. Sample were then ground for amino acid and titanium concentration determination.

2. Results and Evaluation

The results are describe below and are also provided in Appendix 25.

Birds fed the NC diet had a decreased (P < 0.05) bone ash weight and percent compared to birds fed the PC1 and PC2 diets. Supplementing the aP deficient diet with phytase increased (P < 0.05) bone ash weight compared to both the NC and PC1. Inclusion of the phytase at 2,000 U/kg increased bone ash weight to levels similar to the PC2 diet. Inclusion of the phytase at 250 and 500 U/kg increased bone ash percent to levels that were similar to the PC1 diet. At 2,000 U/kg inclusion of phytase, bone ash percent increased (P < 0.05) to levels similar to the PC2 diet. At phytase inclusion levels of 250, 500, and 2,000 U/kg, bone ash weight and percentage were significantly (P < 0.05) higher than NC.

Birds fed the NC diet had lower (P < 0.05) body weight (BW) throughout the experiment compared to birds fed PC diets containing 0.35% aP (PC1) and 0.45% aP (PC2). Supplementing the P deficient diet with phytase increased (P < 0.01) BW throughout the experiment compared to the NC diet. At the end of the experiment on day 21, supplementing the NC diet with phytase at 250 and 500 U/kg improved (P < 0.05) BW to levels comparable to the PC1 diet. Supplementing the NC with 2,000 u/kg increased (P < 0.05) BW to levels similar to PC2. Overall, a linear relationship was observed between BW and phytase inclusion. Mortality was highest in the broilers fed NC and decreased (P < 0.05) with the inclusion of 250 U/kg phytase or inorganic phosphate in PC1 and PC2 diets.

To determine P equivalency for tibia bone ash weight, tibia bone ash percent, and body weight gain, linear regression analysis was performed. The P equivalency values for tibia ash percent were 0.12%, 0.13%, and 0.21% for phytase inclusion of 250 U/kg, 500 U/kg, and 2,000 U/kg, respectively. Similar trends were seen for tibia ash weight. For body weight gain the P equivalency values for 250 U/kg, 500 U/kg, and 2,000 U/kg were 0.15%, 0.16%, and 0.23%, respectively.

Amino acid digestibility was measured on day 21. Digestibility coefficients of all measured amino acids were reduced (P < 0.05) in the NC. Inclusion of phytase at 250 U/kg increased (P < 0.05) the digestibility coefficients of all measured amino acids compared to the NC to levels that were similar to the PC1 and PC2. At 500 U/kg inclusion rate, phytase increased (P < 0.05) the

BASF Enzymes LLC Page 41 of 98

amino acid digestibility coefficient of aspartic acid, cysteine, glycine, lysine, methionine, phenylalanine, proline, serine, and Total nonessential amino acids (TNEAA) to levels comparable to PC1. Other measured amino acid digestibility coefficients were increased including Total sulfur amino acids (TSAA), Total essential amino acids (TEAA), and Total amino acids (TAA) to levels comparable to PC1 but they were not statistically different from the NC diet. At phytase inclusion rate of 2,000 U/kg, the digestibility coefficient of cysteine, glycine, lysine, phenylalanine, proline and serine increased (P < 0.05) compared to NC levels and were similar to PC1 levels.

3. Conclusion

The addition of phytase 50104 enzyme preparation demonstrated utility to increase the phosphorus availibility from phytate in poultry diets. Parameters of tibia bone ash, tibia bone weight, BW, and amino acid digestibility coefficients showed improvements with the addition of phytase 50104 enzyme preparation to poultry diets deficient in aP. Over a 21 day feeding study, increased (P < 0.05) tibia bone ash percentage and tibia bone ash weight were observed for phytase inclusion levels of 250 U/kg, 500 U/kg, and 2,000 U/kg compared to the NC. Inclusion of phytase at 250 and 500 U/kg increased bone ash percent to levels that were similar to the PC1 diet. At 2,000 U/kg inclusion of phytase, bone ash percent increased (P < 0.05) to levels similar to the PC2 diet. Supplementing the P deficient diet with phytase increased (P < 0.01) BW throughout the experiment compared to the NC diet. At the end of the experiment on day 21, supplementing the NC diet with phytase at 250 and 500 U/kg improved (P < 0.05) BW to levels comparable to the PC1 diet. Supplementing the NC with 2,000 u/kg increased (P < 0.05) BW to levels similar to PC2. Overall, a linear relationship was observed between BW and phytase inclusion in the diet.

b) Experiment 2

In this experiment, the effects of increasing levels of the commercial, dry product form of phytase 50104 enzyme preparation, i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, were determined on 1,760 male broilers fed diets deficient in available phosphorus (aP) in a 42 day grow-out experiment.

1. Experimental Design

One thousand, seven hundred and sixty male broilers were weighed, wing banded, and allotted to floor pens and treatment groups based on initial body weights. Forty broilers were

BASF Enzymes LLC Page 42 of 98

placed per replicate pen, with 11 replicate pens per treatment for a total of 44 replicate pens. The positive control (PC) diet contained 0.45%, 0.42%, and 0.38% aP in the starter, grower, and finisher phases, respectively. The aP deficient diet was formulated with a 0.17% reduced aP per dietary phase. The final trace mineral concentrations were maintained the same as Study 1. If mortalities were observed, they were collected, weighed and recorded on a daily basis. Broilers and feed were weighed on days 14, 28, and 42. On day 42, six birds per replicate were euthanized and right tibias removed for determination of bone ash using the same method as described above in Experiment 1. Ileal contents were collected similar to Experiment 1 for amino acid digestibility determination.

2. Results and Evaluation

The results are described below and are also provided in Appendix 25.

Tibia bone ash weight and percent were reduced (P < 0.05) in the NC group compared to the positive control. The inclusion of phytase 50104 enzyme preparation in the diet at both 500 and 200 U/kg increased (P < 0.05) both tibia bone ash weight and percent compared to the NC and these parameters were similar to the PC values. A linear relationship was found between phytase inclusion in the diet and bone mineralization. With increased phytase inclusion, bone mineralization increased (P < 0.001).

BW was reduced (P < 0.05) throughout the entire experiment for broilers fed the reduced aP diet compared to the PC. Including phytase 50104 enzyme preparation in the diet resulted in increased (P < 0.05) BW compared to the NC. On day 14, BW in the 500 U/kg treatment group were comparable to the PC diet. For the 2,000 U/kg phytase treatment group, BW increased (P < 0.05) to higher levels than both the NC and PC diets on day 14. On day 42, the inclusion of phytase at 500 U/kg increased (P < 0.05) over the NC. Inclusion of phytase at 2,000 U/kg resulted in increased (P < 0.05) BW over the NC to levels that were similar to the PC. The experiment found a linear relationship between BW and inclusion of phytase 50104 enzyme preparation in the diet. With increased phytase inclusion, BW increased (P < 0.001).

Amino acid digestibility was determined on day 42. The reduced aP diet had reduced (P < 0.05) digestibility coefficients of alanine, aspartic acid, cysteine, glycine, histidine, isoleucine, lysine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, TEAA, TNEAA and TAA compared to the PC diet. The inclusion of 500 U/kg did not affect amino acid digestibility coefficients compared to the NC for all measured amino acids in this experiment. The inclusion of

BASF Enzymes LLC Page 43 of 98

2,000 U/kg resulted in similar amino acid digestibility coefficients as the PC in all measured amino acids. In this experiment, no impact was found on arginine, methionine, or valine digestibility between the PC and NC.

As a general note, it may appear like the birds were underperforming compared to expected targets in terms of body weights. However, these studies were consistent with studies performed at the facility, which showed a similar trend in body weight measurements by being slightly lower than standard species expectations. For example, in a study by Walters et al. 2019 (Walters, H.G. et al., 2019) from a (b) (4) facility indicated that the average male broiler body weight of a Positive Control at day 28 was 1.565 kg while the Cobb 500 target was 1.675 kg. Another study (Williams, M.P. et al., 2014) from (b) (4) indicated 2.95kg at day 45 for a Positive Control, however, reference body weights could be 3.24kg for straight run chicks (male and female chicks reared together). The research facility outcome has been consistently showing slightly lower performance than expected based on its peer reviewed publications. General performance of the birds could be slightly compromised due to factors such as chicks' quality, low-grade infections, environmental temperature, etc. A slightly lower performance compared to targeted body weights of breeder recommendations in the study could be attributed to summer stress since the study was conducted during summertime. Additionally, the mortality in the negative control that was observed could mainly be attributed to P (phosphorus) deficiency. The P deficiency in the negative control was created to be slightly higher than levels required to substitute or replace with 500 units of phytase, to evaluate if higher levels of phytase could be used to replace phosphorus beyond 0.15% reduction. The decision on the target levels of non-phytate P in the experimental diets were based on data from our preliminary experiments and on direction from researchers at the study facility as to the level of P needed in the negative control diet. The institutional animal care rules were followed by the university facilities to make sure birds in any treatment groups were sacrificed if it had exceeded the permissible limits. The addition of phytase to the negative control brought the performance back similar to the positive control suggesting the safety and efficacy of the phytase (500 u/kg diet) used in the experiment.

3. Conclusion

The utility of phytase 50104 enzyme preparation to increase phosphorus availability from phytate in poultry diets was demonstrated by the increase in tibia bone ash weight and tibia bone ash percent in broilers fed diets supplemented with phytase at 500 and 2,000 U/kg compared to

BASF Enzymes LLC Page 44 of 98

NC. The addition of phytase 50104 enzyme preparation to poultry diets improved BW over the 42-day study when compared to NC further demonstrating the improved availability of phosphorus in the diet to support growth. Amino acid digestibility coefficients were similar for the 2,000 U/kg group and the PC.

2. Unpublished, corroborative utility data

To demonstrate the utility of phytase 50104 enzyme preparation, a broiler study was conducted at (b) (4) The broiler study evaluated the utility of adding CIBENZA® PHYTAVERSE® G10 Phytase Enzyme at two doses (250 and 500 U/kg diet) in diets containing sub-optimal levels of non-phytate phosphorus by assessing tibia ash levels, as an indicator of phosphorus availability. The complete study report is provided in Appendix 26.

a) Experimental Design

A total of 960 Cobb-500 broiler chicks were assigned to 4 treatments with 12 pens/treatment and 20 chicks/pen using a randomized complete block design. The treatment groups consisted of the following:

- Positive control The diet met or exceeded the NRC 1994 and industry standards.
- Negative control The diet met or exceeded the NRC 1994 standards with the exception
 of non-phytate phosphorus (NPP) formulated to 0.3% NPP for starter (days 0 to 14), and
 0.26% NPP for grower (days 14 to 28).
- Negative control diet with 250 U CIBENZA® PHYTAVERSE® G10 per kg feed.
- Negative control diet with 500 U CIBENZA® PHYTAVERSE® G10 per kg feed.

One Unit or "U" was defined as the amount of enzyme that catalyzed the release of one micromole phosphate from the phytate per minute at 37°C at pH 5.5 in accordance to the assay.

Starter and grower diets were fed in mash form and were comprised primarily of com and soybean meal. The starter diet was fed from days 0 to 14, and the grower diet was fed from days 14 to 28. Feed was provided by a feeder tray for each pen for the first four days of the study. Both feed and water were provided *ad libitum* throughout the study.

The test facility, pens, and birds were observed at least twice daily for general flock conditions, lighting, water, feed, ventilation, and unanticipated events. All animals were observed regularly, and any adverse effects were recorded. Birds were weighed by pen at placement (day

BASF Enzymes LLC Page 45 of 98

0), day 14, and day 28. Feed offered was weighed by pen. Feed removed was weighed by pen on days 14 and 28. Average bird weight gain and average feed intake were calculated for the periods 0-14, 14-28, and 0-28 days. The feed conversion ratio (FCR) (adjusted for mortality and culls) was also calculated.

Percent tibia ash is a direct indicator of broiler (poultry) phosphorus status and the efficacy of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in the animals fed reduced non-phytate phosphorus. On day 28, at the end of the study, the five (5) surviving birds within each pen with the lowest neck tag numbers were selected for bone-ash measurements. For each pen, the results for all 5 right tibia samples were averaged, so the pen served as the experimental unit.

b) Results and evaluation

The results are described below and are provide in Appendix 26.

Tibia Ash: Results indicate significant treatment effect (P<0.0001) for tibia ash %. The percent tibia ash in the positive control (PC) group was significantly higher than the negative control (NC) and 250 U groups (53.50% vs. 44.75% and 51.24%, respectively), but not significantly different from the 500 U group (52.86%). Both the 250 and 500 U groups had significantly higher ash values than the negative control group (51.24% and 52.86% vs. 44.75%, respectively). Additionally, ash values in the 500 U group were significantly higher than values in the 250 U group (52.86% vs. 51.24%, respectively).

Tibia Ash Minerals: Significant treatment effects (P<0.0001) were observed for the percentage of magnesium and phosphorus in tibia ash. For phosphorus and magnesium values, the values in the positive control group were significantly higher than the negative control and 250 U group (17.92%, 0.79% vs. 16.98%, 0.64% and 17.31%, 0.71%, respectively). Phosphorus and magnesium values for the 250 and 500 U groups were significantly higher than the negative control (17.31%, 0.71% and 17.76%, 0.75% vs. 16.98%, 0.64%, respectively). Calcium values were not affected (P=0.42) by treatment. The additional necropsy and bone assessment in the negative control birds at the end of the study resulted in an average hip pop-out score of 1.10 out of 2.00 and an average of 0.82 out of 2.00 for bone softening on gross evaluations. No joint abnormalities were noted on examination of this group.

Body Weight Gain: Significant treatment effects (P<0.0001) were observed for average body weight gain for each time period. During Days 0 to 14, body weight gain in the positive control group was not significantly different (P>0.05) from the gain observed in the negative

BASF Enzymes LLC Page 46 of 98

control group. Gain in both the 250 and 500 U groups was significantly (P<0.05) higher than both the positive and negative control groups (0.304 kg, 0.310 kg and 0.292 kg, 0.282 kg, respectively). During days 14 to 28 and overall (days 0 to 28), gain in the positive control group was significantly higher (P<0.05) than the gain observed in the negative control group (0.928 kg vs. 0.751 kg and 1.221 kg vs. 1.033 kg, respectively). Gain in the 250 and 500 U groups was significantly higher (P<0.05) than the gain in the negative control group (0.940 kg and 0.973 kg, vs. 0.751 kg, respectively for study days 14 to 28 and 1.244 kg, 1.283 kg vs. 1.033 kg, respectively for 0 to 28 days). Gain in the 500 U dose group was also significantly higher (P<0.05) than the gain in positive control group (0.973 kg vs 0.928 kg for study days 14 to 28 and 1.283 kg vs. 1.221 kg for study days 0 to 28).

Pen Daily Feed Intake: Significant treatment effects (P<0.0001) were observed for average daily feed intake for days 14 to 28 and 0 to 28. No treatment effects (P=0.26) were observed during the first 2 weeks of the treatment period. During days 14 to 28, feed intake in the positive control group was significantly higher (P<0.05) than the intake observed in the negative control group (1.96 kg vs. 1.54 kg, respectively). Intake in the 250 and 500 U groups was significantly higher (P<0.05) than the intake in the negative control group (1.99 kg and 2.04 kg vs. 1.54 kg, respectively). Intake in the 500 U dose group was also significantly higher (P<0.05) than the intake in positive control group and the 250 U group (2.04 kg vs. 1.96 kg and 1.99 kg, respectively). Overall (study days 0 to 28), intake in the positive control group was significantly higher (P<0.05) than the intake observed in the negative control group (1.27 kg vs 1.06 kg, respectively). Intake in the 250 and 500 U groups was significantly higher (P<0.05) than the intake in the negative control group (1.30 kg and 1.32 kg vs. 1.06 kg, respectively). Intake in the 500 U dose group was also significantly higher (P<0.05) than the intake in positive control group (1.32 kg vs. 1.27 kg, respectively).

Average Feed Intake: Significant treatment effects (P<0.0001) were observed for average feed intake per bird for days 14 to 28 and 0 to 28. No treatment effects (P=0.48) were observed during the first 2 weeks of the treatment period. During study days 14 to 28, feed intake in the positive control group was significantly higher (P<0.05) than the intake observed in the negative control group (1.387 kg vs. 1.213 kg, respectively). Intake in the 250 and 500 U groups was significantly higher (P<0.05) than the intake in the negative control group (1.401 kg and 1.449 kg vs. 1.213 kg, respectively). Intake in the 500 U dose group was also significantly higher (P<0.05)

BASF Enzymes LLC Page 47 of 98

than the gain in positive control group and the 250 U group (1.449 kg vs. 1.387 kg and 1.401 kg, respectively). Overall (study days 0 to 28), intake in the positive control group was significantly higher (P<0.05) than the intake observed in the negative control group (1.798 kg vs. 1.671 kg, respectively). Intake in the 250 and 500 U groups was significantly higher (P<0.05) than the intake in the negative control group (1.822 kg and 1.873 kg vs. 1.671 kg, respectively). Intake in the 500 U dose group was also significantly higher (P<0.05) than the intake in positive control group (1.873 kg vs. 1.798 kg, respectively).

Feed Conversion Ratio (FCR): Significant treatment effects (P<0.001) were observed for feed to gain ratio (FCR, adjusted) for days 0 to 14, 14 to 28, and 0 to 28. During days 0 to 14, 14 to 28 and overall (days 0 to 28), FCR in the positive control group was significantly (P<0.05) improved as compared to the FCR observed in the negative control group (1.4038 vs. 1.4572 for days 0 to 14, 1.4939 vs. 1.5744 for study days 14 to 28, and 1.4721 vs. 1.5403 for 0 to 28 days, respectively). FCR in the 250 and 500 U groups was significantly (P<0.05) improved versus the FCR in the negative control group (1.3849 and 1.3573 vs. 1.4572, respectively for study days 0 to 14, 1.4902 and 1.4806 vs. 1.5744 for days 14-28, and 1.4643 and 1.4504 vs. 1.5403 for study days 0 to 28, respectively). FCR in the 500 U dose group was also significantly (P<0.05) improved as compared to the FCR in positive control group (1.3573 vs. 1.4038 for study days 0 to 14, 1.4806 vs. 1.4939 for days 14-28, and 1.4504 vs. 1.4721 for study days 0 to 28, respectively). During study days 14 to 28, FCR in the positive control group was significantly (P<0.05) improved as compared to the FCR observed in the NC group (1.4939 vs. 1.5744, respectively). FCR in the 250 and 500 U groups was significantly (P<0.05) improved versus the FCR in the negative control group (1.4902 and 1.4806 vs. 1.5744, respectively). FCR in the 250 U group was not significantly (P>0.05) different from the FCR in positive control group, while the FCR in the 500 U group was significantly improved compared to the positive control group.

Mortality: No significant (P=0.55) treatment differences were observed for mortality during the starter phase. During the grower phase, and subsequently overall, mortality rates were significantly higher (P<0.05) in the negative control group as compared to the other 3 groups.

c) Conclusion

In this broiler study, the addition of either 250 or 500 U of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme per kg diet to phosphorus deficient feed resulted in improved growth performance as evidenced by increases in average feed intake, average body weight gain, and a

BASF Enzymes LLC Page 48 of 98

lower average feed conversion ratio in a dose dependent manner, with the higher dose resulting in better performance compared to birds fed a phosphorus deficient diet alone from 0 to 28 days of age. Bone parameters for birds were also improved at both inclusion levels compared to the birds fed a phosphorus deficient diet alone. In addition, the inclusion of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme at the 500 U/kg of phosphorus deficient feed also significantly improved performance parameters compared to a diet supplying a standard level of phosphorus from 0 to 28 days of age.

The results of this study indicate and support the efficacy of phytase 50104 phytase enzyme preparation (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) in poultry at either 250 or 500 U/kg diet containing suboptimal levels of non-phytate phosphorus.

Please see Appendix 26 for the complete study report.

3. Dose discussion

The experiments published in Pieniazek, et al. (2017) were conducted by

University and are described in Part 2 Section D.1 above. The published paper by Pieniazek et al. (2017) is provided in Appendix 25. A corroborative experiment was conducted at (b) (4)

and is described above in Part 2 Section D.2 with the complete study report provided in Appendix 26. These experiments demonstrate the utility and support the use of the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme and CIBENZA® PHYTAVERSE® L10 Phytase Enzyme) in poultry diets.

The diets from each experiment were analyzed to confirm the phytase activity in each. The results are provided for each experiment's diet in Tables 3-5 below.

Table 3. Phytase Dose Analysis - Pieniazek et al. (2017) Experiment 1

Diet	Phytase Target	Phytase Analyzed	% Enzyme Activity of
	Level	Value	Target Value
Starter phase	250 U/kg	354 U/kg	141.6
Starter phase	500 U/kg	491 U/kg	98.2
Starter phase	2000 U/kg	2059 U/kg	102.95
Grower phase	250 U/kg	270 U/kg	108

BASF Enzymes LLC Page 49 of 98

Grower phase	500 U/kg	412 U/kg	82.4
Grower phase	2000 U/kg	1738 U/kg	86.9

Table 4. Phytase Dose Analysis - Pieniazek et al. (2017) Experiment 2

Diet	Phytase Target	Phytase Analyzed	% Enzyme Activity of
	Value	Value	Target Value
Starter phase	500 U/kg	520 U/kg	104
Starter phase	2000 U/kg	2200 U/kg	110
Grower phase	500 U/kg	430 U/kg	86
Grower phase	2000 U/kg	2000 U/kg	100
Finisher phase	500 U/kg	430 U/kg	86
Finisher phase	2000 U/kg	2100 U/kg	105

Table 5. Phytase Dose Analysis - Corroborative Study at(b) (4)

Diet	Phytase Target	Phytase Analyzed	% Enzyme Activity of
	Level	Value	Target Value
Starter phase	250 U/kg	300 U/kg	120
Starter phase	500 U/kg	530 U/kg	106
Grower phase	250 U/kg	298 U/kg	119.2
Grower phase	500 U/kg	539 U/kg	107.8
Finisher phase	250 U/kg	293 U/kg	117.2
Finisher phase	500 U/kg	568 U/kg	113.6

As shown in Tables 3-5, most (\sim 72%) of the target phytase activity levels in the diets were reached for the experiments with the analyzed values being within \pm 15% of the target value. Fifty percent of the analyzed values were within \pm 10% of the target values. However, approximately 28% of the analyzed values were outside of the \pm 15% of the targeted value.

In Pieniazek et al. (2017), the study outcome indicated the use of all inclusion rates (i.e., 250 units (U), 500 U, and 2000 U of targeted dose of phytase per kg diet) are efficacious. The reported analyzed values for phytase activity showed some variation. For instance, in Experiment

BASF Enzymes LLC Page 50 of 98

1, the starter phase targeted 250 U/kg dose diet had a 354 U/kg analyzed value (+41.6% of target value) for phytase activity. However, in the same experiment, the grower target 250 U/kg dose diet was very close to the target with an analyzed phytase activity value of 270 U/kg (+8% of the targeted value). The analyzed values for 500 U/kg target dose for starter and grower diets in Experiment 1 were 491 U/kg (-1.8% of targeted value) and 412 U/kg (-17.6% of target value), respectively. For the 2000 U/kg target dose in Experiment 1, the analyzed values were 2059 U/kg (+2.95% of target value) and 1738 U/kg (-13.10% of target value) for the starter and grower diets, respectively.

For the corroborative study conducted at (b) (4), we also see variability in the target dose versus the analyzed dose (see Table 5 above). Using the diets from this study, a homogeneity study was conducted and showed that the CIBENZA® PHYTAVERSE® G10 Phytase Enzyme is homogenously mixed into the diets (see Appendix 27). The average phytase activity in the diet dosed with 250 U/kg of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was 271 U/kg with a CV of 10%. The average activity in the diet dosed with 500 U/kg of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was 509 U/kg with a CV of 7%. However, three of the ten subsamples for 250 U/kg dose diet were 15% higher than the targeted phytase activity; all other subsamples, for both target doses, were well within ±15% of the targeted dose. With the homogeneity study results in mind, one can conclude that the phytase activity variation seen in the corroborative study at (b) (4) is likely due to sampling variation and/or assay variation. Therefore, it is highly likely that the phytase activity variation seen in Pieniazek et al. (2017) can also be attributed to sampling variation and/or assay variation.

This discrepancy in phytase activity for target dose versus analyzed dose is well documented in the literature and it is widely accepted by highly reputed peer reviewed journals. For example, the study by Walk et al. (2014) has shown high degree of variation in analyzed phytase values compared to targeted phytase values. The analyzed phytase values were 503, 362, 945, and 1390 U/kg against targeted phytase values of 500, 500, 1000, and 1500 U/kg diet, respectively. The authors mentioned that "these results were expected when sample variation, mixing, and assay errors are considered" (Walk, C.L. *et al.*, 2014).

It is concluded that the variations seen in the utility studies conducted with CIBENZA® PHYTAVERSE® G10 Phytase Enzyme are due to sampling variation and/or assay variation. Therefore, these poultry utility studies still support the use of the phytase 50104 enzyme

BASF Enzymes LLC Page 51 of 98

preparation (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) at the inclusion levels between 500 to 2000 U/kg of feed.

4. Recommendation for Use

Product forms of the phytase 50104 enzyme preparation include CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme. The products have a guaranteed minimum phytase activity of 10,000 U/g. The recommended level of supplementation in a complete poultry feed is 500 to 2000 U/kg of feed.

BASF Enzymes LLC Page 52 of 98

PART 3: TARGET ANIMAL AND HUMAN EXPOSURE

A. Target Animal Exposure

1. Target animal consumption

The phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) is intended for use in poultry feed. The recommended use rate is 500 to 2000 U/kg feed.

Calculations are provided below in Table 6 for target animal consumption and exposure. For poultry, broiler chickens are considered a worst case due to the ratio of typical feed intake versus body weight. In the calculations below, we are utilizing the typical daily intake (204 g of feed/day) and the typical body weight (2782 g) of 42 day old broiler chicken (Ross, 2019). The safety margin is calculated using the NOAEL from the subchronic (90-day) oral toxicity study (1720 mg TOS/kg – bw/day) and the dietary intake (mg TOS/kg – bw/day).

Table 6. Phytase 50104 enzyme intake estimate and safety margin

Body	Typical	Phytase 50104		Highest ex	Safety	
weight	feed	enzyme		50104 enzyme intake		margin
(bw)	intake	U/kg mg		U/day	mg TOS/ kg –	(NOAEL/
(kg)	kg/feed/	feed TOS/kg			bw/ day	highest
	day		feed		-	intake)
2.782	0.204	2000	14	408	1.0266	1675

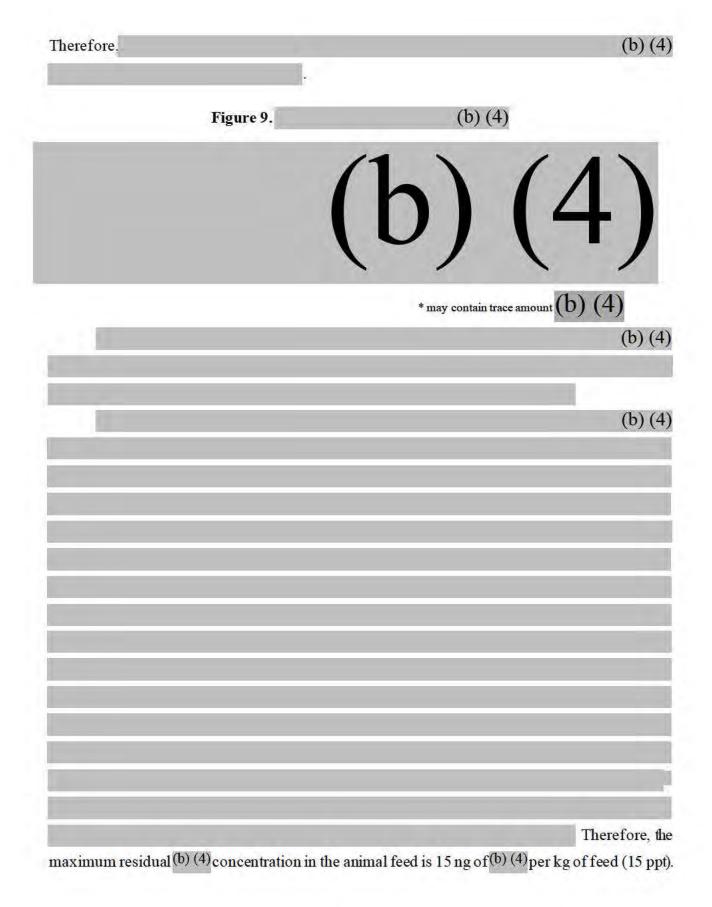
The safety margin calculations indicate that the worst-case potential animal exposure (poultry) to the phytase 50104 enzyme preparation is well below the NOAEL observed in the subchronic (90-day) oral toxicity study.

2. Amount of other substance that is expected to be formed in or on food because of the use of the notified substance

Like all phytases (including those listed in the 2021 AAFCO OP and on FDA CVM's Current Animal Food GRAS Notices Inventory), the phytase 50104 enzyme catalyzes the stepwise hydrolysis of phosphate monoesters from the inositol ring of phytate (Association of American Feed Control Officals (AAFCO), 2021b; Association of American Feed Control Officals (AAFCO), 2021c; FDA Center for Veterinary Medicine, 2019a; Lei, X.G. and Stahl, C.H., 2001;

BASF Enzymes LLC Page 53 of 98

Wodzinski, R.J. and Ullah, A.H., 1996). The phytase 50104 enzyme will, therefore, liberate phosphorus by cleaving the ortho-phosphate groups from the phytate organic complex.


The use of phytase 50104 enzyme as an ingredient in poultry feed will increase the availability of phytate bound phosphorus in the animal diet (thereby, reducing the need for supplemental phosphorus in the animal diet) and will decrease the phosphorus contribution to manure, which results in the pollution of surface water.

3. Amount of other substance that is present with the notified substance either naturally or due to its manufacture

It is expected that the raw materials used in the fermentation and recovery steps of the manufacturing process for the phytase 50104 enzyme preparation will be consumed during fermentation and/or removed during the various downstream recovery steps in the manufacturing process (see Part 2 Section B.2.d).

In general,	the majo	r portion	of the	raw	materials	that		(b) (4)
The first ste	ep of the	recovery	proces	S				(b) (4)

BASF Enzymes LLC Page 54 of 98

BASF Enzymes LLC Page 55 of 98

To determine the worst-case maximum dietary exposure in poultry to any potential residual (b) (4) arising from the use of phytase 50104 enzyme preparation, we are utilizing the typical daily intake (204 g of feed/day) and the typical body weight (2782 g) of 42 day old broiler chicken (Ross, 2019). For poultry, broiler chickens are considered a worst case due to the ratio of typical feed intake versus body weight. Therefore, based on 0.000015 mg(b) (4)/kg feed and a diet of 0.204 kg feed/day, the worst-case maximum dietary exposure results in an(b) (4) intake of 0.00000306 mg (b) (4)/day. In terms of TOS, the dietary intake of (b) (4) is 0.000011 mg TOS/kg – bw/day. Please see Table 7.

The safety margin is calculated using the NOAEL from the subchronic (90-day) oral toxicity study (in terms of TOS) and the dietary intake of (b) (4) (in terms of TOS); the calculated safety margin is 15,637,386. The safety margin calculation indicates that the worst-case potential animal exposure to potential residues of (b) (4) resulting from the use of the phytase 50104 enzyme preparation is well below the NOAEL observed in the oral toxicity studies. Please note that the test article used to determine the safety of phytase 50104 enzyme was prepared following a process representative of the manufacturing process for the commercial enzyme, up to but not including, the final formulation step, and was lyophilized (see Part 6 Section G.1). Therefore, if residues of (b) (4) were present in the test article, the residual (b) (4) in the test article would be more concentrated than residual (b) (4) in the final, formulated product. Additionally, the utility studies conducted in poultry, as described in Part 2 Section D, used phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) that was manufactured using a process that was representative of the commercial manufacturing process. The animals in those studies did not show any adverse effects. Consequently, there are no safety concerns regarding dietary exposure to any potential residues of (b) (4) resulting from use of the phytase 50104 enzyme preparation.

Table 7. Potential (b) (4) intake estimate and safety margin in broilers

Body Weight	kg/feed/day	(b) (4)		Highest expect	Safety Margin (NOAEL**/highest	
(kg)		mg/kg feed	mg TOS*/kg feed	mg/day	mg TOS/kg – bw/day	intake)
2.782	0.204	0.000015	0.0015	0.000306	0.000011	15,637,386

^{*} For a worst-case scenario, it is assumed that there is approximately 7.5 ng of $^{(b)}$ (4) per 1000 U of phytase activity and that any residues of $^{(b)}$ (4) would be in the TOS of the phytase 50104 enzyme preparation. Therefore, (b) (4) makes up 0.0001% of the total TOS.

BASF Enzymes LLC Page 56 of 98

^{* *}The NOAEL for the 90-day oral toxicity study is 1720 mg TOS/kg/day.

B. Human Exposure

1. Potential human exposure to residues in edible animal tissues

a) Residues of the notified substance

Phytase 50104 enzyme is a protein and, like any protein, is expected to be digested into its amino acid constituents in the animal's gastro-intestinal (GI) tract. When the enzyme is digested in the GI tract, it will be broken down into its amino acid constituents making it indistinguishable from other food molecules making the potential for residues in edible animal tissue minimal (Association of American Feed Control Officals (AAFCO), 2021a).

b) Residues of any other substance that is expected to be formed in or on the animal food because of the use of the notified substance

Phosphorus is an essential nutrient to growing animals because it is important for bone formation, bone mineralization, cell metabolism, protein synthesis and is a constituent of cell membranes and intracellular buffers for acid alkaline balance. The phytase 50104 enzyme liberates phosphorus by cleaving the ortho-phosphate groups from the phytate organic complex and frees dietary phosphorus for use. Any liberated phosphorus resulting from the use of the phytase 50104 enzyme preparation is expected to be utilized by the animal.

c) Residues from any other substance that is present with the notified substance whether naturally, due to its manufacture, or produced as a metabolite in edible animal tissues when the notified substance is consumed by a food-producing animal

(b) (4) is used during the manufacturing process during fermentation to	induce the
production of phytase 50104 enzyme. It is expected that	(b) (4)

BASF Enzymes LLC Page 57 of 98

PART 4: SELF-LIMITING LEVELS OF USE

This part is not applicable. There are no self-limiting levels of use associated with CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme that would result in the animal food being unpalatable or technologically impractical.

BASF Enzymes LLC Page 58 of 98

PART 5: EXPERIENCE BASED ON COMMON USE IN FOOD BEFORE 1958

This part is not applicable. The statutory basis for the notifier's conclusion of GRAS status is based on scientific procedures in accordance with 21 CFR §570.30(a).

BASF Enzymes LLC Page 59 of 98

PART 6: NARRATIVE

A. Introduction

To assure that the phytase 50104 enzyme preparation (including product forms CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) is safe for its intended use, BASF has had every aspect of the manufacturing process (used to produce the phytase here in question) and the finished phytase products carefully and thoroughly assessed by various appropriately qualified and experienced experts. As the following subsections demonstrate (and discuss in significant detail), BASF's production organism and the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) are safe for their intended uses.

B. Safety of Phytase

1. History of safe use

Enzymes have a long history of use in animal foods. As early as the 1920's, researchers showed beneficial effects from poultry feeds supplemented with enzymes (Burnett, G.S., 1962; Fry, R.E. *et al.*, 1958; Hastings, W.H., 1946; Jensen, L.S. *et al.*, 1957; Moran, J.E.T. and McGinnis, J., 1968; Pettersson, D.G., H.; Aman, P., 1990). Phytase was first added to poultry food during a chick study in 1968 (Nelson, T.S. *et al.*, 1968a; Nelson, T.S. *et al.*, 1968b). In the 1980s, Europe's poultry industry saw visible benefits with the use of feed enzymes, specifically xylanases and β-glucanases (Bedford, M.R. and Partridge, G.G., 2010). The 1990's introduced the next major breakthrough in feed enzymes, phytases (Bedford, M.R. and Partridge, G.G., 2010). Today, a wide variety of enzymes are used in animal food and a selection are listed in the 2021 AAFCO OP, specifically in Table 30.1 and in Section 101 (Association of American Feed Control Officals (AAFCO), 2021b; Association of American Feed Control Officals (AAFCO), 2021c). Most recently, FDA CVM has reviewed and issued a No Questions letter for GRAS Notices pertaining to ground grain obtained from a corn variety that expresses an altered *appA* 6-phytase from *E. coli* K-12 (GRAS Notice No. AGRN 27, 32) (FDA Center for Veterinary Medicine, 2019a; FDA Center for Veterinary Medicine, 2019b).

Of the enzymes listed in the 2021 AAFCO OP and listed on FDA CVM's Current Animal Food GRAS Notices Inventory, 12 are phytases. Five of these twelve phytases are derived from *E*.

BASF Enzymes LLC Page 60 of 98

coli. More specifically, four of these are *E. coli* K-12 based phytases (all of which are protein engineered). The first of these was approved by FDA CVM in 2008 through regulatory discretion, and the most recent was reviewed by FDA CVM in 2019 through their GRAS Notification program (GRAS Notice No. AGRN 32) (FDA Center for Veterinary Medicine, 2019b).

As is evident, feed enzymes have had a very long history of safe use, and phytases, specifically, have had nearly three decades of safe use in animal food. *E. coli* K-12 based phytases have had a decade of safe use in animal food.

2. Assessment of allergenic potential

The ingestion of food enzymes in general is not considered to be a concern with regard to food allergy (Bindslev-Jensen, C. *et al.*, 2006), and human allergic response to common animal food proteins have not been reported to occur as a result of consuming animal products (Pariza, M.W. and Cook, M., 2010).

Rather, if an allergy were to develop, it would likely result only from inhalation of an enzyme in aerosol or solid form. Therefore, the potential allergenicity of animal food enzymes is limited to occupational settings, i.e., manufacturing and handling (both in producing the enzyme and in adding the enzyme to animal feed) (Pariza, M.W. and Cook, M., 2010). This potential allergenicity has been addressed for the CIBENZA® PHYTAVERSE® L10 and G10 Phytase Enzyme products via their Safety Data Sheets (SDSs).

The allergenic potential of the protein (via the oral route) should be assessed (FAO/WHO, 2001; FAO/WHO, 2009; Ladics, G.S. *et al.*, 2011). A comparison of the amino acid sequence of the modified protein to known protein allergens is one step in a multilevel decision tree to assess allergenic potential (Metcalfe, D.D. *et al.*, 1996).

As recommended by the Joint FAO/WHO Expert Commission, amino acid sequence homology searches comparing the structure of a newly expressed protein and the stepwise, contiguous, identical amino acid segments with all known allergens is an approach for the assessment of allergenic potential (FAO/WHO, 2009). Two such searches were conducted using phytase 50104 protein as the query sequence. A FASTA search to predict overall structural similarities and a search scanning each possible 80 amino acid segment (1-80, 2-81, 3-82, etc.) looking for matches of at least 35% identity were performed against the Food Allergy Research and Resource Program (FARRP) database. The FASTA search results demonstrated that phytase 50104 protein does not have any significant homology to the allergens in the database. The scan

BASF Enzymes LLC Page 61 of 98

of each possible 80 amino acid segment showed that there were no cases where the homology exceeded 35% identity. This demonstrates that phytase 50104 protein shares no significant amino acid homology with known protein allergens that are present in the current version (2013) of the FARRP database. Based on this analysis, allergenicity (via the oral route) should not occur when using phytase 50104 enzyme.

C. Safety of the Production Organism

As discussed in Pariza and Foster (Pariza, M.W. and Foster, E.M., 1983), Pariza and Johnson (Pariza, M.W. and Johnson, E.A., 2001), and Pariza and Cook (Pariza, M.W. and Cook, M., 2010), the three papers that set forth the gold standard used by the enzyme industry for assessing the safety of enzyme products, the primary consideration in the evaluation of microbial enzyme preparations to be used in human and animal food is the safety of the production organism. This section addresses the safety of the phytase production strain *P. fluorescens* BD50104, whose recipient and parental strains are *P. fluorescens* DC454 and *P. fluorescens* Biovar I, MB101, respectively. Please see Figure 11 in Part 6 Section E for the Pariza and Johnson Decision Tree safety assessment of the phytase 50104 enzyme that is in the products of commerce, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme.

1. History of safe use

P. fluorescens is a common and well-known saprophyte and potential plant pathogen that inhabits plant rhizosphere and phyllosphere environments (OECD, 1997). The microorganism has been used in a variety of industrial applications (Warren, G.J., 1987; Wilson, M. and Lindow, S.E., 1993) to produce biological pesticides (Chew, L. *et al.*, 2005; Herrera, G. *et al.*, 1994) and in the control of diseases in the phyllosphere of plants (Wilson, M. and Lindow, S.E., 1993). The U.S. Environmental Protection Agency (EPA) established an exemption from the requirement of tolerance for residues of *P. fluorescens* in or on the raw agricultural commodity mushrooms (EPA, 1994). More recently, the U.S. EPA issued an exemption from the requirements of tolerance for residues of *P. fluorescens* strain CL145A, which is also a Biovar I strain, in or on all food commodities when applied as a molluscicide (EPA, 2011).

Additionally, three derivatives of *P. fluorescens* Biovar I, strain MB101 have been reviewed by GRAS Panels and/or by the US FDA and found to be safe microorganisms for the production of an alpha-amylase enzyme (GRN 000126), a lipase enzyme (GRN 000462), and a

BASF Enzymes LLC Page 62 of 98

phospholipase C enzyme (GRN 000574) used in food production (FDA Center for Food Safety and Applied Nutrition, 2003a; FDA Center for Food Safety and Applied Nutrition, 2013; FDA Center for Food Safety and Applied Nutrition, 2015). The alpha-amylase enzyme preparation that was the subject of GRN 000126 was also reviewed by FDA CVM for its use in corn processing applications in which by-products are used in animal feeds. FDA CVM concluded in a regulatory discretion letter (RDL) that animal consumption of feed containing the by-products from food processing applications and ethanol production facilities, that use this alpha-amylase product, did not present an animal safety concern.

In summary, all of the derivatives of MB101 discussed above contribute to the history of safe use and the safe strain lineage of *P. fluorescens* BD50104 (see Part 6 Section C.3 below for further information).

2. Absence of pathogenicity and toxicity

Strains of *P. fluorescens* are commonly found on plant surfaces, as well as decaying vegetation, soil, and water (Balows, A., 1992). The ubiquitous nature of *P. fluorescens* on the surface of plants typically grown for human consumption (OECD, 1997) suggests that *P. fluorescens* has been widely consumed by humans for many years. *P. fluorescens* has not been reported to be a caustic agent of human food poisoning or other disease related to food ingestion (EFSA and ECDC, 2017; FDA, 2018), and in the specific case of derivatives of *P. fluorescens* strain MB101, i.e., the parental strain of *P. fluorescens* BD50104, have been used safely as production organisms for enzymes used in food production for over the last 10 years (FDA Center for Food Safety and Applied Nutrition, 2003a; FDA Center for Food Safety and Applied Nutrition, 2015).

In 1997, OECD evaluated the available literature of *Pseudomonas* used in the assessment of environmental applications involving *Pseudomonas* species. *P. fluorescens* is generally considered to be a saprophyte and potential plant pathogen that inhabits plant rhizosphere and phyllosphere environments. *P. fluorescens* can infect a wide range of animals including horses, chickens, marine turtles, and many fish and invertebrate species. However, because *P. fluorescens* cannot grow at elevated temperatures like that of the human body, it is unlikely to be more than a rare opportunistic pathogen for warm-blooded animals. *P. fluorescens* can be an opportunistic pathogen in cancer patients and others who are severely immunocompromised but is of little concern for immunocompetent individuals. Fluorescent pseudomonads have not been reported to

BASF Enzymes LLC Page 63 of 98

be potent allergens; however, they do possess a lipopolysaccharide that may cause an allergic response in some individuals (OECD, 1997).

More recently, EFSA evaluated available literature related to the safety of *P. fluorescens* following a recommendation for a Qualified Presumption of Safety³ (QPS) status (EFSA BIOHAZ Panel *et al.*, 2017). EFSA noted, similar to the references above, that *P. fluorescens* is considered to be an opportunistic pathogen, involved in acute nosocomial infections (Center for Disease Control, 2005; Center for Disease Control, 2006). *P. fluorescens* colonisation was found in immunocompromised individuals (i.e., lung transplant recipients) (Dickson, R.P. *et al.*, 2014). Production of bioactive secondary metabolites, haemolysins, siderophores, type III secretion system, the ability to form biofilms and to adapt to growth at higher temperatures are functional features that have been associated with the ability to cause disease in humans (Mazurier, S. *et al.*, 2015; Scales, B.S. *et al.*, 2014). Moreover, *P. fluorescens* produces pseudomonic acids such as mupirocin, which is used for prevention of methicillin-resistant *Staphylococcus aureus* infections (Sutherland, R. *et al.*, 1985). Based on the evaluation, EFSA declined QPS status to *P. fluorescens* (EFSA BIOHAZ Panel *et al.*, 2017).

Internal literature reviews were also conducted to evaluate the safety of *P. fluorescens*. These evaluations did not reveal any new information than what has already been found by OECD and EFSA.

In addition to the literature reviews described above, *in vivo* studies have been conducted with *P. fluorescens* Biotype A⁴. The U.S. EPA conducted two *in vivo* studies to evaluate the possible health concerns associated with the use of *P. fluorescens* as a microbial pest control agent (George, S.E. *et al.*, 2000; George, S.E. *et al.*, 1999). The results of the study by George and coworkers (George, S.E. *et al.*, 1999) demonstrated that *P. fluorescens* (b) (4), a Biotype A strain) was eliminated from the lungs, cecum, small and large intestine by two days post-treatment. *P. fluorescens* was detected in the liver and mesenteric lymph node three hours after treatment but had disappeared completely from the tissue within two days of treatment. No mortality in the mice was noted at bacterial concentrations as high as 5.0 x 10⁸ CFU/mouse although some mortality was observed at excessively high (~10⁹/mouse) bacterial concentrations.

BASF Enzymes LLC Page 64 of 98

³ The QPS assessment was developed to provide a harmonized, generic pre-assessment to support safety risk assessments performed by EFSA's Scientific Panels. Microorganisms given QPS status have reduced regulatory burden in future submissions made to EFSA.

⁴ Under current taxonomic standards, *P. fluorescens* Biotype A is equivalent to *P. fluorescens* Biovar I.

In the second study, male CD-1 mice were treated perorally with an average dose of 1.78 x 108 CFU of *P. fluorescens* ((b) (4), a Biotype A) per mouse (George, S.E. *et al.*, 2000). *P. fluorescens* was recovered in the intestinal tract after three hours but was completely cleared after the first day. *P. fluorescens* was detected in the lungs, intestinal tract (small, large, cecum), mesenteric lymph node (MLN), spleen, and liver three hours after treatment but had completely cleared from all organs and tissues two days after treatment. At the completion of the study, all mice treated with *P. fluorescens* appeared healthy and conventional indicators of morbidity, such as ruffled fur, lethargy, weight loss, conjunctivitis, were not present.

Moreover, the pathogenicity and toxigenic potential of orally administered *P. fluorescens* biovar I, strain (b) (4) was evaluated in Balb/c mice (Landry, T.D. *et al.*, 2003). (Please note that strain (b) (4) is the parental strain of *P. fluorescens* BD50104.) Test material was administered by oral gavage in a suspension of bacteria formulated to contain 6 x 108 or 1 x 108 CFU per mouse. Suitable control groups were included for comparison. Mice were held for up to 21 days, with daily general observations of health. Subgroups of six bacteria-treated mice underwent necropsy on days two, four, and seven; and liver, spleen, MLN, large bowel, small bowel, and cecum were sampled for measuring bacteria. A subgroup of control mice underwent necropsy on day one.

The ability of the test strain, (b) (4), to infect mice was measured by the recovery of the dosed strain from selected organs and tissues. Oral exposure of *P. fluorescens* resulted in detectable levels of pseudomonads in all mice examined, although significant heterogeneity was noted on day two in the number of CFU recovered on the selective medium within each subgroup of mice. No mortality was observed over a 21-day period following oral administration. Infection with *P. fluorescens* did not result in any clinical signs of morbidity such as ruffled fur or lethargy during the 21-day period. The animals appeared healthy and did not exhibit weight loss, as the body weights of the infected animals were not significantly different from the uninoculated controls. Oral administrations of high doses of *P. fluorescens* biovar I strain (b) (4) resulted in the translocation of the test strain to the MLN, spleen, and liver of adult male Balb/c mice. The test strain did not appear to be infectious, and the microorganisms were eliminated from these tissues within four days of exposure. Microorganism capable of growth on Pseudomonas Isolation Agar (PIA) plates were also detected in the bowels and ceca. Elimination of the test strain from the bowels and cecum was difficult to discern, since the normal microbial flora of the uninoculated control mice produced a high level of background CFU on PIA plates.

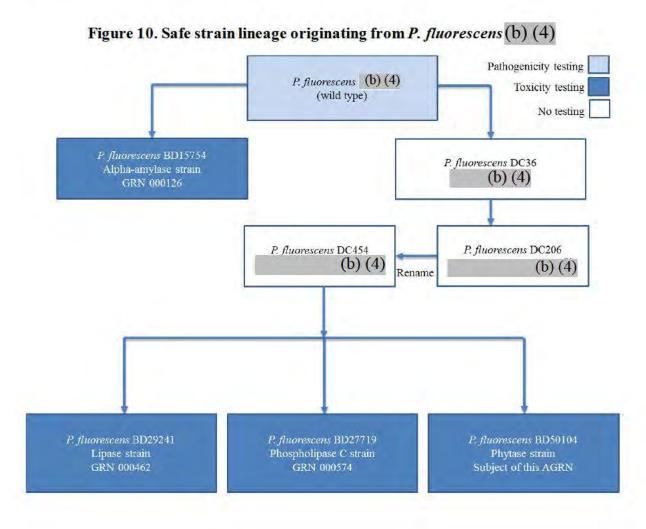
BASF Enzymes LLC Page 65 of 98

Bacterial clearance requires an intact and functional immune system that incorporates a cascade of immune responses. In this animal model, bacterial clearance provided an indication of the interaction between the potential pathogenicity of the invading microorganism and the total host immune capability. Similar results were reported by George *et al.* (2000): there was a rapid clearance of *P. fluorescens* from the MLN, spleen, and liver in male CD-1 mice treated orally with high levels (~10⁸ CFU/mouse) of this microbial agent. George *et al.* noted some mortality at extremely high levels (~10⁹ bacteria/mouse) following *intra nasal* administration.

Additionally, published (Pieniazek, J. *et al.*, 2017) and corroborative utility studies conducted with the granular formulation of the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) demonstrated that the product is safe for use in poultry. Please see Part 2 Section D for more information on these studies.

Lastly, toxicology and genotoxicity tests conducted using enzyme preparations produced by *P. fluorescens* (b) (4) derivatives have determined that the test materials do not contain toxic or genotoxic substances (FDA Center for Food Safety and Applied Nutrition, 2015; Halich, R. *et al.*, 2012; Landry, T.D. *et al.*, 2003). Toxicology and genotoxicity studies were conducted using test material of the phytase 50104 enzyme produced *P. fluorescens* BD50104 (e.g., lyophilized phytase 50104 enzyme preparation without formulation ingredients also known as VR003). These studies also demonstrate that the test material does not contain any toxic or genotoxic substance (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015).

In summary, the lack of pathogenicity and the lack of toxicity noted above in the published *in vivo* studies demonstrate that *P. fluorescens* Biovar I strains, including those strains derived from *P. fluorescens* Biovar I (b) (4), are non-toxigenic and non-pathogenic.


3. Safe strain lineage

The production organism used to produce the phytase 50104 enzyme preparation in CIBENZA® PHYTAVERSE® L10 and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme products, i.e., *P. fluorescens* BD50104, is derived from a safe strain lineage originating from *P. fluorescens* (b) (4).

As described above in Part 6 Sections C.1 and C.2, *P. fluorescens* is non-pathogenic and non-toxigenic. More specifically, *P. fluorescens* (b) (4) has been found to be non-pathogenic and non-toxigenic (Landry, T.D. *et al.*, 2003). The genotoxicity and oral toxicity studies conducted repeatedly on the enzyme preparations produced using (b) (4) and its derivatives as the host

BASF Enzymes LLC Page 66 of 98

organisms (including the studies conducted on the phytase 50104 enzyme that is the subject of this AGRN) (FDA Center for Food Safety and Applied Nutrition, 2015; Halich, R. et al., 2012; Krygier, S. et al., 2014; Krygier, S. et al., 2015; Landry, T.D. et al., 2003) confirm that P. fluorescens (b) (4) and its derivatives are non-toxigenic. These enzyme preparations have been assessed by the Pariza and Johnson Decision Tree and were the subject of regulatory submissions (FDA Center for Food Safety and Applied Nutrition, 2003a; FDA Center for Food Safety and Applied Nutrition, 2013; FDA Center for Food Safety and Applied Nutrition, 2015). MB101 and its derivatives have been used safely as production organisms for food enzymes. These data support and establish the safe strain lineage originating from P. fluorescens MB101 as described in Pariza and Cook (2010). (Please see Figure 10 and Table 8.)

BASF Enzymes LLC Page 67 of 98

Table 8. Human and animal food enzymes derived from *P. fluorescens* MB101 strain lineage

Enzyme	Production Organism	Recipient Strain	Safety Studies	Published Studies	Current Use
Alpha-amyhse	P. fluorescens BD15754 ^a	P. fluorescens (b) (4)	Ames assay; chromosomal aberrations assay, in vitro; mouse micronucleus assay, in vivo; acute oral toxicity in rats; DRF oral toxicity (14-day) in rats); subchronic (90- day) oral toxicity in rats	Yes (Landry, T.D. et al., 2003)	Human food (GRN 000126)
Lipase	P. fluorescens BD29241	P. fluorescens DC454	Ames assay; chromosomal aberrations assay, in vitro; mouse micronucleus assay, in vivo; acute oral toxicity in rats; DRF oral toxicity (14-day) in rats); subchronic (90- day) oral toxicity in rats	Yes (Halich, R. et al., 2012)	Human food (GRN 000462)
Phospholipase C	P. fluorescens BD27719	P. fluorescens DC454	Ames assay; chromosomal aberrations assay, in vivo; subchronic (90- day) oral toxicity in rats	No ^b	Human food (GRN 000574)
Phytase	P. fluorescens BD50104	P. fluorescens DC454	Ames assay; chromosomal aberrations assay, in vitro; mouse micronucleus assay, in vivo; acute oral toxicity in rats; subchronic (90- day) oral toxicity in rats	Yes (Krygier, S. et al., 2014; Krygier, S. et al., 2015)	Subject of this AGRN for animal food

^a The production organism is also known as *P. fluorescens* DC88 or BD5088.

D. Safety of the Donor Organism

1. Introduction

This discussion addresses the safety of the bacterium *Escherichia coli* K-12 strain MG1655 (CGSC strain # 6300 / (b) (4)) used as the donor organism of the phytase gene and the

BASF Enzymes LLC Page 68 of 98

^b No genotoxicity or oral toxicity effects were noted in any of the studies. Results of the safety studies are summarized in GRN 000574.

discussed are the origin and taxonomy of the strain, its pathogenic/toxigenic potential, and a risk assessment of the intended use of this bacterium as reported in the scientific literature and elsewhere.

2. Taxonomy

Escherichia coli is arguably the most well-studied bacterial species because of its extensive use in studies of physiology, genetics and biochemistry. This species, as well as the family to which it belongs, i.e., Enterobacteriaceae, are found throughout the world in water, soil and, importantly, as normal intestinal flora in humans and other animals (Bettelheim, K.A., 1992).

Enterobacteriaceae are Gram-negative, oxidase-negative, straight, rod-shaped bacteria that do not produce spores. They are chemoorganotrophic and are capable of both respiratory and fermentative metabolism. Growth temperatures range from 22-39 °C. Currently, there are 29 recognized genera and over 100 named species (Brenner, D., 1992).

Escherichia coli was first described in 1885 by Theodore Escherich after isolation from the feces of neonates. Since that initial description, *E. coli* has been considered as a major commensal organism of the large intestine, representing about 1% of the total fecal bacterial population (Muhldorfer, I. et al., 1996). As a result, this microorganism is always likely to be found in sewage and is, thus, an indicator microorganism for assessing the level of fecal contamination found in water for human consumption (American Water Works Association, 2006).

Historically, the classification of strains, until the advent of modern molecular techniques, was largely founded on the basis of serological determinations made using cell surface antigens. In more recent years, the phylogenetic characterization of strains of *E. coli* have been more precisely established by using changes in the primary structure of DNA, RNA, or proteins as indicators of relatedness. In addition, such phylogenetic relationships can also be inferred by the determination of the presence or absence of gene sequences, which reflect the current understanding of the fluid nature of bacterial genomes that occurs as a result of horizontal transmission.

3. Laboratory use of *E. coli* K-12

E. coli strains have been used for the last 60 years in the study of bacterial physiology and genetics. The two most commonly used in the early molecular studies of this organism were two

BASF Enzymes LLC Page 69 of 98

wild-type strains called K-12 and B. Historically, strain K-12 was used in early experiments on conjugation and recombination while strain B was used for the study of phage biology and genetics (Swartz, J.R., 1996). The use of strain K-12 eventually came to predominate due to its use in the study of recombination and the generation and mapping by conjugation of a large number of mutants in metabolic pathways that aided both the studies of bacterial genetics and physiology. Since *E. coli* K-12 has been widely used extensively in research and in many laboratories throughout the world for decades without inducing any harm, *E. coli* K-12 is generally recognized by experts as safe.

4. Risk assessment of E. coli K-12

Although there has been no indication over the sixty years of intensive laboratory study that strain K-12 has the ability to cause disease or have toxigenic potential, it has been only recently that explicit studies in regard to this issue have been carried out.

These studies have focused predominantly on the determination of the presence or absence of known virulence factors, i.e., properties of a microorganism that may contribute to its pathogenic potential, since in recent years it has become apparent that certain *E. coli* strains clearly have the potential to cause disease. Accordingly, the description of the virulence factors of these bacteria has become an area of intense study. Examples of these virulence factors include:

- capsular polysaccharides which can attenuate or modulate the immune response of the host organism;
- 2) extended lipopolysaccharide O-antigens (so called smooth strains) which can affect the ability of the complement pathway to promote cell killing and opsonization;
- 3) fimbriae or pili with the ability to promote specific attachment to epithelial surfaces in mucosal tissue:
- 4) non-fimbrial cell surface adhesions that promote intimate attachment with cell surfaces through interactions with host proteins;
- 5) exotoxins that modulate signal transduction pathways or affect cell motility and morphology; and
- 6) associated protein export pathways that allow for the direct injection of bacterial toxins into the cytoplasm of host cells.

In a study of *E. coli* strains including representatives of the K-12 strain, polymerase chain reaction (PCR) amplification demonstrated the absence of defined virulence genes that are present

BASF Enzymes LLC Page 70 of 98

in known pathogenic isolates of this microorganism (Kuhnert, P. *et al.*, 1997). The authors concluded that the K-12 strains commonly used in the laboratory are devoid of virulent factors and should be considered nonpathogenic.

A more direct study of the pathogenic potential of K-12 strains was conducted using both a BALB/c mouse and chick gut model. In this study, these two strains were found to be unable to express long-chain lipopolysaccharide (O-antigen) and were serum-sensitive (i.e., susceptible to complement killing). In addition, they were unable to persist or survive in selected mouse tissues or the gut. In the chick model, the two strains were unable to invade the spleen, which is a hallmark of *E. coli* strains able to cause systemic infections. The authors concluded that the K-12 strains do not possess the recognized pathogenic mechanisms and should be considered nonpathogenic (Chart, H. *et al.*, 2000).

As mentioned above, K-12 became the predominant microorganism of choice for recombinant DNA research because of the great deal of information about recombination and biochemical genetics that was developed using this strain. For this reason, a large body of information was developed that demonstrated that K-12 was safe for recombinant DNA use. Such information resulted in the NIH Guidelines (prepared by the United States National Institute of Health) listing K-12 as safe for recombinant use, as detailed in Appendix C-II-A of the NIH guidelines (NIH, 2019). Such information also resulted in U.S. EPA indicating that K-12 "has a history of safe use" (vis-à-vis recombinant use) (EPA, 1997). Thus, U.S. EPA listed *E. coli* K-12 as safe for use as a recipient microorganism in biotech activities. (40 CFR § 725.420).

5. Summary

In summary, a number of pieces of evidence and expert observations and conclusions demonstrate that the *E. coli* strain K-12 is officially recognized and considered by experts to be a safe organism with no demonstrated pathogenic/toxigenic properties, including:

- 1) The long-term use of this microorganism in numerous laboratories throughout the world with no reports of illness or disease as a result of its use;
- 2) The absence of genes encoding defined virulence factors as determined by PCR and other molecular methods;
- 3) The lack of pathogenic potential in both a mouse and chick animal model; and
- 4) The inclusion of this strain in the RG1 classification by the NIH Office of Biotechnology Activities and the Recombinant DNA advisory committee.

BASF Enzymes LLC Page 71 of 98

Finally, it should be noted that this submission refers to only two genes (i.e., the phytase gene and the being used from *E. coli* strain K-12.

E. Safety of the Inserted Genetic Material

Pariza's and Johnson's decision tree for evaluating microbial enzyme safety (Pariza, M.W. and Cook, M., 2010; Pariza, M.W. and Johnson, E.A., 2001) asks several questions relating to the introduced DNA of the genetically modified production microorganism. The first question asks if the expressed enzyme product, which is encoded by the introduced DNA, has a safe history of use. While phytases, including *E. coli* based phytases, themselves do have a long history of safe use in animal food (see Part 6 Section B), the specific phytase of this GRAS Notification does not.

The decision tree then asks whether or not the No-Observed-Adverse-Effect-Level (NOAEL) for the test article in appropriate short-term studies is sufficiently high to ensure safety. The results of the safety studies pertinent to the phytase products can be found in Part 6 Section G, and the worst-case dietary exposure calculations are set forth in Part 3 Section A. The calculations verify that the NOAEL is sufficiently high to ensure safety (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015).

The next question asks if the test article is free of transferable antibiotic resistance gene DNA. *P. fluorescens* BD50104 does not contain any antibiotic resistance genes, which has been confirmed by bioinformatics analysis and genomic sequencing (see Part 2 Section B.1.g). Additionally, no detectable antimicrobial activity was found in the phytase 50104 enzyme preparation (see Part 2 Section C.2). Furthermore, the expression plasmid (b) (4)_BD50104 is poorly mobilizable (see Part 2 Section B.1.f). For these reasons, the enzyme preparation made from *P. fluorescens* production strain BD50104 is free of transferable antibiotic resistance gene DNA.

The decision tree then asks whether all other introduced DNA is well-characterized and free of attributes that would render it unsafe for constructing microorganisms to be used in producing food-grade products. The sequences of the introduced DNA, expression vector (b) (4)_BD50104 and(b) (4), are known and their gene products are also known. Bioinformatics analysis was conducted on the expression vector and the host genome. The analysis did not find the expression vector or the host genome to contain genes that code for products that are homologous to known toxins or harmful factors. Bioinformatics analysis was also conducted

BASF Enzymes LLC Page 72 of 98

on (b) (4), its junction region, and at its integration location on the chromosome. None of the putative ORFs generated fortuitously, and none of the ORFs within the (b) (4) expression cassette encoded any toxins or harmful factors (see Appendix 28). In addition, the allergenic potential assessment results for the phytase 50104 protein and the toxicity study results using the test article, VR003, demonstrate that the introduced DNA is free of attributes that would render it unsafe for the proposed use.

The final question relevant to genetic modification that the decision tree asks is whether or not the introduced genetic material is randomly integrated into the chromosome. (b) (4) was integrated into the chromosome. The integration was targeted near the levansurcrase locus. The sequence bordering the integration site of the was determined and showed that the sequence into the chromosome near the *lsc* locus in the recipient strain DC454. The expression vector introduced into strain BD50104 is a self-replicating, extrachromosomal plasmid and thus is not likely to be integrated into the chromosome. Therefore, random integration into the chromosome is highly unlikely.

is a structural analog of lactose, which removes a repressor from the lac operon to induce gene expression. (b) (4) induction is a method of regulating protein synthesis by triggering transcription of the lac operon or a promoter engineered to include lac operator. To understand any potential effects of (b) (4) on *P. fluorescens* production strains and based on the current knowledge how (b) (4) regulates gene expression (Chew, L. et al., 2005; (b) (4) , a BLAST search was performed to identify if lac operator sequence as defined by Gilbert and Maxam (Gilbert, W. and Maxam, A., 1973) is present in the host (DC454) of the production strain. The BLAST result showed no hit at all, which indicates that there are no host native genes regulated by the lac operator and, theoretically, (b) (4) has no direct impact on host native genes. (b) (4) will only induce the promoter which is introduced on the expression plasmid and used to control the production of desired enzymes. In addition, no effects were noted in the toxicity studies conducted on phytase from *P. fluorescens* strain BD50104 which further supports the understanding that no off-target effects are expected from (b) (4) induction.

The answers to the above questions indicate that there are no safety concerns regarding the production strain and introduced DNA here in question; thus, the criteria used in the decision tree

BASF Enzymes LLC Page 73 of 98

for evaluating the safety of a new enzyme (i.e., phytase 50104 enzyme) have been met. This is illustrated in Figure 11.

Figure 11. Pariza and Johnson decision tree

The following analysis is based on the Pariza and Johnson decision tree as adapted for animal feed by Pariza and Cook (Pariza, M.W. *et al.*, 2001; Pariza, M.W. *et al.*, 2010). Decision points that do not pertain are included for completeness but crossed out.

- 1. Is the production strain genetically modified? **YES** If yes, go to 2. If no, go to 6.
- 2. Is the production strain modified using rDNA techniques? **YES** If yes, go to 3. If no, go to 3b.
- 3. Issues relating to the introduced DNA are addressed in 3a-3e.

<u>3a.</u> Do the expressed enzyme product(s) which are encoded by the introduced the DNA have a history of safe use in food or feed? **No, this specific phytase does not have a history of safe use in food or feed. However, other phytases, including those derived from** *E. coli***, do have a history of safe use in food or feed. If yes, go to 3c. If no, go to 3b.**

<u>3b.</u> Is the NOAEL for the test article in appropriate short-term oral studies sufficiently high to ensure safety? **YES**

If yes, go to 3c. If no, go to 12.

<u>3c.</u> Is the test article free of transferable antibiotic resistance gene DNA? **YES** If yes, go to 3e. If no, go to 3d.

3d. Does the resistance gene(s) code for resistance to a drug substance used in treatment of disease agents in man or animal? If yes, go to 12. If no, go to 3e.

3e. Is all other introduced DNA well characterized and free of attributes that would render it unsafe for constructing microorganisms to be used to produce feed-grade products? **YES** If yes, go to 4. If no, go to 12.

- 4. Is the introduced DNA randomly integrated into the chromosome? **NO** If yes, go to 5. If no go to 6.
- 5. Is the production strain sufficiently well characterized so that one may reasonably conclude that unintended pleiotropic effects which may result in the synthesis of toxins or other unsafe metabolites will not arise due to the genetic modification method that was employed? If yes, go to 6. If no, go to 7.
- 6. Is the production strain derived from a safe strain lineage, as previously demonstrated by repeated assessment via this evaluation? YES, the production strain is derived from a safe strain lineage, as described in Part 6 Section C.3.

If yes, the test article is ACCEPTED. If no, go to 7. **The test article is ACCEPTED.**

- 7. Is the organism nonpathogenic?

 If yes, go to 8. In no, go to 12.
- 8. Is the test article free of antibiotics?
- If yes, go to 9. If no, go to 12.
- 9. Is the test article free of oral toxins known to be produced by other members of the same species? If yes, go to 11. If no, go to 10.
- 10. Are the amounts of such toxins in the test article below levels of concern?

 If yes, go to 11. If no, go to 12.
- 11. Is the NOAEL for the test article in appropriate oral studies sufficiently high to ensure safety? If yes, the test article is ACCEPTED. In no, go to 12.
- 12. An undesirable trait or substance may be present and the test article is not acceptable for food use. If the genetic potential for producing the undesirable trait or substance can be permanently inactivated or deleted, the test article may be passed through the decision tree again.

BASF Enzymes LLC Page 74 of 98

F. Safety of the Manufacturing Process

As described in Part 2, the phytase 50104 enzyme preparation, which is marketed as CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme products, is made using generally known and accepted methods for the production of microbial enzymes (Aunstrup, K. et al., 1979; Pariza, M.W. and Foster, E.M., 1983). In addition, the CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme products are manufactured in accordance with both current Good Manufacturing Practices (cGMP) for animal food and the 1992 Organization for Economic Co-operation and Development's criteria for Good Industrial Large Scale Practice (GILSP) (OECD, 1997). The CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme products meet the purity requirements for enzyme preparation of *Food Chemicals Codex* and JECFA. Additionally, the published toxicity studies performed using VR003 (Krygier, S. et al., 2014; Krygier, S. et al., 2015) and the published utility studies (Pieniazek, J. et al., 2017) further show that the manufacturing process, including the raw materials used, is safe for use in the production of an animal food enzyme. Accordingly, the manufacturing process for the CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme products should be deemed safe.

G. Safety Studies

As part of the safety assessment, genotoxicity, oral toxicity, and worker safety studies were conducted on the phytase 50104 enzyme test article. The test article production, the studies, and their results are described below in Part 6 Sections G.2, G.3, G.4.a and are published in *Safety evaluation of phytase 50104 enzyme preparation (also known as VR003), expressed in Pseudomonas fluorescens, intended for increasing digestibility of phytase in monogastrics* (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015) (see Appendix 29).

1. Test article production – VR003 (phytase 50104 enzyme)

The test article used to determine the safety of phytase 50104 enzyme was prepared following a process representative of the manufacturing process (including the raw materials) for the commercial enzyme up to, but not including, the final formulation step. The raw materials were

BASF Enzymes LLC Page 75 of 98

of the same quality and quantity (relative to scale) for both the test article production process and for the commercial manufacturing process. The test article was produced in a (b) (4) in accordance with current good manufacturing practices (cGMP) for animal food. The following SOPs were used to produce the test article: (b) (4)

The test article was analyzed for chemical and microbial composition to ensure conformance to the specifications for enzyme preparations, as outlined in the *Food Chemicals Codex*, 8th Edition (U.S. Pharmacopeial Convention, 2012), and the Joint FAO/WHO Expert Committee on Food Additives (FAO/WHO, 2006). The results from the chemical and microbial composition analysis are provided in Krygier *et al.* (2014 and 2015). The test article for phytase 50104 enzyme was designated as VR003 (and used in the safety studies discussed below in Part 6 Sections G.2, G.3, and G.4.a).

2. Genotoxicity studies

a) Bacterial reverse mutation assay (also referred to as the Ames assay)

The purpose of this study was to evaluate the mutagenic potential of the test article, VR003, by measuring its ability to induce reverse mutations at the histidine loci of several strains of *S. typhimurium* (TA98, TA100, TA1535 and TA1537) and at the tryptophan locus of *E. coli* strain WP2 uvrA in the presence and absence of Aroclor-induced rat liver S9. This study was conducted in compliance with ICH Guideline S2(R1) and OECD Guideline 471.

The assay was performed in two phases, using the plate incorporation method. The first phase, the initial toxicity-mutation assay, was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. The second phase, the confirmatory mutagenicity assay, was used to evaluate and confirm the mutagenic potential of the test article.

In the initial toxicity-mutation assay, the maximum dose tested was $5000 \,\mu g$ per plate; this dose was achieved using a concentration of $50 \, mg/mL$ and a $100 \, \mu L$ plating aliquot. The dose levels tested were 1.5, 5.0, 15, 50, 150, 500, 1500 and $5000 \, \mu g$ per plate. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Increases in revertant counts (1.6- to 2.5-fold maximum increases) were observed with some test conditions. However, these increases were not considered to be indicative of mutagenic activity because the revertant counts at the peak of the responses were within the historical vehicle

BASF Enzymes LLC Page 76 of 98

control ranges for each tester strain. Neither precipitate nor toxicity were observed. Based on the findings of the initial toxicity mutation assay, the maximum dose plated in the confirmatory mutagenicity assay was $5000 \,\mu g$ per plate.

In the confirmatory mutagenicity assay, no positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. The dose levels tested were 50, 150, 500, 1500 and 5000 µg per plate. Neither precipitate nor toxicity were observed.

Under the conditions of this study, test article VR003 was concluded to be negative in the Bacterial Reverse Mutation Assay.

b) Chromosomal aberrations in cultured human peripheral blood lymphocytes

The purpose of this study was to evaluate the potential of VR003 to induce structural chromosomal aberrations in HPBL in the presence and absence of an exogenous metabolic activation system. This study was conducted using standard procedures (Evans, H.J. and O'Riordan, M.L., 1975; Galloway, S.M. *et al.*, 1994; Preston, R.J. *et al.*, 1981; Swierenga, S.H.H. *et al.*, 1991) and in compliance with OECD Guideline 473.

In the preliminary toxicity assay, the doses tested ranged from 0.5 to 5000 μ g/mL. Substantial toxicity (at least 50% reduction in mitotic index relative to the vehicle control) was not observed at any dose level in the non-activated 4 and 20-h exposure groups. Substantial toxicity was observed at dose levels \geq 50 μ g/mL in the S9 activated 4-h exposure group. Based on these findings, the doses chosen for the chromosome aberration assay ranged from 350 to 5000 μ g/mL for the non-activated 4- and 20-h exposure groups, and from 2.5 to 5000 μ g/mL for the S9-activated 4-h exposure group.

In the chromosome aberration assay, substantial toxicity was not observed at any dose level in the non-activated 4-h exposure group. Substantial toxicity was observed at dose levels $\geq 150 \,\mu\text{g/mL}$ in the S9 activated 4-h exposure group and at dose levels $\geq 3500 \,\mu\text{g/mL}$ in the non-activated 20-h exposure group. The highest dose analyzed under each treatment condition either produced an approximately 50% reduction in mitotic index or was the highest dose tested in the definitive chromosome aberration assay, which met the dose limit as recommended by the OECD testing guidelines for this assay.

BASF Enzymes LLC Page 77 of 98

No significant or dose dependent increases in aberrant metaphases, or polyploidy or endoreduplicated cells, were observed in treatment groups with or without S9 (p > 0.05; Fisher's Exact and Cochran–Armitage tests). All vehicle control values were within historical ranges, and the positive controls induced significant increases in the percent of aberrant metaphases ($p \le 0.01$). Thus, all criteria for a valid study were met.

These results indicate VR003 was negative in the *in vitro* chromosome aberration assay in HPBL under the conditions, and according to the criteria of the study protocol.

c) Mouse micronucleus assay

The objective of this study was to evaluate test article VR003 for *in vivo* clastogenic activity and/or disruption of the mitotic apparatus by detecting micronuclei in polychromatic erythrocytes (PCE) cells in mouse bone marrow (Heddle, J.A., 1973; Heddle, J.A. *et al.*, 1983; Schmid, W., 1975). This study was conducted in compliance with ICH Guideline S2(R1) and OECD Guideline 474.

In the dose range finding assay (DRF), the test article was formulated in distilled water with a maximum dose of 2000 mg/kg. The dose levels tested were 500, 1000 and 2000 mg/kg in three animals/sex/group and observed for up to 2 days after dosing for toxic signs and/or mortality. Based upon these results, the high dose for the definitive assay was selected to be 2000 mg/kg, which is the limit dose, based on the ICH and OECD regulatory guidelines.

The definitive assay dose levels tested were the same as the DRF: 500, 1000 and 2000 mg/kg. Since no differences in clinical signs of toxicity were observed between the sexes, only male mice were used for the definitive assay. Groups 1 and 4 consisted of 10 animals designated for either 24 or 48 h bone marrow collections and Groups 2, 3 and 5 consisted of 5 animals designated for 24 h bone marrow collection. Following scheduled euthanasia times, femoral bone marrow was collected; bone marrow slides were prepared and stained with acridine orange. Bone marrow cells [polychromatic erythrocytes (2000 PCEs/animal)] were examined microscopically for the presence of micronuclei (micronucleated PCEs; MPCEs) and statistical analysis of data was performed using the Kastenbaum−Bowman Tables (binomial distribution, p ≤0.05). Scoring was based upon the micronucleated cell, not the micronucleus; thus, occasional cells with more than one micronucleus were counted as one micronucleated PCE (mnPCE), not two (or more) micronuclei. The ratio of polychromatic erythrocytes (PCEs) to total erythrocytes (EC) in the test

BASF Enzymes LLC Page 78 of 98

article groups relative to the vehicle control groups was also evaluated to reflect the test article's cytotoxicity.

The test article did not induce signs of clinical toxicity in the animals treated at dose levels up to 2000 mg/kg. The test article did not induce statistically significant increases in micronucleated PCEs at any test article dose (500, 1000, 2000 mg/kg). In addition, the test article was not cytotoxic to the bone marrow (i.e., did not produce statistically significant decreases in the PCE:NCE ratio) at any dose of the test article.

Under the conditions of this study, the administration of test article VR003 at doses up to and including a dose of 2000 mg/kg was concluded to be negative in the Micronucleus assay.

3. Oral toxicity studies

a) Acute oral toxicity study in the rat – up-and-down procedure

The purpose of this study was to assess the toxicity of test article VR003 following a single oral dose to the rat. The results of the study are believed to be of value in predicting the likely toxicity of the test article in man by the oral route. The study was conducted in compliance with OECD Guideline 425 and OPPTS Guideline 870.1100.

Initially, one female Sprague Dawley rat was dosed at 2000 mg/kg. No mortality was observed, and dosing continued in four additional females at 2000 mg/kg. A total of five females were dosed. Mortality checks were made once daily. Clinical observations were recorded prior to dosing, as well as at 30 min, 4 h, post-dose, and daily thereafter through Day 15. Body weights were recorded on the day of dosing (Day 1), and on Days 8 and 15. All rats were euthanized by CO₂ asphyxiation and necropsied on Day 15.

For the dose of 2000 mg/kg, no mortality was observed. All animals appeared normal throughout the study at 2000 mg/kg. No biologically relevant effect was observed in the body weights between Days 8 and 15; except one animal lost 7 g of weight between Days 8 and 15 and one animal did not have any change in weight between Days 8 and 15. Terminal necropsy revealed no visible lesions in any of the animals at 2000 mg/kg.

Based on the results of this study, the oral LD_{50} for test article VR003 in rats was estimated to be greater than 2000 mg/kg.

BASF Enzymes LLC Page 79 of 98

b) 90-day oral toxicity study in rats

The purpose of this study was to evaluate the toxicity of the test article, VR003, when administered orally, via gavage, once daily to Sprague Dawley rats for a minimum of 90 consecutive days (FDA, 2007; Gad, S.C., 1995; Speid, L.H. *et al.*, 1990). This study was conducted in compliance with OECD/OCDE Guideline 408.

The test article, VR003, was supplied by the Sponsor as a light brown lyophilized powder. The test article was then prepared into dosing formulations for oral administration via gavage. One hundred sixty experimentally naïve Sprague Dawley rats (80 males and 80 females), 6–7 weeks old and weighing 136–225 grams for males and females at the outset of the study were assigned to treatment groups.

Animals were dosed at 0, 500, 1000, and 2000 mg/kg once daily for 90 consecutive days. Mortality/morbidity was observed twice daily (a.m. and p.m.) on Day 1 to Day 90 and once prior to euthanasia on Day 91. Body weights were recorded at the time of randomization/selection, prior to dose administration on Days 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, and following the final dose on Day 90. Food consumption was recorded weekly. Ophthalmology examinations were performed before treatment initiation and during the final two weeks of treatment. Blood for evaluation of hematology, coagulation and clinical chemistry was collected prior to terminal sacrifice on Day 91. All surviving animals were sacrificed on Day 91. Selected tissues were harvested at necropsy, selected organs weighed, and selected tissues from the control and high dose groups and all animals that died early evaluated microscopically.

There was no test article-related mortality noted during this study. There were no clinical signs of toxicity noted during the study that were clearly related to the administration of VR003. There were no test article-related changes in group mean body weight or body weight gain for the 500 or 2000 mg/kg males or any of the female dose groups. A statistically significant decrease in group mean body weights was noted for the 1000 mg/kg males from Day 15 to 85. This was most likely due to a statistically significantly decreased group mean body weight gain for this group on Day 15 as well as reduced food consumption values throughout this time frame. The significance of this finding is unknown as a similar trend was not observed in the higher dose group.

The 2000 mg/kg males had statistically significantly decreased group mean food consumption values on Days 57, 64, 85 and 90 while the 2000 mg/kg females had statistically significantly decreased group mean food consumption values on Days 22, 29, and 90, but the group

BASF Enzymes LLC Page 80 of 98

mean bodyweights for both males and females were not different. The 1000 mg/kg males had statistically significantly reduced group mean food consumption values from Day 15–43 to 57–78 with a concomitant decrease in mean bodyweight. Since this was not a dose dependent trend, the significance is unknown.

There were no test article-related ophthalmological findings noted during the study. There were no test article-related changes in hematology parameters, red blood cell morphology or coagulation parameters. There were no test article-related changes in coagulation parameters.

Cholesterol values were statistically significantly increased for the 2000 mg/kg males. Sodium values were statistically significantly decreased for the 1000 and 2000 mg/kg males. Chloride values were statistically significantly reduced for the 2000 mg/kg males. The limited magnitude of these changes, the fact that they occurred in only one sex, as well as the fact that values were still within historical control values for the laboratory, therefore not considered relevant.

No test article-related macroscopic observations were noted at the terminal sacrifice on Day 91. All gross observations were considered incidental background findings of no toxicologic significance.

There were no definitive test article-related changes in group mean organ weight or organ to body or brain weight ratios.

No toxicologically important test article-related histopathological findings were noted in any tissue.

Based on the findings in this study, the No Observed Adverse Effect Level (NOAEL) following administration of 500, 1000 or 2000 mg/kg test article VR003 once daily by oral gavage for 90 days to Sprague Dawley rats is at least 2000 mg/kg. Findings at 2000 mg/kg were limited to minor changes in food consumption values on a few days during the 90-day dosing period and a few clinical chemistry changes for males that were minor in magnitude and within historical control values for the laboratory, therefore not considered relevant.

4. Worker safety studies

a) Using VR003 (phytase 50104 enzyme)

The test article, VR003, has been evaluated by independent testing laboratories for potential health hazards with respect to dermal exposure and eye exposure. These include a primary eye irritation study, a primary dermal irritation study, a delayed contact hypersensitivity

BASF Enzymes LLC Page 81 of 98

study. All studies conformed to Good Laboratory Practice Regulations as described in 40 CFR Part 492, OECD Principles of Good Laboratory Practice, and ENV/MC/CHEM(98)17. The results of these studies are summarized in the following table and are published in Krygier *et al.*, 2014 and 2015 (see Appendix 29).

Table 9. Results of worker safety studies using VR003

Study	Guidelines for Study Design	Test Object	Concentration of VR003	Result
Primary eye initation	OPPTS 870.2400 and OECD 405	New Zealand White rabbits (3 female)	10%	EEC Irritation Rating: Non- irritating GHS Classification: Non-irritating Kay & Calandra Criteria: Non- irritating
Primary dermal irritation	OPPTS 870.2500 and OECD 404	New Zealand White rabbits (3 males)	10%	EEC Irritation Rating: Non- irritating GHS Classification: Non-irritating Primary Irritation Index: 0.0
Delayed contact hypersensitivity (Buehler method) Buehler method) OPPTS 870.2600; OECD 406; and EEC Methods for Skin Sensitization, Method B.6		Guinea pigs (10 male and 10 female)	10%	Did not elicit a delayed contact hypersensitivity response

5. Safety margin calculation

The safety margin calculation for poultry is discussed and provided in Part 3 Section A.1. Briefly, the safety margin calculations for poultry is 1675. The safety margins indicate that the worst-case potential animal exposure (poultry) to the phytase 50104 enzyme preparation is well below the NOAEL observed in the subchronic (90-day) oral toxicity study.

H. Safety of the CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and the CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

1. To animals

Phytase 50104 enzyme is a protein and, like any protein, is expected to be digested into its amino acid constituents in the animal's gastro-intestinal (GI) tract. When the enzyme is digested in the GI tract, it is broken down into its amino acid constituents making it indistinguishable from other food molecules; therefore, the potential for residues in edible animal tissue is minimal. The

BASF Enzymes LLC Page 82 of 98

primary safety concern is the possible presence of compounds produced or derived from the production organism (Association of American Feed Control Officals (AAFCO), 2021a).

Pariza and Foster (1983), Pariza and Johnson (2001), and Pariza and Cook (2010) are the three papers that set forth the gold standard used by the enzyme industry for assessing the safety of enzyme products. The primary consideration in the safety evaluation of microbial enzyme preparations to be used in human and animal food, in the Pariza decision tree and as noted in the AAFCO OP, is the safety of the production organism. The phytase 50104 enzyme preparation was evaluated according to the Pariza and Johnson decision tree as adapted for animal feed by Pariza and Cook (Pariza, M.W. and Cook, M., 2010; Pariza, M.W. and Johnson, E.A., 2001) (see Figure 11) and as briefly described below:

- The NOAEL for the test article in the oral toxicity studies is sufficiently high enough to ensure safety (see Krygier *et al.* (2014, 2015) and Part 6 Section G.5).
- The test article is free of transferable antibiotic resistance gene DNA (see Part 2 Sections B.1.f and B.1.g).
- All the introduced DNA is well characterized and free of attributes that would render it unsafe for the production organism to be used to produce feed-grade products (see Part 6 Section E).
- The introduced DNA is not randomly integrated in the chromosome (see Part 2 Section B.1).
- The production organism is derived from a safe strain lineage (see Part 6 Section C.3).

Therefore, the phytase 50104 enzyme preparation is found to be acceptable for use in animal food.

Additionally, as noted in Part 6 Section F, the products, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, are manufactured according to both cGMPs for animal food and the 1992 OECD criteria for GILSP. The products also meet the purity requirements for enzyme preparations as outlined in Food Chemicals Codex and JECFA.

Furthermore, *E. coli* based phytases have been proven to be efficacious for increasing the availability of phytin-bound phosphorus in poultry diets (Adeola, O. *et al.*, 2004; Onyango, E.M. *et al.*, 2005; Pillai, P.B. *et al.*, 2006; Ribeiro, V. *et al.*, 2016), and, therefore the utility of these

BASF Enzymes LLC Page 83 of 98

enzymes does not pose a safety concern. The phytase 50104 enzyme preparation is no different. As discussed in Part 2 Section D.1, the results of the poultry utility studies indicate and support the addition of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme between 500 to 2000 U/kg of feed containing sub-optimal levels of non-phytate phosphorus.

Therefore, there are no safety concerns for animals (poultry) resulting from the use of the formulated enzyme products, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme.

2. To humans

As shown in Figure 11 and as described briefly below, the phytase 50104 enzyme preparation has passed the safety assessment of Pariza and Johnson (Pariza, M.W. and Cook, M., 2010; Pariza, M.W. and Johnson, E.A., 2001) and is acceptable for use in animal food:

- The NOAEL for the test article in the oral toxicity studies is sufficiently high enough to ensure safety (see Krygier *et al.* (2014, 2015) and Part 6 Section G.5).
- The test article is free of transferable antibiotic resistance gene DNA (see Part 2 Sections B.1.f and B.1.g).
- All the introduced DNA is well characterized and free of attributes that would render it unsafe for the production organism to be used to product feed-grade products (see Part 6 Section E).
- The introduced DNA is not randomly integrated in the chromosome (see Part 2 Section B.1).
- The production organism is derived from a safe strain lineage (see Part 6 Section C.3).

Therefore, the products, CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, do not pose any significant risk of harm to humans who consume edible products from animals that consume the phytase 50104 enzyme preparation.

As demonstrated by the worker safety studies conducted with the phytase 50104 enzyme preparation (see Part 6 Section G.4.a) and as further supported by the allergenic assessment of the phytase 50104 enzyme (see Part 6 Section B.3), the products, CIBENZA® PHYTAVERSE® L10

BASF Enzymes LLC Page 84 of 98

Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, do not pose a significant risk of harm to humans who might come into physical contact with the products. However, notwithstanding this conclusion, all enzymes are considered respiratory sensitizers. Therefore, the Safety Data Sheet (SDS) for each product conveys the appropriate hazard communications including information on safe handling and personal protection.

I. Results and Conclusion

The phytase 50104 enzyme preparation, which is marketed as CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, and is the subject of this GRAS Notification, is derived from a genetically modified strain of *P. fluorescens* DC454 that contains an expression vector, (b) (4)_BD50104, which includes the phytase 50104 gene.

BASF Enzymes LLC has determined the phytase 50104 enzyme preparation to be GRAS, through scientific procedures, when used as intended in animal food. The CIBENZA® PHYTAVERSE® L10 Phytase Enzyme product will be added in a post-pelleting application to complete pelleted feeds. The CIBENZA® PHYTAVERSE® G10 Phytase Enzyme product will be added to complete mash feeds, complete pelleted feeds, and premixes. The recommended level of supplementation of each product in a complete, poultry feed is 500 to 2000 U/kg of feed.

The safety of the phytase 50104 enzyme preparation has been evaluated using the safety scheme of Pariza and Johnson as adapted for animal feed by Pariza and Cook (Pariza, M.W. and Cook, M., 2010; Pariza, M.W. and Johnson, E.A., 2001) and others (FAO/WHO, 2006; International Food Biotechnology Council, 1990; OECD, 1997). Published and unpublished information is provided which assesses the safety of the following: recipient strain; introduced genetic material; production microorganism; phytases and their use in animal food; the manufacturing process; and the final, formulated phytase 50104 enzyme preparation.

The safety of the production organism is a prime consideration when assessing the probable degree of safety of an enzyme preparation intended for use in food. If the enzyme production organism is nonpathogenic and nontoxigenic, and the enzyme is made according to current good manufacturing practices (cGMP) for animal food, then one can conclude the food ingredient made from the production microorganism is safe to consume. *P. fluorescens* is well-characterized and complies with the OECD criteria for Good Industrial Large Scale Practice. *P. fluorescens* has been

BASF Enzymes LLC Page 85 of 98

used in a variety of industrial applications (Chew, L.C. *et al.*, 2005; Herrera, G. *et al.*, 1994; Warren, G.J., 1987; Wilson, M. and Lindow, S.E., 1993). The U.S. EPA established an exemption from the requirement of tolerance for residues of *P. fluorescens* in or on the raw agricultural commodity mushrooms (EPA, 1994). More recently, the U.S. EPA issued an exemption from the requirements of tolerance for residues of *P. fluorescens* strain CL145A, which is a Biovar I strain, in or on all food commodities when applied as a molluscicide (EPA, 2011). Furthermore, the production organism, BD50104, is derived from a safe strain lineage originating from *P. fluorescens* MB101. Derivatives of *P. fluorescens* Biovar I, strain MB101 have been reviewed by a GRAS Panel and/or by the U.S. FDA and were found to be safe microorganisms for the production of enzymes used in food production (FDA Center for Food Safety and Applied Nutrition, 2003a; FDA Center for Food Safety and Applied Nutrition, 2015).

The introduced DNA is well-characterized and shown to be safe, as further described in Part 2 Section B.1. Additionally, the production organism BD50104 is known to be free of antibiotic resistance markers. The modified phytase gene is derived from *E. coli* K-12. The published utility studies conducted with the granular formulation of the phytase 50104 enzyme preparation (i.e., CIBENZA® PHYTAVERSE® G10 Phytase Enzyme) demonstrated that the product is safe for use in poultry (Pieniazek, J. *et al.*, 2017). The utility studies further support that the introduced DNA is safe. The published toxicity studies performed using VR003 test article further show the introduced DNA is free of attributes that would render it unsafe for use in the production of an animal food enzyme (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015).

The enzyme phytase has a long history of safe use in animal food. Phytases have been used in animal food for close to 40 years. Many phytase enzyme preparations are commercially available for use in animal food, several of which are protein engineered. The phytase 50104 enzyme preparation from *P. fluorescens* strain BD50104 is similar to other known microbial phytases used in animal food today, including the five other *E. coli* phytase products. Additionally, like other *E. coli* based phytases the utility of the phytase 50104 enzyme preparation does not pose a safety concern for poultry (Pieniazek, J. *et al.*, 2017).

In assessing the safety of the phytase 50104 enzyme preparation, the following studies were conducted and published (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015): acute oral toxicity study in rats; 90-day subchronic gavage in rats; chromosomal aberrations test in human

BASF Enzymes LLC Page 86 of 98

lymphocytes, mouse micronucleus assay, and *Salmonella-Escherichia coli*/ mammalian-microsome reverse mutation assay. The studies did not find any treatment related toxicity or induction of genetic mutation or chromosomal aberrations in tests using the phytase test preparations derived from the production microorganism. The safety margin calculation indicates the worst-case potential animal exposure to the phytase 50104 enzyme preparation is well below the NOAEL observed in the oral toxicity studies.

The manufacturing process used to make the phytase 50104 enzyme preparation employs a pure culture, submerged fermentation of the *P. fluorescens* production strain, BD50104. Current good manufacturing practice for food is used throughout the process which utilizes generally accepted, published methods for enzyme manufacture and formulation. All raw materials used in the fermentation and recovery processes are of suitable purity and are standard materials used in the enzyme industry. The final phytase 50104 enzyme preparation meet the purity requirements for enzyme preparations as outlined in Food Chemicals Codex and by JECFA. The published toxicity studies performed using VR003 (Krygier, S. *et al.*, 2014; Krygier, S. *et al.*, 2015) and the published utility studies (Pieniazek, J. *et al.*, 2017) further demonstrate that the manufacturing process, including the raw materials, is safe for use in the production of an animal food enzyme.

Based on the information provided in this GRAS Notification, BASF Enzymes LLC concludes that the phytase 50104 enzyme preparation derived from *P. fluorescens*, containing the **(b)** (4) BD50104 expression vector that includes the phytase 50104 gene, is GRAS under the intended conditions of use, as specified herein. Additionally, an external expert in the field, Dr. Michael Pariza, also came to the same conclusion (see Appendix 30). Dr. Pariza was given a copy of the GRAS Notification **and** access to all information (including references and appendices) in support of such Notification – i.e., the same aggregate information relied on by BASF Enzymes LLC in reaching its GRAS conclusion. Dr. Pariza reviewed the information, had his questions answered, and then concluded that phytase 50104 enzyme preparation is GRAS, based on scientific procedures, for its intended use.

Please note that BASF Enzymes LLC has reviewed all available data and information and are not aware of any data and information that are, or may appear to be, inconsistent with our conclusion of GRAS status.

BASF Enzymes LLC Page 87 of 98

PART 7: LIST OF SUPPORTING DATA AND INFORMATION

A. List of Appendices

Appendix 1	Phytase 50104 Enzyme Amino Acid Sequence					
Appendix 2	Alignment of the Mature Amino Acid Sequences for the Phytase 50104 Protein and the Native <i>E. coli</i> K-12 and B appA Proteins					
Appendix 3	Phytase 50104 Gene Nucleotide Sequence					
Appendix 4	Alignment of the Mature Amino Acid Sequences for the Phytase 50104 Protein and the Native <i>E. coli</i> K-12 appA Protein					
Appendix 5	Bioinformatics Analysis of Plasmid (b) (4)9_BD50104					
Appendix 6	Stability of the (b) (4) Gene and the Expression Plasmid (b) (4) BD50104 in <i>Pseudomonas fluorescens</i> BD50104 and Determination of the Phytase 50104 Gene Copy Number in Strain BD50104					
Appendix 7	Plasmid Mobilization Analysis for <i>Pseudomonas fluorescens</i> Strain BD50104					
Appendix 8	Whole Genome Sequence Analysis of <i>Pseudomonas fluorescens</i> DC454: Known Antimicrobial Resistance Genes					
Appendix 9	Characterization of the (b) (4) Gene Deletion Region in the Host Chromoson					
Appendix 10	Certificates of Analysis for CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme					
Appendix 11	List of Raw Materials Used in the Manufacturing of Phytase 50104 Enzyme Preparation					
Appendix 12	Detailed Manufacturing Information: Fermentation, Recovery, and Formulation					
Appendix 13	Final Product Composition and TOS calculation					
Appendix 14	Stability Study Data					
Appendix 15	Stability Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzymin Premix					
Appendix 16	Sources of Vitamins and Minerals in Premix					
Appendix 17	Homogeneity Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Premix					
Appendix 18	Stability Evaluation of CIBENZA® PHYTAVERSE® L10 Phytase Enzymoin Feed					
Appendix 19	Sources of Vitamins and Minerals Used in the In-Feed Stability Studies					
Appendix 20	Homogeneity Evaluation of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme in Feed					

BASF Enzymes LLC Page 88 of 98

Stability Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme Appendix 21 in Feed Homogeneity Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Appendix 22 Enzyme in Feed Appendix 23 Evaluation of the Thermostability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Pelleted Poultry Feed Appendix 24 Sources of Vitamins and Minerals Used in the Thermostability Study Appendix 25 Evaluation of Increasing Levels of a Microbial Phytase in Phosphorus Deficient Broiler Diets Via Live Broiler Performance, Tibia Bone Ash, Apparent Metabolizable Energy, and Amino Acid Digestibility The Effects of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme on Bone Appendix 26 Ash of Broilers Fed Reduced Phosphorus Diets Appendix 27 Homogeneity of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Broiler Starter Feed Appendix 28 Characterization of the DNA (*lacI*^{Q1} Expression Cassette) Inserted into the Host Chromosome Safety Evaluation of Phytase 50104 Enzyme Preparation (Also Known Appendix 29 as VR003), Expressed in *Pseudomonas fluorescens*, Intended for Increasing Digestibility of Phytase in Monogastrics Appendix 30 External Expert Opinion Letter from Dr. Michael Pariza

Please note, Appendices 1-9, 11-14, and 28 contain confidential business information.

B. List of References

Please note all references and have been provided with this notice and are generally available.

Adeola, O., Sands, J.S., Simmins, P.H. and Schulze, H. *The efficacy of an Escherichia coli-derived phytase preparation*. Journal of Animal Science 82 (9), pp. 2657-2666 (2004).

American Water Works Association. 9221 Multiple-Tube fermentation technique for members of the coliform group, in *Standard Methods for the Examination of Water and Wastewater*, Eaton, A. D., Clesceri, L. S., *et al.*, editors; American Public Health Association: Washington, DC, pp. 1-12 (2006).

Association of American Feed Control Officals (AAFCO). Enzyme Marketing Coordination: Safety, in 2021 Official Publication, Ch. 6, pp. 384-386 (2021a).

Association of American Feed Control Officals (AAFCO). Table 30.1 Enzymes/Source Organism Acceptable for Use in Animal Feeds, in *2021 Official Publication*, Ch. 6, pp. 376-381 (2021b).

BASF Enzymes LLC Page 89 of 98

Association of American Feed Control Officals (AAFCO). Table 101.1 GRAS Notified substances with No Questions Letters from the FDA, in 2021 Official Publication, Ch. 6, pp. 523-528 (2021c).

Aunstrup, K., Andresen, O., Falch, E.A. and Nielsen, T.K. Production of Microbial Enzymes, in *Microbial Technology*, 2 ed., Vol. 1, Perlman and Peppler, editors; Academic Press, pp. 281-309 (1979).

Balows, A. *The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications*, 2nd ed. Vol. 1, Springer-Verlag: New York, pp. 561 (1992).

Bedford, M.R. and Partridge, G.G. *Enzymes in Farm Animal Nutrition*, 2nd ed. CAB International: Oxfordshire, pp. 4-5 (2010).

Bettelheim, K.A. The Genus *Escherichia*, in *The Prokaryotes a handbook on the biology of bacteria : ecophysiology, isolation, identification, applications*, Balows, A., editor; Springer-Verlag: New York, Ch. 142, pp. 2696-2736 (1992).

Bindslev-Jensen, C., Skov, P.S., Roggen, E.L., Hvass, P. et al. *Investigation on possible allergenicity of 19 different commercial enzymes used in the food industry*. Food Chem. Toxicol 44 (11), pp. 1909-1915 (2006).

Boquet, P.L., Manoil, C. and Beckwith, J. *Use of TnphoA to detect genes for exported proteins in Escherichia coli: identification of the plasmid-encoded gene for a periplasmic acid phosphatase.* Journal of Bacteriology 169 (4), pp. 1663-1669 (1987).

Brenner, D. Introduction to the Family Enterobacteriaceae, in *The Prokaryotes a handbook on the biology of bacteria : ecophysiology, isolation, identification, applications,* Balows, A., editor, Springer-Verlag: New York, Ch. 141, pp. 2673-2695 (1992).

Brosius, J. and Holy, A. *Regulation of ribosomal RNA promoters with a synthetic lac operator.* Proc. Natl. Acad. Sci. U. S. A 81 (22), pp. 6929-6933 (1984).

Burnett, G.S. The effect of damaged starch, amylolytic enzymes, and proteolytic enzymes on the utilisation of cereals by chickens. British Poultry Science 3 (2), pp. 89-103 (1962).

Center for Disease Control. *Pseudomonas bloodstream infections associated with a heparin/saline flush--Missouri, New York, Texas, and Michigan, 2004-2005*. MMWR. Morbidity and Mortality Weekly Report 54 (11), pp. 269-272 (2005).

Center for Disease Control. *Update: Delayed onset Pseudomonas fluorescens bloodstream infections after exposure to contaminated heparin flush--Michigan and South Dakota*, 2005-2006. MMWR. Morbidity and Mortality Weekly Report 55 (35), pp. 961-963 (2006).

BASF Enzymes LLC Page 90 of 98

Chart, H., Smith, H.R., La Ragione, R.M. and Woodward, M.J. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5alpha and EQ1. J Appl Microbiol 89 (6), pp. 1048-1058 (2000).

Cheryan, M. Process Design, in *Ultrafiltration Handbook*, Cheryan, M., editor; Technomic Publishing Company, Inc.: Lancaster, Ch. 7, pp. 197-207 (1986).

Chew, L., Ramseier, T.M., Retallack, D.M., Schneider, J.C. et al. *Pseudomonas fluorescens*, in *Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems*, Gellissen, G., editor; Wiley-VCH: Weinheim, Ch. 3, pp. 45-66 (2005).

Chew, L.C., Stacey, L.L. and Talbot, H.W. inventors. Over-expression of extremozyme genes in Pseudomonads and closely related bacteria. Patent No. US 2005/0130160 A1.6/16/2005 (2005).

Coli Genetic Stock Center. CGSC#: 6300 Strain Designation: MG1655 Website, Last Accessed 08/16/2021, Available from: http://cgsc.biology.yale.edu/StrainRpt.php?ID=4837 (2016).

(b) (4)

Dickson, R.P., Erb-Downward, J.R., Freeman, C.M., Walker, N. et al. Changes in the Lung Microbiome following Lung Transplantation Include the Emergence of Two Distinct Pseudomonas Species with Distinct Clinical Associations. PLoS ONE 9 (5), p. e97214 (2014).

Donovan, R.S., Robinson, C.W. and Click, B.R. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. Journal of Industrial Microbiology 16 (3), pp. 145-154 (1996).

EFSA and ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal 15 (12), p. 5077 (2017).

EFSA BIOHAZ Panel, Ricci, A., Allende, A., Bolton, D. et al. *Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016.* EFSA Journal 15 (3), p. e04663 (2017).

EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K., Allende, A., Álvarez-Ordóñez, A. et al. *Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 9: suitability of taxonomic units notified to EFSA until September 2018.* EFSA Journal 17 (1), p. e05555 (2019).

Enzyme Technical Association. Olempska-Beer, Z. Flocculants, Antifoams, and Enzyme Use Levels. (4/24/1998). Written Communication.

BASF Enzymes LLC Page 91 of 98

EPA. 40 CFR Part 180. Pseudomonas fluorescens strain NCIB 12089; Exemption from the requirement of tolerance. Federal Register 59, (1994).

EPA. Escherichia coli K-12 Derivatives Final Risk Assessment Website, Last Accessed 08/16/2021, Available from: https://www.epa.gov/sites/production/files/2015-09/documents/fra004.pdf (1997).

EPA. 40 CFR Part 180. Pseudomonas fluorescens Strain CL145A; Exemption for the Requirement of a Tolerence. Federal Register 76 (164), pp. 52871-52875 (2011).

EU Scientific Committee for Food. Guidelines for the presentation of data on food enzymes, in *Report for the Scientific Committee for Food (Twenty-seventh series)*, Commission of the European Communities: Luxembourg, pp. 13-22 (1992).

Evans, H.J. and O'Riordan, M.L. *Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests*. Mutation Research 31, pp. 135-148 (1975).

FAO/WHO. Evaluation of Allergenicity of Genetically Modified Foods. Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology. (2001).

FAO/WHO. General Specifications and Considerations for Enzyme Preparations Used in Food Processing. Compendium of food additive specifications: 67th meeting 2006.pp. 63-67, FAO. (2006).

FAO/WHO. Food derived from modern biotechnology. Second Edition. (2009).

FDA. *Redbook 2000: IV.C.4.a Subchronic toxicity studies with rodents* Website Last Accessed 08/16/2021, Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/redbook-2000-ivc4a-subchronic-toxicity-studies-rodents (2007).

FDA. Foodbourne Illness-Causing Organisms in the U.S.: What You Need To Know Last Accessed 06/25/2021, Available from: https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM187482.pdf (2018).

FDA Center for Food Safety and Applied Nutrition. *Agency Response Letter GRAS Notice No. GRN 000126* Website, Last Accessed 6/9/2021, Available from: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm153943.htm (2003a).

FDA Center for Food Safety and Applied Nutrition. Enzyme Technical Association. *Defoaming and Flocculating Agents Used in the Manufacture of Enzyme Preparations Used in Foods.* (2003). Written Communication.

FDA Center for Food Safety and Applied Nutrition. *Agency Response Letter GRAS Notice No. GRN 000462* Website, Last Accessed 6/9/2021, Available from: https://wayback.archive-notice.net/bull-12/2021/.

BASF Enzymes LLC Page 92 of 98

it.org/7993/20171031005220/https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm361154.htm (2013).

FDA Center for Food Safety and Applied Nutrition. *Agency Response Letter GRAS Notice No. GRN 000574* Website, Last Accessed 6/9/2021, Available from: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm469202.htm (2015).

FDA Center for Veterinary Medicine. *Agency Response Letter: GRAS Notice No. AGRN 21* Website, Last Accessed 08/16/2021, Available from: https://www.fda.gov/downloads/AnimalVeterinary/Products/AnimalFoodFeeds/GenerallyRecog nizedasSafeGRASNotifications/UCM581397.pdf (2017).

FDA Center for Veterinary Medicine. *Agency Response Letter: GRAS Notice No. AGRN 27* Website, Last Accessed 08/16/2021, Available from: https://www.fda.gov/media/128842/download (2019a).

FDA Center for Veterinary Medicine. *Agency Response Letter: GRAS Notice No. AGRN 32* Website, Last Accessed 12/1/2021, Available from: https://www.fda.gov/media/137127/download (2019b).

Fry, R.E., Allred, J.B., Jensen, L.S. and McGinnis, J. *Influence of Enzyme Supplementation and Water Treatment on the Nutritional Value of Different Grains for Poults**. Poultry Science 37 (2), pp. 372-375 (1958).

Gad, S.C. Safety assessment for pharmaceuticals, Van Nostrand Reinhold: New York, pp. 111-116 (1995).

Galloway, S.M., Aardema, M.J., Ishidate Jr., M., Ivett, J.L. et al. *Report from working group on in vitro tests for chromosomal aberrations*. Mutation Research 312 (3), pp. 241-261 (1994).

George, S.E., Nelson, G.M., Boyd, C., Kohan, M.J. et al. *Survival of environmental microbial agents in CD-1 mice following oral exposure*. Microbiol. Ecol. Health Dis 12 (2), pp. 92-98 (2000).

George, S.E., Nelson, G.M., Kohan, M.J., Brooks, L.R. et al. *Colonization and clearance of environmental microbial agents upon intranasal exposure of strain C3H/HeJ mice*. J. Toxicol. Environ. Health A 56 (6), pp. 419-431 (1999).

Gilbert, W. and Maxam, A. *The Nucleotide Sequence of the lac Operator*. Proceedings of the National Academy of Sciences 70 (12), pp. 3581-3584 (1973).

Golovan, S., Wang, G., Zhang, J. and Forsberg, C.W. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol 46 (1), pp. 59-71 (2000).

BASF Enzymes LLC Page 93 of 98

- Greiner, R., Konietzny, U. and Jany, K.D. *Purification and characterization of two phytases from Escherichia coli*. Arch. Biochem Biophys 303 (1), pp. 107-113 (1993).
- Halich, R., Kline, K., Shanahan, D. and Ciofalo, V. Safety evaluation of a lipase enzyme (BD29241 Palmitase) preparation, expressed in Pseudomonas fluorescens, intended for removing palmitic acid from triacylglycerol. Regulatory Toxicology and Pharmacology 64, pp. 87-94 (2012).
- Hastings, W.H. Enzyme Supplements to Poultry Feeds. Poultry Science 25 (6), pp. 584-586 (1946).
- Heddle, J.A. *A rapid in vivo test for chromosomal damage*. Mutation Research 18, pp. 187-190 (1973).
- Heddle, J.A., Hite, M., Kirkhart, B., Mavournin, K. et al. *The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene-Tox Program.* Mutation Research 123 (1), pp. 61-118 (1983).
- Herrera, G., Snyman, S.J. and Thomson, J.A. Construction of a bioinsecticidal strain of Pseudomonas fluorescens active against the sugarcane borer, Eldana saccharina. Appl. Environ. Microbiol 60 (2), pp. 682-690 (1994).
- Innovase. GRAS Notification for BD5088 alpha-amylase enzyme preparation, derived from Pseudomonas fluorescens Biovar I, expressing a gene encoding an optimized Thermococcales alpha-amylase Website Last Accessed 06/25/2021, Available from: http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM267218.pdf (2003).
- International Food Biotechnology Council. Chapter 4: Safety evaluation of foods and food ingredients derived from microorganisms. Regul. Toxicol. Pharmacol 12 (3), pp. S114-S128 (1990).
- Jendza, J.A., Dilger, R.N., Sands, J.S. and Adeola, O. *Efficacy and equivalency of an Escherichia coli-derived phytase for replacing inorganic phosphorous in the diets of broiler chickens and young pigs*. Journal of Animal Science 84 (12), pp. 3364-3374 (2006).
- Jensen, L.S., Fry, R.E., Allred, J.B. and McGinnis, J. *Improvement in the Nutritional Value of Barley for Chicks by Enzyme Supplementation 1*. Poultry Science 36 (4), pp. 919-921 (1957).
- Krygier, S., Solbak, A., Shanahan, D. and Ciofalo, V. Safety evaluation of phytase 50104 enzyme preparation (also known as VR003), expressed in Pseudomonas fluorescens, intended for increasing digestibility of phytase in monogastrics. Regulatory Toxicology and Pharmacology 70, pp. 545-554 (2014).
- Krygier, S., Solbak, A., Shanahan, D. and Ciofalo, V. Corrigendum to "Safety evaluation of phytase 50104 enzyme preparation (also known as VR003), expressed in Pseudomonas fluorescens, intended for increasing digestibility of phytase in monogastrics". Regulatory Toxicology and Pharmacology 71 (2), p. 352 (2015).

BASF Enzymes LLC Page 94 of 98

- Kuhnert, P., Hacker, J., Muhldorfer, I., Burnens, A.P. et al. *Detection system for Escherichia colispecific virulence genes: absence of virulence determinants in B and C strains*. Appl Environ. Microbiol 63 (2), pp. 703-709 (1997).
- Ladics, G.S., Cressman, R.F., Herouet-Guicheney, C., Herman, R.A. et al. *Bioinformatics and the allergy assessment of agricultural biotechnology products: Industry practices and recommendations*. Regulatory Toxicology and Pharmacology 60, pp. 46-53 (2011).
- Landry, T.D., Chew, L., Davis, J.W., Frawley, N. et al. Safety evaluation of an a-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regul. Toxicol. Pharmacol 37 (1), pp. 149-168 (2003).
- Lei, X.G. and Stahl, C.H. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57 (4), pp. 474-481 (2001).
- Lim, D., Golovan, S., Forsberg, C.W. and Jia, Z. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol 7 (2), pp. 108-113 (2000).

(b)(4)

- Mazurier, S., Merieau, A., Bergeau, D., Decoin, V. et al. Type III Secretion System and Virulence Markers Highlight Similarities and Differences between Human- and Plant-Associated Pseudomonads Related to Pseudomonas fluorescens and P. putida. Appl Environ Microbiol 81 (7), pp. 2579-2590 (2015).
- Metcalfe, D.D., Astwood, J.D., Townsend, R., Sampson, H.A. et al. Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit Rev. Food Sci. Nutr 36 Suppl, pp. S165-S186 (1996).
- Moran, J.E.T. and McGinnis, J. Growth of Chicks and Turkey Poults Fed Western Barley and Corn Grain-based Rations: Effect of Autoclaving on Supplemental Enzyme Requirement and Asymmetry of Antibiotic Response Between Grains. Poultry Science 47 (1), pp. 152-158 (1968).
- Muhldorfer, I., Blum, G., Donohue-Rolfe, A., Heier, H. et al. *Characterization of Escherichia coli strains isolated from environmental water habitats and from stool samples of healthy volunteers*. Res. Microbiol 147 (8), pp. 625-635 (1996).
- Nelson, T.S., McGillivray, J.J., Shieh, T.R., Wodzinski, R.J. et al. Effect of Phytate on the Calcium Requirement of Chicks. Poultry Science 47 (6), pp. 1985-1989 (1968a).
- Nelson, T.S., Shieh, T.R., Wodzinski, R.J. and Ware, J.H. *The Availability of Phytate Phosphorus in Soybean Meal Before and After Treatment With a Mold Phytase*. Poultry Science 47 (6), pp. 1842-1848 (1968b).

BASF Enzymes LLC Page 95 of 98

NIH. NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules Department of Health and Human Services National Institutes of Health,, Website, Last Accessed 06/25/2021, Available from: https://osp.od.nih.gov/biotechnology/nih-guidelines/ (2019).

OECD. Safety considerations for biotechnology 1992 Website, Last Accessed 6/25/2021, Available from: http://www.oecd.org/sti/biotech/2375496.pdf (1992).

OECD. Series on Harmonization of Regulatory Oversight in Biotechnology No. 6; Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas Website, Last Accessed 6/25/2021, Available from: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=OCDE/GD(97)22&docLanguage=En (1997).

Onyango, E.M., Bedford, M.R. and Adeola, O. *Efficacy of an evolved Escherichia coli phytase in diets of broiler chicks1*. Poultry Science 84 (2), pp. 248-255 (2005).

Pansegrau, W., Lanka, E., Barth, P.T., Figurski, D.H. et al. *Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis*. J. Mol. Biol 239 (5), pp. 623-663 (1994).

Pariza, M.W. and Cook, M. *Determining the Safety of Enzymes used in Animal Feed*. Regulatory Toxicology and Pharmacology (56), pp. 332-342 (2010).

Pariza, M.W. and Foster, E.M. *Determining the safety of enzymes used in food processing*. Journal of Food Protection 46 (5), pp. 453-468 (1983).

Pariza, M.W. and Johnson, E.A. Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul. Toxicol. Pharmacol 33 (2), pp. 173-186 (2001).

Pettersson, D.G., H.; Aman, P. Enzyme supplementation of low or high crude protein concentration diets for broiler chickens. Animal Production 51 (2), pp. 399-404 (1990).

Pieniazek, J., Smith, K.A., Williams, M.P., Manangi, M.K. et al. Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poultry Science 96 (2), pp. 370-382 (2017).

Pillai, P.B., O'Connor-Dennie, T., Owens, C.M. and Emmert, J.L. Efficacy of an Escherichia coli Phytase in Broilers Fed Adequate or Reduced Phosphorus Diets and Its Effect on Carcass Characteristics. Poultry Science 85 (10), pp. 1737-1745 (2006).

Preston, R.J., Au, W., Bender, M.A., Brewen, J.G. et al. *Mammalian in vivo and in vitro cytogenetic assays: a report of the Gene-Tox Program*. Mutation Research 87, pp. 143-188 (1981).

BASF Enzymes LLC Page 96 of 98

Retallack, D. and Mitchell, J.C. inventors. Expression of soluble antibody fragment by truncation of CH1 domain. Patent No. US 2009/0042254 A1. 2/12/2009 (2009).

Ribeiro, V., Salguero, S.C., Gomes, G., Barros, V.R.S.M. et al. *Efficacy and phosphorus* equivalency values of two bacterial phytases (Escherichia coli and Citrobacter braakii) allow the partial reduction of dicalcium phosphate added to the diets of broiler chickens from 1 to 21days of age. Animal Feed Science and Technology 221, pp. 226-233 (2016).

Ross. Ross 708 Broiler: Performance Objectives Aviagen, Website, Last Accessed 06/25/2021, Available from: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-708-BroilerPO2019-EN.pdf (2019).

Scales, B.S., Dickson, R.P., LiPuma, J.J. and Huffnagle, G.B. *Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans*. Clinical Microbiology Reviews 27 (4), pp. 927-948 (2014).

Schmid, W. The micronucleus test. Mutation Research 31, pp. 9-15 (1975).

Schneider, J.C., Chew, L.C., Badgley, A.K. and Ramseier, T.M. inventors. Protein expression systems. Patent No. US 2005/0186666 A1. 8/25/2005 (2005a).

(b) (4)

Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K. et al. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75 (2), pp. 271-288 (1989).

Selle, P.H. and Ravindran, V. *Microbial phytase in poultry nutrition*. Animal Feed Science and Technology 135 (1), pp. 1-41 (2007).

Short, J.M. inventor. Saturation mutagenesis in directed evolution. Patent No. US 6,171,820 B1. 1/9/2001 (2001).

Speid, L.H., Lumley, C.E. and Walker, S.R. Harmonization of guidelines for toxicity testing of pharmaceuticals by 1992. Regul. Toxicol. Pharmacol 12 (2), pp. 179-211 (1990).

Sutherland, R., Boon, R.J., Griffin, K.E., Masters, P.J. et al. *Antibacterial activity of mupirocin* (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27 (4), pp. 495-498 (1985).

Swartz, J.R. *Escherichia coli* Recombinant DNA Technology, in *Escherichia coli and Salmonella*, 2 ed., Neidhardt, F., editor; ASM Press: Washington, D.C., Ch. 108, (1996).

BASF Enzymes LLC Page 97 of 98

Swierenga, S.H.H., Heddle, J.A., Sigal, E.A., Gilman, J.P.W. et al. *Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister-chromatid exchange in Chinese hamster ovary, V79 Chines lung and human lymphocyte cultures.* Mutation Research 246, pp. 301-322 (1991).

Tan, X. inventor. Tailored multi-site combinatorial assembly. Patent No. WO 2009/018449 A1. 2/5/2009 (2009).

U.S. Pharmacopeial Convention. Monographs/Enzyme Preparations, in *Food Chemicals Codex*, 8 ed., pp. 375-380 (2012).

U.S. Pharmacopeial Convention. Monographs/Enzyme Preparations, in *Food Chemicals Codex*, 12 ed., United Book Press, Inc.: Baltimore, pp. 404-406 (2021).

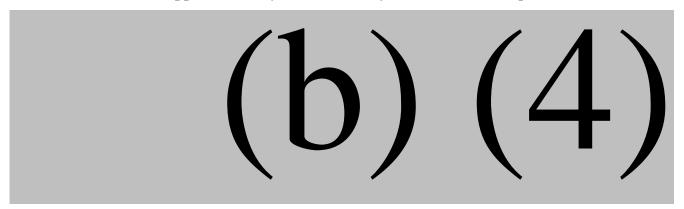
Walk, C.L., Santos, T.T. and Bedford, M.R. *Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers*. Poultry Science 93 (5), pp. 1172-1177 (2014).

Walters, H.G., Coelho, M., Coufal, C.D. and Lee, J.T. Effects of Increasing Phytase Inclusion Levels on Broiler Performance, Nutrient Digestibility, and Bone Mineralization in Low-Phosphorus Diets. Journal of Applied Poultry Research 28 (4), pp. 1210-1225 (2019).

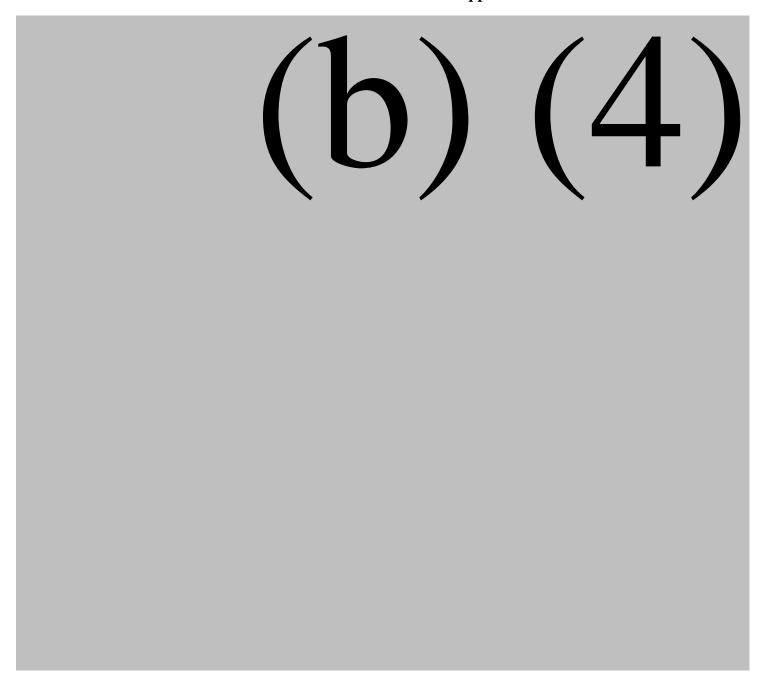
Warren, G.J. *Bacterial ice nucleation: molecular biology and applications*. Biotechnol. Gen. Engin. Rev 5, pp. 107-135 (1987).

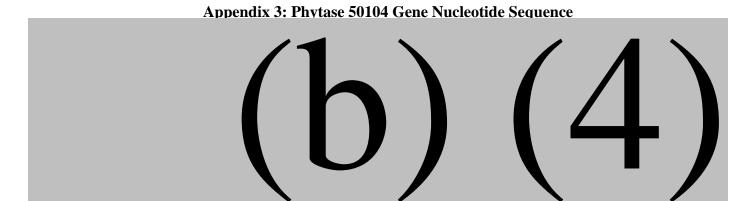
Williams, M.P., Klein, J.T., Wyatt, C.L., York, T.W. et al. *Evaluation of xylanase in low-energy broiler diets*. Journal of Applied Poultry Research 23 (2), pp. 188-195 (2014).

Wilson, M. and Lindow, S.E. *Release of recombinant microorganisms*. Annu. Rev. Microbiol 47, pp. 913-944 (1993).

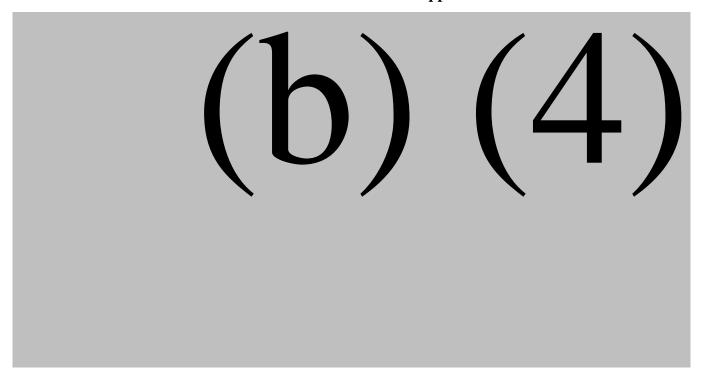

Wodzinski, R.J. and Ullah, A.H. *Phytase*. Adv. Appl Microbiol 42, pp. 263-302 (1996).

Wyss, M., Brugger, R., Kronenberger, A., Remy, R. et al. *Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties.* Appl Environ. Microbiol 65 (2), pp. 367-373 (1999).


Zeng, Z.K., Wang, D., Piao, X.S., Li, P.F. et al. Effects of Adding Super Dose Phytase to the Phosphorus-deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities. Asian-Australas J Anim Sci 27 (2), pp. 237-246 (2014).


BASF Enzymes LLC Page 98 of 98

Appendix 1: Phytase 50104 Enzyme Amino Acid Sequence



Appendix 2: Alignment of the Mature Amino Acid Sequences for Phytase 50104 Protein and the Native E. coli K12 and B AppA Proteins

Appendix 4: Alignment of the Mature Amino Acid Sequences for Phytase 50104 Protein and the Native *E. coli* K12 AppA Protein

Bioinformatics Analysis of Plasmid (b) (4)BD50104

(b)(6)

Sr. Manager, Expression / Technology Development

October 16, 2017

Bioinformatics Analysis of Plasmid (b) (4) BD50104

Author: (b)(6)

(b)(6)

Date

Oct 16, 2017

Sr. Manager, Expression / Technology Development

Bioinformatics Analysis of Plasmid (b) (4)_BD50104

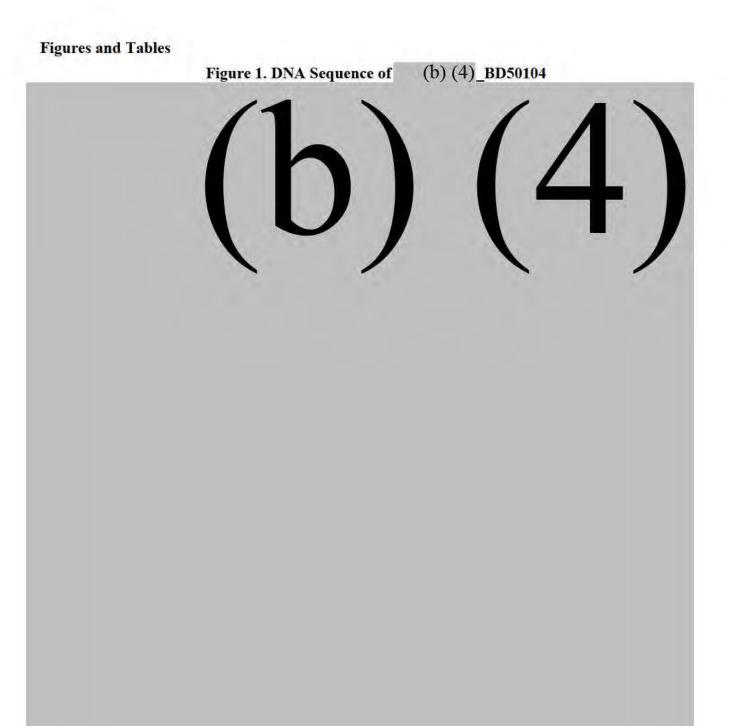
Table of Contents

Introduction	1
Materials and Methods	1
Results	1
Conclusion	1
Conclusion	I
Figures and Tables	2

Introduction

(b) (4)

Materials and Methods


(b) (4)

Results

(b) (4)

Conclusion

(b) (4)

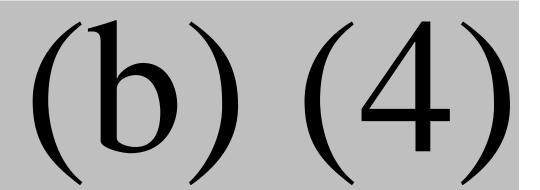
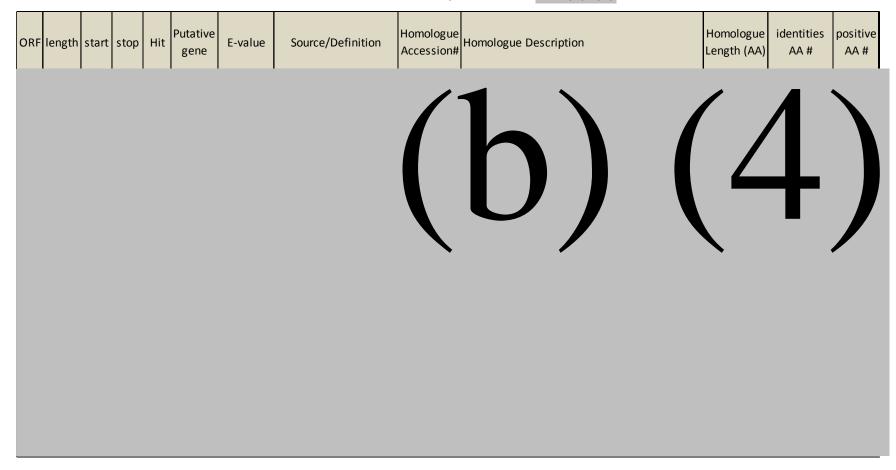
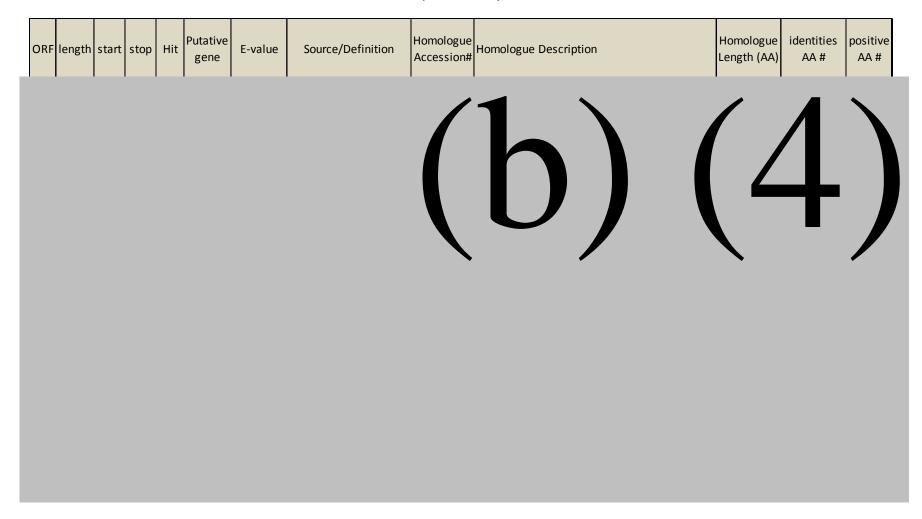



Table 1. ORFs and BlastP Summary of Plasmid (b) (4)_BD50104


BASF Enzymes LLC

Proprietary and Confidential

Page **6** of **8**

Table 1. ORFs and BlastP Summary of Plasmid (b) (4)_BD50104

(Continued)


BASF Enzymes LLC

Proprietary and Confidential

Page **7** of **8**

Table 1. ORFs and BlastP Summary of Plasmid (b) (4)_BD50104

(Continued)

BASF Enzymes LLC

Proprietary and Confidential

Page **8** of **8**

Appendix 6: Stability of the (b) (4) Gene and the Expression Plasmid (b) (4)_BD50104 in *Pseudomonas fluorescens* BD50104 and Determination of the Phytase 50104 Gene Copy Number in Strain BD50104

Stability of the (b) (4) Gene and the Expression Plasmid (b) (4)_BD50104 in *Pseudomonas fluorescens* BD50104 and Determination of the Phytase 50104 Gene Copy Number in Strain BD50104

(b)(6)

Sr. Manager, Expression/Technology Development

August 27, 2021

BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121 **Proprietary and Confidential**

Stability of the Gene and the Expression Plasmid (b) (4) BD50104 in Pseudomonas fluorescens BD50104 and Determination of the Phytase 50104 Gene Copy Number in Strain BD50104

(b)(6)Author:

Date

(b)(6)Sr. Manager, Expression / Technology Development

BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121

Proprietary and Confidential

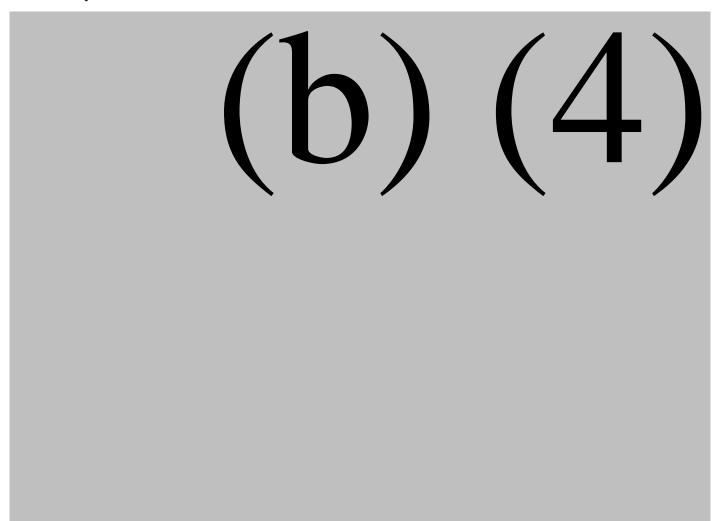
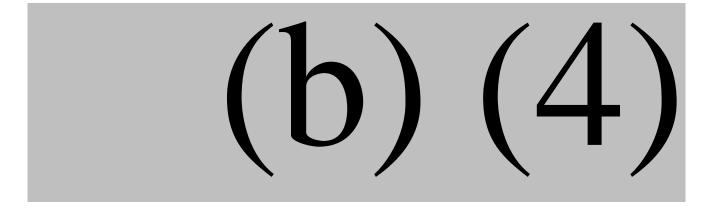
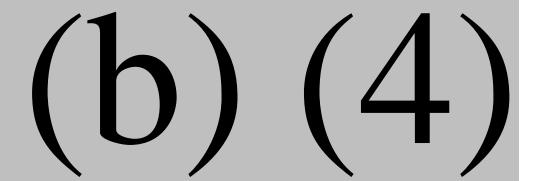

Stability of the Gene and the Expression Plasmid (b) (4)_BD50104 in Pseudomonas fluorescens BD50104 and Determination of the Phytase 50104 Gene Copy Number in Strain BD50104

Table of Contents


Summary	1
Introduction	1
Materials and Methods	
Results	
Conclusion	6
Figures	7
References	

Stability of the (b) (4) Gene and the Expression Plasmid (b) (4)_BD50104 in *Pseudomonas fluorescens* BD50104 and Determination of the Phytase 50104 Gene Copy Number in Strain BD50104

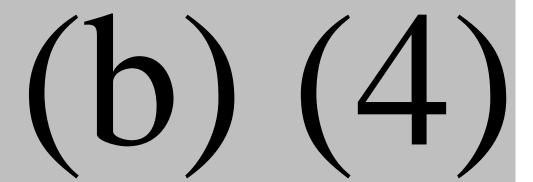
Summary

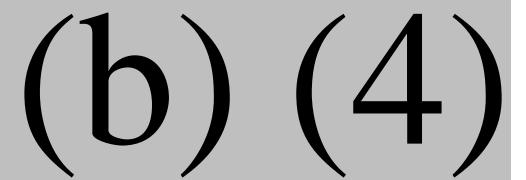

Introduction

BASF Enzymes LLC

Proprietary and Confidential

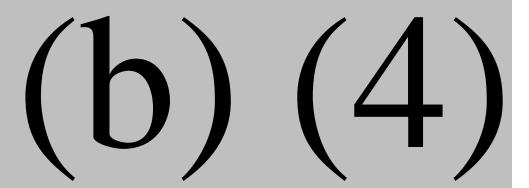
1 of 12


Materials and Methods

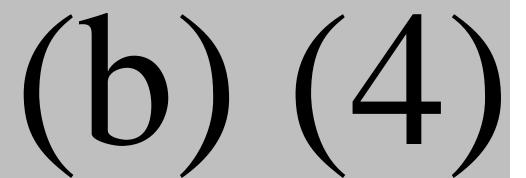

(b) (4)

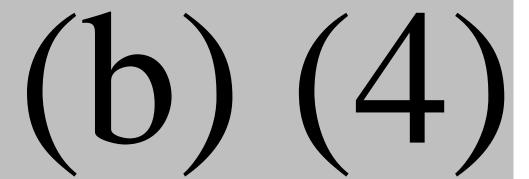
BASF Enzymes LLC

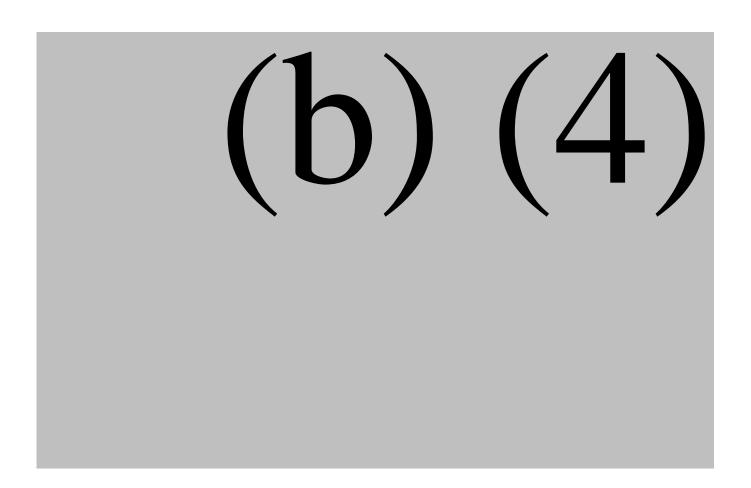
Proprietary and Confidential

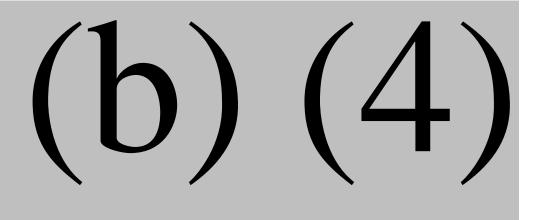

2 of 12

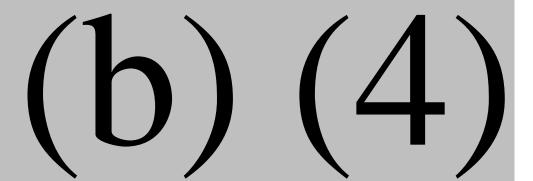
Results

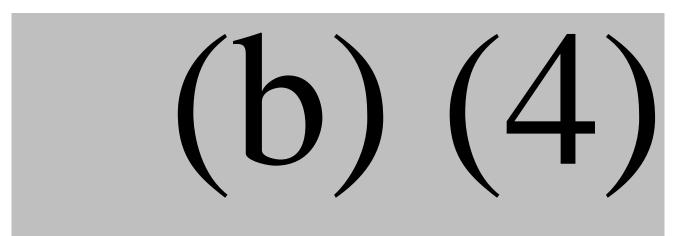







Conclusion


(b) (4)



References

Appendix 7: Plasmid Mobilization Analysis for Pseudomonas fluorescens Strain BD50104	

Plasmid Mobilization Analysis for *Pseudomonas fluorescens*Strain BD50104

(b)(6)

Sr. Manager, Expression / Technology Development

September 15, 2017

Plasmid Mobilization Analysis for *Pseudomonas fluorescens* Strain BD50104

Author: (b)(6)

(b)(6)

9/15/2017

Date

Sr. Manager, Expression / Technology Development

BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121 Proprietary and Confidential

BASF Enzymes LLC Confidential Page 3 of 12

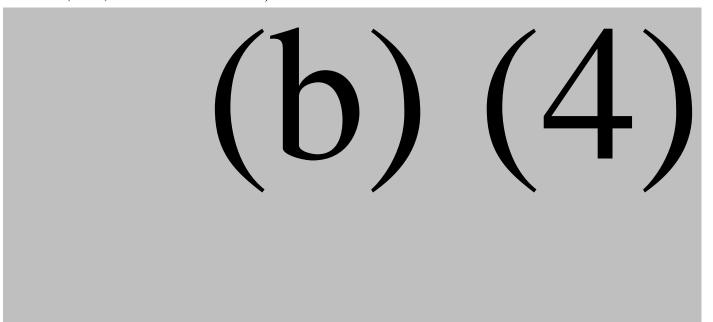
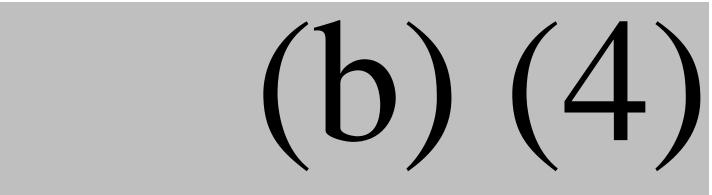

Plasmid Mobilization Analysis for $Pseudomonas\ fluorescens\ Strain\ BD50104$

TABLE OF CONTENTS

INTRODUCTION	. 1
MATERIALS AND METHODS	. 1
RESULTS	. 5
CONCLUSION	7
REFERENCE LIST	8

INTRODUCTION


Among the criteria suggested by the Organization for Economic Co-operation and Development (OECD) is that vectors or plamids used in modifying a microorganism used by industry should be poorly mobilizable (OECD, Last Accessed 7/28/2017). This criteria has been widely adopted and has also been recommended elsewhere (EU Scientific Committee for Food, 1992; NIH, Last Accessed 8/4/2017).

Based on these data, the phytase 50104 enzyme preparation is considered to be free of any transformable DNA.

MATERIALS AND METHODS

Bacterial Strains and Plasmids

BASF Enzymes LLC

Proprietary and Confidential

Page 1 of 8

BASF Enzymes LLC Confidential Page 5 of 12

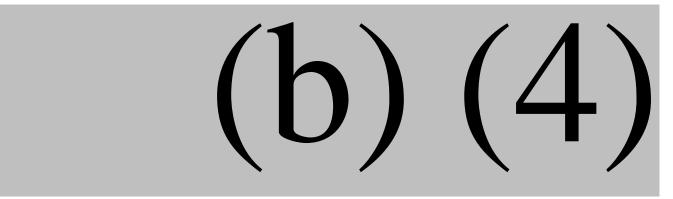
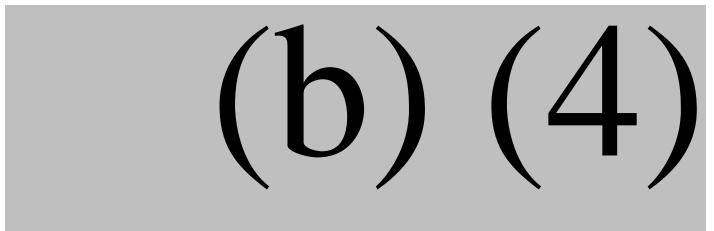
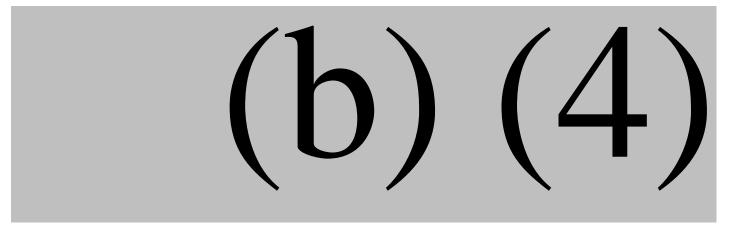
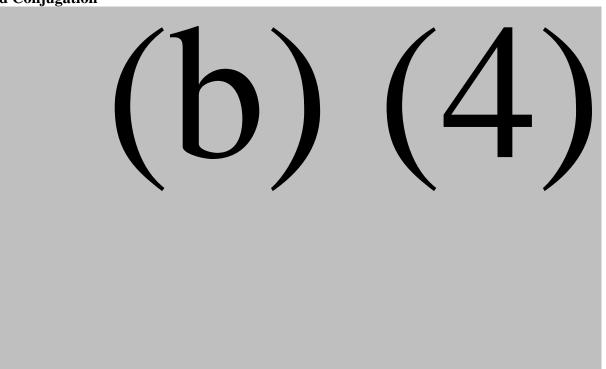
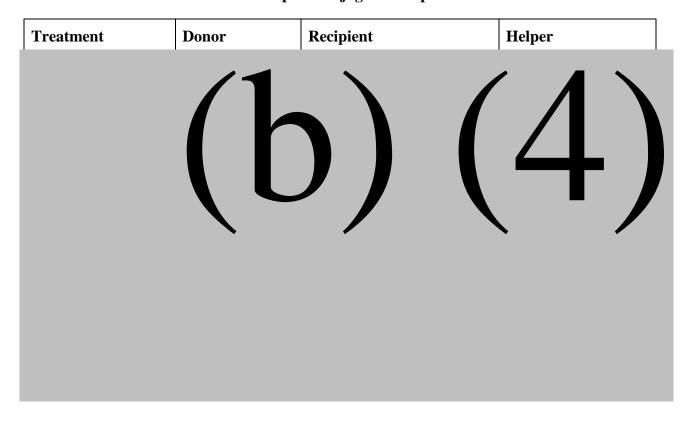




Table 1: Strains and Their Associated Plasmids Used in This Study

DNA Sequence Analysis


BASF Enzymes LLC

Proprietary and Confidential


Page 2 of 8

BASF Enzymes LLC Confidential Page 6 of 12

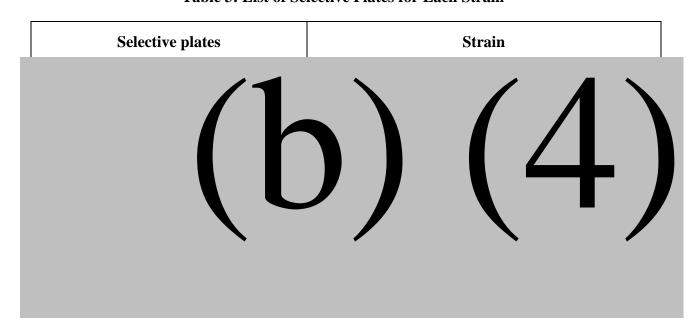


Table 2: Setup of Conjugation Experiment

Table 3: List of Selective Plates for Each Strain

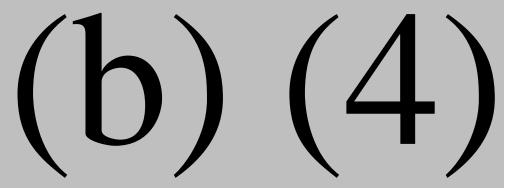
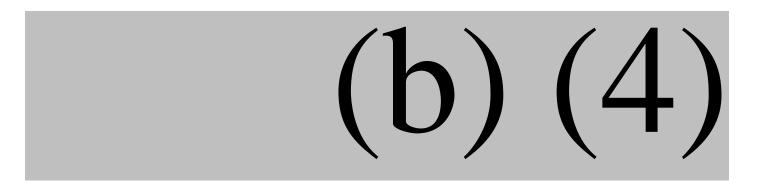
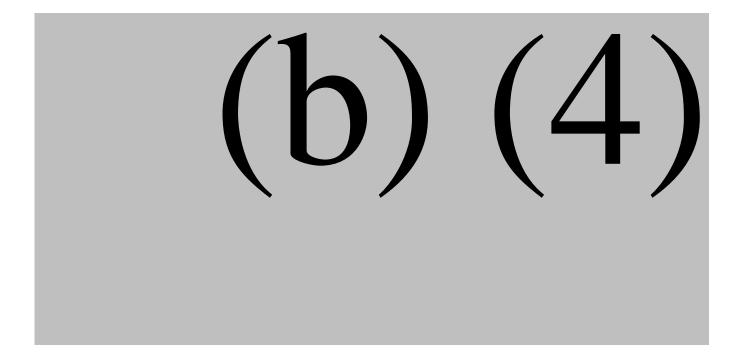



Figure 1: DNA sequence of RSF1010 and (b) (4)_BD50104 around the mutation sites




Table 4: Mobilization Frequencies of (b) (4)_BD50104

Treatment #	Donor	Recipient	Helper	# Conjugants	Total Recipient	Conjugation Frequency
		/-				4
						1 \
						+ 1
				,		

CONCLUSION

(b) (4)

REFERENCE LIST

Whole Genome Sequence Analysis of *Pseudomonas*fluorescens DC454: Known Antimicrobial Resistance Genes

(b)(6)

Sr. Bioinformatics Engineer, Computational Biology

February 20, 2018

Proprietary and Confidential

Whole Genome Sequence Analysis of *Pseudomonas* fluorescens DC454: Known Antimicrobial Resistance Genes

Author:

(b)(6)

(b)(6)

Sr. Bioinformatics Engineer, Computational Biology

2/20/2018

Date

BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121

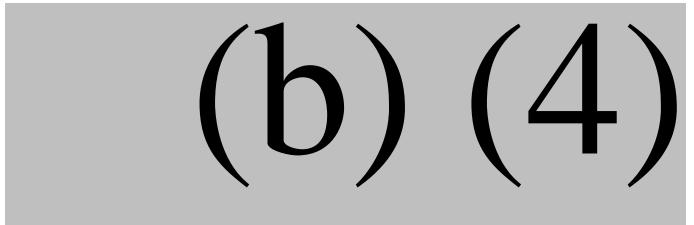
Proprietary and Confidential

Whole Genome Sequence Analysis of *Pseudomonas fluorescens* DC454: Known Antimicrobial Resistance Genes

Table of Contents

Introduction	1
Materials and Methods	
Materials and Methods	1
Results	2
Discussion and Conclusion	3
Reference List	5

Whole Genome Sequence Analysis of *Pseudomonas fluorescens* Strain DC454: Known Antimicrobial Resistance Genes

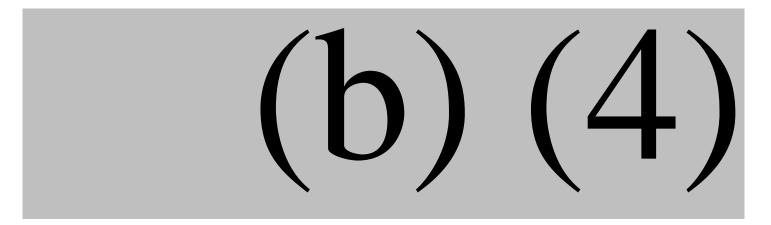

Introduction

Whole genome sequencing (WGS) of a microorganism and analysis of this data can be conducted to identify genes coding for known antimicrobial resistance (AMR) genes. This analysis can be used to identify the presence of genes coding for, or contributing to, the resistance to antimicrobials relevant to their use in humans and animals (i.e., critically important antimicrobials (CIAs) or highly important antimicrobials (HIAs)) (EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), 2012).

WGS of *Pseudomonas fluorescens* strain DC454 was conducted, and the data was analyzed for known AMR genes. (b) (4)

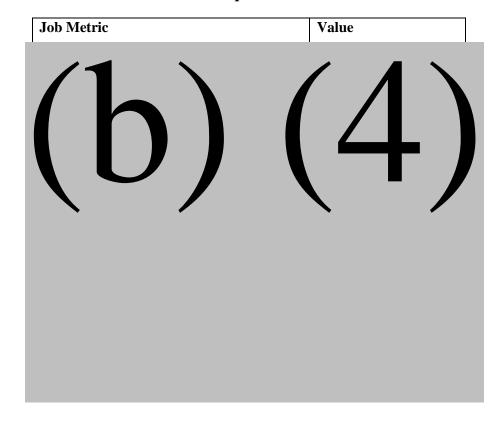
This report focuses on the WGS of *P. fluorescens* strain DC454 and its analysis for known AMR genes.

Materials and Methods



BASF Enzymes LLC

Proprietary and Confidential


Page 1 of 5

¹ https://card mcmaster.ca/

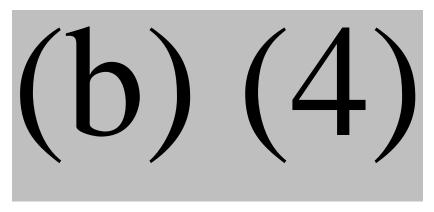

The statistical measure of the sequence quality for the WGS is found below in Table 1 below.

Table 1: Sequence Statistics

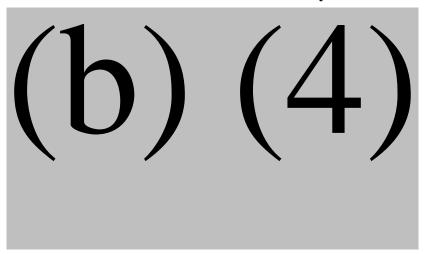

The genome assembly statistics for the WGS are found below in Table 2.

Table 2: Genome Assembly Statistics

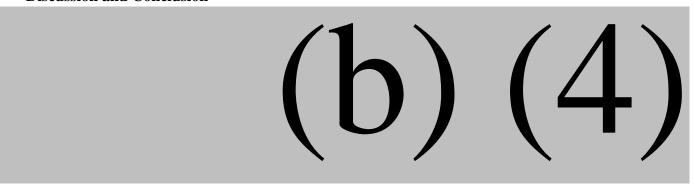
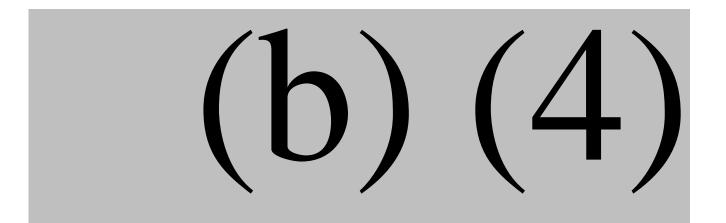

The gene annotation summary for the WGS is found below in Table 3.

Table 3: Gene Annotation Summary

All 5665 predicted protein sequences from the WGS of *P. fluorescens* strain DC454 were analyzed using the RGI. This resulted in no Perfect hits.

Discussion and Conclusion


BASF Enzymes LLC

Proprietary and Confidential

Page 3 of 5

Reference List

Appendix 9: Characterization of the Gene Deletion Region in the Host Chromosome

Characterization of the Gene Deletion Region in the Host Chromosome

(b) (4)

Sr. Manager, Expression/Technology Development

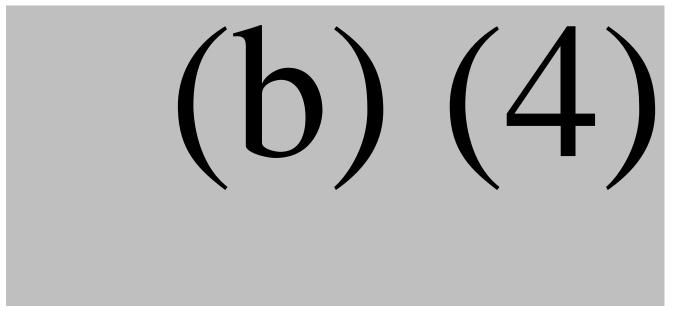
September 16, 2021

BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121 **Proprietary and Confidential**

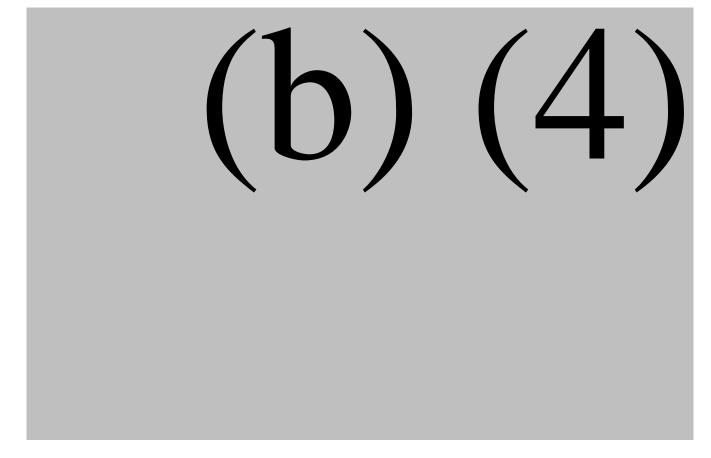
Characterization of the (b) (4) Gene Deletion Region in the Host Chromosome

Author: (b)(6)

Date


Sr. Manager, Expression / Technology Development

BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121 **Proprietary and Confidential**


Table of Contents

Summary	1
Construction of DC454	1
Sequencing and Bioinformatics Analysis	2
References	7

Summary

Construction of DC454

BASF Enzymes LLC

Proprietary and Confidential

Page 1 of 7

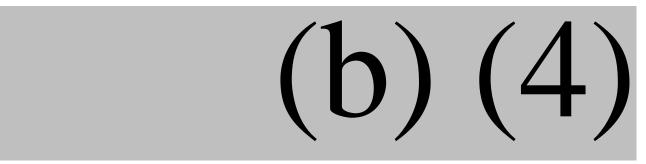
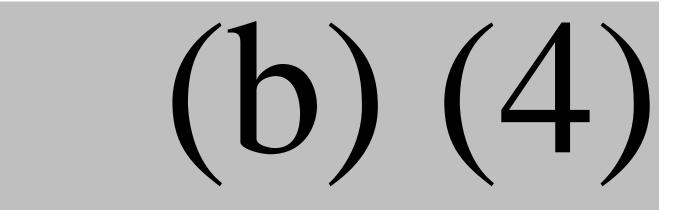



Table 1 Primer names and sequences used to amplify $^{\left(b\right) \,\left(4\right) }$ gene

Primer Name	Primer sequence	
	(b)	(4)

Sequencing and Bioinformatics Analysis

BASF Enzymes LLC

Proprietary and Confidential

Page 2 of 7

Figure 2: DNA sequence surrounding the $^{(b)}$ (4) gene deletion site

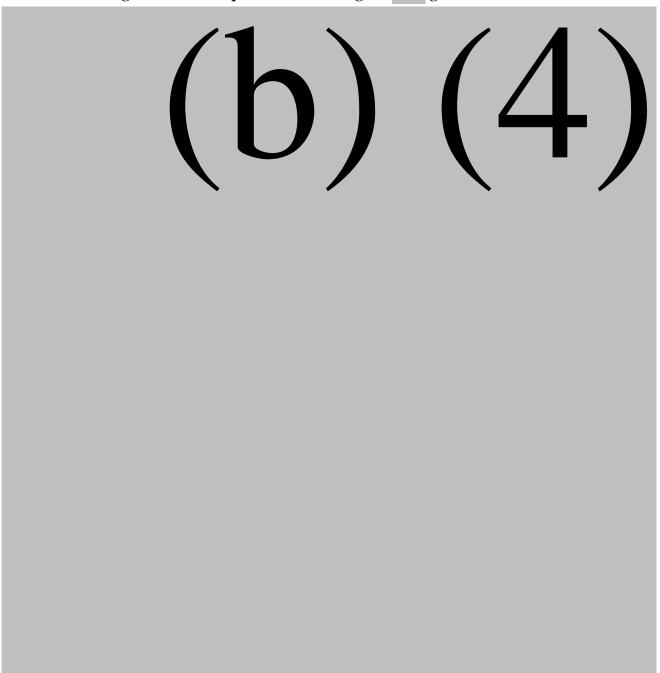
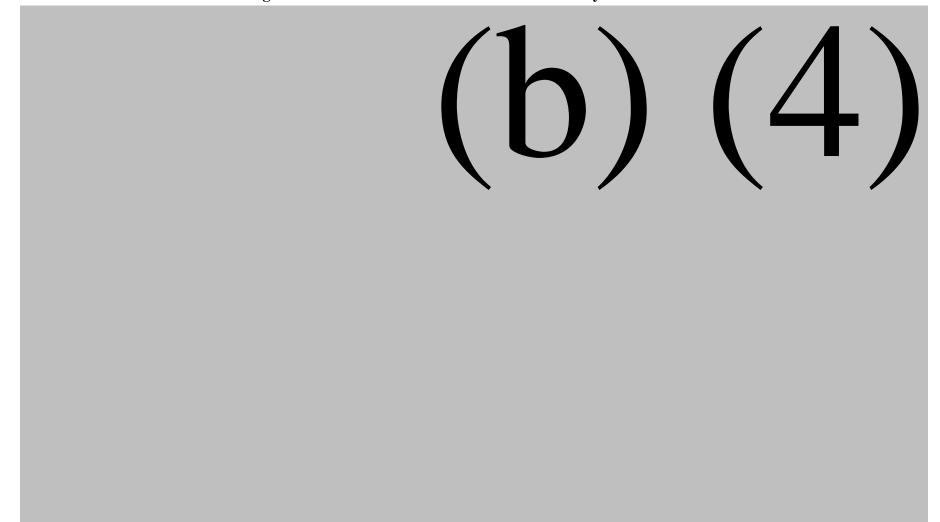
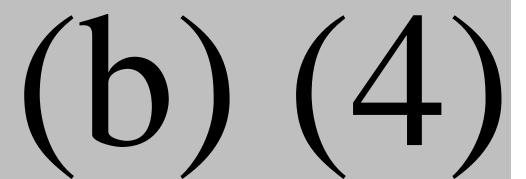



Figure 3 Illustration of Putative ORFS and Two Hybrid ORFs


BASF Enzymes LLC

Proprietary and Confidential

Page 5 of 7

BASF Enzymes LLC Proprietary and Confidential Page 6 of 7

Appendix 10: Certificates of Analysis for CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: CV002C2

Date of Manufacture: August 14, 2014

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (1)	Visual
pH	5.0 - 5.2	(b)(4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20		Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000 ²		FDA BAM
Total Coliform (MPN/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
	Absent		
Salmonella (/25g)	1,000,000		FDA BAM
Yeast and Mold (CFU/g)	Run and Record ³		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Pseudomonads (/g)	Absent		USP 41 <62>
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin			
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone			HPLC
	NMT 43.1 ppb		
Sterigmatocystin	NMT 200 ppb		TLC

PCBs	10,000 pg/g	(b) (4)	GC/HRMS
Dioxins	1pg/g	(0)(4)	GC/HRMS

* Results of retesting performed in May 2017

1 The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

² 50,000 CFU/g was the specification for total plate count at the time of production of this lot. The limit has since been reduced to a maximum of 30,000 CFU/g based upon historical commercial production data.

³ Yeast and mold specifications were run and record at the time of this production as this is not a parameter included in the commercial specifications.

(b)(6)

Sr. Manager, QA/QC

Date: September 10, 2021

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: 190CV005A3

Date of Manufacture: August 11, 2014

A SECTION OF SECURITY SECURITY		Test Result	Method
Appearance	Amber to brown liquid	(b) (1)	Visual
pH	5.0 - 5.2	(0)(4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20	1 1 1 1	Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000 ²		FDA BAM
Total Coliform (cfu/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
	2,000		10/22/2019
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (MPN/g)	Run and Record ³		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Pseudomonads (/g)	Absent		USP 41 <62>
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin			
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin	NMT 200 ppb		TLC

Page 4 of 13

		(1) (1)	
PCBs	10,000 pg/g	(b)(4)	GC/HRMS
Dioxins	1pg/g	(-)(.)	GC/HRMS

* Results of retesting performed in May 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

² 50,000 CFU/g was the specification for total plate count at the time of production of this lot. The limit has since been reduced to a maximum of 30,000 CFU/g based upon historical commercial production data.

³ Yeast and mold specifications were run and record at the time of this production as this is not a parameter included in the commercial specifications.

(b) (6)

Approved by:

Mark Burcin Sr. Manager, QA/QC Date: September 10, 2021

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: PHY-50104-PO030-F4

Date of Manufacture: September 11, 2015

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (1)	Visual
pH	5.0 - 5.2	(b)(4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20		Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000 ²		FDA BAM
Total Coliform (MPN/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record ³		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Pseudomonads (/g)	Absent		USP 41 <62
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin	About		ozo. A
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin			
Steriginatocystin	NMT 200 ppb		TLC

PCBs	10,000 pg/g		(4)	GC/HRMS
Dioxins	1pg/g	(-)	(.)	GC/HRMS

* Results of retesting performed in May 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

² 50,000 CFU/g was the specification for total plate count at the time of production of this lot. The limit has since been reduced to a maximum of 30,000 CFU/g based upon historical commercial production data.

³ Yeast and mold specifications were run and record at the time of this production as this is not a parameter included in the commercial specifications.

(b) (6)

Approved by:

Mark Burcin Sr. Manager, QA/QC Date: September 10, 2021

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (Test Article VR005)

Lot number: P23941

Date of Manufacture: October 8, 2014

Appearance Bulk Density-untapped (g/cm³) Particle size (mesh) Activity (U/g)	Specification Limit White to Beige granules ≥ 0.50 <2% on 20 mesh <10% thru 140 mesh NLT 10,000 ≤ 12 ≤ 5	(b) (4) Visual Untapped Sieve Sieve ISO 30024 SP 37 <731>
Particle size (mesh) Activity (U/g)	<2% on 20 mesh <10% thru 140 mesh NLT 10,000 ≤12 ≤5	Sieve Sieve ISO 30024
Activity (U/g)	<10% thru 140 mesh NLT 10,000 ≤ 12 ≤ 5	Sieve ISO 30024
	≤ 12 ≤ 5	
Property designation of the same	≤ 5	SP 37 <731>
Loss on Drying (%)	358	
Lead (mg/kg)	4.0	ICP-MS
Arsenic (mg/kg)	< 2	ICP-MS
Cadmium (mg/kg)	< 0.5	ICP-MS
Mercury (mg/kg)	< 0.5	ICP-MS
Total Plate Count (cfu/g)	≤ 50,000 ²	FDA BAM
Total Coliform (MPN/g)	≤ 30	FDA BAM
E. coli (/25g)	Absent	FDA BAM
Salmonella (/25g)	Absent	FDA BAM
Yeast and Mold (CFU/g)	Run and Record ³	FDA BAM
Staphylococcus aureus (/g)	Absent	FDA BAM
Pseudomonads (/g)	Absent	JSP 41 <62>
Production Organism (CFU/g)	Absent	QC0214
Antibiotic Activity (Zone of Inhibition)	Absent	JECFA
Mycotoxin	Absent	JECFA
Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B2 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol	NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.4 ppm NMT 0.6 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm	HPLC HPLC HPLC HPLC LCMSMS
Diacetoxyscirpenol Zearalenone Sterigmatocystin	NMT 0.4 ppm NMT 43.1 ppb NMT 200 ppb	LCMSMS HPLC TLC

Date: September 10, 2021

		(1)	1	
PCBs	10,000 pg/g	(b)	4)	GC/HRMS
Dioxins	1 pg/g			GC/HRMS

* Production organism testing was performed on the enzyme concentrate used to pro

** Results of retesting performed in March 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

² 50,000 CFU/g was the specification for total plate count at the time of production of this lot. The limit has since been reduced to a maximum of 30,000 CFU/g based upon historical commercial production data.

³ Yeast and mold specifications were run and record at the time of this production as this is not a parameter included in the commercial specifications.

Approved by:

Mark Burcin Sr. Manager, QA/QC

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (Test Article VR005)

Lot number: P26641

Date of Manufacture: October 8, 2014

Specification	Specification Limit	Test Result	Method
Appearance	White to Beige granules	b) (1)	Visual
Bulk Density-untapped (g/cm³)	≥ 0.50	0) (4)	Untapped
Particle size (mesh)	<2% on 20 mesh <10% thru 140 mesh		Sieve Sieve
Activity (U/g)	NLT 10,000		ISO 30024
Loss on Drying (%)	≤12		USP 37 <731>
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000 ²		FDA BAM
Total Coliform (cfu/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record ³		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Pseudomonads (/g)	Absent		USP 41 <62>
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin			
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 3.0 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone			HPLC
	NMT 43.1 ppb		
Sterigmatocystin	NMT 200 ppb		TLC

Page 1 of 2

PCBs	10,000 pg/g	(b)(4)	GC/HRMS
Dioxins	1 pg/g	() (GC/HRMS
Production organism testing was per	formed on the enzyme concentrate used to p		oduct.

* Production organism testing was performed on the enzyme concentrate used to p

** Results of retesting performed in March 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

² 50,000 CFU/g was the specification for total plate count at the time of production of this lot. The limit has since been reduced to a maximum of 30,000 CFU/g based upon historical commercial production data.

³ Yeast and mold specifications were run and record at the time of this production as this is not a parameter included in the commercial specifications.

Approved by:

Mark Burcin Sr. Manager, QA/QC Date: September 10, 2021

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme (Test Article VR005)

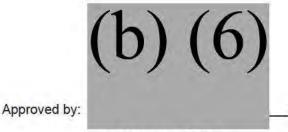
Lot number: RO15271001

Date of Manufacture: September 28, 2015

Specification	Specification Limit	Test Result	Method
Appearance	White to Beige granules	(h) (1)	Visual
Bulk Density-untapped (g/cm³)	≥ 0.50	(0) (7)	Untapped
Particle size (mesh)	<2% on 20 mesh <10% thru 140 mesh		Sieve Sieve
Activity (U/g)	NLT 10,000		ISO 30024
Loss on Drying (%)	≤12		USP 37 <731>
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	<2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000 ²		FDA BAM
Total Coliform (cfu/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record ³		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Pseudomonads (/g)	Absent		USP 41 <62>
	Absent		
Production Organism (CFU/g)	0()(0)(0)(0)(0)(0)		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B2 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol Diacetoxyscirpenol	NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 3.0 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.6 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm NMT 0.4 ppm NMT 0.4 ppm		HPLC HPLC HPLC LCMSMS
Zearalenone Sterigmatocystin	NMT 43.1 ppb NMT 200 ppb		HPLC TLC

PCBs	10,000 pg/g	(b) (4)	GC/HRMS
Dioxins	1 pg/g	(-) (GC/HRMS

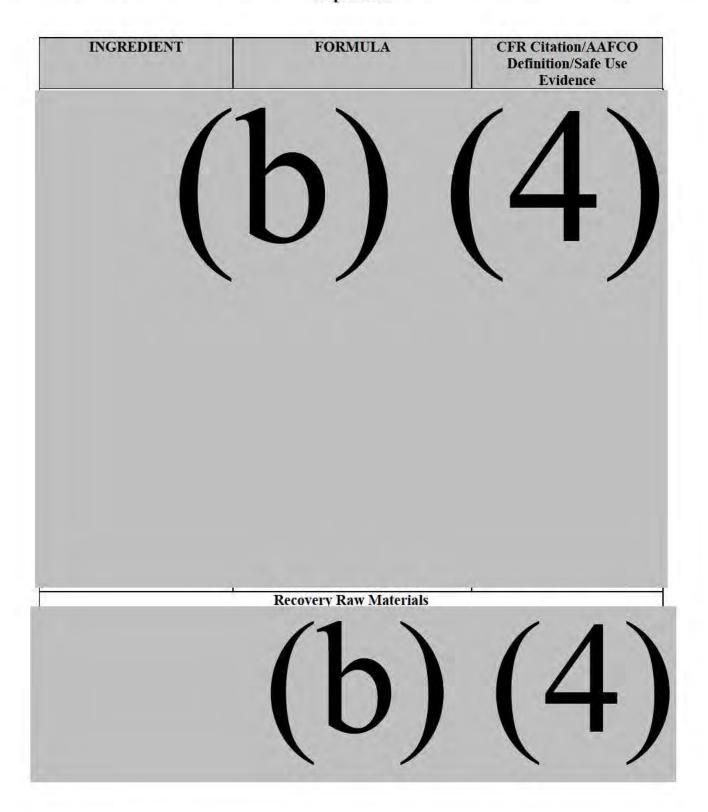
* Production organism testing was performed on the enzyme concentrate used to pr

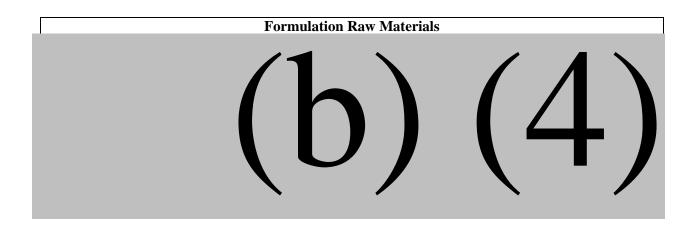

uct

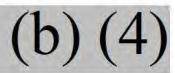
** Results of retesting performed in March 2017

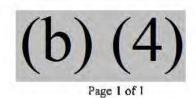
¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

2 50,000 CFU/g was the specification for total plate count at the time of production of this lot. The limit has since been reduced to a maximum of 30,000 CFU/g based upon historical commercial production data.


³ Yeast and mold specifications were run and record at the time of this production as this is not a parameter included in the commercial specifications.




Sr. Manager, QA/QC


Date: September 10, 2021

Appendix 11: List of Raw Materials Used in the Manufacturing of Phytase 50104 Enzyme Preparation

Certificate of Analysis

according to EN 10204 3.1

(b)(4)

Order Number: 9080

Product: (b) (4)POLYGLYCOL

Product No: 10157

ch: JY28041

Date of Manufacture: 04/09/2021 Test Date: 06/08/2021

C0409211 04/09/2023

Test	Test Procedure/Parameters	Specification	Result/Dimension
√ Hydroxyl number	222	47.0 - 53.0mgKOH/g	(b) (1)
water content	226-В	0.0 - 0.3%	1))(4)
Cloud point	215-B, 1% aqueous	19.0 - 21.0°C	
Colour number	211, APHA	0.0 - 50.0	
pН	228-E, (1 water + 10 MeOH)	7.5 - 9.3	
Kinematic viscosity Tested By	225-A, 100F, cSt	185.0 - 210.0cSt	

The information does not release the user from the inspection of the goods reserved. Quality Control Plant: Foam Control

(b)(4)

(b)(4)

(b) (4), (b)(6) 021 Jul 121.

(b) (4), (b) (4)

(b) (4)

CERTIFICATE OF ANALYSIS

(4)

PO# 9077

No LOTE. 6

DISTRIBUTEIRBOBIO:

27/Abr/21 (b)(6)

-

<u>DI</u>

Batch No. : TPC-IPTG/020221

367-93-1

Qty

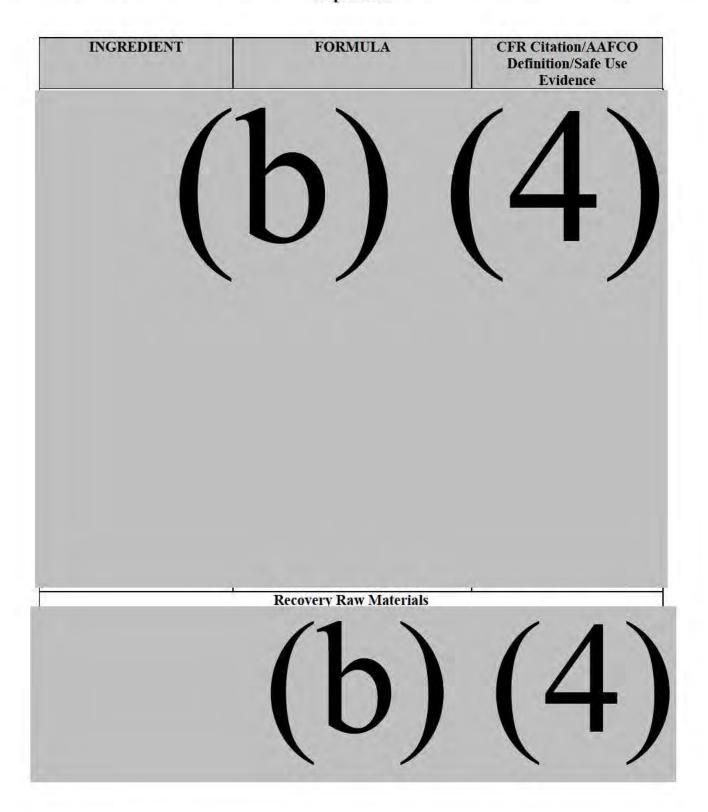
: 100 kgs

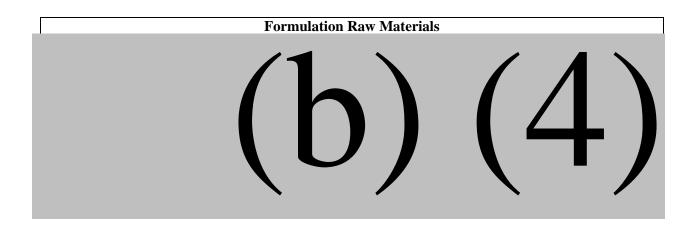
Mfg Date

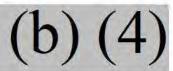
Product

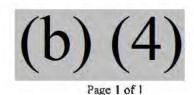
CAS No

: February, 2021


Exp Date: February, 2023


Test	Specifications	Result
Description	White Crystalline Powder	(1-) (1)
Solubility	Soluble in water and methanol	(b) (4)
Identification by IR	The IR spectrum of the sample should be concordant with the working standard.	
pH 5% in water	5.0 - 7.0	
Absorbance 5% w/v Soluble in water,	Not more than 0.12	
(a) 300 nm (b) 400 nm	Not more than 0.13 Not more than 0.06	
Melting Range	110 °C - 114 °C	
Moisture Content by KF	NMT 1.0% w/w	
1,4-Dioxane	Should be absent	-
Specific Rotation	-28.5° to -34.5°	
Purity by HPLC	NLT 98%	
Assay by HPLC	NLT 98 - 101%	
CONTRACTOR OF THE PARTY OF THE		


REPORT: The product complies with the above specifications


(b)(4),(b)(6)

Appendix 11: List of Raw Materials Used in the Manufacturing of Phytase 50104 Enzyme Preparation

Certificate of Analysis

according to EN 10204 3.1

Order Numbur:

9080 PO Number:

Product: (b) (4) POLYGLYCOL

Product No: 10157

JY28041 *ch:

date of Manufacture:

04/09/2021

Test Date: 06/08/2021

C0409211

04/09/2023

Test	Test Procedure/Parameters	Specification	Result/Dimension
√ Hydroxyl number	222	47.0 - 53.0mgKOH/g	b) (1)
water content	226-B	0.0 - 0.3%	UITI
Cloud point	215-B, 1% aqueous	19.0 - 21.0°C	
Colour number	211, APHA	0.0 - 50.0	
pН	228-E, (1 water + 10 MeOH)	7.5 - 9.3	
Kinematic viscosity Tested By	225-A, 100F, cSt	185.0 - 210.0eSt	

The information does not release the user from the inspection of the goods recorded. Quality Control Plant: Foam Control

(b) (4), (b)(6)

021 Jul 121.

(b) (4), (b) (4)

(b) (4)

CERTIFICATE OF ANALYSIS

(4)

PO# 9077

No LOTE. 6

DISTRIBUTEIRBOBIO:

27/Abr/21 (b)(6)

-

<u>DI</u>

Batch No. : TPC-IPTG/020221

367-93-1

Qty

: 100 kgs

Mfg Date

Product

CAS No

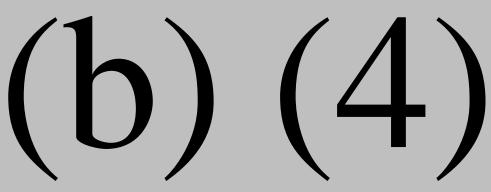
: February, 2021

Exp Date: February, 2023

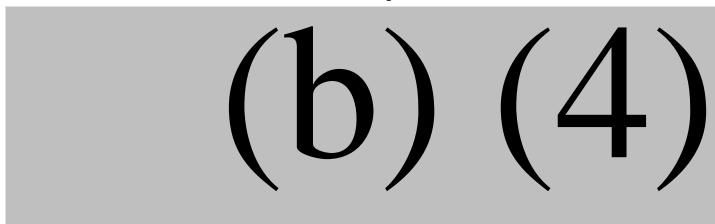
Test	Specifications	Result
Description	White Crystalline Powder	(1-) (1)
Solubility	Soluble in water and methanol	(b) (4)
Identification by IR	The IR spectrum of the sample should be concordant with the working standard.	
pH 5% in water	5.0 - 7.0	
Absorbance 5% w/v Soluble in water,	Not more than 0.12	
(a) 300 nm (b) 400 nm	Not more than 0.13 Not more than 0.06	
Melting Range	110 °C - 114 °C	
Moisture Content by KF	NMT 1.0% w/w	
1,4-Dioxane	Should be absent	-
Specific Rotation	-28.5° to -34.5°	
Purity by HPLC	NLT 98%	
Assay by HPLC	NLT 98 - 101%	
CONTRACTOR OF THE PARTY OF THE		

REPORT: The product complies with the above specifications

(b)(4),(b)(6)

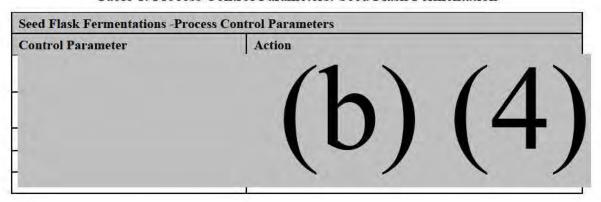

BASF Enzymes LLC Confidential Page 1 of 10

Detailed Manufacturing Information: Fermentation, Recovery, and Formulation


A. Fermentation

The fermentation process is described below and is illustrated in the Figure 1 below.

Figure 1 Fermentation Overview



1. Seed Build-up

determined by a turbidity measurement of 10 absorbance units. Turbidity is quantified as the optical density (absorbance units) of an appropriately diluted sample of the culture using a spectrophotometer at 575nm. The process control parameters for the seed flask fermentations are shown in the Table 1 below.

Table 1. Process Control Parameters: Seed Flask Fermentation

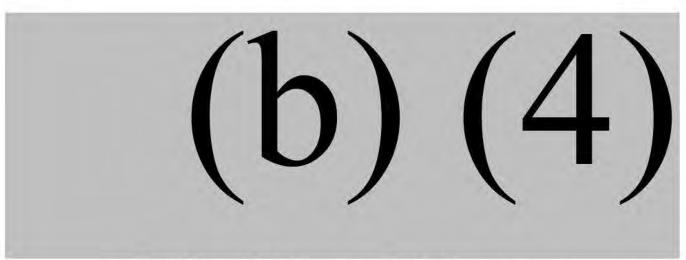
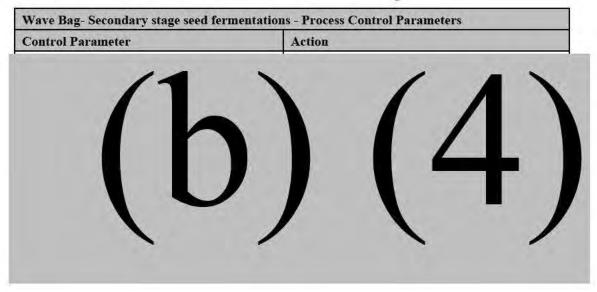



Table 2. Process Control Parameters: Wave Bag Fermentation

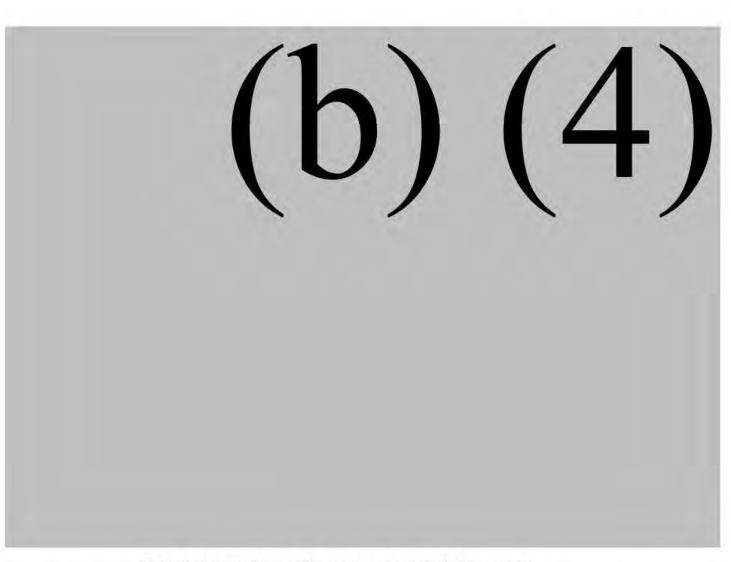
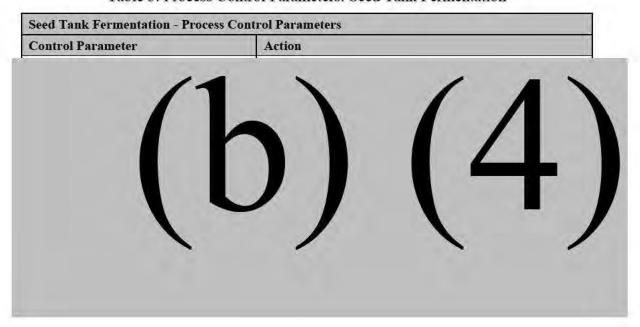
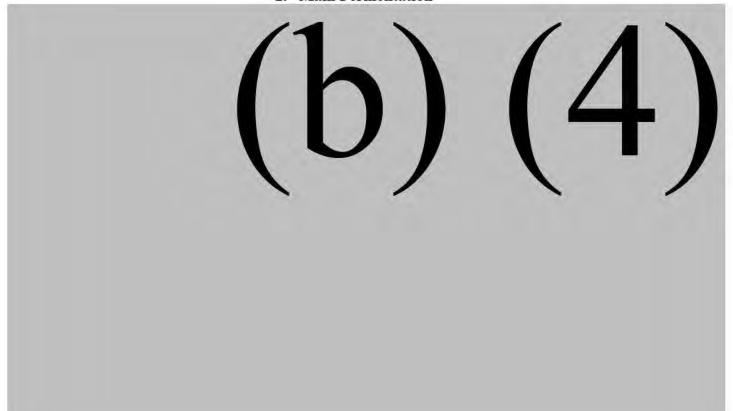
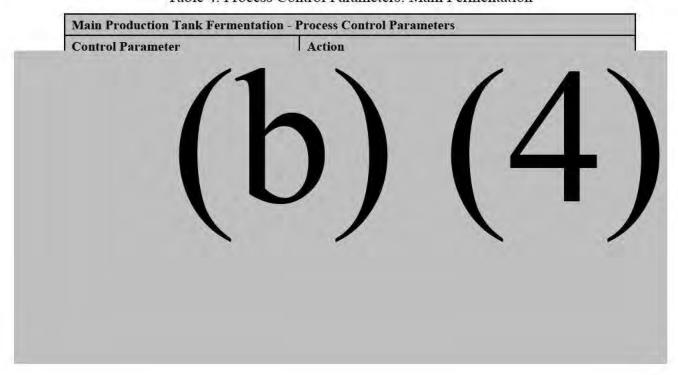
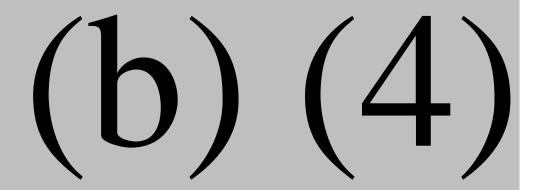
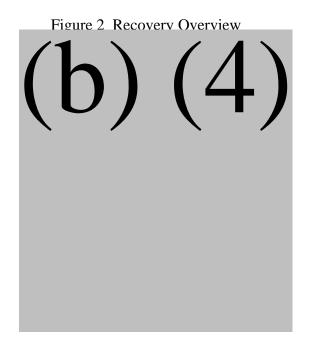



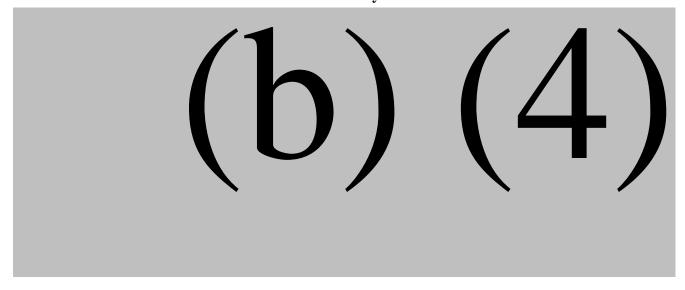
Table 3. Process Control Parameters: Seed Tank Fermentation

BASF Enzymes LLC Confidential Page 4 of 10


Table 4. Process Control Parameters: Main Fermentation

B. Recovery


(b) (4)



1. Enzyme Release


(b) (4)

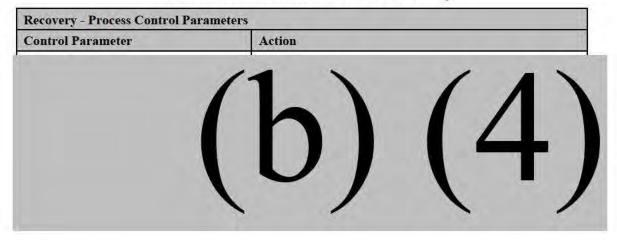
2. Clarification and Enzyme Extraction

3. Concentration

4. Diafiltration

5. Preformulation and Heat Treatment

(b) (4)


6. Polish Filtration

7. Recovery Process Control Parameters

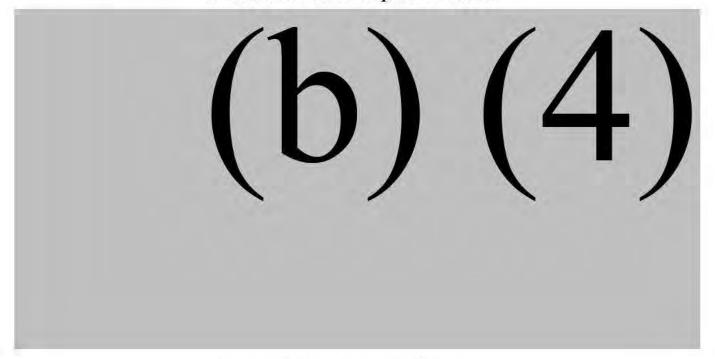
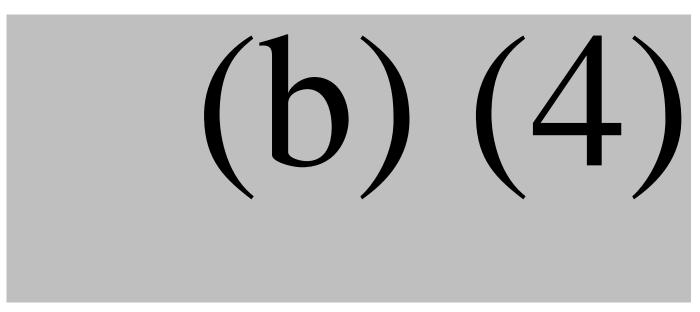

Recovery process control parameters are provided in the table below.

Table 5. Process Control Parameters: Recovery


C. Formulation

1. Formulation of the Liquid Concentrate

2. Formulation of the Liquid Product

(b)(4)

3. Formulation of the Granular Product

(b) (4)

Appendix 13: Final Product Composition and TOS Calculation

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme Composition

Chemical Name	Amoun	t w/w%
Water	(h)	(Λ)
Liquid P. fluorescens Fermentation Product	(U)	(4)
Sodium Chloride	\ /	
Sucrose		
Sodium Citrate		
Potassium Sorbate		
Sodium Benzoate		
Sodium Propionate		

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme Composition

Chemical Name	Amount	w/w%
Wheat Flour	(h)	(1)
Sucrose	(b)	(4)
Dried P. fluorescens Fermentation Product	\ /	\ /
Sodium Citrate		
Sodium Chloride		
Potassium Sorbate		
Sodium Benzoate		
Sodium Propionate		

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme Total Organic Solids (TOS) Calculation

Test	CV002C2 (190CV002A3PB)	190CV005A3	PHY-50104-PO030-F4	Method
Water (%)		/1_	\ (1\	USP 37 <921>M1
Residue on Ignition (%)		(n))(4)	USP 37 <281>
Dilutants (%)			/ \ '/	Calculated
TOS (%) ¹		•		Calculated
	Average	$\pm TOS(\%) = 1.3 \pm$	0.4	

 $^{^{1}}$ TOS (%) = [100 – (water, % + residue on ignition, % + diluents, % (i.e., formulation ingredients)]

Appendix 14: Stability Study Data

Table 1: CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

	LOT#	P23941 P26641		P26641 RC		RO16131001	
G10	Activty in U/g; in % of initial activity	U/g	%	U/g	%	U/g	%
20°C	Initial	1	-			/	-
25°C	1 month						
	2 month	1	0				
	3 month						
	6 month						
	9 month						
	12 month	1					
	18 month						
	24 month						
	1 month						
	2 month						
	3 month						
2000	6 month						
30°C	9 month						
	12 month						
	18 month						
	24 month						
	1 month						
	2 month						
	3 month						
1000	6 month						
40°C	9 month						
	12 month						
	18 month						
	24 month						

(b)(4)

Table 2: CIBENZA® PHYTAVERSE® L10 Phytase Enzyme

LOT#		CV0	02C2	190CV	005A3	PHY-50104	-PO030-F4
L10	Activty in U/g; in % of initial activity	U/g	%	U/g	%	U/g	%
5°C	Initial						4
	1 month						1
	2 month						
	3 month						
5°C	6 month						
<i>3</i> C	9 month	N.					
	12 month						_
	18 month						
	24 month						
	1 month						
	2 month						
	3 month						
25°C	6 month						
25 C	9 month						
	12 month						
	18 month						
	24 month						
	1 month						
	2 month						
	3 month						
30°C	6 month						
30 C	9 month						
	12 month						
	18 month						
	24 month						
	1 month						
	2 month						
	3 month						
	6 month						
40°C	9 month						
	12 month						
	18 month						

BASF Enzymes LLC Page 1 of 46

(b) (4)

Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix

Unique Study Code: F584

FINAL REPORT Date: March 8, 2018

Study sponsor: Novus Europe S.A./N.V. and BASF Enzymes LLC.

Signed by Study Director, Study Sponsors and Study Monitor:

(b) (4), (b)(6)	2018 03.09	land 8 March 2018	Drew 2,2018
Study Director	Study S	ponsors	Study Monitor
(b) (4), (b)(6)	Elkin Amaya Senior Regulatory Affairs Manager, Novus Europe S.A./N.V. Novus- Edifici CEPID, Tecnoparc Reus, Avda. Cambra del Comerç 42 ES-43204, Reus, Spain	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

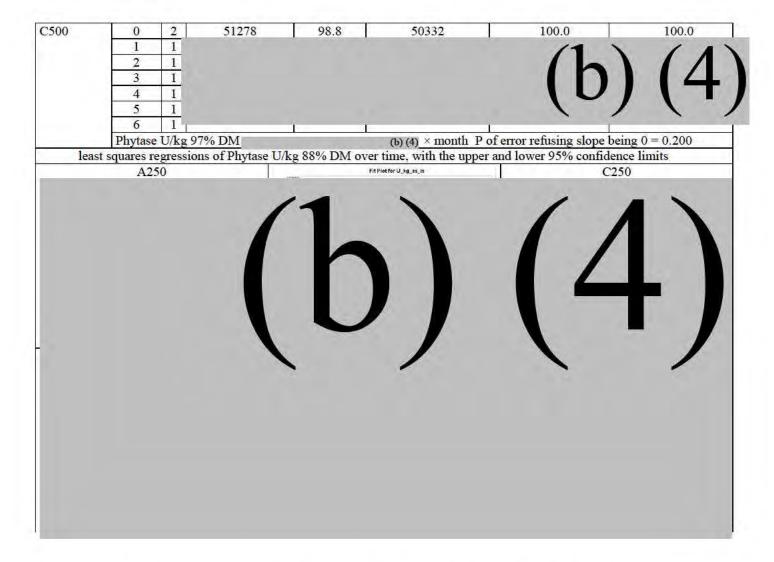
(b)(4)

(b) (4)

Page 1 of 45 Final report F584/ Organic code: 0602 / Activity code: A2369 Date: March 8, 2018 Rev. 0

Table of contents

l	Summary	
	Summary Table 1. Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix	3
2	Quality statement	
3	Study title and unique study code	6
4	Study objective	6
5	Study location	
6	Important dates & duration of the study	6
7	Test products	
	Table 1. Details of test product	6
8	Key study personnel	6
9	Material and methods	
9.	1 Experimental treatments	7
	Table 2. Experimental Treatments	7
9.	Treatment application	7
9.	3 Detailed study design	8
	Figure 1. Basic study design	8
9.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Table 3. Composition of vitamin-mineral premix	8
9.	5 Premix analyses	9
9.	6 Premixture manufacture	9
9	9.6.1 Short description of the process	9
9.	7 Premix samples at manufacture	9
9.	8 Feed sampling plan	10
	Table 4. Sampling plan	10
9.	9 Statistics	11
10	Results	
	Table 5. Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix	11
	Figure 2. Least squares regressions of Phytase U/kg 97% DM over time, with the upper and lower 95% confidence	
	limits	12
11	Discussion	13
12	Conclusions	14
13	References	15
14	List of Appendices	
	Appendix 1 - Curricula vitae of Study Director & Study Monitor	
	Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)	
	Appendix 3 - Relevant laboratory reports	
	Appendix 4 - Raw data	
	Appendix 5 - Statistical printouts	
	Appendix 6 – Temperature and relative humidity during storage of stability samples	45


1 Summary

The objective of this study was to evaluate the Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in vitamin-mineral premix.

The stability of each of the three batches of the test article at two inclusion levels was determined by monthly measuring phytase activity in composite samples obtained at mixing, and after storage at ambient conditions from 0 to 6 months.

Results are presented next in Summary Table 1.

		N	Phytase U/kg as is	DM %	Phytase U/kg 97% DM	Phytase activity % 0 month as is	Phytase activity % 0 month 97%DM
Tr	month	161	7.453		30.77.	77-1-1	0.000
A250	0	2	23636	98.8	23215	100.0	100.0
	1	1				/1 \	/ 41
	2	1					
	3	1					
	4	1				10	
	5	1				()	
	6	1					
			07% DM =			P of error refusing slope	
A500	0	2	53321	98.7	52388	100.0	100.0
	1	1				11	1/1
	2	1				1 h	1 / /
	3	1					1 4
	5	1				10	
	6	2				1	
			7% DM =	t	ava v month	P of error refusing slope	haina 0 = 0.110
B250	0	2	27710	98.9	27191	100.0	100.0
D250	1	1	21110	30.5	2/191	100.0	100.0
	2	1				(1)	
	3	1					
	4	1					
	5	1				10	
	6	1					
	Phytase	U/kg 9	7% DM		(b) (4) month	P of error refusing slope	being $0 = 0.114$
B500	0	2	49697	98.9	48740	100.0	100.0
	1	1			4	14	
	2	1				/1_	1 / 1
	3	1				1 n	1 4
	4	1				10	# All the sk
	5	1_				1	
	6	1		2			(b)
	Phytase	U/kg 9	7% DM =		(b) (4) × month	P of error refusing slope	being $0 = 0.163$
C250	0	2	27836	98.8	27328	100.0	100.0
	1	1				14 \	1 .
	2	1					\ / / \
	3	1				In	(4)
	4	1					
	5	1					
	6	3					
	Phytase	U/kg 9	7% DM		(b) (4) × month	P of error refusing slope	e being 0 = 0.082

According the results of the present stability study in vitamin-mineral premix, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

- Was stable over time (up to 6-months storage at ambient conditions) for all three batches (A & B & C) at both 250 and 500 U/kg, as demonstrated by slopes of linear regressions of phytase activity over time not being significantly different from 0 (flat line).
- Presented a good stability (±10% of 0-month value) up to 6-months storage also for all three batches
 at both 250 and 500 U/kg. Higher variations at intermediate points were considered to be within the
 range of expected values considering stability within the batch rather than real activity changes.

2 Quality statement

The study, Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix (Unique Study Code: F584), was conducted in compliance with current quality standards and regulatory requirements as applicable for EU and US feed additive applications.

Procedures, documentation, equipment and records were examined in order to assure that the study was performed in accordance with the regulations specified herein and with the protocol and relevant Standard Operating Procedures.

Signed and dated:

(b)(6)		(b) (4
Study Director	Study S	ponsors	Study Monitor
(b)(6)	Elkin Amaya Senior Regulatory Affairs Manager, Novus Europe S.A./N.V. Novus- Edifici CEPID, Tecnoparc Reus, Avda. Cambra del Comerç 42 ES-43204, Reus, Spain	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

3 Study title and unique study code

Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in vitamin-mineral premix.

Unique study code: F584

4 Study objective

To evaluate the stability of three batches of CIBENZA® PHYTAVERSE® G10 phytase enzyme at two doses each in vitamin-mineral premix.

5 Study location

(b) (4)

6 Important dates & duration of the study

Date of feed manufacture: 24th July 2017

Duration of study: 1 day mixing, 6-months storage for stability

7 Test products

	Table 1. Details of test product								
Code	Product	Provider	Lot no	Active	Activity (U/g) [†]				
Code	Troduct	Tiovidei	Manufacture Date	substance	Guaranteed	Analysed			
A	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P23941 Made: 08 October 2014	6-phytase	10,000	13,951			
В	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P26641 Made: 08 October 2014	6-phytase	10,000	13,742			
С	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: RO15271001 Made: 28 September 2015	6-phytase	10,000	13,522			

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

8 Key study personnel

(b)(4)

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager, Specialty Products, Novus International, Inc., 20 Research Park Dr., St. Charles, MO 63304, United States of America, Tel: +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com

BASF Enzymes LLC Page 7 of 46

Study Sponsors: 1) Elkin Amaya, Senior Regulatory Affairs Manager, EMEA, Novus Europe S.A./N.V. Novus-Edifici CEPID, Tecnoparc Reus, Av. Cambra del Comerç, 42 ES-43204, Reus, Spain Tel: +34 676 004 728, E-mail: elkin.amaya@novusint.com

2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858 431-8590, Mobile: +1-858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@basf.com. Postal Address: BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121 United States

Feed mill & supervision of diet manufacture:

(b) (4)

Premix analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme):

(b) (4)

Optional/back-up facility for premix analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme): Drew Lichtenstein, Novus International, Inc., 20 Research Park Drive, Saint Charles, MO, 63304; United States of America.

9 Material and methods

9.1 Experimental treatments

Number of treated and control groups: Commercial vitamin-mineral premix (inclusion level 10 kg/ton feed) was used as matrix for stability purposes.

CIBENZA® PHYTAVERSE® G10 phytase enzyme from each batch was added to the vitamin-mineral premix to theoretically provide 250 and 500 U/kg feed as detailed in Table 2.

Table 2. Experimental Treatments								
		CIBENZA	® PHYTAVERSE® C	G10 phytase enzyme				
Treatment	Product	U/kg feed	mg in 10 g premix (equivalent to mg/kg feed) [†]	g to add to 10 kg premix [†]				
A2	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	/ ◀ \					
A5	batch P23941	500						
B2	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250		<i> </i>				
B5	batch P26641	500	\ 	\ \ 				
C2	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	()	\ ' /				
C5	batch RO15271001	500						

[†] inclusion based on actual activity of each batch

9.2 Treatment application

CIBENZA® PHYTAVERSE® G10 phytase enzyme was mixed with the vitamin-mineral premix in serial mixing steps (details provided under Section 9.3 & 9.6).

BASF Enzymes LLC Page 8 of 46

9.3 Detailed study design

Figure 1. Basic study design

For each batch and dose of enzyme:

The stability of the test article in the vitamin-mineral premix was determined by measuring phytase activity of composite samples obtained at mixing, and after storage at ambient conditions for the following periods and for each batch of enzyme:

- 0 months (samples used only for this time point)
- 1 months (samples used only for this time point)
- 2 months (samples used only for this time point)
- 3 months (samples used only for this time point)
- 4 months (samples used only for this time point)
- 5 months (samples used only for this time point)
- 6 months (samples used only for this time point)

Premix was produced as follows:

10 kg of Vitamin and Mineral premix was mixed with the corresponding amount of CIBENZA® PHYTAVERSE® phytase enzyme depending on actual activity of each batch as detailed in Table 2

9.4 Premix composition

A standard commercial vitamin-mineral premix was used. The composition of the vitamin-mineral premix is presented next:

Table 3. Compo	sition of	f vitamin-mineral	premix
	Units	per kg of vitamin- mineral premix	when premix added at 10 kg/ton feed, results in the following values per kg of feed
Vitamins provitamins and similar			
/ 4 \ / / \	IU	1 000 000	/ 4 \ / 4 \
	IU	350 000	
(b)(4)	mg	3 000	
	mg	210	\
\	mg	855	$(\cup) (\cup)$
$(\cup) (\cup)$	mg	470	
	mg	5	
	mg	300	
	mg	2 000	
	mg	1 520	
	mg	6 710	
	mg	150	
	mg	25	
	mg	6 500	
	mg	150	
	mg	1 500	
	mg	8 000	
	mg	8 500	
	mg	20	

BASF Enzymes LLC Page 9 of 46

Table 3. Compo	osition of	vitamin-mineral	premix
	Units	per kg of vitamin- mineral premix	when premix added at 10 kg/ton feed, results in the following values per kg of feed
Amino acids			
(b) (4)	g g mg g g	50 150 5 000 10 146 100 up to 1 kg	(b) (4)

9.5 Premix analyses

Phytase activity in premixes was determined based on "ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity in association with dilution method VDLUFA 27.1.3 (dilution of mineral feeds and premixtures with maize meal (blank feed) before applying the EN ISO 30024 analytical method)."

Dry Matter was determined according AOAC method 934.01: Moisture in Animal Feed.

Premix with no addition of CIBENZA® PHYTAVERSE® G10 phytase enzyme was previously analyzed to confirm the absence of phytase activity before mixing.

9.6 Premixture manufacture

9.7 Premix samples at manufacture

For each CIBENZA® PHYTAVERSE® G10 phytase enzyme batch and dose:

• After mixing of the product with the vitamin mineral premix, 10 grab samples (~550 g each) were taken from several points of the mixer. From these 10 grab premix samples:

Triplicate (NOVUS, (b) (4)

t each time point one sample was sent to NOVUS, a second one analyzed for phytase activity at (b) (4) lab while the third sample was retained at (b) (4) at -20°C as a backup sample).

BASF Enzymes LLC Page 10 of 46

Each sample was labelled with the unique study code (F584), treatment code (A2 / A5 / B2 / B5 / C2 / C5), sample number (i.e. NOVUS samples 1.11 to 17; (b) (4) samples 2.11 to 2.17; backup samples 3.11 to 3.17), the date of manufacture and the analysis required (DM, phytase activity).

9.8 Feed sampling plan

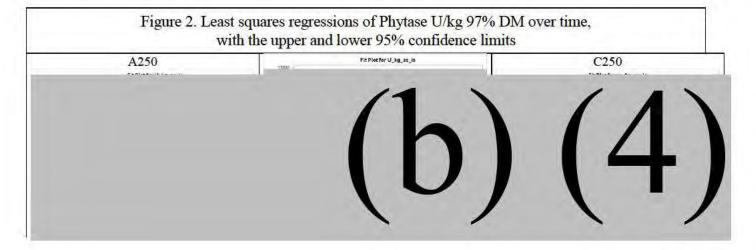
9.8 Feea sampling	•	Compling plan		
	Table 4	. Sampling plan		
CIBENZA® PHYTAVERSE® G10 phytase enzyme	dose intended for XXX U/kg feed	Months storage	NOVUS Final Samples (b) (4	l)
		10 × ~550 g g	grab samples homogenized and split: 21 × 250)g
		0	1 × 250g	
		1	1 × 250g	1
A	250	2	1 × 250g	
A	230	3	1 × 250g	
		4	1 × 250g	
		5	1 × 250g	
		6	1 × 250g	
		10 × ~550 g g	grab samples homogenized and split: 21 × 250)g
		0	1 × 250g	\
		1	1 × 250g	1
A	500	2	1 × 250g	
A	300	3	1 × 250g	
		4	1 × 250g	
		5	1 × 250g	
		6	1 × 250g	
	250	10 × ~550 g g	grab samples homogenized and split: 21 × 250)g
		0	1 × 250g	
		1	1 × 250g	
В		2	$\frac{1 \times 250g}{1 \times 250g}$ (b) (4	
		3		
		4	1 × 250g	
		5	1 × 250g	
		6	1 × 250g	
			grab samples homogenized and split: 21×250)g
		0	1 × 250g	
		1	1 × 250g	
В	500	2	1 × 250g	
		3	1 × 250g	
		4	1 × 250g	
		5	1 × 250g	
		6	1 × 250g	2
			grab samples homogenized and split: 21×250	Jg
		0	1 × 250g	
		1	1 × 250g	1
С	250	2	1 × 250g	J
		3	1 × 250g	
		4	1 × 250g	
		5	1 × 250g	
		6	1 × 250g	

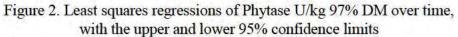
	Table 4. Sampling plan								
CIBENZA® PHYTAVERSE® G10 phytase enzyme	dose intended for XXX U/kg feed	Months storage	NOVUS	Final Samples (b) (4) packup					
		10 × ~550 g g	grab samples hor	mogenized and split: 21 × 250g					
	500	0	1 × 250g	(1) (1)					
		1	1 × 250g	(h)					
C		2	1 × 250g	トレナト午1					
	300	3	1 × 250g						
		4	1 × 250g						
		5	1 × 250g						
		6	1 × 250g						

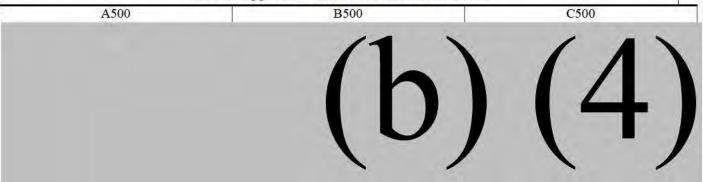
For stability analysis, all samples were kept together at (b) (4) feed mill in a cardboard box protected from light and at room temperature. Samples were dispatched to NOVUS Reus and (b) (4) lab for analysis or (b) (4) storage after the corresponding time (0, 1, 2, 3, 4, 5 or 6 months) (except for 5-months NOVUS & backup samples that were stored 6-months at ambient conditions at the feed mill by error; backup samples used for analysis were: All 0-month, A250 4-months, A500 6-months, and C250 5-months {actually 6-months stored} & 6-months).

9.9 Statistics

The CIBENZA® PHYTAVERSE® G10 phytase enzyme activity was assessed in the premix after the maximum storage period (6-months). The data was fitted to a least squares regression, with the upper and lower 95% confidence limits shown. The regression line of CIBENZA® PHYTAVERSE® G10 phytase enzyme activity vs. time was calculated and the slope tested to determine if it was significantly different from 0.


10 Results


The results are summarized in Table 5.


	Table	5. St	ability of CIBEN	NZA® PHY	ΓAVERSE® G10 p	ohytase enzyme in	premix
			Phytase	DM	Phytase	Phytase activity	Phytase activity
Tr	month	N	U/kg as is	%	U/kg 97% DM	% 0 month as is	% 0 month 97%DM
A250	0	2	23636	98.8	23215	100.0	100.0
	1	1				/◀ \	/ 4 \
	2	1					///
	3	1				(b)	(4)
	4	1				\	
	5	1				()	\ ' /
	6	1					
	Phytase	U/kg	9/% DIVI		(b) (4) × montn	r of error refusing sio	pe being $v = v.222$
A500	0	2	53321	98 7	52388	100 0	100 0
	1	1				/1 \	/ / \
	2	1					
	3	1				(b)	(4)
	4	1				$1 \mathbf{U} \mathbf{I}$	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	5	1					
	6	2					
	Phytase	U/kg	97% DM		(b) (4) × month	P of error refusing slo	pe being $0 = 0.119$

Tr	month	N	Phytase U/kg as is	DM %	Phytase U/kg 97% DM	Phytase activity % 0 month as is	Phytase activity % 0 month 97%DM
B250	0	2	27710	98 9	27191	100 0	100 0
2,000	1	1				14	/ 4 \
	2	1					
	3	1					
	4	1				1 1 1 1	
	5	1				()	\ - /
	6	1					` /
	Phytase		97% DM			P of error refusing slo	
B500	0	2	49697	98.9	48740	100.0	100.0
	1	1				11	(4)
	2	1					
	3	1					1 4
	4	1				101	
	5	1					
	6	1	270/ 721/		4	D. C	1 : 0 0163
C250	Pnytase 0	2 _	97% DM 27836	98.8	(b) (4) month 27328	P of error refusing slo	100.0
230	1	1	2/030	1 40.0	1 //3/0	10010	1000.0
	2	1					
	3	1				101	
	4	1					
	5	1				101	\ ' /
	6	3					\ /
	Phytase	U/kg	97% DM =		(b) (4) .4 × month	P of error refusing slo	pe being $0 = 0.082$
C500	0	2	51278	98.8	50332	100.0	100.0
	1	1		•		14	/
	2	1					
	3	1					
	4	1					
	5	1				()	
	6	1				` /	
	Phytase	U/kg	97% DM =		(b) (4) × month	P of error refusing slo	pe being $0 = 0.200$

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

11 Discussion

CIBENZA® PHYTAVERSE® G10 phytase enzyme activity results were also standardized considering a common Dry Matter content of 97%. This value was close to the average DM values from previous studies, but lower than the actual DM content in the present study (99.0%; DM range: 98.7-99.97%). DM did not greatly vary with time.

The backup samples were also analyzed at 0-month for all treatments, at 4-months for A250, at 6-months for A500, and for C250 at 5-months {actually 6-months stored at ambient conditions at the feed mill} & 6-months. The average value between the original and backup sample was taken into account for all except A250 4-months and C250 5-months: A250→ The original 4-months sample was probably spoiled and discarded by the lab technician, using the A250 backup instead; C250→ The original intent was to have it tested as a 5-month backup for C250 5-month original sample, but due to the error in storage, it could not be used as such. Therefore, the original C250 5-month sample was reported as is, and no backup sample was available for this time point.

The regression lines of CIBENZA® PHYTAVERSE® G10 phytase enzyme activities vs. time was calculated for the three batches and both concentrations per batch, and the slopes were not significantly (P>0.05) different from 0, meaning that no significant loss of activity was detected in any case. Final phytase activity (6-months stability) standardized at 97% DM content was generally within ±10% of that of 0-month value except for A250 (113% activity from 0-month); however, this >100% value for the A250 treatment is considered to be related to the analytical variation at each time point (% of activity were 100%, 101%, 101%, 103%, 102% and 113% for 0, 1, 2, 3, 4, 5 and 6-months respectively).

12 Conclusions

According the results of the present stability in vitamin-mineral premix, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

- Was stable over time (up to 6-months storage at ambient conditions) for all three batches (A & B & C) at both 250 and 500 U/kg, as demonstrated by slopes of linear regressions of phytase activity over time not being significantly different from 0 (flat line).
- Presented a good stability (±10% of 0-month value) up to 6-months storage also for all three batches at both 250 and 500 U/kg. Higher variations at punctual points were considered to be within the range of expected values considering stability within the batch rather than real activity loss.

BASF Enzymes LLC Page 15 of 46

13 References

ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity

VLLUFA 27.1.3. Preparation of Mineral Feed and Premixtures for the Determination of Phytase Activity

Regulation (EC) N° 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition.http://eur-lex.europa.eu/en/index.htm

SAS Institute Inc. 2011. Base SAS® 9.3 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Statutory Instrument 1999 No. 1663. The Feeding Stuffs (Sampling and Analysis) Regulation 1999.

14 List of Appendices

Appendix 1 - Curricula vitae of Study Director & Study Monitor

Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)

Appendix 3 - Relevant laboratory reports

Appendix 4 - Raw data

Appendix 5 - Statistical printouts

Appendix 6 – Temperature and relative humidity during storage of stability samples

BASF Enzymes LLC Page 16 of 46

Appendix 1- Curricula vitae of Study Director & Study Monitor

Study Director:

Name: Dr (b) (4)

Qualifications: (b) (4)

Present Position: (b) (4)

Experience: Over 20 years research experience in monogastric nutrition

Study Monitor:

Name: Drew Lichtenstein

Qualifications: B.S. Biochemistry (Michigan State University 1982), PhD Biochemistry (University of

Wisconsin-Madison 1990)

Present Position: Research Manager, Specialty Products, Novus International

Experience: Over 35 years research experience in biochemistry and cell biology; more than 8 years of

experience in animal feed enzymes.

BASF Enzymes LLC Page 17 of 46

BASF Enzymes LLC Page 18 of 46

NOVUS INTERNATIONAL INC. 20 RESEARCH PARK DRIVE ST. CHARLES, MO 63304

DATE:

09 May 2017

PRODUCT:

20002453

PRODUCT DESCRIPTION:

CIBENZA PHYTAVERSE G10 20 KG BAG

LOT NUMBER:

P23941

DATE OF MANUFACTURE:

8 October 2014

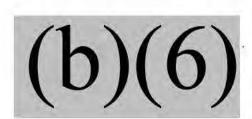
DATE OF ANALYSIS:

21 March 2017

DATE OF PACKAGING:

8 October 2014

CERTIFICATE OF ANALYSIS


CHARACTERISTIC

SPECIFICATION

RESULTS

Appearance Phytase Activity, U/g White to Beige Granules >=10000

Pass (b) (4)

The value and properties stated above are based upon test and analysis of samples of material. The exclusive commitment of Novus with respect to such values and properties is as set forth in the sales contract between your company and Novus for such material or the acknowledgment of Novus for the above described shipment of material, whichever is applicable.

BASF Enzymes LLC

Page 19 of 46

NOVUS INTERNATIONAL INC. 20 RESEARCH PARK DRIVE ST. CHARLES, MO 63304

DATE:

09 May 2017

PRODUCT:

20002453

PRODUCT DESCRIPTION:

CIBENZA PHYTAVERSE G10 20 KG BAG

LOT NUMBER:

P26641

DATE OF MANUFACTURE:

8 October 2014

DATE OF ANALYSIS:

21 March 2017

DATE OF PACKAGING:

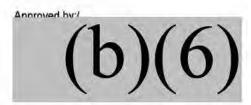
8 October 2014

CERTIFICATE OF ANALYSIS

CHARACTERISTIC

SPECIFICATION

RESULTS


Appearance

Phytase Activity, U/g

White to Beige Granules

>=10000

Pass (b) (4)

The value and properties stated above are based upon test and analysis of samples of material. The exclusive commitment of Novus with respect to such values and properties is as set forth in the sales contract between your company and Novus for such material or the acknowledgment of Novus for the above described shipment of material, whichever is applicable.

BASF Enzymes LLC Page 20 of 46

NOVUS.

NOVUS INTERNATIONAL INC. 20 RESEARCH PARK DRIVE ST. CHARLES, MO 63304

DATE:

09 May 2017

PRODUCT:

20002453

PRODUCT DESCRIPTION:

CIBENZA PHYTAVERSE G10 20 KG BAG

LOT NUMBER:

RO15271001

DATE OF MANUFACTURE:

28 September 2015

DATE OF ANALYSIS:

21 March 2017

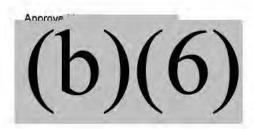
DATE OF PACKAGING:

28 September 2015

CERTIFICATE OF ANALYSIS

CHARACTERISTIC

SPECIFICATION

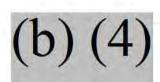

RESULTS

Appearance

Phytase Activity, U/g

White to Beige Granules >=10000

(b) (4)


The value and properties stated above are based upon test and analysis of samples of material. The exclusive commitment of Novus with respect to such values and properties is as set forth in the sales contract between your company and Novus for such material or the acknowledgment of Novus for the above described shipment of material, whichever is applicable.

BASF Enzymes LLC

Page 21 of 46

Appendix 3- Relevant laboratory reports

BASF Enzymes LLC Page 22 of 46

CERTIFICATE OF ANALYSIS

Company:	Novus Europe S.A./N.V.						
Type of sample:	F584 vitamin-mineral premix						
Laboratory ref. :	0-month & backup 1-months 2-months 3-months 4-months & backup 5-months 6-months & backup	171310-5 171456-61 171595-600 171793-8 171792-7 172270-5 180307-12	171589-94 172040 181394-6				
Reception date:	25th July 2017						
Analysis starting date:	25th July 2017						
Analysis finishing date:	23rd February 2018						

Sample description:

See Results section

Analysis performed:

- AOAC, 2000;
 - o Moisture -dry matter- by oven drying -method 2 (SOP 0602-L-10001)
- Other
 - Phytase (SOP 0602-L-10143; ISO 30024:2009. Animal feeding stuffs Determination of phytase activity.)

pos I	
Resu	600
ROSIII	

LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (FTU/Kg)	DRY MATTER (%)
171310	TA-2 24/07/2017		
171311	TA-5 24/07/2017	/1	
171312	TB-2 24/07/2017		
171313	TB-5 24/07/2017		
171314	TC-2 24/07/2017		
171315	TC-5 24/07/2017		الله بصفا ال
171589	TA-2 24/07/2017 muestra backup 0 meses		-
171590	TA-5 24/07/2017 muestra backup 0 meses		
171591	TB-2 24/07/2017 muestra backup 0 meses		
171592	TB-5 24/07/2017 muestra backup 0 meses		
171593	TC-2 24/07/2017 muestra backup 0 meses		
171594	TC-5 24/07/2017 muestra backup 0 meses		
171456	TA-2 Premix + G10 1 month		
171459	TA-5 Premix + G10 1 month		
171457	TB-2 Premix + G10 1 month		
171460	T8-5 Premix + G10 1 month		
171458	TC-2 Premix + G10 1 month		
171461	TC-5 Premix + G10 1 month		
171595	TA-2 Premix + G10 2 month		
171596	TA-5 Premix + G10 2 month	14	
171597	TB-2 Premix + G10 2 month		
171598	TB-5 Premix + G10 2 month		
171599	TC-2 Premix + G10 2 month		
171600	TC-5 Premix + G10 2 month		
171793	TA-2 Premix + G10 3 month		
171794	TA-5 Premix + G10 3 month		
171795	TB-2 Premix + G10 3 month		
171796	TB-5 Premix + G10 3 month		

BASF Enzymes LLC

Page 23 of 46

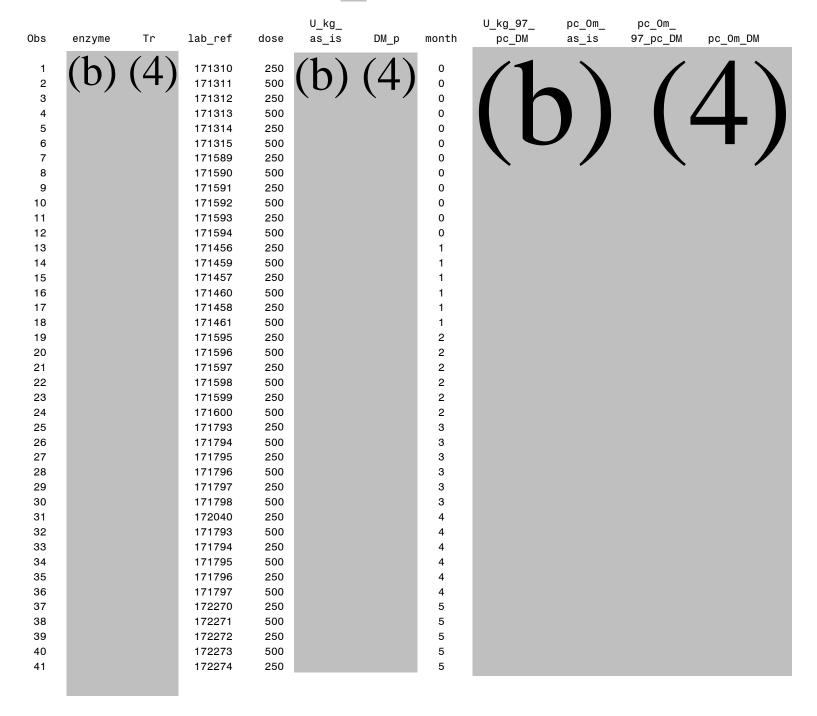
171797	TC-2 Premix + G10 3 month	14	/ - \
171798	TC-5 Premix + G10 3 month		
171792	TA-2 Premix + G10 4 month		
172040	TA-2 Premix + G10 4 month BACKUP		
171793	TA-5 Premix + G10 4 month		14
171794	TB-2 Premix + G10 4 month		
171795	TB-5 Premix + G10 4 month		_
171796	TC-2 Premix + G10 4 month		
171797	TC-5 Premix + G10 4 month		
172270	TA-2 Premix + G10 5 month		
172271	TA-5 Premix + G10 5 month		
172272	TB-2 Premix + G10 5 month		
172273	TB-5 Premix + G10 5 month		
172274	TC-2 Premix + G10 5 month		
172275	TC-5 Premix + G10 5 month		
180307	TA-2 Premix + G10 6 month		
180310	TA-5 Premix + G10 6 month		
180308	TB-2 Premix + G10 6 month		
180311	TB-5 Premix + G10 6 month		
180309	TC-2 Premix + G10 6 month		
180312	TC-5 Premix + G10 6 month		
181394	TC-2 Premix 5 month Back up (6 month @ambient conditions)		
181395	TA-5 Premix 6 month Back up		
181396	TC-2 Premix 6 month Back up		

(b) (4)
Signature: (b)(6)
Date: 8TH MARCON 2018

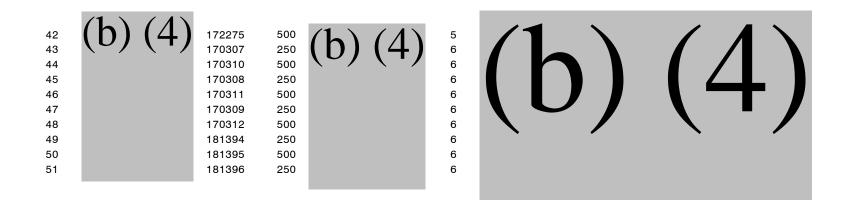
Appendix 4- Raw data

Obs		ab_ref	dose	U_kg_as_is	DM_p	month
1	(b)(4)	171310	250	(1)		0
2	(0)(4)	171311	500	(b)		0
3	(-) (-)	171312	250	(0)		0
4		171313	500	\ /	\ /	0
5		171314	250			0
6		171315	500			0
7		171589	250			0
8		171590	500			0
9		171591	250			0
10		171592	500			0
11		171593	250			0
12		171594	500			0
13	-	171456	250			1
14		171459	500			1
15		171457	250			1
16		171460	500			1
17		171458	250			1
18		171461	500			1
19		171595	250			2 2
20		171596	500			2
21		171597	250			2
22		171598	500			2
23		171599	250			2
24		171600	500			2
25		171793	250			3
26		171794	500			2 2 2 2 3 3 3
27		171795	250			3
28		171796	500			3 3 3
29		171797	250			3
30		171798	500			3
31		172040	250			4
32		171793	500			4 4
33		171794	250			4
34		171795	500			4
35		171796	250			4
36		171797	500			4
37		172270	250			5 5
38		172271	500			5
39		172272	250			5 5 5
40		172273	500			5
41		172274	250			
42		172275	500			5
43		170307	250			6
44		170310	500			6
45		170308	250			6
46		170311	500			6
47		170309	250			6
48		170312	500			6
49		181394	250			6
50		181395	500			6
51		181396	250			6

Appendix 5 - Statistical printouts


BASF Enzymes LLC Page 26 of 46

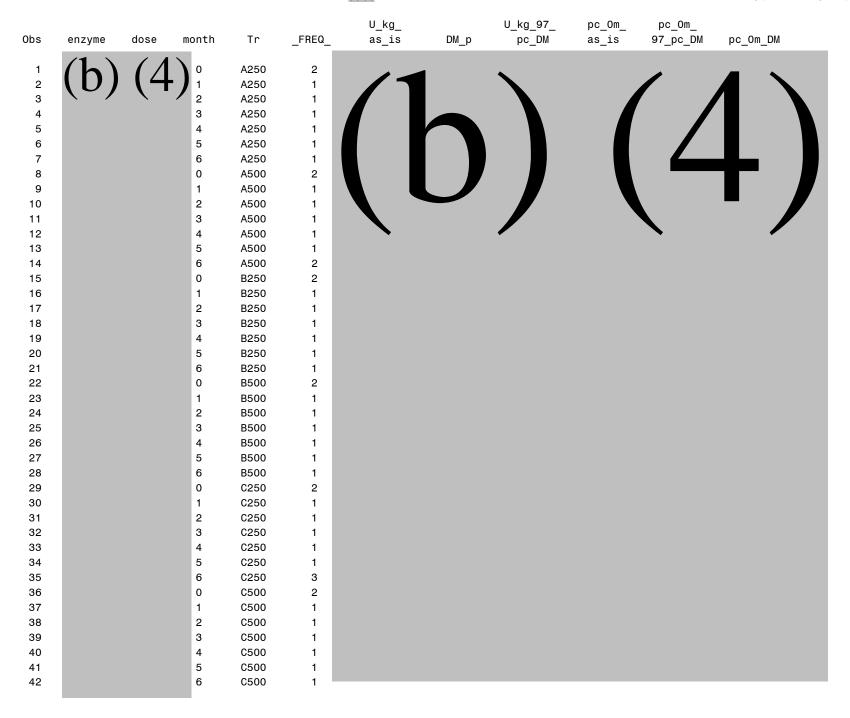
					U_kg_		
0bs	enzyme	Tr	lab_ref	dose	as_is	DM_p	month
1	/1 - \	11	171310	250	(h)	(Λ)	0
2	(b)	(4)	171310	500	(1)	(4	
3		\ '.	171311	250	()	\ •	0 0
4			171312	500			0
5 6			171314 171315	250 500			0
7			171515	250			0
8			171599	500			0
9			171590	250			0
10			171591	500			0
11			171593	250			0
12			171594	500			0
13			171456	250			1
14			171459	500			1
15			171457	250			1
16			171460	500			1
17			171458	250			1
18			171461	500			1
19			171595	250			2
20			171596	500			2
21			171597	250			2
22			171598	500			2
23			171599	250			2
24			171600	500			2
25			171793	250			3
26			171794	500			3
27			171795	250			3
28			171796	500			3
29			171797	250			3
30			171798	500			3
31			172040	250			4
32			171793	500			4
33			171794	250			4
34			171795	500			4
35			171796	250			4
36			171797	500			4
37			172270	250			5
38			172271	500			5
39			172272	250			5
40			172273	500			5
41			172274	250			5
42			172275	500			5
43			170307	250			6
44			170310	500			6
45 46			170308	250			6
46 47			170311	500			6
47 49			170309	250 500			6
48 40			170312	500			6
49 50			181394 181395	250 500			6
50 51			181395	250			6 6
J1			101390	200			


BASF Enzymes LLC Page 27 of 46

0bs	enzyme	dose	month	Tr	_FREQ_	U_kg_ as_is	DM_p	U_kg_97_ pc_DM
1	(h)	(4)	0	A250	2	14	\	/ 4 \
2	(U)	(ロー	1	A250	1			
3			2	A250	1			
4			3	A250	1	1 7		4
5			4	A250	1	1		
6			5	A250	1	_		
7			6	A250	1			
8			0	A500	2			
9			1	A500	1			
10			2	A500	1			
11			3	A500	1			
12			4	A500	1			
13			5	A500	1			
14			6	A500	2			
15			0	B250	2			
16			1 2	B250 B250	1			
17			3		1			
18 19			4	B250 B250	1 1			
20			5	B250 B250	1			
21			6	B250 B250	1			
22			0	B500	2			
23			1	B500	1			
24			2	B500	1			
25			3	B500	1			
26			4	B500	1			
27			5	B500	1			
28			6	B500	1			
29			0	C250	2			
30			1	C250	1			
31			2	C250	1			
32			3	C250	1			
33			4	C250	1			
34			5	C250	1			
35			6	C250	3			
36			0	C500	2			
37			1	C500	1			
38			2	C500	1			
39			3	C500	1			
40			4	C500	1			
41			5	C500	1			
42			6	C500	1			

BASF Enzymes LLC Page 28 of 46

BASF Enzymes LLC Page 29 of 46


BASF Enzymes LLC

			U_kg as_is	DM_p	U_kg 97_pc- _DM	pc_Om- _as_is	pc_0m- _97_p- c_DM	pc_Om- _DM
		N	Mean	Mean	Mean	Mean	Mean	Mean
Tr	month							
A250	0	2	23636	98.8	23215	100.0	100.0	100.0
	1	1	/1	1			· 1	
	2	1						_ \
	3	1	\			•		- /
	4	1					•	
	5	1						
	6	1						
A500	0	2	53321	98.7	52388	100.0	100.0	100.0
	1	1	1	1_			<i>^</i>	
	2	1						_]
	3	1				•		
	4	1					•	
	5	1						
	6	2			I		I	
B250	0	2	27710	98.9	27191	100.0	100.0	100.0
	1	1	1	1	\		1	
	2	1		n				
	3	1		U				
	4	1					•	

Page 31 of 46

1	<u></u>		
	5	1	(b) (4)
	6	1	(0)(7)
B500	0	2	49697 98.9 48740 100.0 100.0 100.0
	1	1	(1) (1)
	2	1	(h)(4)
	3	1	(U)(T)
	4	1	
	5	1	
	6	1	
C250	0	2	27836 98.8 27328 100.0 100.0 100.0
	1	1	(1 \ (1 \
	2	1	$(h)(\Delta)$
	3	1	(U)(T)
	4	1	
	5	1	
	6	3	
C500	0	2	51278 98.8 50332 100.0 100.0 100.0
	1	1	(1 \ (1 \
	2	1	(h)(/)
	3	1	(U)(T)
	4	1	
	5	1	
	6	1	

Page 32 of 46

BASF Enzymes LLC Page 33 of 46

		(b) (4)	rial	F584 stabili	ty premix	12:27 Sa	ıturday,	February 2	6 24, 2018
 				Tr=A250					
			The	GLM Procedur	е				
	N	umber of		vations Read					
				vations Used					
				F584 stabili					7
		(0) (4)		. oo . otabili	cy promin	12:27 Sa	turday	February 2	· · · · · · · · · · · · · · · · · · ·
 				Tr=4250				-	•
				GLM Procedur					
		Donondo		riable: U_kg					
		Depende	iic va	Sum of	_as_is				
Coupos		DE			Maan Cauan)n > F	
Source		DF		Squares	Mean Squar				
Model -		1		18500.223	2518500.22		11 0	1.2061	
Error		5		68822.134	1193764.42	.7			
Corrected	d Total	6	84	87322.357					
	R-Square 0.296737			Root MS 1092.59		_is Mean 24686.36			
Source		DF		Type I SS	Mean Squar		Lue P		
month		1	25	18500.223	2518500.22	3 2.	11 0	.2061	
Source		DF	Τv	pe III SS	Mean Squar	e F Val	110 B)r > F	
month		1	•	18500.223	2518500.22			.2061	
montin		Į	23	16500.225	2316300.22	.5 2.	11 0	7.2001	
				Standa	rd				
	Parameter	Estin	nate	Err	or t Valu	e Pr >	t		
	Intercept	23786.62	2500	744.47818					
	month	299.91					2061		
		, , , ,		F584 stabili				February 2	
 				Tr=A250					
			The	GLM Procedur	е				
		Depender	nt Var	iable: U_kg_	97_pc_DM				
				Sum of					
Source		DF		Squares	Mean Squar	e F Val	ue P	r > F	
Model		1	22	88002.269	2288002.26	9 1.	94 0	.2222	
Error		5	58	89253.594	1177850.71				
Corrected	d Total	6	81	77255.864					
	R-Square 0.279801	Coeff 4.483		Root MSE 1085.288		pc_DM Mear 24207.34			
Source		DF		Type I SS	Mean Squar	e F Val	Lue P	r > F	
month		1		88002.269	2288002.26			.2222	
Source		DF	Ту	pe III SS	Mean Squar	e F Val	.ue P	r > F	
month		1	22	88002.269	2288002.26	9 1.	94 0	.2222	
				. .					
	_			Standa -		_			
	Parameter	Estin		Err					
	Intercept	23349.77		739.49933			0001		
	month	285.85	725	205.10021	23 1.3	9 0.2	2222		

BASF Enzymes LLC Page 34 of 46

		(b) (4) Ir	ial F584 stabil:				
			T- 4050			lay, February 24	-
			Tr=A250 The GLM Procedui				
			t Variable: pc_(
		Верениен	Sum of	5111_46_16			
Source		DF		Mean Square	F Value	Pr > F	
Model		1	45.0829582			0.2061	
Error		5	106.8461922	21.3692384			
Correct	ed Total	6					
	R-Square 0.296737	Coeff C	Var Root MS 907 4.62268	SE pc_0m_as_i	is Mean 04.4461		
	01200707	11.20	110220		,,,,,,,,,		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	45.08295822	45.08295822	2.11	0.2061	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	45.08295822	45.08295822	2.11	0.2061	
			Standa	ard			
	Parameter	Estima [.]	te Eri	ror t Value	Pr > t		
		100 00000		04.05	<.0001		
	Intercept	100.63939	84 3.149830	J49 31.95	1.0001		
	•	1.268899		ity premix	0.2061	lav. February 24	
	month	1.268899 (b) (4) Tr	94 0.873609 ial F584 stabil:	580 1.45 ity premix	0.2061 12:27 Saturd	lay, February 24	, 201
	month	1.268899 (b) (4) Tr	94 0.873609 ial F584 stabil:	ity premix	0.2061 12:27 Saturd		
	month	1.268899 (b) (4) Tr	94 0.873609 ial F584 stabil: Tr=A250	ity premix 1	0.2061 12:27 Saturd		, 201
Source	month	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares	ity premix 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	0.2061 12:27 Saturd		, 201
Source Model	month	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_0m_ Sum of Squares 42.4548130	ity premix re _97_pc_DM Mean Square _42.4548130	0.2061 12:27 Saturd	Pr > F	, 201
Source Model Error	month	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965	ity premix re _97_pc_DM Mean Square	0.2061 12:27 Saturd F Value	Pr > F	, 201
Source Model Error	month	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965	ity premix re _97_pc_DM Mean Square _42.4548130	0.2061 12:27 Saturd F Value	Pr > F	, 201
Source Model Error	month '	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965	ity premix re _97_pc_DM Mean Square _42.4548130 _21.8554993	0.2061 12:27 Saturd F Value 1.94	Pr > F	, 201
Source Model Error	month ed Total	(b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_0m_ Sum of Squares 42.4548130 109.2774965 151.7323095	ity premix re _97_pc_DM Mean Square	0.2061 12:27 Saturd F Value 1.94	Pr > F	, 201
Source Model Error	month ed Total	(b) (4) Tr	94 0.873608 ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_0m_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE	ity premix re _97_pc_DM Mean Square	0.2061 12:27 Saturd F Value 1.94 _DM Mean	Pr > F 0.2222	, 201
Source Model Error Correcto	month ed Total	1.268899 (b) (4) Tr	94 0.873608 ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_0m_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE 2 4.674987	ity premix re _97_pc_DM Mean Square	0.2061 12:27 Saturd F Value 1.94 _DM Mean	Pr > F 0.2222	, 201
Source Model Error Correcto Source	month ed Total	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE 2 4.674987 Type I SS	ity premix 1 re _97_pc_DM Mean Square 42.4548130 21.8554993 pc_0m_97_pc_ 1 Mean Square	0.2061 12:27 Saturd F Value	Pr > F 0.2222 Pr > F	, 201
Source Model Error Correcto Source month	month ed Total	1.268899 (b) (4) Tr. Dependent V DF 1 5 6 Coeff Va 4.483309 DF 1	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE 2 4.674987 Type I SS 42.45481298	ity premix re _97_pc_DM Mean Square 42.4548130 21.8554993 pc_0m_97_pc_ 1 Mean Square 42.45481298	0.2061 12:27 Saturd F Value 1.94 _DM Mean 104.2755 F Value 1.94	Pr > F 0.2222 Pr > F 0.2222	, 201
Source Model Error Correcto Source month	month ed Total	1.268899 (b) (4) Tr.	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE 2 4.674987 Type I SS 42.45481298 Type III SS	ity premix re _97_pc_DM Mean Square _42.4548130 _21.8554993 pc_0m_97_pc_ Mean Square _42.45481298 Mean Square _42.45481298	O.2061 12:27 Saturd F Value 1.94 DM Mean 104.2755 F Value 1.94 F Value	Pr > F 0.2222 Pr > F 0.2222 Pr > F	, 201
Source Model Error Correcte Source month	month ed Total	1.268899 (b) (4) Tr.	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE 2 4.674987 Type I SS 42.45481298 Type III SS 42.45481298 Standa	ity premix re _97_pc_DM Mean Square _42.4548130 _21.8554993 pc_0m_97_pc_ Mean Square _42.45481298 Mean Square _42.45481298	O.2061 12:27 Saturd F Value 1.94 DM Mean 104.2755 F Value 1.94 F Value	Pr > F 0.2222 Pr > F 0.2222 Pr > F	, 201
Source Model Error Correcto Source month	month ed Total R-Square 0.279801	1.268899 (b) (4) Tr	ial F584 stabil: Tr=A250 The GLM Procedur Variable: pc_Om_ Sum of Squares 42.4548130 109.2774965 151.7323095 r Root MSE 2 4.674987 Type I SS 42.45481298 Type III SS 42.45481298 Standate Err	ity premix re _97_pc_DM Mean Square _42.4548130 _21.8554993 pc_Om_97_pc_ Mean Square _42.45481298 Mean Square _42.45481298 ard ror t Value	0.2061 12:27 Saturd F Value 1.94 DM Mean 104.2755 F Value 1.94 F Value 1.94	Pr > F 0.2222 Pr > F 0.2222 Pr > F	, 201

		(b)(4) Tria	al F584 stabilit				11
			Tn=4500		12:27 Saturd		•
 			Tr=A500 ne GLM Procedure				
	N		servations Read				
			servations Used				
		(b)(4) Tria	al F584 stabilit	y premix			12
					12:27 Saturd	ay, February	24, 2018
 			Tr=A500				
			ne GLM Procedure				
		Dependent	Variable: U_kg_ Sum of	_			
Source		DF	Squares		F Value		
Model			38506073.58	38506073.58		0.1251	
Error		5	56839175.92	11367835.18			
Corrected	d lotal	6	95345249.50				
	R-Square 0.403859	Coeff Va 6.68435	ar Root MSE 55 3371.622		is Mean 0440.50		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	38506073.58	38506073.58		0.1251	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	38506073.58	38506073.58	3.39	0.1251	
			Standar				
	Parameter	Estimate					
	Intercept	53958.58929					
	month	-1172.69643	637.17667	⁷ 4 -1.84	0.1251		
		(b) (4) Tria	al F584 stabilit	v premix			13
		(6) (1)			12:27 Saturd	ay, February	
 			Tr=A500				
		Th	ne GLM Procedure	•			
		Dependent \	/ariable: U_kg_9 Sum of				
Source		DF	Squares		F Value		
Model -			39249816.49		3.53	0.1189	
Error	J T-+-1	5	55530999.47	11106199.89			
Corrected	i lotal	6	94780815.97				
	R-Square	Coeff Var	Root MSE	U kg 97 po	n DM Mean		
	0.414111	6.736402		0_kg_37_pt	49471.46		
	0111111	01700101	00021007		10 17 11 10		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	39249816.49	39249816.49	3.53	0.1189	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	39249816.49	39249816.49	3.53	0.1189	
			2 : :	1			
	Danamatar	Fattmat	Standar		Do > 1+1		
	Parameter Intercept	Estimate 53023.36467			Pr > t <.0001		
	month	-1183.96755			0.1189		
	onen	1100.90700	, 029.00100	-1.00	0.1109		

BASF Enzymes LLC Page 36 of 46

						ay, February	
			he GLM Procedu				
		Dependent	Variable: pc_0	Om_as_is			
0	_	DE.	Sum of		E 1/-1	D E	
Source	9	DF	Squares				
Model				135.4380867	3.39	0.1251	
Error	atad Tatal			39.9842857			
Correc	cted Total	6	335.3595151				
	R-Square	Coeff V	ar Root M	SE pc_0m_as_i	is Mean		
	0.403859		55 6.3233		1.59870		
					_		
Source			Type I SS				
month		1	135.4380867	135.4380867	3.39	0.1251	
Source	<u>a</u>	DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	135.4380867		3.39	0.1251	
		·			0.00		
			Standa	ard			
	Parameter	Estimat	e Er	ror t Value	Pr > t		
	Intercept	101.196705	4 4.30861	145 23.49	<.0001		
		0 40000=					
	month	-2.199335		381 -1.84	0.1251		1
	montn		0 1.194999 al F584 stabil	ity premix		ay, February	
	montn	(b)(4) Tri	al F584 stabil. Tr=A500	ity premix 1	l2:27 Saturd		24, 201
		(b)(4) Tri 	al F584 stabil Tr=A500 he GLM Procedu	ity premix 1 	l2:27 Saturd		24, 201
		(b)(4) Tri 	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_0m	ity premix 1 	l2:27 Saturd		24, 201
		(b)(4) Tri T Dependent V	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om Sum of	ity premix 1 re _97_pc_DM	12:27 Saturd		24, 20
Source		(b)(4) Tri T Dependent V	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om Sum of Squares	ity premix 1 re 97_pc_DM Mean Square	12:27 Saturd F Value	Pr > F	24, 20
Source Model		(b)(4) Tri T Dependent V DF 1	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om_ Sum of Squares 143.0113516	ity premix re _97_pc_DM Mean Square _143.0113516	12:27 Saturd		24, 20
Source Model Error		(b)(4) Tri T Dependent V	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om Sum of Squares	ity premix 1 re 97_pc_DM Mean Square	12:27 Saturd F Value	Pr > F	24, 20
Source Model Error	e	(b)(4) Tri T Dependent V DF 1 5	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_0m Sum of Squares 143.0113516 202.3337686	ity premix re _97_pc_DM Mean Square _143.0113516	12:27 Saturd F Value	Pr > F	24, 201
Source Model Error	e	(b)(4) Tri T Dependent V DF 1 5	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om_ Sum of Squares 143.0113516 202.3337686 345.3451202	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537	P Value	Pr > F	24, 201
Source Model Error	e cted Total	(b)(4) Tri T Dependent V DF 1 5 6	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_Om_ Sum of Squares 143.0113516 202.3337686 345.3451202 Root MSE	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_	P Value	Pr > F	24, 201
Source Model Error Correc	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_Om_ Sum of Squares 143.0113516 202.3337686 345.3451202 Root MSE 6.361348	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_	F Value 3.53 DM Mean	Pr > F 0.1189	24, 201
Source Model Error Correc Source	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402 DF	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om_	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_ 9	F Value 3.53 DM Mean 94.43243 F Value	Pr > F 0.1189 Pr > F	24, 201
Source Model Error Correc	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_Om_ Sum of Squares 143.0113516 202.3337686 345.3451202 Root MSE 6.361348	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_	F Value 3.53 DM Mean	Pr > F 0.1189	24, 201
Source Model Error Correc Source	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402 DF	al F584 stabil Tr=A500 he GLM Procedu ariable: pc_Om_	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_ 9	F Value 3.53 DM Mean 94.43243 F Value	Pr > F 0.1189 Pr > F	24, 201
Source Model Error Correc Source month	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402 DF 1	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_0m Sum of Squares 143.0113516 202.3337686 345.3451202 Root MSE 6.361348 Type I SS 143.0113516	ity premix 1 re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_ Mean Square 143.0113516	F Value 3.53 DM Mean 94.43243 F Value 3.53	Pr > F 0.1189 Pr > F 0.1189	24, 201
Source Model Error Correc Source month	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402 DF 1 DF	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_Om_ Sum of Squares 143.0113516 202.3337686 345.3451202 Root MSE 6.361348 Type I SS 143.0113516 Type III SS 143.0113516	ity premix re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_Om_97_pc_ 9 Mean Square 143.0113516 Mean Square 143.0113516	F Value 3.53 DM Mean 94.43243 F Value 3.53 F Value	Pr > F 0.1189 Pr > F 0.1189 Pr > F	
Source Model Error Correc Source month	e oted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402 DF 1 DF 1	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_Om	ity premix re _97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_ 60 Mean Square 143.0113516 Mean Square 143.0113516	F Value 3.53 DM Mean 94.43243 F Value 3.53 F Value 3.53	Pr > F 0.1189 Pr > F 0.1189 Pr > F	24, 201
Source Model Error Correc Source month	e cted Total R-Square 0.414111	(b) (4) Tri T Dependent V DF 1 5 6 Coeff Var 6.736402 DF 1 DF	al F584 stabil Tr=A500 he GLM Procedul ariable: pc_Om	ity premix re 97_pc_DM Mean Square 143.0113516 40.4667537 pc_0m_97_pc_ 90 Mean Square 143.0113516 Mean Square 143.0113516	F Value 3.53 DM Mean 94.43243 F Value 3.53 F Value	Pr > F 0.1189 Pr > F 0.1189 Pr > F	24, 201

```
12:27 Saturday, February 24, 2018
          ------ Tr=B250 -----
                                The GLM Procedure
                        Number of Observations Read
Number of Observations Used
                           (b)(4) Trial F584 stability premix
                                                                              17
                                                      12:27 Saturday, February 24, 2018
The GLM Procedure
                           Dependent Variable: U_kg_as_is
                                     Sum of
                                     Squares
                                                         F Value
        Source
                             DF
                                             Mean Square
                                                                 Pr > F
        Model
                                 12476910.04 12476910.04 3.54 0.1187
                             1
                                             3524592.56
                                 17622962.82
        Error
                             5
        Corrected Total
                             6
                                  30099872.86
                            Coeff Var
                  R-Square
                                       Root MSE U_kg_as_is Mean
                   0.414517
                                                     25765.86
                            7.286347
                                      1877.390
                                                         F Value Pr > F
        Source
                             DF
                                   Type I SS Mean Square
                                                        3.54 0.1187
        month
                                  12476910.04
                                             12476910.04
                             1
                                  Type III SS Mean Square F Value Pr > F
                             DF
        Source
                                                        3.54 0.1187
        month
                                  12476910.04 12476910.04
                             1
                                        Standard
               Parameter
                           Estimate
                                       Error t Value Pr > |t|
               Intercept
                          27768.46429 1279.225538 21.71 <.0001
               month
                          -667.53571
                                     354.793328
                                                  -1.88
                                                          0.1187
                           (b)(4) Trial F584 stability premix
                                                                              18
                                                      12:27 Saturday, February 24, 2018
The GLM Procedure
                          Dependent Variable: U_kg_97_pc_DM
                                     Sum of
        Source
                             DF
                                     Squares Mean Square F Value Pr > F
                                           12489187.41 3.66
        Model
                             1
                                 12489187.41
                                                                 0.1141
                                 17082956.17
        Error
                             5
                                             3416591.23
        Corrected Total
                             6
                                 29572143.58
                  R-Square Coeff Var
                                      Root MSE U_kg_97_pc_DM Mean
                  0.422329
                           7.319296
                                                      25253.83
                                     1848.402
                                  Type I SS Mean Square F Value
                                                               Pr > F
        Source
        month
                             1
                                  12489187.41 12489187.41 3.66
                                                                 0.1141
        Source
                             DF
                                  Type III SS Mean Square F Value
                                                                 Pr > F
                                                        3.66
        month
                                  12489187.41
                                           12489187.41
                                                                 0.1141
                             1
                                        Standard
                                         Error
               Parameter
                                                 t Value
                                                        Pr > |t|
                            Estimate
                                                21.64
                                                        <.0001
               Intercept
                          27257.41765
                                      1259.473899
               month
                          -667.86406
                                     349.315209
                                                  -1.91
                                                          0.1141
```

BASF Enzymes LLC Page 38 of 46

Page 39 of 46

		(b)(4) Tria	al F584 stabilit	y premix			19
			T 0050		12:27 Saturda		
 			Tr=B250 ne GLM Procedure				
			Variable: pc_0m	as is			
		Bopondone	Sum of	_40_10			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	162.4927513	162.4927513	3.54	0.1187	
Error		5		45.9024503			
Corrected	d Total	6	392.0050028				
	R-Square	Coeff Va	ar Root MSE	pc_0m_as_	is Mean		
	0.414517		6.775135	. – – -	92.98397		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	162.4927513	162.4927513			
		•			0.0.		
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	162.4927513	162.4927513	3.54	0.1187	
			Standar	d			
	Parameter	Estimate			Pr > t		
		100.2109862					
	month	-2.409006					
		(b)(4) Trial	F584 stability		12:27 Saturda	y, February 2	20 24, 2018
 			Tr=B250				
		TI	ne GLM Procedure				
		Dependent Va	ariable: pc_0m_9	7_pc_DM			
		D.F.	Sum of		- W 3		
Source Model		DF 1	Squares 168.9164726	Mean Square 168.9164726	F Value 3.66		
Error		5	231.0472734	46.2094547	3.00	0.1141	
Corrected	d Total	6	399.9637459	4012004047			
	R-Square		Root MSE	pc_0m_97_pc	_		
	0.422329	7.319296	6.797754		92.87441		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	168.9164726	168.9164726	3.66	0.1141	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
Source month		DF 1	Type III SS 168.9164726	Mean Square 168.9164726	F Value 3.66	Pr > F 0.1141	
			168.9164726	168.9164726			
	Parameter		168.9164726 Standar	168.9164726			
	Parameter Intercept	1	168.9164726 Standar Erro	168.9164726 d r t Value	3.66		
		1 Estimate	168.9164726 Standar Erro 3 4.6318883	168.9164726 d r t Value 5 21.64	3.66 Pr > t		

		(b)(4) Tria	l F584 stabilit	y premix			21
						ay, February 2	
	Ni		e GLM Procedure ervations Read				
			ervations Read ervations Used				
	140		l F584 stabilit				22
		(0) (4)	1 1001 01451111		12:27 Saturda	ay, February 2	
			Tr=B500				•
		Th	e GLM Procedure	<u> </u>			
		Dependent	Variable: U_kg_	_as_is			
			Sum of				
Source		DF	Squares		F Value		
Model			40677187.6		2.61	0.1670	
Error Corrected T	0+01		77882964.8 118560152.4	15576593.0			
Corrected	Jiai	O	116500152.4				
	R-Square	Coeff Va	r Root MSE	U_kg_as_:	is Mean		
	0.343093	7.68717			1341.64		
Source		DF	Type I SS	•	F Value	Pr > F	
month		1 -	40677187.58	40677187.58	2.61	0.1670	
_							
Source			Type III SS		F Value		
month		1 -	40677187.58	406//18/.58	2.61	0.1670	
			Standar	rd			
Pa	rameter	Estimate		or t Value	Pr > t		
	tercept	54957.55357					
	nth '		745.85983				
		(b)(4) Trial	F584 stability	•	10.07 0-+	Fabauaau 0	23
			Tn-P500			ay, February 2	•
			e GLM Procedure				
			ariable: U_kg_9				
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	40668387.7	40668387.7	2.67	0.1631	
Error		5	76124095.0	15224819.0			
Corrected T	otal	6	116792482.7				
	D. 0	066 1/	D+ NOE	II lan 07 m	- BH M		
	R-Square 0.348211	Coeff Var	Root MSE	U_kg_97_pd	_		
	0.346211	7.757353	3901.899		50299.37		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month			40668387.66	40668387.66	2.67	0.1631	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1 .	40668387.66	40668387.66	2.67	0.1631	
-		E a de deserve de	Standar		Dm - 1+1		
	rameter	Estimate			Pr > t		
	tercept nth	53914.88647 -1205.17319			<.0001 0.1631		
IIIO	Ten	1200.17019	131.36907	-1.03	0.1031		

BASF Enzymes LLC Page 40 of 46

		(b)(4) Tria	al F584 stabilit	y premix		2	4
						ay, February 24, 201	
							-
			ne GLM Procedure				
		Dependent	Variable: pc_0m	_as_is			
0		D.E.	Sum of	M 0	F 1/-1	D	
Source		DF	Squares		F Value		
Model				164.7021662	2.61	0.1670	
Error Correcte	d Total	5 6		63.0697144			
Connecte	u lotai	O	480.0507380				
	R-Square	Coeff V	ar Root MSE	pc_0m_as_	is Mean		
	0.343093	7.6871		. – – –	03.3104		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	164.7021662	164.7021662	2.61	0.1670	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	164.7021662	164.7021662	2.61	0.1670	
			Standar				
	Parameter	Estimat		r t Value			
		110.586366					
	month	-2.425328	9 1.5008297	0 -1.62	0.1670		
			al F584 stabilit			2. ay, February 24, 201	8
							-
			ne GLM Procedure				
			ariable: pc_0m_9 Sum of				
Source		DF	Squares		F Value		
Model			171.1902219		2.67	0.1631	
Error	d Tabal	5	320.4380962	64.0876192			
Correcte	d lotal	6	491.6283181				
	R-Square	Coeff Var	Root MSE	pc_0m_97_pc	. DM Mean		
	0.348211	7.757353		. – – –	103.1985		
	0.0.02		0.000				
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	171.1902219	171.1902219	2.67	0.1631	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	171.1902219	171.1902219	2.67	0.1631	
			Standar	d			
	Parameter	Estimat	e Erro	r t Value	Pr > t		
	Intercept	110.616444	5 5.4548112	8 20.28	<.0001		
	month	-2.472637	1.5128924	4 -1.63	0.1631		

```
26
                                                        12:27 Saturday, February 24, 2018
              ------Tr=C250 ------
                                  The GLM Procedure
                         Number of Observations Read
                         Number of Observations Used
                            (b)(4)Trial F584 stability premix
                                                                                 27
                                                        12:27 Saturday, February 24, 2018
The GLM Procedure
                            Dependent Variable: U_kg_as_is
                                       Sum of
                                                           F Value
        Source
                              DF
                                      Squares
                                               Mean Square
                                                                   Pr > F
                                   10099809.72
                                             10099809.72 4.70
        Model
                              1
                                                                   0.0824
                                               2150600.53
                                   10753002.63
        Error
                              5
        Corrected Total
                              6
                                   20852812.36
                   R-Square
                             Coeff Var
                                        Root MSE U_kg_as_is Mean
                             5.626080
                   0.484338
                                                       26065.98
                                        1466.493
                                                           F Value
        Source
                              DF
                                    Type I SS Mean Square
                                                                   Pr > F
                                                          4.70
        month
                                   10099809.72
                                               10099809.72
                              1
                                                                   0.0824
                                   Type III SS Mean Square F Value
                              DF
                                                                   Pr > F
        Source
                                                          4.70
                                                                   0.0824
        month
                                   10099809.72 10099809.72
                              1
                                         Standard
                                          Error t Value Pr > |t|
               Parameter
                            Estimate
                           27867.74405 999.2462668 27.89
                                                           <.0001
               Intercept
               month
                           -600.58929
                                      277.1410501
                                                    -2.17
                                                            0.0824
                            (b)(4) Trial F584 stability premix
                                                                                 28
                                                        12:27 Saturday, February 24, 2018
The GLM Procedure
                           Dependent Variable: U_kg_97_pc_DM
                                      Sum of
                                      Squares
                                                           F Value
        Source
                              DF
                                                                   Pr > F
                                               Mean Square
        Model
                              1
                                   10110859.49
                                              10110859.49 4.73
                                                                   0.0817
        Error
                              5
                                   10691719.03
                                               2138343.81
        Corrected Total
                              6
                                   20802578.52
                          Coeff Var
                                                 U_kg_97_pc_DM Mean
                  R-Square
                                        Root MSE
                   0.486039
                                                        25564.24
                             5.720129
                                        1462.308
                                    Type I SS
        Source
                              DF
                                               Mean Square
                                                           F Value
                                                                   Pr > F
                                                          4.73
        month
                              1
                                   10110859.49
                                               10110859.49
                                                                   0.0817
                                             Mean Square
                                                          F Value
        Source
                              DF
                                   Type III SS
                                                                   Pr > F
        month
                                   10110859.49
                                             10110859.49
                                                           4.73
                                                                   0.0817
                              1
                                         Standard
                                           Error
               Parameter
                             Estimate
                                                  t Value
                                                           Pr > |t|
                                                  27.47
               Intercept
                           27366.99712
                                       996.3947420
                                                           <.0001
                                                             0.0817
               month
                           -600.91774
                                       276.3501794
                                                    -2.17
```

BASF Enzymes LLC Page 42 of 46

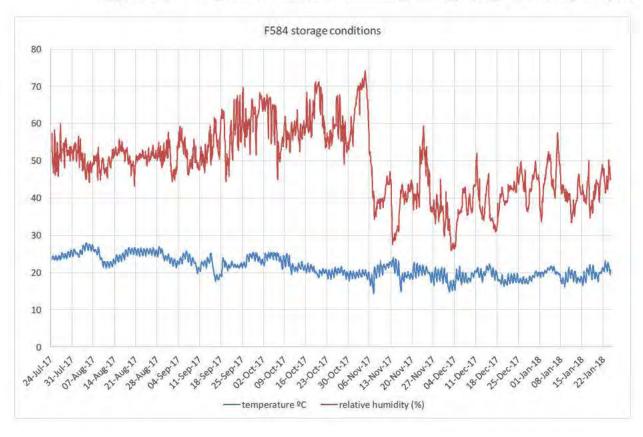
		(b) (4) Ir	ial F584 stabili				
			Tn=0050			day, February 24	-
			11'-0250 The GLM Procedur				
			t Variable: pc_(
		Bopondon	Sum of	,uo_10			
Source	<u>!</u>	DF		Mean Square	F Value	Pr > F	
Model			130.3512314			0.0824	
Error		5		27.7563078			
	ted Total	6					
	R-Square 0.484338	e Coeff 5	Var Root MS 080 5.26842		is Mean 3.64292		
Source	!		Type I SS	•			
month		1	130.3512314	130.3512314	4.70	0.0824	
Source	•	DF	Type III SS			Pr > F	
month		1	130.3512314	130.3512314	4.70	0.0824	
			Standa				
	Parameter	Estima [.]	te Err	ror t Value	Pr > t		
				200 07 00	<.0001		
	Intercept	100.11583	79 3.589826	27.89	\.0001		
	Intercept month	-2 . 15763		-2.17	0.0824		
	month '	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil:	384 -2.17 ity premix	0.0824 12:27 Saturo	day, February 24	
	•	-2.15763 (b)(4) Tr	79 0.995638 ial F584 stabil:	ity premix	0.0824 12:27 Saturo		
	month '	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur	ity premix	0.0824 12:27 Saturo		
	month '	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_	ity premix	0.0824 12:27 Saturo		
Source	month	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of	ity premix re 97_pc_DM	0.0824 12:27 Saturo		
	month	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_	ity premix re _97_pc_DM Mean Square	0.0824 12:27 Saturo F Value		
Source	month	-2.15763 (b)(4) Tr	ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares	ity premix re _97_pc_DM Mean Square	0.0824 12:27 Saturo F Value	Pr > F	
Source Model Error	month	-2.15763 (b)(4) Tr	ial F584 stabili Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597	ity premix re _97_pc_DM Mean Square _135.3817057	0.0824 12:27 Saturo F Value	Pr > F	
Source Model Error	month '	-2.15763 (b) (4) Tr	ial F584 stabili Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597	ity premix re _97_pc_DM Mean Square _135.3817057	0.0824 12:27 Saturd F Value 4.73	Pr > F	
Source Model Error	month '	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_0m_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE	ity premix re _97_pc_DM Mean Square 135.3817057 28.6318519 pc_0m_97_pc_	0.0824 12:27 Saturd F Value 4.73	Pr > F	
Source Model Error	month ted Total R-Square 0.486039	-2.15763 (b) (4) Tr	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_0m_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE	ity premix re _97_pc_DM Mean Square 135.3817057 28.6318519 pc_0m_97_pc_	0.0824 12:27 Saturo F Value 4.73 _DM Mean 93.54464	Pr > F 0.0817	
Source Model Error Correc	month ted Total R-Square 0.486039	-2.15763 (b) (4) Tr Dependent 1 DF 1 5 6 Coeff Va 5.720129	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE 9 5.350874	ity premix Pe	0.0824 12:27 Saturo F Value 4.73 _DM Mean 93.54464	Pr > F 0.0817	
Source Model Error Correc Source	month ted Total R-Square 0.486039	-2.15763 (b) (4) Tr. Dependent ' DF 1 5 6 Coeff Va 5.720129	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE 9 5.350874 Type I SS	ity premix re _97_pc_DM Mean Square 135.3817057 28.6318519 pc_0m_97_pc_9	0.0824 12:27 Saturo F Value	Pr > F 0.0817 Pr > F	
Source Model Error Correc Source month	month ted Total R-Square 0.486039	-2.15763 (b) (4) Tr. Dependent v DF 1 5 6 Coeff Va 5.720129	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE 9 5.350874 Type I SS 135.3817057	ity premix re 97_pc_DM Mean Square 135.3817057 28.6318519 pc_Om_97_pc_ Mean Square 135.3817057	0.0824 12:27 Saturo F Value	Pr > F 0.0817 Pr > F 0.0817	
Source Model Error Correc Source month	month ted Total R-Square 0.486039	-2.15763 (b) (4) Tr. Dependent ' DF 1 5 6 Coeff Va 5.720129 DF 1 DF	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE 9 5.350874 Type I SS 135.3817057 Type III SS	ity premix re 97_pc_DM Mean Square 135.3817057 28.6318519 pc_Om_97_pc_ Mean Square 135.3817057 Mean Square 135.3817057	0.0824 12:27 Saturo F Value	Pr > F 0.0817 Pr > F 0.0817 Pr > F	
Source Model Error Correc Source month	month ted Total R-Square 0.486039	-2.15763 (b) (4) Tr. Dependent ' DF 1 5 6 Coeff Va 5.720129 DF 1 DF	ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_ Sum of Squares 135.3817057 143.1592597 278.5409653 r Root MSE 9 5.350874 Type I SS 135.3817057 Type III SS 135.3817057 Standa	ity premix re 97_pc_DM Mean Square 135.3817057 28.6318519 pc_Om_97_pc_ Mean Square 135.3817057 Mean Square 135.3817057	0.0824 12:27 Saturo F Value	Pr > F 0.0817 Pr > F 0.0817 Pr > F	
Source Model Error Correc Source month	month ' eted Total R-Square 0.486039	-2.15763 (b) (4) Tr. Dependent v DF 1 5 6 Coeff Va 5.720129 DF 1 DF 1	79 0.995638 ial F584 stabil: Tr=C250 The GLM Procedur Variable: pc_Om_	ity premix Te 97_pc_DM Mean Square 135.3817057 28.6318519 pc_Om_97_pc_ Mean Square 135.3817057 Mean Square 135.3817057 ard for t Value	0.0824 12:27 Saturo F Value	Pr > F 0.0817 Pr > F 0.0817 Pr > F	

			(b) (4)	rial F	584 STADILIT				31
							12:27 Saturd		
					LM Procedure				
					ations Read				
		N			ations Used	•			00
			(b) (4)	rial F	584 stabilit		10.07 0-+	Faba	32
					T=-0500		12:27 Saturd	• . •	•
			Donondo		LM Procedure iable: U_kg_				
			Depende	elit var	Sum of	_as_1s			
9.	ource		DF		Squares	Mean Square	F Value	Dr > F	
	odrce		1		92416.51				
	rror		5		40833.42		1.04	0.2320	
	orrected	l Total	6		33249.93	13306100.06			
O.	orrected	ITOCAL	U	920	33249.93				
		R-Square	Coeft	F Van	Poot MSE	II ka as i	ie Mean		
		0.269218	7 /1	16909	3683 400	U_kg_as_i) 49	15 Weall		
		0.209210	7.4	10000	3003.493	, 43	7004.21		
9.	ource		DF	т.	ype I SS	Mean Square	F Value	Pr > F	
	onth		1		92416.51				
	011 611		•		02110101	21002110101		012020	
S	ource		DF	Tvp	e III SS	Mean Square	F Value	Pr > F	
	onth		1		92416.51				
					Standar	rd			
		Parameter	Estin	nate		or t Value	Pr > t		
		Intercept							
		month	-944.76			25 -1.36			
			(b) (4)	Trial F	584 stabilit	y premix			33
							12:27 Saturd	ay, February	24, 2018
					Tr=C500				
					LM Procedure				
			Depender	nt Vari	able: U_kg_9	97_pc_DM			
					Sum of				
S	ource		DF		Squares	Mean Square	F Value	Pr > F	
Me	odel		1		75065.59			0.2000	
E	rror		5			12843317.06			
C	orrected	l Total	6	921	91650.89				
		R-Square	Coeff		Root MSE	U_kg_97_pd	_		
		0.303445	7.371	1371	3583.757		48617.25		
	ource		DF		ype I SS	Mean Square	F Value	Pr > F	
m	onth		1	279	75065.59	27975065.59	2.18	0.2000	
_				_	TTT 00		- w -	.	
	ource		DF		e III SS	Mean Square	F Value	Pr > F	
m	onth		1	279	75065.59	27975065.59	2.18	0.2000	
					0+ 1	- al			
		Danamat	F-+'		Standar		Do a lati		
		Parameter	Estin		Erro		Pr > t		
		Intercept	51615.90		2441.91904		<.0001		
		month	-999.55	9404	677.26648	-1.48	0.2000		

BASF Enzymes LLC Page 44 of 46

		. , . ,			40-07 0-+	F-b 04 00
						ay, February 24, 20
			Tr=C500			
		The	e GLM Procedur	e		
		Dependent \	/ariable: pc_0	m_as_is		
			Sum of			
Source	Э	DF	Squares	Mean Square	F Value	Pr > F
Model		1	95.0505345	95.0505345	1.84	0.2328
Error		5 2	258.0105639	51.6021128		
Correc	cted Total	6 3	353.0610984			
	R-Square	Coeff Var	Root MS	E pc_0m_as_	is Mean	
	0.269218	7.416808			6.85381	
	01200210	71110000	, , , , , , ,		0100001	
Source	е	DF	Type I SS	Mean Square	F Value	Pr > F
month		1 9	95.05053450	95.05053450	1.84	0.2328
Source	9	DF 1	Type III SS	Mean Square	F Value	Pr > F
month			95.05053450	95.05053450	1.84	0.2328
			Standa	ırd		
	Parameter	Estimate	Err	or t Value	Pr > t	
	Intercept	102.3811962	4.894703	65 20.92	<.0001	
	month	-1.8424608	1.357546		0.2328	

(b)(4) Trial F584 stability premix


35

12:27 Saturday, February 24, 2018 ----- Tr=C500 ------The GLM Procedure Dependent Variable: pc_Om_97_pc_DM Mean Square 110.4268794 50.6000 Sum of Mean Square F Value Pr > F 110.4268794 2.18 0.2000 Source Squares 110.4268794 253.4841999 Model 1 Error 5 6 Corrected Total 363.9110793

	R-Square 0.303445	Coeff Var 7.371371	Root MSE 7.120171	pc_0m_97_pc_ 9	DM Mean 6.59223	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
month		1	110.4268794	110.4268794	2.18	0.2000
Source		DF	Type III SS	Mean Square	F Value	Pr > F
month		1	110.4268794	110.4268794	2.18	0.2000


Standard Parameter Estimate Error t Value Pr > |t| Intercept 102.5499429 4.85157898 21.14 <.0001 0.2000 month -1.9859046 1.34558591 -1.48

Appendix 6 - Temperature and relative humidity during storage of stability samples

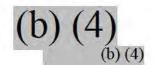
Appendix 16: Sources of Vitamins and Minerals in Premix

BASF Enzymes LLC Page 1 of 5

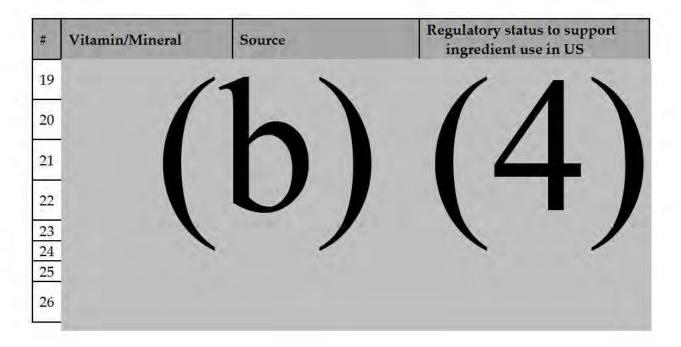
(b)(4)

Date

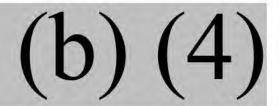
27th March 2018


Product:

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme


TO WHOM IT MAY CONCERN:

The table below provides source and regulatory status for the ingredients in the vitamin-mineral premix used in "Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix" (Unique Study Code: F584) conducted at (b) (4).

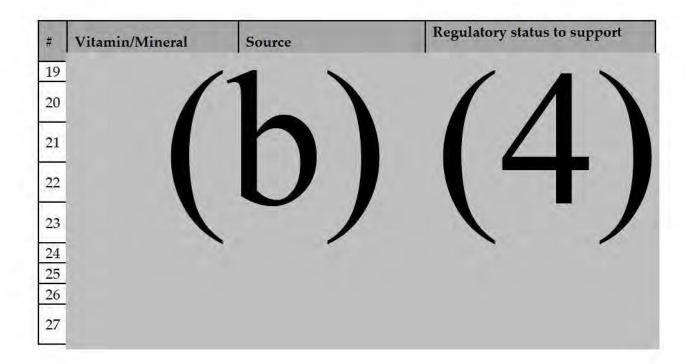

#	Vitamin/Mineral	Source	Regulatory status to support ingredient use in US
1	1	1	
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			

Sincerely,

Date

27th March 2018

Product:


CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

TO WHOM IT MAY CONCERN:

The table below provides source and regulatory status for the ingredients in the vitamin-mineral premix used in "Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix" (Unique Study Code: F562) conducted at (b) (4)

#	Vitamin/Mineral	Source	Regulatory status to support ingredient use in US
1	/	1	
2			
3			
4			
5	-		
6			
7			
8			
9			
10			
11			
12	+		
13			
14			
15			
16			
17			
18			

Sincerely,

Appendix 17: Homogeneity Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Premix

BASF Enzymes LLC Page 1 of 22

Homogeneity evaluation of CIBENZA PHYTAVERSE G10 phytase enzyme in premix

(b)(4)

Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix

Unique Study Code: F562

FINAL REPORT Date: 28th December 2017

Study sponsor: Novus Europe S.A./N.V. and BASF Enzymes LLC.

Signed by Study Director, Study Sponsors and Study Monitor:

(b)(6)	201801.11	Porto 8 2018	Jan. 4,2018
Study Director	Study S	ponsors	Study Monitor
(b)(6)	Elkin Amaya Senior Regulatory Affairs Manager, Novus Europe S.A./N.V. Novus- Edifici CEPID, Tecnoparc Reus, Avda. Cambra del Comerç 42 ES-43204, Reus, Spain	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

The report is confidential. Nothing from this issue may be reproduced and/or published without previous consent from IRTA, only if it is accorded by the contracting parties on the contract signed to involve this activity.

(b) (4)

Page 1 of 21

Final report F562/ Organic code: 0602 / Activity code: A2369

Date: 28th December 2017

Rev. 1

Table of contents

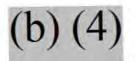
1	Summary	3
	Summary Table 1. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix	3
2	Quality statement	
3	Study title and unique study code	5
4	Study objective	5
5	Study location	
6	Important dates & duration of the study	5
7	Test products	5
	Table 1. Details of test product	5
8	Key study personnel	5
9	Material and methods	6
9.	.1 Experimental treatments	6
	Table 2. Experimental Treatments	6
9.	.2 Treatment application	6
9.	.3 Detailed study design	7
	Figure 1. Basic study design	7
9.	.4 Premix composition	7
	Table 4. Composition of vitamin-mineral premix	7
9.	.5 Premix analyses	8
9.	.6 Premixture manufacture	8
	9.6.1 Short description of the process	8
9.	.7 Premix samples at manufacture	8
9.	.8 Feed sampling plan	9
	Table 7. Sampling plan	9
9.	.9 Statistics	9
10	Results	
	Table 5. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix	9
11	Discussion	10
12	Conclusions	10
13	References	
14	List of Appendices	11
	Appendix 1- Curricula vitae of Study Director & Study Monitor	
	Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)	13
	Appendix 3- Relevant laboratory reports	17
	Appendix 4- Raw data	19
	Appendix 5 - Statistical printouts	20

1 Summary

The objective of this study was to evaluate the Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in vitamin-mineral premix.

The homogeneity of each of the three batches of the test article at two inclusion levels was determined by measuring phytase activity in 10 subsamples taken at different location points of the mixer.

Results are presented next in Summary Table 1.


Sun	Summary Table 1. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix											
			Phytase	U/kg (as is)				I	Phytase U	J/kg (97% DI	M)	
	N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr			/1			4			/4			4
A250	10	24075		_ \			10	24007		_ \		1 \
A500	10	49890		7 1			10	49591	ır	7		1
B250	10	25761	NU	,,	\ _	Г /	10	25848	V I	,,	\ -	t /
B500	10	48614	(10	48778	1 -	~ /	_	• /
C250	10	26167	· ·	·	·	·	10	26889	`		`	
C500	10	50800					10	51432				

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

According the results of the present homogeneity in vitamin-mineral premix, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

• Presented a good mixing homogeneity (CV 8% to 12%), actual CVs below or close to ×1 the CV of the method itself for all the three batches tested and at both inclusion levels.

BASF Enzymes LLC Page 4 of 22

2 Quality statement

The study, Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix (Unique Study Code: F562), was conducted in compliance with current quality standards and regulatory requirements as applicable for EU and US feed additive applications.

Procedures, documentation, equipment and records were examined in order to assure that the study was performed in accordance with the regulations specified herein and with the protocol and relevant Standard Operating Procedures.

Signed and dated:

(b)(6)	That on	lov Va 2018	Den. 4, 2018
Study Director	Study S Elkin Amaya	ponsors	Study Monitor
(b)(6)	Senior Regulatory Affairs Manager, Novus Europe S.A./N.V. Novus- Edifici CEPID, Tecnoparc Reus, Avda. Cambra del Comerç 42 ES-43204, Reus, Spain	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

3 Study title and unique study code

Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in vitamin-mineral premix.

Unique study code: F562

4 Study objective

To evaluate the homogeneity of three batches of CIBENZA® PHYTAVERSE® G10 phytase enzyme at two doses each in vitamin-mineral premix.

5 Study location

(b) (4)

6 Important dates & duration of the study

Date of feed manufacture: 29th May 2017

Duration of study: 1 day mixing, 10 days analysis

7 Test products

	Table 1. Details of test product							
Code Product		Provider	Lot no	Active	Activity	Activity (U/g) [†]		
Couc	Troduct	Tiovidei	Manufacture Date	substance	Guaranteed	Analysed		
A	CIBENZA [®] PHYTAVERSE [®] G10 Phytase Enzyme	Novus International, Inc.	Lot: P23941 Made: 08 October 2014	6-phytase	10,000	13,951		
В	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P26641 Made: 08 October 2014	6-phytase	10,000	13,742		
С	CIBENZA [®] PHYTAVERSE [®] G10 Phytase Enzyme	Novus International, Inc.	Lot: RO15271001 Made: 28 September 2015	6-phytase	10,000	13,522		

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

8 Key study personnel

Study Director:	(b)	(4)

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager, Specialty Products, Novus International, Inc., 20 Research Park Dr., St. Charles, MO 63304, United States of America, Tel: +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com

BASF Enzymes LLC Page 6 of 22

Study Sponsors: 1) Elkin Amaya, Senior Regulatory Affairs Manager, EMEA, Novus Europe S.A./N.V. Novus-Edifici CEPID, Tecnoparc Reus, Av. Cambra del Comerç, 42 ES-43204, Reus, Spain Tel: +34 676 004 728, E-mail: elkin.amaya@novusint.com

2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858 431-8590, Mobile: +1-858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@basf.com. Postal Address: BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121 United States

Feed mill & supervision of diet manufacture:	(b)(6)
Feed analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme):	(b)(6)

Optional/back-up facility for feed analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme): Drew Lichtenstein, Novus International, Inc., 20 Research Park Drive, Saint Charles, MO, 63304; United States of America.

9 Material and methods

9.1 Experimental treatments

Number of treated and control groups: Commercial vitamin-mineral premix (inclusion level 10 kg/ton feed) was used as matrix for homogeneity purposes.

CIBENZA® PHYTAVERSE® G10 phytase enzyme from each batch was added to the vitamin-mineral premix to theoretically provide 250 and 500 U/kg feed as detailed in Table 2.

	Table 2. Experimental Treatments					
		CIBENZA	® PHYTAVERSE® (G10 phytase enzyme		
Treatment	Product	U/kg feed	mg in 10 g premix (equivalent to mg/kg feed) [†]	g to add to 10 kg premix [†]		
A2	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	/◀ \	/ 4 \		
A5	batch P23941	500		\mathcal{L}		
B2	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250				
B5	batch P26641	500	 	\ \ \ \ <i>\</i>		
C2	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250		''		
C5	batch RO15271001	500				

[†] inclusion based on actual activity of each batch

9.2 Treatment application

CIBENZA® PHYTAVERSE® G10 phytase enzyme was mixed with the vitamin-mineral premix in serial mixing steps (details provided under Section 9.3 & 9.6).

BASF Enzymes LLC Page 7 of 22

9.3 Detailed study design

Figure 1. Basic study design

For each batch and dose of enzyme:

The homogeneity of the test article in the vitamin-mineral premix was determined by measuring phytase activity in:

• 10 subsamples taken at different places of the mixer

Premix was produced as follows:

10 kg of Vitamin and Mineral premix was mixed with the corresponding amount of CIBENZA® PHYTAVERSE® phytase enzyme depending on actual activity of each batch as detailed in Table 2

9.4 Premix composition

A standard commercial vitamin-mineral premix was used. The composition of the vitamin-mineral premix is presented next:

	Table 3. Composition of vitamin-mineral premix						
		Units	per kg of vitamin- mineral premix	results in the fe	d at 10 kg/ton feed, ollowing values of feed		
(b)	(4)	IU IU mg	1 000 000 350 000 3 000 210 855 470 5 300 2 000 1 520 6 710 150 25 70 000 6 500 1 500 8 000 8 500 20 50 150 150 150 150 150 150 150 150 150	(b)	(4)		

BASF Enzymes LLC Page 8 of 22

9.5 Premix analyses

Phytase activity in premixes was determined based on "ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity in association with dilution method VDLUFA 27.1.3 (dilution of mineral feeds and premixtures with maize meal (blank feed) before applying the EN ISO 30024 analytical method)."

Dry Matter was determined according AOAC method 934.01: Moisture in Animal Feed.

Premix with no addition of CIBENZA® PHYTAVERSE® G10 phytase enzyme was previously analyzed to confirm the absence of phytase activity before mixing.

9.6 Premixture manufacture

The calculated amount of product for each CIBENZA® PHYTAVERSE	® G10 phytase enzyme batch and
dose (Table 2) was first manually premixed with	(b) (4)
9.6.1 Short description of the process	
Under general and corporative	(b)(6)

9.7 Premix samples at manufacture

For each CIBENZA® PHYTAVERSE® G10 phytase enzyme batch and dose:

• After mixing of the product with the vitamin mineral premix, 10 grab samples (~550 g each) were taken from several points of the mixer. From these 10 grab premix samples:

0	Triplicate	(b) (4)

Each sample was placed in single-ply kraft 80 g paper bags. Bags were ply folded to simulate commercial bags and labelled with the unique study code (F562), treatment code (A2 / A5 / B2 / B5 / C2 / C5), sample number (i.e. NOVUS samples 1.1 to 10; (b) (4) samples 2.1 to 2.10; backup samples 3.1 to 3.10), the date of manufacture and the analysis required (DM, phytase activity).

BASF Enzymes LLC Page 9 of 22

9.8 Feed sampling plan

	1 01					
	Table 4. Sampling plan					
	Treatment	n at sampling	Final Samples NOVUS (b) (4)			
A2	(premix dose intended for 250 U/kg feed)	10 × ~550 g				
A5	(premix dose intended for 500 U/kg feed)	10 × ~550 g				
B2	(premix dose intended for 250 U/kg feed)	10 × ~550 g				
B5	(premix dose intended for 500 U/kg feed)	10 × ~550 g	\			
C2	(premix dose intended for 250 U/kg feed)	10 × ~550 g	(\circ)			
C5	(premix dose intended for 500 U/kg feed)	10 × ~550 g				

For homogeneity analysis, samples were analysed in ____(b) (4) lab within 10 working days after production of the premix containing CIBENZA® PHYTAVERSE® phytase enzyme, keeping samples refrigerated (-4°C) before analysis. Samples were dispatched to NOVUS (Elkin Amaya/_______(b)(6), Novus Reus) and (b) (4) lab for analysis or (b) (4) backup storage.

9.9 Statistics

Key parameters:

- Homogeneity: Mean CIBENZA® PHYTAVERSE® G10 phytase enzyme activity (arithmetic mean) and variation (standard deviation) was used to express the result as a unique value described as the coefficient of variation.
- Stability: The CIBENZA® PHYTAVERSE® G10 phytase enzyme activity will be assessed in the feeds after the maximum storage period (3 month).

Calculations:

$%CV = \frac{s}{v} \times 100$	where:	
$\overline{y} = \frac{\sum y_i}{n}$	%CV= coefficient of variation	Σ = summation
	s= standard deviation	y_i = individual result from
$s = s^2$	s^2 = variance	each sample
$S^2 = \frac{\sum (y_i^2) \cdot n\overline{y}^2}{n \cdot 1}$	\overline{y} = mean	n= total number of samples

10 Results

The results are summarized in Table 5.

	Table 5. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in premix											
	Phytase U/kg (as is)					Phytase U/kg (97% DM)						
	N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr			/1			4			11			4 \
A2	10	24075		. \			10	24007		~ \		
A5	10	49890		7 1			10	49591		7		
B2	10	25761	\	,,	\ —	г /	10	25848	\		\ _	Т/
B5	10	48614	()		1		10	48778	\ \			
C2	10	26167	•		•		10	26889	•	·	·	·
C5	10	50800					10	51432				

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

BASF Enzymes LLC Page 10 of 22

11 Discussion

CIBENZA® PHYTAVERSE® G10 phytase enzyme activity results were also standardized considering a common Dry Matter content of 97%. This value was close to the average DM values (96.4%; DM range: 93.7-97.8%).

The homogeneity of mixing for the three CIBENZA® PHYTAVERSE® G10 phytase enzyme batches tested and at both inclusion levels, expressed as Coefficients of Variation ranged from 7.7% to 12.4% when standardized at 97% DM content. These CVs of the homogeneity were well below ×2 the CV of the normal analytical variation of the method itself (normal analytical CV is 10%), and therefore the CVs of the homogeneity could be considered good.

12 Conclusions

According the results of the present homogeneity in vitamin-mineral premix, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

• Presented a good mixing homogeneity (CV 8% to 12%), actual CVs below or close to ×1 the CV of the method itself for all 3 batches tested and at both inclusion levels.

BASF Enzymes LLC Page 11 of 22

13 References

ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity

VLLUFA 27.1.3. Preparation of Mineral Feed and Premixtures for the Determination of Phytase Activity

Regulation (EC) N° 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition.http://eur-lex.europa.eu/en/index.htm

SAS Institute Inc. 2011. Base SAS® 9.3 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Statutory Instrument 1999 No. 1663. The Feeding Stuffs (Sampling and Analysis) Regulation 1999.

14 List of Appendices

Appendix 1 - Curricula vitae of Study Director & Study Monitor

Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)

Appendix 3 - Relevant laboratory reports

Appendix 4 - Raw data

Appendix 5 - Statistical printouts

BASF Enzymes LLC Page 12 of 22

Appendix 1- Curricula vitae of Study Director & Study Monitor

Study	Director:

Name: Dr (b) (4)	
Present Position: (b) (4)	
Experience:	(b) (4)

Study Monitor:

Name: Drew Lichtenstein

Qualifications: B.S. Biochemistry (Michigan State University 1982), PhD Biochemistry (University of

Wisconsin-Madison 1990)

Present Position: Research Manager, Specialty Products, Novus International

Experience: Over 35 years research experience in biochemistry and cell biology; more than 8 years of experience in animal feed enzymes.

BASF Enzymes LLC Page 13 of 22

BASF Enzymes LLC Page 14 of 22

NOVUS INTERNATIONAL INC. 20 RESEARCH PARK DRIVE ST. CHARLES, MO 63304

DATE:

09 May 2017

PRODUCT:

20002453

PRODUCT DESCRIPTION:

CIBENZA PHYTAVERSE G10 20 KG BAG

LOT NUMBER:

P23941

DATE OF MANUFACTURE:

8 October 2014

DATE OF ANALYSIS:

21 March 2017

DATE OF PACKAGING:

8 October 2014

CERTIFICATE OF ANALYSIS

CHARACTERISTIC

SPECIFICATION

RESULTS

Appearance

Phytase Activity, U/g

White to Beige Granules >=10000

(b) (4)

(b) (4)

The value and properties stated above are based upon test and analysis of samples of material. The exclusive commitment of Novus with respect to such values and properties is as set forth in the sales contract between your company and Novus for such material or the acknowledgment of Novus for the above described shipment of material, whichever is applicable.

NOVUS INTERNATIONAL INC. 20 RESEARCH PARK DRIVE ST. CHARLES, MO 63304

DATE:

09 May 2017

PRODUCT:

20002453

PRODUCT DESCRIPTION:

CIBENZA PHYTAVERSE G10 20 KG BAG

LOT NUMBER:

P26641

DATE OF MANUFACTURE:

8 October 2014

DATE OF ANALYSIS:

21 March 2017

DATE OF PACKAGING:

8 October 2014

CERTIFICATE OF ANALYSIS

CHARACTERISTIC

SPECIFICATION

RESULTS

Appearance

Phytase Activity, U/g

White to Beige Granules

>=10000

Pass

(b) (4)

(b)(6)

The value and properties stated above are based upon test and analysis of samples of material. The exclusive commitment of Novus with respect to such values and properties is as set forth in the sales contract between your company and Novus for such material or the acknowledgment of Novus for the above described shipment of material, whichever is applicable.

NOVUS INTERNATIONAL INC. 20 RESEARCH PARK DRIVE ST. CHARLES, MO 63304

DATE:

09 May 2017

PRODUCT:

20002453

PRODUCT DESCRIPTION:

CIBENZA PHYTAVERSE G10 20 KG BAG

LOT NUMBER:

RO15271001

DATE OF MANUFACTURE:

28 September 2015

DATE OF ANALYSIS:

21 March 2017

DATE OF PACKAGING:

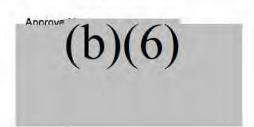
28 September 2015

CERTIFICATE OF ANALYSIS

CHARACTERISTIC

SPECIFICATION

RESULTS


Appearance

Phytase Activity, U/g

White to Beige Granules

>=10000

(b) (4)

The value and properties stated above are based upon test and analysis of samples of material. The exclusive commitment of Novus with respect to such values and properties is as set forth in the sales contract between your company and Novus for such material or the acknowledgment of Novus for the above described shipment of material, whichever is applicable.

Appendix 2- Relevant laboratory reports

BASF Enzymes LLC Page 18 of 22

CERTIFICATE OF ANALYSIS

Company:	Novus Europe S.A./N.V.					
Type of sample:	F562bis Vitamin-Mineral Premix + CIBENZA® PHYTAVERSE® G10					
Laboratory ref. :	170814 170815 170816 170817 170818 170819 170820 170821 170822 170823 170824 170825 170826 170827 170828 170829 170830 170831 170832 170833 170834 170835 170836 170837 170838 170839 170840 170841 170842 170843 170844 170845 170846 170847 170848 170849 170850 170851 170852 170853 170854 170855 170856 170857 170858 170859 170860 170861 170862 170863 170864 170865 170866 170867 170868 170869 170870 170871 170872 170873					
Reception date:	30 May 2017					
Analysis starting date:	31 May 2017					
Analysis finishing date:	05 June 2017					

Sample description:

See Results section

Analysis performed:

Dry Matter; phytase activity

Results:

LAB_REF	Tr	location	U/kg DM_p
170814	A250	1	
170815	A250	2	(b)(4)
170816	A250	3	
170817	A250	4	1
170818	A250	5	
170819	A250	6	i i
170820	A250	7	
170821	A250	8	
170822	A250	9	
170823	A250	10	
170824	A500	1	
170825	A500	2	
170826	A500	3	
170827	A500	4	
170828	A500	5	
170829	A500	6	
170830	A500	7	
170831	A500	8	
170832	A500	9	
170833	A500	10	41001101.11

	LAB_REF	Tr	location	U/kg	DM_p
	170834	B250	1	1	(4)
	170835	B250	2	(b)	(4)
	170836	B250	3		
	170837	B250	4		
	170838	B250	5		
	170839	B250	6		
1	170840	B250	7		
	170841	8250	8		
	170842	B250	9		
	170843	B250	10		
	170844	B500	1		
	170845	B500	2		
	170846	B500	3		
Ì	170847	B500	4		
	170848	B500	5		
	170849	B500	6		
	170850	B500	7		
	170851	B500	8		
	170852	B500	9		
1	170853	B500	10		

LAB_REF	Tr	location	U/kg	DM_p
170854	C250	1	(1-)	(1)
170855	C250	2	(b)	(4)
170856	C250	3	1	()
170857	C250	4		
170858	C250	5		
170859	C250	6		
170860	C250	7		
170861	C250	8		
170862	C250	9		
170863	C250	10		
170864	C500	1		
170865	C500	2		
170866	C500	3		
170867	C500	4		
170868	C500	5		
170869	C500	6		
170870	C500	7		
170871	C500	8		
170872	C500	9		
170873	C500	10		

(b) (4)

Date: 20TH NOVEMBER 2017

Appendix 3- Raw data

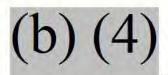
Obs	lab_ref	Tr	location	U_kg_as_is	1000	A 150
1	170814		1	23480	(1-)	(4)
2	170815	A250	2	23710		(4)
3	170816	A250	3	26391		(')
4	170817	A250	4	25979		
5	170818	A250	5	21762		
6	170819	A250	6	24451		
7	170820	A250	7	23254		
8	170821	A250	8	23570		
9	170822	A250	9	20301		
10	170823	A250	10	27856		
11	170824	A500	1	48107		
12	170825	A500	2	43318		
13	170826	A500	3	54024		
14	170827	A500	4	59318		
15	170828	A500	5	40714		
16	170829	A500	6	55704		
17	170830	A500	7	46425		
18	170831	A500	8	56875		
19	170832	A500	9	46856		
20	170833	A500	10	47557		
21	170834	B250	1	23803		
22	170835	B250	2	21031		
23	170836	B250	3	23413		
24	170837	B250	4	26716		
25	170838	B250	5	28245		
26	170839	B250	6	24278		
27	170840	B250	7	27670		
28	170841		8	27890		
29	170842	B250	9	27746		
30	170843	B250	10	26822		
31	170844	B500	1	43705		
32	170845	B500	2	42037		
33	170846	B500	3	51321		
34	170847	B500	4	51209		
35	170848		5	53256		
36	170849		6	42694		
37	170850		7	55863		
38	170851			51815		
39	170852		9	50028		
40	170853		10	44216		
41	170854		1	26263		
42	170855		2	26317		
43	170856		3	26705		
44	170857			23484		
45	170858			26348		
46	170859 170860			26671 28148		
48	170861			27886		
49	170862			28080		
50	170863			21765		
51	170864			52588		
52	170865			52275		
53	170866			44347		
54	170867			41319		
55	170868			54739		
56	170869			53611		
57	170870		-	54993		
58	170871			46648		
59	170872			52398		
60	170873			55082		
1		5500		00002		

BASF Enzymes LLC Page 20 of 22

Appendix 4 - Statistical printouts

			(b)(4) Trial	F562 U_kg_	09:25 Friday, November 17, 2017 1 U_kg_97_
0bs	lab_ref	Tr	location	as_is	
1	170814	A250	1	23480	(1)
2	170815	A250	2	23710	(h)
3	170816	A250	3	26391	\
4	170817	A250	4	25979	$(\cup) (\cdot)$
5	170818	A250	5	21762	
6	170819	A250	6	24451	
7	170820	A250	7	23254	
8	170821	A250	8	23570	
9	170822	A250	9	20301	
10	170823	A250	10	27856	
11	170824	A500	1	48107	
12	170825	A500	2	43318	
13	170826	A500	3	54024	
14	170827	A500	4	59318	
15	170828	A500	5	40714	
16	170829	A500	6	55704	
17	170830	A500	7	46425	
18	170831	A500	8	56875	
19	170832	A500	9	46856	
20	170833	A500	10	47557	
21	170834	B250	1	23803	
22	170835	B250	2	21031	
23	170836	B250	3	23413	
24	170837	B250	4	26716	
25	170838	B250	5	28245	
26	170839	B250	6	24278	
27	170840	B250	7	27670	
28	170841	B250	8	27890	
29	170842	B250	9	27746	
30	170843	B250	10	26822	
31	170844	B500	1	43705	
32	170845	B500	2	42037	
33	170846	B500	3	51321	
34	170847	B500	4	51209	
35	170848	B500	5	53256	
36	170849	B500	6	42694	
37	170850	B500	7	55863	
38	170851	B500	8	51815	
39	170852	B500	9	50028	
40	170853	B500	10	44216	
41	170854	C250	1	26263	
42	170855	C250	2	26317	
43	170856	C250	3	26705	
44	170857	C250	4	23484	
45	170858	C250	5	26348	
46	170859	C250	6	26671	
47	170860	C250	7	28148	
48	170861	C250	8	27886	
49	170862	C250	9	28080	
50	170863	C250	10	21765	
51	170864	C500	1	52588	
52	170865	C500	2	52275	
53	170866	C500	3	44347	
54	170867	C500	4	41319	
55	170868	C500	5	54739	
56	170869	C500	6	53611	
57	170870	C500	7	54993	
58	170871	C500	8	46648	
59	170872	C500	9	52398	
60	170873	C500	10	55082	

BASF Enzymes LLC Page 21 of 22


(b)(4) Trial F562

	U_kg_as_is			U_kg_97_p_DM								
	N	Mean	cv	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr			/1.	_ \		1)			12	•)		1 \
A250	10	24075	(C))	(4	4)	10	24007	(L	"	(4	+ / 5
A500	10	49890	•		•	-/	10	49591				3
B250	10	25761					10	25848				3
B500	10	48614					10	48778				5
C250	10	26167					10	26889				8
C500	10	50800					10	51432				4

Page 22 of 22

Appendix 18: Stability Evaluation of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme in Feed

BASF Enzymes LLC Page 1 of 42

(b)(4)

Stability evaluation of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feed

Unique Study Code: F600

FINAL REPORT Date: 9th May 2018

Study sponsor: Novus International Inc. and BASF Enzymes LLC.

Signed by Study Director, Study Sponsor and Study Monitor:

(b)(6)	MAY 14, 3018	lox Va 2018	Drew Lester 10, may 2018
Study Director	Study S	Study Monitor	
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs, Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

The report is confidential. Nothing from this issue may be reproduced and/or published without previous consent from (b) (4) only if it is accorded by the contracting parties on the contract signed to involve this activity.

(b)(4)

Page 1 of 41

Final report F600/ Organic code: 0602 / Activity code: A2369

Date: 9th May 2018

Rev. 0

Table of contents

I Summary	
Summary Table 1. Stability of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds	3
2 Quality statement	
3 Study title and unique study code	
4 Study objective	6
5 Study location	6
5 Important dates & duration of the study	6
7 Test products	6
Table 1. Details of test product	6
8 Key study personnel	6
9 Material and methods	7
9.1 Experimental treatments	7
Table 2. Experimental Treatments	
9.2 Treatment application	
9.3 Detailed study design	
Figure 1. Basic study design	
9.4 Feed composition	
Table 3. Composition (g/kg) of the basal diet	
Table 4. Composition of vitamin-mineral premix	
Table 5. Calculated analyses of the basal diet (g/kg)	
9.5 Feed analyses	
9.6 Feeds manufacture	
9.6.1 Short description of the process	
9.7 Feeds samples at manufacture	
9.8 Feed sampling plan	
Table 6. Sampling plan	
9.9 Statistics	
10 Results	
Table 7. Analyzed values of experimental diets	
Table 8. Stability of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds (actual & relative values)	12
Table 9. Stability of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds (regressions)	
11 Discussion	
12 Conclusions	
13 References	
14 List of Appendices	
Appendix 1- Curricula vitae of Study Director & Study Monitor	16
Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® L10 phytase enzyme used (3 batches)	
Appendix 3 - Relevant laboratory reports	
Appendix 4 - Raw data	
Appendix 5 - Statistical printouts	
Appendix 6 – Temperature profile in the conditioner during pelleting	
Appendix / — Lemperature and relative humidity during storage of stability samples	41

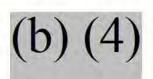
1 Summary

The objective of this study was to evaluate the Stability of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds (post pellet liquid application).

For each batch and dose, the stability of the test article was determined by measuring phytase activity in unique feed samples after 0, 1, 2 and 3-months storage at ambient conditions.

Results are presented next in Summary Table 1.

		N	Phytase U/kg as is	DM %	Phytase U/kg 88% DM	Phytase % 0 month as is	Phytase % 0 month 88%DM
r form	month		222		492	480.0	400.0
A250pellet	0	2	262	87.1	265	100.0	100.0
	1	1					(h) (/
	3	1					(0)(-
1500pellet	0	2	555	87.3	559	100.0	100.0
Loopener	1	1	333	07.5	333	100.0	(1) (4
	2	1					(b) (4
	3	1					(0) (1
3250pellet	0	2	297	87.3	299	100.0	100.0
	1	1					
	2	1	1	4		-	-
	3	1					
3500pellet	0	1			- A V		/ \
	1	1					4
	2	1					
	3	1					
250pellet	0	1					
	1	1					
	2	1					
	3	1					
C500pellet	0	1					
	1	1					
	3	1					
			11			1	1
						4	- 1
						1	


BASF Enzymes LLC Page 4 of 42

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

According to the results of the present stability study in feeds, CIBENZA® PHYTAVERSE® L10 phytase enzyme:

- Was stable over time (1, 2 and 3-months storage at ambient conditions) for all three batches (A & B & C) at both concentrations tested (250 & 500 U/kg) as demonstrated by the slope of linear regressions of phytase activity over time not being significantly different from 0 (flat line, no significant loss of activity).
- Presented good stability (in general ±10% of 0-month value) up to 3-months in pelleted feeds for all three batches (A & B & C) at both concentrations tested (250 & 500 U/kg). Exceptions were: A500 (82%) and B250 (87%). These lower activities at 3 months for A500 and B250 were considered to be within the range of expected values, especially considering the other dose for the same batches of enzyme (i.e. A250 and B500) did not differ from their respective T=0 activity by more than 10% (A250 (93%) as reference for A500 and B500 (102%) as reference for B250).

BASF Enzymes LLC Page 5 of 42

2 Quality statement

The study, Stability evaluation of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feed (Unique Study Code: F600), was conducted in compliance with current quality standards and regulatory requirements as applicable for US animal food requirements.

Procedures, documentation, equipment and records were examined in order to assure that the study was performed in accordance with the regulations specified herein and with the protocol and relevant Standard Operating Procedures.

Signed and dated:

(b)(6)	MAY 14, 2018	lex Va 2018	Dae 2018
Study Director	Study S	Study Monitor	
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

3 Study title and unique study code

Stability evaluation of CIBENZA® PHYTAVERSE® L10 phytase enzyme in pelleted feed.

Unique study code: F600

4 Study objective

To evaluate the stability of three batches of CIBENZA® PHYTAVERSE® L10 phytase enzyme in pelleted feeds (post pellet liquid application).

5 Study location

(b)(4)

6 Important dates & duration of the study

Date of feeds manufacture: 27th November 2017

Duration of study: 1 day at feed mill, 3-months storage for stability 14th March 2018

end of analysis

7 Test products

	Table 1. Details of test product								
Code	Product	Provider	Lot no	Active	Activity (U/g) [†]				
Couc	Troduct	Trovider	Manufacture Date	substance	Guaranteed	Analysed			
A	CIBENZA [®] PHYTAVERSE [®] L10 Phytase Enzyme	Novus International, Inc.	CV002C2	6-phytase	10,000	12,247			
В	CIBENZA® PHYTAVERSE® L10 Phytase Enzyme	Novus International, Inc.	190CV005A3	6-phytase	10,000	11,860			
С	CIBENZA® PHYTAVERSE® L10 Phytase Enzyme	Novus International, Inc.	PHY-50104-PO030-F4	6-phytase	10,000	12,247			

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

8 Key study personnel

Study Director: (b) (4), (b)(6)

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager, Specialty Products, Novus International, Inc., 20 Research Park Dr., St. Charles, MO 63304, United States of America, Tel: +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com

BASF Enzymes LLC Page 7 of 42

Study Sponsors: 1) Gavin Bowman, Director, Global Regulatory Affairs, Novus International, 20 Research Park Dr., St. Charles, MO 63304, United States of America Tel: +1 636 926 7402, E-mail: gavin.bowman@novusint.com

2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858 431-8590, Mobile: +1-858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@basf.com. Postal Address: BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121 United States

Feed mill & supervision of diet manufacture:

(b) (4), (b)(6)

Feed analysis (DM and CIBENZA® PHYTAVERSE® L10 phytase enzyme):

(b) (4), (b)(6)

Optional/back-up facility for feed analysis (DM and CIBENZA® PHYTAVERSE® L10 phytase enzyme): Drew Lichtenstein, Novus International, Inc., 20 Research Park Drive, Saint Charles, MO, 63304; United States of America.

9 Material and methods

9.1 Experimental treatments

Number of treated and control groups: Corn/soya based diet was used for stability purposes.

CIBENZA® PHYTAVERSE® L10 phytase liquid enzyme from each batch was added post pelleting to the feed to provide 250 and 500 U/kg feed as detailed in Table 2.

Table 2. Experimental Treatments								
		CIBENZA	® PHYTAVEF	RSE® L10 phyta	ase enzyme			
Treatment	Product	U/kg feed	mg/kg feed [†]	g to add to 300 kg feed [†]	g for 2.4 kg dilution [‡]			
A250	CIBENZA® PHYTAVERSE® L10 phytase enzyme	250	1-		4			
A500	batch CV002C2	500						
B250	CIBENZA® PHYTAVERSE® L10 phytase enzyme	250	I					
B500	batch 190CV005A3	500	\ 	/ \	+ ,			
C250	CIBENZA® PHYTAVERSE® L10 phytase enzyme	250			- /			
C500	batch PHY-50104-PO030-F4	500						

[†] inclusion based on actual activity of each batch

9.2 Treatment application

CIBENZA® PHYTAVERSE® L10 phytase enzyme was applied post pelleting.

BASF Enzymes LLC Page 8 of 42

[‡] diluted product applied at 6 kg/ton; 0.6 kg of diluted product is needed to fill the pipeline for post pellet application

9.3 Detailed study design

Figure 1. Basic study design

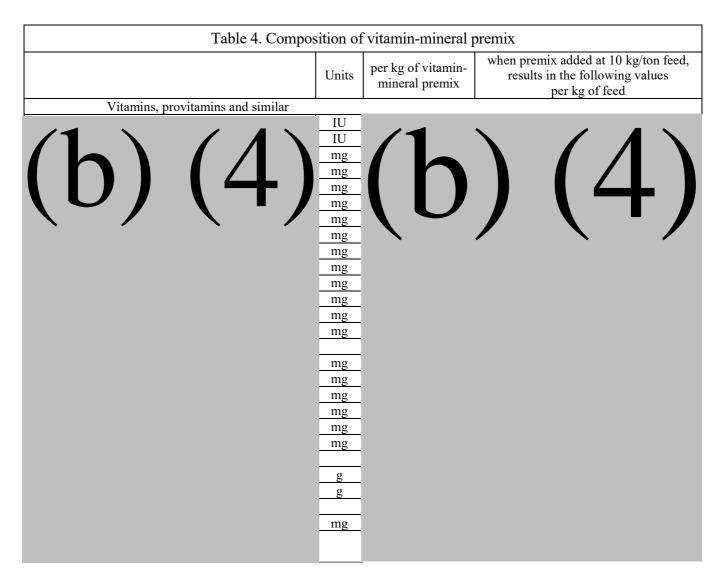
For each batch and dose of enzyme:

The stability of the test article in pelleted feeds was determined by measuring phytase activity of composite samples obtained at the time of feed manufacturing and after storage at ambient conditions for the following periods and for each batch of enzyme:

- 0 months
- 1 months
- 2 months
- 3 months

The amount of endogenous phytase in blank feed has been determined in other studies being values below the level of quantitation.

Feeds were produced as follows:


- Firstly, a 300 kg batch of mash feed was produced.
- Secondly, mash feed was pelleted.
- Thirdly, the corresponding amount of CIBENZA® PHYTAVERSE® L10 phytase enzyme as detailed in Table 2 was applied post pelleting, and the feed was later bagged.

9.4 Feed composition

Feeds did not contain any antibiotics or any other growth promoters. The ingredients, premix and the calculated analyses of the diets are presented in Table 3 to Table 5.

Table 3. Com	Table 3. Composition (g/kg) of the basal diet					
Corn	577					
Soybean meal 48%	373					
Fat blend	13.69					
Dicalcium phosphate	6.81					
Calcium carbonate	12.12					
Methionine Hydroxy Analogue	1.75					
Premix Min-Vit	10.00					
Sodium chloride	1.94					
L-lysine HCL	2.91					
L-threonine	0.65					

BASF Enzymes LLC Page 9 of 42

Table 5. Calculated analyses of the basal diet (g/kg)					
Metabolizable Energy kcal/kg	2864				
Dry Matter	868				
Ash	58				
Crude Fiber	27				
Ether Extract	41				
Crude Protein	227				
Ca	9.6				
P	5.0				
Dig lysine	14.1				
Dig SAA	9.4				
Dig threonine	8.4				

9.5 Feed analyses

Phytase activity in feeds was determined based on ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity.

BASF Enzymes LLC Page 10 of 42

Dry Matter was determined according AOAC method 934.01: Loss on Drying (Moisture) at 95°-100°C for Feeds.

Premix was firstly analyzed to confirm the absence of phytase activity.

9.6 Feeds manufacture

I the process is automated and controlled by a computer provi	ided with software from	(b) (4
		(b) (
		(0)
		(b) (
9.6.1 Short description of the process		
		(b) (

9.7 Feeds samples at manufacture

For each CIBENZA® PHYTAVERSE® L10 phytase enzyme batch and dose:

- 10 grab samples of pelleted feed (~1.1 kg each) were taken at fixed interval times before bagging.
- A portion of these grab pelleted feed samples was combined and homogenized and then:
 - o Triplicate (NOVUS, (b) (4)

BASF Enzymes LLC Page 11 of 42

(b) (4); at each time point one sample was sent to NOVUS, a second one analyzed for phytase activity at (b) (4) lab, while the third sample was retained at (b) (4) at -20°C as a backup sample; 0-month samples were subjected to proximate analysis.

Stability samples were labelled with the unique study code (F600), treatment code (A250 / A500 / B250 / B500 / C250 / C500), date of manufacture and the analysis required (DM, phytase activity, proximate).

9.8 Feed sampling plan

Treatment	Feed form	Month		1			
Treatment	Feed form		Month Analysis	Final Samples			
		storage	Analysis	NOVUS	IRTA lab	IRTA backup	
		10x1.1kg samples: A portion of each of 10 samples combined and homogenized then split for stability: 3x4x250 g					
A250	PELLET	0	stability & proximate	1 × 250g	1 × 250g	1 × 250g	
		1	stability		(h	(Λ)	
		2	stability		(())(+)	
		3	stability		`		
		10x1.1k		rtion of each of a nen split for stab			
A500	PELLET	0	stability & proximate	1 × 250g	1 × 250g	1 × 250g	
		1	stability		(1	\rightarrow (1)	
		2	stability		()	U) (4)	
		3	stability			/ / /	
		10x1.1k		rtion of each of nen split for stab			
B250	PELLET	0	stability & proximate	1 × 250g	1 × 250g	1 × 250g	
		1	stability		(L	(1)	
		2	stability	_))(4)	
		3	stability		()	/ (- /	
		10x1.1k	g samples: A por homogenized th	rtion of each of a nen split for stab			
B500	PELLET	0	stability & proximate	1 × 250g	1 × 250g	1 × 250g	
		1	stability		/1_	\ (1)	
		2	stability		(n))(4)	
		3	stability		()	/ \ '/	
		10x1.1k	g samples: A poi				
				nen split for stab	oility: 3x4x250 g	r 	
C250	PELLET	0	stability &	1 × 250g	1 × 250g	1 × 250g	
			proximate				
		1	stability	_	(k	1) (4)	
		3	stability stability	_	((" (4)	
			x1.1kg samples:	A partian of an	ah af 10 sampla	s combined and	
		10				tability samples	
C500	PELLET	0	stability &	1 × 250g	1 × 250g	1 × 250g	
		1	proximate stability	+	/1		
		2	stability	+	(r	(4)	
		3	stability	+	(1		

BASF Enzymes LLC Page 12 of 42

For stability analysis, A250, B250, C250, A500, B500 and C500 0-month stability samples were analyzed in (b) (4) lab within 10 working days after production of the feeds containing CIBENZA® PHYTAVERSE® L10 phytase enzyme. The initial samples to be tested at time zero were refrigerated (4°C) to make sure they reflected the activity values at time zero. All other samples were kept together at (b) (4) in a cardboard box protected from light and at room temperature. Samples were dispatched to NOVUS (b)(6) and (b) (4) lab for analysis (b) (4) storage as backup samples after the corresponding time (1, 2 or 3-months).

9.9 Statistics

For each CIBENZA® PHYTAVERSE® L10 phytase enzyme batch and dose:

• The CIBENZA® PHYTAVERSE® L10 phytase enzyme activity was assessed in the feeds after the maximum storage period (3-months). The data was fitted to a least squares regression, with the upper and lower 95% confidence limits shown. The regression line of CIBENZA® PHYTAVERSE® L10 phytase enzyme activity vs. time was calculated and the slope tested to be significantly different from 0.

10 Results

The results are summarized in Table 7 and Table 8. Values from proximate analysis were within expected ranges.

Table 7. Analyzed values of experimental diets								
Sample	Dry matter (%)	Crude protein (%)	Ether extract (%)	Ash (%)				
A250 pellet	87.0	22.9	3.9	5.5				
A500 pellet	87.3	23.0	3.8	5.5				
B250 pellet	87.3	23.0	3.8	5.5				
B500 pellet	87.4	22.9	3.8	5.5				
C250 pellet	87.2	23.3	3.9	5.4				
C500 pellet	87.5	23.2	3.8	5.5				

Table 8. St	tability of	CIBE	NZA® PHYTA	VERSE® L1	0 phytase enzyme	in feeds (actual &	& relative values)
		N	Phytase U/kg as is	DM %	Phytase U/kg 88% DM	Phytase % 0 month as is	Phytase % 0 month 88%DM
Tr_form	month						
A250pellet	0	2	262	87.1	265	100.0	100.0
	1	1				/ ◀ \	/ 4 \
	2	1					/ $/$ $/$
	3	1				\mathbf{n}	
A500pellet	0	2					1 4 1
	1	1					\ I /
	2	1				\ /	
	3	1					
B250pellet	0	2	297	87.3	299	100.0	100.0
	1	1					
	2	1					
	3	1					
B500pellet	0	1					
-	1	1					
	2	1					— — I
	3	1					
C250pellet	0	1					
_	1	1					
	2	1					
	3	1					

BASF Enzymes LLC Page 13 of 42

C500pellet	0 1	(1)(4)
	1 1	(n)(4)
	2 1	(0)(7)
	3 1	

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

Table 9. Stability of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds (regressions)

11 Discussion

Dry matter was quite similar among samples (87.3%±0.7) and the correction for constant DM (88%) did not greatly change the results; DM did not vary over storage time.

All samples were analyzed in duplicate, and when phytase analysis results presented unexpected values, the back-up samples were also analyzed in duplicate. The duplicate analyses were below the expected range of variation of the method (~10%) for all 27 analyses. The back-up samples analyzed were: A250, A500 and B250 all from 0-months; for these samples, average values of original and back-up samples were taken into account. Including the A250 and A500 back-up samples in the analysis resulted in lower phytase activity than the original samples alone, while the opposite was true for B250.

Phytase results for A250 and A500 slightly decreased over time, with the phytase activity at the end of the 3-months storage period 93% and 82%, respectively, of the initial activity. The slope of regression lines of phytase activity over time of storage were not significantly different from 0 (P=0.663 and P=0.116 respectively). In the case of A500 relative values for 1-, 2- and 3-months were 87%, 81% and 82% respectively, that might indicate slight loss of activity (not significant by regression). However, the decrease in A250 was smaller and no differences should be expected from different dosages of the same batch; these variations could be considered analytical artifacts more than real loss of activity.

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

For B batch, results for B250 were 87%, 89% and 87% at 1-, 2- and 3-months storage, but loss of activity was not significant according to the slope of the regression line (P=0.234). Moreover, for B500, 97%, 92% and 102% of the T=0 activity was retained at 1-, 2- and 3-months storage, respectively, and the regression line could not be distinguished from a flat line (P=0.994 for B500). As with batch A, no differences should be expected from different dosages of the same batch; the variations in B250 could be considered analytical artifacts more than real loss of activity

Finally, for C batch, both C250 and C500 presented fairly constant values through storage: 97%, 99% and 95% at 1-, 2- and 3-months storage for C250; 107%, 100% and 93% at 1-, 2- and 3-months storage for C500; slopes of the regression lines were not significantly different from 0 in both cases (P=0.191 and P=0.338).

12 Conclusions

According to the results of the present stability study in feeds, CIBENZA® PHYTAVERSE® L10 phytase enzyme:

- Was stable over time (1, 2 and 3-months storage at ambient conditions) for all three batches (A & B & C) at both concentrations tested (250 & 500 U/kg) as demonstrated by the slope of linear regressions of phytase activity over time not being significantly different from 0 (flat line, no significant loss of activity).
- Presented good stability (in general ±10% of 0-month value) up to 3-months in pelleted feeds for all three batches (A & B & C) at both concentrations tested (250 & 500 U/kg). Exceptions were: A500 (82%) and B250 (87%). These lower activities at 3 months for A500 and B250 were considered to be within the range of expected values, especially considering the other dose for the same batches of enzyme (i.e. A250 and B500) did not differ from their respective T=0 activity by more than 10% (A250 (93%) as reference for A500 and B500 (102%) as reference for B250).

BASF Enzymes LLC Page 15 of 42

13 References

ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity

SAS Institute Inc. 2012. Base SAS® 9.4 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Statutory Instrument 1999 No. 1663. The Feeding Stuffs (Sampling and Analysis) Regulation 1999.

14 List of Appendices

- Appendix 1 Curricula vitae of Study Director & Study Monitor
- Appendix 2 Certificate of analysis of CIBENZA® PHYTAVERSE® L10 phytase enzyme used (3 batches)
- Appendix 3 Relevant laboratory reports
- Appendix 4 Raw data
- Appendix 5 Statistical printouts
- Appendix 6 Temperature profile in the conditioner during pelleting
- Appendix 7 Temperature and relative humidity during storage of stability samples

BASF Enzymes LLC Page 16 of 42

Appendix 1- Curricula vitae of Study Director & Study Monitor

Study Director:			
Name: Dr (b)(6)			
Present Position:	(b)(6)		
Experience:		(b)(6)	

Study Monitor:

Name: Drew Lichtenstein

Qualifications: B.S. Biochemistry (Michigan State University 1982), PhD Biochemistry (University of

Wisconsin-Madison 1990)

Present Position: Research Manager, Specialty Products, Novus International

Experience: Over 35 years research experience in biochemistry and cell biology; more than 8 years of

experience in animal feed enzymes.

BASF Enzymes LLC Page 17 of 42

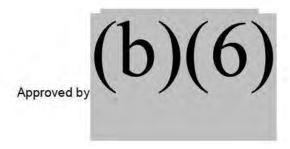
Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® L10 phytase enzyme used (3 batches)

BASF Enzymes LLC Page 18 of 42

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: CV002C2

Date of Manufacture: August 14, 2014


Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b)(4)	Visual
рН	5.0 - 5.2	(0) (7)	Untapped
Specific gravity (g/mL)	1.05 - 1.20		Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000		FDA BAM
Total Coliform (MPN/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1	NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm		HPLC HPLC HPLC HPLC LCMSMS
Fumonisin B2 Fumonisin B3 Ochratoxin A	NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb	143	LCMSMS LCMSMS HPLC
Deoxynivalenol Acetyldeoxynivalenol Fusarenon X	NMT 0.6 ppm NMT 0.8 ppm NMT 0.4 ppm		LCMSMS LCMSMS LCMSMS
Nivalenol T-2 Toxin	NMT 0.6 ppm NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin	NMT 200 ppb		TLC

Page 1 of 2

PCBs	10,000 pg/g	(h) (1)	GC/HRMS
Dioxins	1pg/g	(0)(4)	GC/HRMS

* Results of retesting performed in May 2017

Date: June 7, 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: 190CV005A3

Date of Manufacture: August 11, 2014

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (4)	Visual
pH	5.0 - 5.2	(0) (4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20	2000	Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000		FDA BAM
Total Coliform (cfu/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (MPN/g)	Run and Record		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin	30.3000.053000		
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1			LCMSMS
	NMT 0.1 ppm		
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin	NMT 200 ppb	<200	TLC

Page 1 of 2

PCBs	10,000 pg/g	-(b) (4	GC/HRMS
Dioxins	1pg/g	(0) (GC/HRMS

* Results of retesting performed in May 2017

(b)(6) Approved by:

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: PHY-50104-PO030-F4

Date of Manufacture: September 11, 2015

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (4)	Visual
рН	5.0 - 5.2	(0) (1)	Untapped
Specific gravity (g/mL)	1.05 - 1.20		Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000		FDA BAM
Total Coliform (MPN/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record		FDA BAM
	Absent		
Staphylococcus aureus (/g)			FDA BAM
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B2 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol Diacetoxyscirpenol	NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 0.6 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.6 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm NMT 0.4 ppm		HPLC HPLC HPLC LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin	NMT 200 ppb		TLC

Page 1 of 2

PCBs	10,000 pg/g	(b) (4)	GC/HRMS
Dioxins	1pg/g	(0) (4)	GC/HRMS

* Results of retesting performed in May 2017

(b) (6)
Approved by:

Mark Burcin Sr. Manager, QA/QC Date: June 7, 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

Appendix 3 - Relevant laboratory reports

BASF Enzymes LLC Page 25 of 42

CERTIFICATE OF ANALYSIS

Company:	Novus International Ltd and BASF Enzymes LLC				
Type of sample:	F600 feeds				
	172041	to	172046		
	180016	to	180021		
Laboratory ref. :	180129	to	180134		
	181560	to	181565		
	181801	to	181803		
Reception date:	28th November 2017				
Analysis starting date:	7 th December 2017				
Analysis finishing date:	14th March 2018				

Sample description:

See Results section

Analysis performed:

- Moisture -dry matter- by oven drying -method 2 (SOP 0602-L-10001) (AOAC, 2000)
- Nilrogen -crude protein- by combustion -Dumas method (SOP 0802-L-10118) (AOAC, 2000)
- Ether extract on a Soxtec system-method 3B (SOP 0602-L-10003) (AOAC, 2000)
- Ash after muffle furnace incineration -method 12 (SOP 0602-L-10002) (AOAC, 2000)
- Phytase (SOP 0502-L-10143; ISO 30024:2009. Animal feeding stuffs Determination of phytase activity.)

Results:

LAB. REF.	SAMPLE DESCRIPTI	ON I COUDE BOOTENIA	/ Lryurne	STREET OF LABOUR
172041	A250 pellet	/1	1	/ 4 \
172042	A500 pellet		. 1	
172043	B250 pel'el		9 1	
172044	B500 pettel		, ,	
172045	C250 pellet	1 -		/
172046	C500 pellet			\ /

LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DRY MATTER (%)
172041	A250 pellet stab 0 mes	(1)	2-10-6
172042	A500 pellet stab 0 mes	(b)	(4
172043	B250 pellet stab 0 mes	(0)	1
172044	B500 pellet stab 0 mes		
172045	C250 pellet stab 0 mes		
172046	C500 pellet stab 0 mes	1 -10 1	-010
LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DRY MATTER
181560	A250 pellet STAB 3 meses	(1)	(1)
181562	B250 pellet STAB 3 meses	(\mathbf{n})	(4
181564	C250 pellet STAB 3 meses	()	1.)
181561	A500 pellet STAB 3 meses		
181563	B500 pellet STAB 3 meses		
181565	C500 pellet STAB 3 meses	WOLL OUR	00.0

LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DRY MATTER (%)
180016	A250 pellet stab 1 mes	(1)	1
189017	A500 pellet stab 1 mes	(b)	(4)
180018	B250 pellet stab 1 mes	(0)	(,)
180019	B500 pellet stab 1 mes		
180020	C250 pellet stab 1 mes	T	
180021	C500 pellet stab 1 mes		
LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DRY MATTER (%)
181801	A250 Pellet BACKUP 0 meses	111	(1)
181802	A500 Pellet BACKUP 0 meses	(b)	(4)
181803	B250 Pellet BACKUP 0 meses	(0)	()

LAB, REF,	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DRY MATTER (%)
160129	A250 pellet STAB 2 meses	111	(1)
180130	B250 pellet STAB 2 meses	(h)	14
180131	C250 pellet STAB 2 meses	(0)	
180132	A500 pellet STAB 2 meses		
180133	B500 pellet STAB 2 meses		
180134	C500 pellet STAB 2 meses		

(b) (4), (b)(6)

Appendix 4 - Raw data

Obs	enzyme	form	Tr	Tr_form	lab_ref	dose	U_kg as is	DM p	month	U_kg_88_pc_DM
1	Α	pellet	A250	A250pellet	172041	250	(h)	11	0	(1-) (1)
2	Α	pellet	A500	A500pellet	172042	500	(0)	(4	0	(0)(4)
3	В	pellet	B250	B250pellet	172043	250		1	0	
4	В	pellet	B500	B500pellet	172044	500			0	
5	C	pellet	C250	C250pellet	172045	250			0	
6	C	pellet	C500	C500pellet	172046	500			0	
7	Α	pellet	A250	A250pellet	180016	250			1	
8	Α	pellet	A500	A500pellet	180017	500			1	
9	В	pellet	B250	B250pellet	180018	250			1	
10	В	pellet	B500	B500pellet	180019	500			1	
11	C	pellet	C250	C250pellet	180020	250			1	
12	C	pellet	C500	C500pellet	180021	500			1	
13	Α	pellet	A250	A250pellet	180129	250			2	
14	В	pellet	B250	B250pellet	180130	250			2	
15	C	pellet	C250	C250pellet	180131	250			2	
16	Α	pellet	A500	A500pellet	180132	500			2	
17	В	pellet	B500	B500pellet	180133	500			2	
18	C	pellet	C500	C500pellet	180134	500			2	
19	Α	pellet	A250	A250pellet	181560	250			3	
20	Α	pellet	A500	A500pellet	181561	500			3	
21	В	pellet	B250	B250pellet	181562	250			3	
22	В	pellet	B500	B500pellet	181563	500			3	
23	C	pellet	C250	C250pellet	181564	250			3	
24	C	pellet	C500	C500pellet	181565	500			3	
25	Α	pellet	A250	A250pellet	181801	250			0	
26	Α	pellet	A500	A500pellet	181802	500			0	
27	В	pellet	B250	B250pellet	181803	250			0	

BASF Enzymes LLC Page 27 of 42

Appendix 5 - Statistical printouts

BASF Enzymes LLC Page 28 of 42

			(b)	₎₍₄₎ Trial F600	07	7:52 Satı	• •	ırch 17,	2018 15	
							U_kg_			U_kg_88_
0bs	enzyme	form	Tr	Tr_form	lab_ref	dose	as_is	DM_p	month	pc_DM
1	Α	pellet	A250	A250pellet	172041	250	(L)	(1)	0	(\mathbf{b}) (1)
2	Α	pellet	A500	A500pellet	172042	500	(D)	(4)	0	(0)(4)
3	В	pellet	B250	B250pellet	172043	250	(-)	\ -/	0	
4	В	pellet	B500	B500pellet	172044	500			0	
5	С	pellet	C250	C250pellet	172045	250			0	
6	С	pellet	C500	C500pellet	172046	500			0	
7	Α	pellet	A250	A250pellet	180016	250			1	
8	Α	pellet	A500	A500pellet	180017	500			1	
9	В	pellet	B250	B250pellet	180018	250			1	
10	В	pellet	B500	B500pellet	180019	500			1	
11	С	pellet	C250	C250pellet	180020	250			1	
12	С	pellet	C500	C500pellet	180021	500			1	
13	Α	pellet	A250	A250pellet	180129	250			2	
14	В	pellet	B250	B250pellet	180130	250			2	
15	С	pellet	C250	C250pellet	180131	250			2	
16	Α	pellet	A500	A500pellet	180132	500			2	
17	В	pellet	B500	B500pellet	180133	500			2	
18	С	pellet	C500	C500pellet	180134	500			2	
19	Α	pellet	A250	A250pellet	181560	250			3	
20	Α	pellet	A500	A500pellet	181561	500			3	
21	В	pellet	B250	B250pellet	181562	250			3	
22	В	pellet	B500	B500pellet	181563	500			3	
23	С	pellet	C250	C250pellet	181564	250			3	
24	С	pellet	C500	C500pellet	181565	500			3	
25	Α	pellet	A250	A250pellet	181801	250			0	
26	Α	pellet	A500	A500pellet	181802	500			0	
27	В	pellet	B250	B250pellet	181803	250			0	

BASF Enzymes LLC Page 29 of 42

		Γ			Ι	[l	
			U_kg as_is	DM_p	U_kg 88_pc- _DM	pc_0m- _as_is	pc_0m- _88_p- c_DM	pc_Om- _DM
		N	Mean	Mean	Mean	Mean	Mean	Mean
Tr_form	month							
A250pellet	0	2	262	87.1	265	100.0	100.0	100.0
	1	1			1		1	1
	2	1			D		(4	+)
	3	1		\				/
A500pellet	0	2	555	87.3	559	100.0	100.0	100.0
	1	1			1_	\		1
	2	1			n		(\ \	+)
	3	1		•	·		•	• /
B250pellet	0	2	297	87.3	299	100.0	100.0	100.0
	1	1		1	1 `		//	1
	2	1			n			L)
	3	1		-	·			• /
B500pellet	0	1	-				_	4
	1	1						1 \
	2	1					_	+)
	3	1				•		• /
C250pellet	0	1						
	1	1						
	2	1						
	3	1						
C500pellet	0	1						
	1	1						
	2	1						
	3	1						

BASF Enzymes LLC Page 30 of 42

07:52 Saturday, March 17, 2018

```
U_kg_88_ pc_0m_ pc_0m_
                                           U_kg_
                                     _FREQ_ as_is DM_p
   Obs enzyme dose month Tr Tr_form
                                                         pc_DM
                                                                as_is 88_pc_DM pc_Om_DM
             250
                   Ω
                      A250 A250pellet 2
                                           262 87.065
    1
             250
    2
        Α
                   1
                      A250 A250pellet 1
                                            216 86.820
    3
        Α
             250
                  2
                      A250 A250pellet 1
                                           214 87.180
    4
        Α
             250
                   3
                      A250 A250pellet 1
                                           243 87.070
    5
        Α
             500
                   0
                      A500 A500pellet
                                       2
                                            555 87.325
    6
             500
                   1
                      A500 A500pellet 1
                                            483 87.190
    7
        Α
             500
                   2
                      A500 A500pellet
                                       1
                                            451 87.310
    8
             500
                   3
                      A500 A500pellet
                                       1
                                            457 87.310
    9
        В
             250
                   0
                      B250 B250pellet
                                       2
                                           297 87.315
                                           257 87.150
    10
        В
             250
                   1
                      B250 B250pellet
                                       1
        В
             250
                   2
                      B250 B250pellet
                                       1
                                          264 87.370
    11
    12
        В
             250
                   3
                      B250 B250pellet
                                       1
                                           257 87.180
    13
        В
             500
                   0
                      B500 B500pellet
                                       1
                                            535 87.360
                                            521 87.530
    14
        В
             500
                   1
                      B500 B500pellet
                                       1
    15
        В
             500
                   2
                      B500 B500pellet
                                       1
                                           491 87.440
                      B500 B500pellet
    16
        В
             500
                   3
                                       1
                                          546 87.490
                                          323 87.240
    17
        C
             250
                   0
                      C250 C250pellet
                                       1
                                          313 87.410
    18
        С
             250
                   1
                      C250 C250pellet
                                       1
                      C250 C250pellet
                                          319 87.610
    19
        C
             250
                   2
                                       1
    20
        C
             250
                   3
                      C250 C250pellet
                                       1
                                           307 87.430
    21
        С
             500
                  0
                      C500 C500pellet
                                            541 87.500
                                       1
    22
        С
             500
                  1
                      C500 C500pellet
                                       1
                                            578 87.580
    23
        С
             500
                      C500 C500pellet
                  2
                                       1
                                            541 87.860
             500
    24
                   3
                      C500 C500pellet
                                            502 87.950
                                        1
                          (b)(4)Trial F600, stability pellet feeds
                                                              07:52 Saturday, March 17, 2018
                             ----- Tr_form=A250pellet ------
                                    The GLM Procedure
                          Number of Observations Read
                          Number of Observations Used
                          (b)(4) Trial F600, stability pellet feeds
                                                                                       159
                                                            07:52 Saturday, March 17, 2018
------Tr_form=A250pellet ------
                                    The GLM Procedure
                             Dependent Variable: U_kg_as_is
                                          Sum of
      Source
                               DF
                                         Squares
                                                    Mean Square
                                                                  F Value
                                                                           Pr > F
      Model
                                1
                                      174.050000
                                                    174.050000
                                                                    0.25
                                                                           0.6690
      Error
                                2
                                      1414.700000
                                                     707.350000
      Corrected Total
                                3
                                      1588.750000
                              Coeff Var
                                            Root MSE
                   R-Square
                                                       U_kg_as_is Mean
                   0.109552
                               11.37799
                                            26.59605
                                                             233,7500
                                       Type I SS
                                                    Mean Square
      Source
                                DF
                                                                  F Value
                                                                            Pr > F
                                      174.0500000
                                                    174.0500000
                                                                    0.25
                                                                            0.6690
      month
                                1
      Source
                                DF
                                                                  F Value
                                                                            Pr > F
                                      Type III SS
                                                    Mean Square
      month
                                      174.0500000
                                                    174.0500000
                                                                    0.25
                                                                            0.6690
                                1
                                             Standard
                                                                  Pr > |t|
              Parameter
                                               Error
                                                        t Value
                              Estimate
                            242.6000000
                                          22.25185386
                                                        10.90
                                                                  0.0083
              Intercept
```

(b)(4) Trial F600, stability pellet feeds

11.89411619

----- Tr_form=A250pellet ------The GLM Procedure

Dependent Variable: U_kg_88_pc_DM

-5.9000000

Sum of

month

0.6690

07:52 Saturday, March 17, 2018

-0.50

Sourc Model Error Corre		2 1	Squares 183.767041 429.644878 613.411919	Mean Square 183.767041 714.822439	F Value 0.26	Pr > F 0.6625	
	R-Square 0.113900	Coeff Var 11.31242	Root MSE 26.73616	U_kg_88_pc	c_DM Mean 236.3434		
Sourc month		DF 1 1	Type I SS 83.7670414	Mean Square 183.7670414	F Value 0.26	Pr > F 0.6625	
Sourc month			ype III SS 83.7670414	Mean Square 183.7670414	F Value 0.26	Pr > F 0.6625	
			Standar	d			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	245.4370570	22.3690792		0.0082		
	month	-6.0624589	11.9567758	1 -0.51	0.6625		
		(b)(4) Trial F60		(16 [,] , March 17, 2018	3
							•
			GLM Procedure ariable: pc 0m				
		Bependent V	Sum of	_40_10			
Sourc	е	DF	Squares	Mean Square	F Value	Pr > F	
Model		1	25.3554571	25.3554571	0.25	0.6690	
Error		2 2	06.0923023	103.0461512			
Corre	cted Total	3 2	31.4477595				
	R-Square	e Coeff Var	Root MSE	pc_0m_as_	is Mean		
	0.109552	11.37799	10.15117		39.21756		
Sourc	e	DF	Type I SS	Mean Square	F Value	Pr > F	
month			5.35545714	25.35545714	0.25	0.6690	
Sourc	۵	DF T	ype III SS	Mean Square	F Value	Pr > F	
month			5.35545714	25.35545714	0.25	0.6690	
			Standar	d			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	92.59541985	8.4930739		0.0083		
	month	-2.25190840	4.5397390	0 -0.50	0.6690		
		(b)(4)Trial F60	O, stability p		07:52 Saturday	162 7, March 17, 2018	
		_					-
			GLM Procedure iable: pc_0m_8 Sum of				
Sourc	e	DF	Squares	Mean Square	F Value	Pr > F	
Model			26.2021267	26.2021267	0.26	0.6625	
Error			03.8436050	101.9218025			
Corre	cted Total	3 2	30.0457317				
	R-Square	Coeff Var	Root MSE	pc 0m 88 pc	: DM Mean		
	0.113900	11.31242	10.09563	F	89.24376		
Sourc	е	DF	Type I SS	Mean Square	F Value	Pr > F	
month		1 2	6.20212669	26.20212669	0.26	0.6625	
Sourc			ype III SS	Mean Square		Pr > F	
month		1 2	6.20212669	26.20212669	0.26	0.6625	
			Standar	d			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	92.67756060	8.4466124		0.0082		

BASF Enzymes LLC Page 32 of 42

month -2.28919753 4.51490426 -0.51 0.6625

	morren	2120010	, 00	4.51450	720	0.51		0.0023			
		_{(b)(4)} Trial	F600,	stability	pellet	feeds					163
		(6) (4)	,		pozzot		07:52	Saturday,	March	17,	
			Tr fo	rm=A500pel	let						
			_	LM Procedu							
		Number of	Observa	ations Rea	d	4					
		Number of	Observa	ations Use	d	4					
		(b)(4) Trial	F600,	stability	pellet	feeds					164
							07:52	Saturday,	March	17,	2018
			Tr_fo	rm=A500pel	let						
			The GI	LM Procedu	re						
		Depende	nt Var:	iable: U_k	g_as_is						
				Sum of							
Source		DF		Squares	Mean			Value			
Model		1	5313	3.800000	5313.	800000		6.99	0.1183		
Error				1.200000	760.	600000)				
Correcte	d Total	3	683	5.000000							
	R-Square	Coeff	Var	Root M		_kg_as_	is Mea	an			
	0.777440	5.66	8855	27.578	98	4	86.500	00			
0		D.E.	-	(DO T CC	M =	Carre	_	Val	Dn		
Source month				ype I SS		Square		Value			
month		1	5313	3.800000	5313.	800000	,	6.99	0.1183		
20		DE	T	n III 00	Maas	Sauca-		Value	Dr > F		
Source		DF •		e III SS				Value			
month		1	551	3.800000	5515.	800000	,	6.99	0.1183		
				Stand	and						
	Parameter	Estima	2+0			· Value	, D:	> t			
	Intercept	535.4000				23.20		0.0019			
	month	-32.6000						0.1183			
	morren	02.0000	000	12.00003	505	2.07	,	0.1100			
		Todal									
		(b)(4) IT1a1	F600,	stability	pellet	feeds					165
		(b) (4) Irlai	F600,	stability	pellet		07:52	Saturday	March	17,	
								Saturday,			2018
			Tr_fo		let						2018
			Tr_fo	rm=A500pel	let re						2018
			Tr_fo	rm=A500pel LM Procedu	let re						2018
Source			Tr_fo	rm=A500pel LM Procedu able: U_kg	let re _88_pc_D) DM					2018
		Dependen ^o	Tr_for The Gl	rm=A500pel LM Procedu able: U_kg Sum of	let re _88_pc_D Mean) DM	· F				2018
Source		Dependen DF	Tr_fo The GI t Varia	rm=A500pel LM Procedu able: U_kg Sum of Squares	let re _88_pc_D Mean 5411.	oM Square	. F	Value	Pr > F		2018
Source Model		Dependen DF 1	Tr_for The Gl t Varia 541	rm=A500pel LM Procedu able: U_kg Sum of Squares 1.883148	let re _88_pc_D Mean 5411.	 M Square 883148	. F	Value	Pr > F		2018
Source Model Error	d Total	Dependent DF 1 2 3	Tr_for The Gl t Varia 541 1515 6927	rm=A500pel. LM Procedurable: U_kg. Sum of Squares 1.883148 5.646808 7.529956	let re _88_pc_D Mean 5411. 757.	Square 883148 823404	. F	Value 7.14	Pr > F		2018
Source Model Error	d Total R-Square	Dependent DF 1 2 3	Tr_fon The Gl t Varia 541 1519 6927	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956	let re _88_pc_D Mean 5411. 757.	 M Square 883148	F B C_DM N	Value 7.14 Mean	Pr > F		2018
Source Model Error	d Total	Dependent DF 1 2 3	Tr_fon The Gl t Varia 541 1519 6927	rm=A500pel. LM Procedurable: U_kg. Sum of Squares 1.883148 5.646808 7.529956	let re _88_pc_D Mean 5411. 757.	Square 883148 823404	. F	Value 7.14 Mean	Pr > F		2018
Source Model Error Correcte	d Total R-Square	Dependent DF 1 2 3 Coeff 5.612	Tr_for The Gl t Varia 541 1518 692 Var 453	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859	let re _88_pc_D Mean 5411. 757. E U_k	Square 883148 823404	e F 3 4 90_DM M	Value 7.14 Mean 4913	Pr > F 0.1161		2018
Source Model Error Correcte Source	d Total R-Square	Dependent DF 1 2 3 Coeff 5.612	Tr_for The Gl t Varia 541 1519 6929 Var 453	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52855	let re _88_pc_D Mean 5411. 757. E U_k 9	Square 883148 823404 9_88_p	e F B C_DM N 490.4	Value 7.14 Mean 4913 Value	Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte	d Total R-Square	Dependent DF 1 2 3 Coeff 5.612	Tr_for The Gl t Varia 541 1519 6929 Var 453	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859	let re _88_pc_D Mean 5411. 757. E U_k 9	Square 883148 823404	e F B C_DM N 490.4	Value 7.14 Mean 4913	Pr > F 0.1161		2018
Source Model Error Correcte Source month	d Total R-Square	Dependent DF 1 2 3 Coeff 5.612	Tr_for The Gl t Varia 541 1518 692 Var 453	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411.	Square 883148 823404 59_88_p Square 883148	e F 3 490.4	Value 7.14 Mean 4913 Value 7.14	Pr > F 0.1161 Pr > F 0.1161		2018
Source Model Error Correcte Source month Source	d Total R-Square	Dependent DF 1 2 3 Coeff 5 5.612	Tr_for The Gl t Varia 541: 151! 692: Var 453 Type	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MS 27.52859 ype I SS 1.883148	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean	Square 883148 823404 59_88_p Square 883148 Square	e F 3 490.4 F 3	Value 7.14 Mean 4913 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month	d Total R-Square	Dependent DF 1 2 3 Coeff 5.612	Tr_for The Gl t Varia 541: 151! 692: Var 453 Type	rm=A500pel LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean	Square 883148 823404 59_88_p Square 883148	e F 3 490.4 F 3	Value 7.14 Mean 4913 Value 7.14	Pr > F 0.1161 Pr > F 0.1161		2018
Source Model Error Correcte Source month Source	d Total R-Square	Dependent DF 1 2 3 Coeff 5 5.612	Tr_for The Gl t Varia 541: 151! 692: Var 453 Type	rm=A500pel. LM Procedurable: U_kg. Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411.	Square 883148 823404 59_88_p Square 883148 Square	e F 3 490.4 F 3	Value 7.14 Mean 4913 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1	Tr_foi The Gi t Varia 541: 1518 692: Var 453 Type 541:	rm=A500pel. LM Procedurable: U_kg_ Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411.	Square 883148 823404 5g_88_p Square 883148 Square 883148	e F 3 490.4 490.4	Value 7.14 Mean 4913 Value 7.14 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estimate	Tr_foi The Gi t Varia 541 1518 692 Var 453 Type 541	rm=A500pel. LM Procedurable: U_kg_ Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411.	Square 883148 823404 9_88_p Square 883148 Square 883148	F F F P P P	Value 7.14 Mean 4913 Value 7.14 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214 Parameter Intercept	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estim. 539.8405	Tr_foi The Gi t Varia 541 1518 692 Var 453 Type 541 341	rm=A500pel. LM Procedurable: U_kg_ Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 4ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.032073	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t	Square 883148 823404 9_88_p Square 883148 Square 883148	e F 3 490.4 5 F 6 F	Value 7.14 Mean 4913 Value 7.14 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estimate	Tr_foi The Gi t Varia 541 1518 692 Var 453 Type 541 341	rm=A500pel. LM Procedurable: U_kg_ Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 4ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.032073	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t	Square 883148 823404 9_88_p Square 883148 Square 883148	e F 3 490.4 5 F 6 F	Value 7.14 Mean 4913 Value 7.14 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estimation 539.8405 -32.8994	Tr_foi The Gi t Varia 541 151! 692: Var 453 Type 541: ate 386	rm=A500pel. LM Procedu able: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.032073 12.311160	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291	Square 883148 823404 9_88_p Square 883148 Square 883148 Value 23.44 -2.67	e F 3 490.4 5 F 6 F	Value 7.14 Mean 4913 Value 7.14 Value 7.14	Pr > F 0.1161 Pr > F 0.1161 Pr > F		2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estim. 539.8405	Tr_foi The Gi t Varia 541 151! 692: Var 453 Type 541: ate 386	rm=A500pel. LM Procedu able: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.032073 12.311160	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291	Square 883148 823404 9_88_p Square 883148 Square 883148 : Value 23.44 -2.67 feeds	e F 3 490.4 5 F	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161		2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estim. 539.8405: -32.8994	Tr_foi The Gi t Varia 541 151! 692: Var 453 Type 541: ate 386 928	rm=A500pel. LM Procedurable: U_kg_ Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.032073 12.311160 stability	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291 082 pellet	Square 883148 823404 9_88_p Square 883148 Square 883148 Value 23.44 -2.67 feeds	PI PI	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018
Source Model Error Correcte Source month Source	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff 5 5.612 DF 1 DF 1 Estim. 539.8405: -32.8994	Tr_formula	rm=A500pel. LM Procedurable: U_kg_ Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.032073 12.311160 stability	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291 082 pellet	Square 883148 823404 9_88_p Square 883148 Square 883148 Value 23.44 -2.67 feeds	PI PI	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff (5.612) DF 1 DF 1 Estim 539.8405: -32.8994	Tr_formula	rm=A500pel. LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.03207 12.311160 stability rm=A500pel. LM Procedur	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291 082 pellet let re	Square 883148 823404 5g_88_p Square 883148 Value 23.44 -2.67 feeds	PI PI	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff (5.612) DF 1 DF 1 Estim 539.8405: -32.8994	Tr_formula	rm=A500pel. LM Procedurable: U_kg Sum of Squares 1.883148 5.646808 7.529956 Root MS 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Err 23.032077 12.311160 stability	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291 082 pellet let re	Square 883148 823404 5g_88_p Square 883148 Value 23.44 -2.67 feeds	PI PI	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff (5.612) DF 1 DF 1 Estim 539.8405: -32.8994	Tr_formula	rm=A500pel. LM Procedurable: U_kg. Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Eri 23.03207; 12.311160 stability rm=A500pel. LM Proceduriable: pc_6	let re _88_pc_D Mean 5411. 757. E U_k Mean 5411. Mean 5411. ard ror t 291 082 pellet let re Om_as_is	Square 883148 823404 5g_88_p Square 883148 Value 23.44 -2.67 feeds	e F 490.4 F 6 F 6 P 7 P 7 P	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff v 5.612 DF 1 DF 1 Estim 539.8405 -32.8994 (b) (4) Trial	Tr_foi The Gi t Varia 541: 151! 692: Var 453 Type 541: ate 386 928 F600, Tr_foi The Gi nt Var:	rm=A500pel. LM Procedulable: U_kg. Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Erri 23.032073 12.311160 stability rm=A500pel. LM Proceduliable: pc_G Sum of	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291 082 pellet let re Om_as_is	Square 883148 823404 19_88_p Square 883148 Square 23.44 -2.67 feeds	F PI	Value 7.14 Mean 4913 Value 7.14 Value 7.14 -> t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.781214 Parameter Intercept month	Dependent DF 1 2 3 Coeff (5.612) DF 1 DF 1 Estimate 539.8405 -32.8994 (b) (4) Trial Dependent	Tr_foi The Gi t Varia 541: 151! 692: Var 453 Type 541: ate 386 928 F600, Tr_foi The Gi nt Var:	rm=A500pel. LM Procedurable: U_kg. Sum of Squares 1.883148 5.646808 7.529956 Root MSI 27.52859 ype I SS 1.883148 e III SS 1.883148 Standa Erri 23.032077 12.311160 stability rm=A500pel. LM Proceduriable: pc_G Sum of Squares	let re _88_pc_D Mean 5411. 757. E U_k 9 Mean 5411. Mean 5411. ard ror t 291 082 pellet let re Om_as_is Mean 172.5	Square 883148 823404 19_88_p Square 883148 Square 23.44 -2.67 feeds	00C_DM N 490.4	Value 7.14 Mean 4913 Value 7.14 Value 7.14 C > t 0.0018 0.1161 Saturday,	Pr > F 0.1161 Pr > F 0.1161 Pr > F 0.1161	17,	2018 166 2018

BASF Enzymes LLC Page 33 of 42

	R-Square 0.777440			. – – –	is Mean 7.65766		
Source month		DF 1	Type I SS 172.5119714	Mean Square 172.5119714	F Value 6.99	Pr > F 0.1183	
Source month		DF 1	Type III SS 172.5119714		F Value 6.99	Pr > F 0.1183	
			Standa	rd			
	Parameter	Estimat			Pr > t		
	Intercept	96.4684684			0.0019		
	month	-5.8738738	37 2.222287	15 -2.64	0.1183		
			600, stability	0.	7:52 Saturda		
			r_form=A500pell he GLM Procedur				
			ariable: pc_0m_ Sum of				
Source		DF	Squares	Mean Square			
Model Error		1 2	173.0038095 48.4512811	173.0038095 24.2256405	7.14	0.1161	
Corrected	d Total	3	221.4550905	24.2256405			
	R-Square	Coeff Var	Root MSE	pc_0m_88_pc	_DM Mean		
	0.781214	5.612453	4.921955	+	87.69704		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	173.0038095	173.0038095	7.14	0.1161	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	173.0038095	173.0038095	7.14	0.1161	
			Standa	ırd			
	Parameter	Estimat			Pr > t		
	Intercept month	96.5204019 -5.8822412			0.0018 0.1161		
		நுகு Trial F	600, stability	pellet feeds			168
				0	7:52 Saturda		, 2018
			r_form=B250pell he GLM Procedur				
			servations Read				
		Number of Ob	servations Used	4			
		(b)(4) Trial F	600, stability	•			169
		1	r_form=B250pell		7:52 Saturda 		
		Т	he GLM Procedur	·e			
		Dependent	: Variable: U_kg Sum of	_as_1s			
Source		DF	Squares	Mean Square			
Model Error		1 2	638.450000 458.300000	638.450000 229.150000	2.79	0.2370	
Corrected	d Total	3	1096.750000	229.130000			
	R-Square	e Coeff V	ar Root MS	E U_kg_as_i	s Mean		
	0.582129		15.1377		8.7500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	638.4500000	638.4500000	2.79	0.2370	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	638.4500000	638.4500000	2.79	0.2370	

BASF Enzymes LLC Page 34 of 42

Standard

	Danamatan	Fotimete.	Fnno		Dn > 1+1		
	Parameter	Estimate			Pr > t		
	Intercept	285.7000000			0.0020		
	month	-11.3000000	6.7697858	2 -1.67	0.2370		
		(b)(4) Trial F6	00, stability p	ellet feeds			170
			,		7:52 Saturday	v. March ¹	17. 2018
		Tr	form=B250pelle				-
			e GLM Procedure				
		Dependent v	ariable: U_kg_8	8_pc_DM			
			Sum of				
Source		DF	Squares		F Value		
Model		1	642.239504	642.239504	2.84	0.2340	
Error		2	452.456203	226.228101			
Correcte	ed Total	3	1094.695707				
	R-Square	Coeff Var	Root MSE	U_kg_88_pc	DM Mean		
	0.586683				_ 271.0389		
	0100000	01010010	10101000		27.110000		
Source		DF	Type I SS	Mean Square	E Value	Pr > F	
				•			
month		1	642.2395043	642.2395043	2.84	0.2340	
Source			Type III SS			Pr > F	
month		1	642.2395043	642.2395043	2.84	0.2340	
			Standar	d			
	Parameter	Estimate		r t Value	Pr > t		
	Intercept	288.0390914			0.0019		
	month	-11.3334858			0.2340		
	IIIOTTCTT	-11.0004000	0.7204004	-1.00	0.2340		
	1	(b) (4)	00, stability p				171
					7:52 Saturday		
		Tr	_form=B250pelle	t			
		Th	e GLM Procedure				
		Dependent	Variable: pc_0m	_as_is			
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	72.3792357	72.3792357	2.79	0.2370	
Error					2.75	0.2070	
	d T-4-1	2	51.9561496	25.9780748			
Correcte	ed lotal	3	124.3353853				
	R-Square			. – – –			
	0.582129	5.63263	3 5.096869	9	0.48822		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	72.37923568	72.37923568	2.79	0.2370	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	72.37923568	72.37923568	2.79	0.2370	
			Standar				
	Parameter	Estimate	Erro		Pr > t		
	Intercept	96.19528620	4.2643466	5 22.56	0.0020		
	month	-3.80471380	2.2793891	6 -1.67	0.2370		
		(b)(4) Trial F6	00, stability p	ellet feeds			172
		(0) (1) 202 10	, P		7:52 Saturday	/. March	
			_form=B250pelle				
			_				
			e GLM Procedure				
		pependent Va	riable: pc_0m_8	ъ_рс_им			
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	71.6807149	71.6807149	2.84	0.2340	
Error		2	50.4988931	25.2494465			
Correcte	ed Total		122.1796079				
	R-Square	Coeff Var	Root MSE	pc_0m_88_pc	DM Mean		
					_		
	0.586683	5.549345	5.024883		90.54912		

BASF Enzymes LLC Page 35 of 42

Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1 71	.68071486	71.68071486	2.84	0.2340	
Source		DF Tv	pe III SS	Mean Square	F Value	Pr > F	
month			.68071486	71.68071486	2.84	0.2340	
			Standa	rd			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	96.22858249					
	•	-3.78630994					
	month	-3.76030994	2.247195	-1.68	0.2340		
		Trial FC00	-4-6-1-4	11-+ 4			170
	1	(b)(4) Trial F600	, stability		7-50 0-+		173
					07:52 Saturday		
		Tr_f					
			GLM Procedure				
		Number of Obser					
		Number of Obser	vations Used	4			
		(b)(4) Trial F600	, stability	pellet feeds			174
				C	7:52 Saturday	y, March 17	, 2018
		Tr_f	orm=B500pell				
		_	GLM Procedure				
			riable: U_kg				
		,	Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	0.450000	0.450000		0.9837	
					0.00	0.9637	
Error	J T-+-1		00.300000	850.150000			
Correcte	d lotal	3 17	00.750000				
	R-Square		Root MSI				
	0.000265	5.572352	29.1573	3 52	23.2500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1 0	.45000000	0.45000000	0.00	0.9837	
Source		DF Ty	pe III SS	Mean Square	F Value	Pr > F	
month			.45000000	0.45000000	0.00	0.9837	
			Standa	rd			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	522.8000000	24.394774		0.0022		
	month	0.3000000	13.039555		0.9837		
	IIIOTTETT	0.300000	13.039355	21 0.02	0.9637		
		T T					475
		(b)(4) Trial F600	, stability				175
					07:52 Saturday		
		Tr_f					
			GLM Procedure				
		Dependent Var	iable: U_kg_	88_pc_DM			
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	0.064644	0.064644	0.00	0.9939	
Error		2 17	22.862426	861.431213			
Correcte	d Total		22.927070				
331.13313							
	R-Square	Coeff Var	Root MSE	U_kg_88_pc	DM Mean		
	0.000038	5.574460	29.35015	0_kg_00_pc	526.5111		
	0.000038	3.374400	29.00010		J20.J111		
0		DE	Tuno T CC	Maar Orman	F V-1	Do > F	
Source			Type I SS	Mean Square	F Value	Pr > F	
month		1 0	.06464421	0.06464421	0.00	0.9939	
						_	
Source			pe III SS	Mean Square	F Value	Pr > F	
month		1 0	.06464421	0.06464421	0.00	0.9939	
			Standa	rd			
	Parameter	Estimate	Erro	or t Value	Pr > t		
	Intercept	526.3405147	24.5560959	97 21.43	0.0022		
	month	0.1137051	13.125785	41 0.01	0.9939		

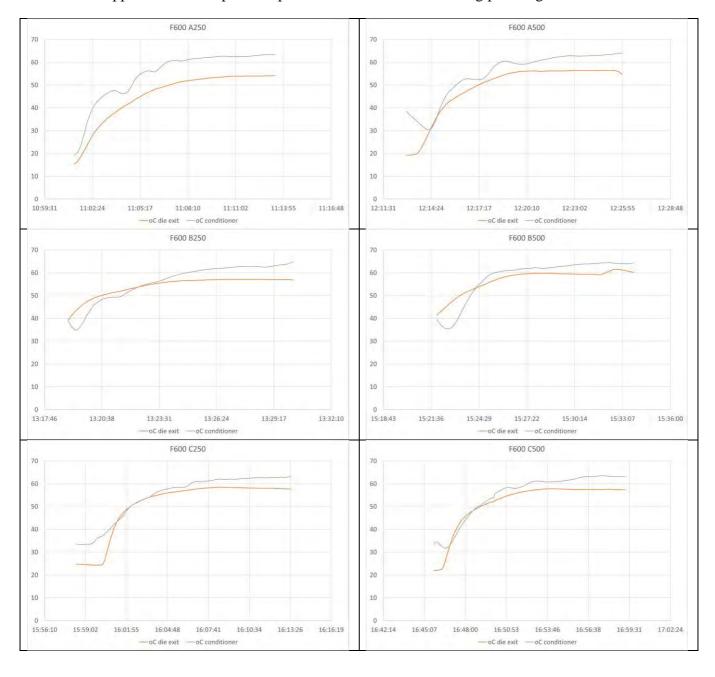
BASF Enzymes LLC Page 36 of 42

```
07:52 Saturday, March 17, 2018
The GLM Procedure
                          Dependent Variable: pc_Om_as_is
                                     Sum of
                                     Squares Mean Square F Value Pr > F
      Source
                            DF
      Mode1
                            1
                                  0.01572190
                                               0.01572190 0.00 0.9837
                             2 59.40431479 29.70215739
      Frror
      Corrected Total
                            3
                                 59.42003668
                                        Root MSE
                 R-Square
                            Coeff Var
                                                  pc_0m_as_is Mean
                                                     97.80374
                 0.000265
                            5.572352
                                        5.449969
                                                            F Value
      Source
                             DF
                                   Type I SS
                                               Mean Square
                                                                     Pr > F
                                   0.01572190
                                               0.01572190 0.00
                                                                     0.9837
      month
                             1
                                                            F Value
      Source
                             DF
                                  Type III SS Mean Square
                                                                     Pr > F
                                   0.01572190 0.01572190 0.00
      month
                             1
                                                                     0.9837
                                         Standard
                         Estimate Error
97.71962617 4.55977085
0.05607477 2.43730004
             Parameter
                                         Error t Value
                                                            Pr > |t|
             Intercept
                                      4.55977085 21.43 0.0022
             month
                                                    0.02
                                                             0.9837
                        (b)(4) Trial F600, stability pellet feeds
                                                                               177
                                                      07:52 Saturday, March 17, 2018
                         ------ Tr_form=B500pellet ------
                                 The GLM Procedure
                         Dependent Variable: pc_Om_88_pc_DM
                                     Sum of
                                     Squares Mean Square F Value Pr > F
                             DF
      Source
                                  0.00222578
      Model
                                               0.00222578 0.00 0.9939
                             1
                             2 59.32033693
                                               29.66016846
      Error
                            3
                                 59.32256271
      Corrected Total
                          Coeff Var
                                      Root MSE pc_Om_88_pc_DM Mean
               R-Square
                0.000038
                                     5.446115
                                                        97.69763
                          5.574460
                             DF
                                  Type I SS Mean Square F Value
      Source
                                                                     Pr > F
                                                          0.00
      month
                                   0.00222578
                                               0.00222578
                                                                    0.9939
                             1
      Source
                             DF
                                  Type III SS Mean Square F Value
                                                                     Pr > F
      month
                                   0.00222578
                                             0.00222578 0.00
                                                                     0.9939
                             1
                                        Standard
                         Estimate Error t Value Pr > |t|
97.66597850 4.55654671 21.43 0.0022
0.02109873 2.43557667 0.01 0.9939
                         Estimate
             Parameter
             Intercept
                                                          0.0022
             month
                        (b)(4) Trial F600, stability pellet feeds
                                                                               178
                                                     07:52 Saturday, March 17, 2018
                          ----- Tr_form=C250pellet -----
                                 The GLM Procedure
                        Number of Observations Read
                        Number of Observations Used
                        (b)(4) Trial F600, stability pellet feeds
                                                      07:52 Saturday, March 17, 2018
                           ----- Tr_form=C250pellet ------
                                 The GLM Procedure
                          Dependent Variable: U_kg_as_is
                                      Sum of
      Source
                             DF
                                     Squares Mean Square
                                                            F Value
                                                                   Pr > F
                                 88.2000000
                                             88.2000000
                                                          3.00
      Model
                             1
                                                                    0.2254
      Error
                             2
                                  58.8000000
                                               29.4000000
      Corrected Total
                                  147.0000000
```

	R-Square 0.600000	Coeff Var 1.718598	Root MSI 5.42217		is Mean 15.5000		
Source month			Гуре I SS .20000000	Mean Square 88.20000000		Pr > F 0.2254	
Source		DF Tyr	oe III SS	Mean Square	F Value	Pr > F	
month			.20000000	88.20000000		0.2254	
			Standa				
	Parameter	Estimate	Erro				
	Intercept month	321.8000000 -4.2000000	4.5365184 2.424871				
	(t	₀₎₍₄₎ Trial F600,	, stability				180
		Tr fo	orm=C25Opelle		07:52 Saturday		
		_	GLM Procedure				
		Dependent Vari	iable: U_kg_8 Sum of	38_pc_DM			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model			1.8345986	101.8345986	3.79	0.1909	
Error			3.7058037	26.8529018			
Correcte	d Total	3 155	5.5404023				
	R-Square	Coeff Var	Root MSE	U kg 88 po	c DM Mean		
	0.654715	1.631672	5.181979		317.5870		
Source		DF 1	Type I SS	Mean Square	F Value	Pr > F	
month			1.8345986	101.8345986	3.79	0.1909	
Source		DF Typ	oe III SS	Mean Square	F Value	Pr > F	
month		1 101	1.8345986	•		0.1909	
			Standa	rd			
	Parameter	Estimate	Erro	or t Value	Pr > t		
	Intercept	324.3564747	4.3355543	32 74.81	0.0002		
	month	-4.5129724	2.3174512	26 -1.95	0.1909		
	(b	o)(4) Trial F600,	, stability _l		27.50 004	. Namah di	181
		Tr_fo	orm=C250pelle		07:52 Saturday		•
		The O Dependent Var	· –				
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model			45402525			0.2254	
Error			.63601683	2.81800842			
Correcte	d Total	3 14.	.09004208				
	R-Square	Coeff Var	Root MSI	E pc_0m_as_	is Mean		
	0.600000	1.718598	1.678692		97.67802		
Source		DF 1	Type I SS	Mean Square	F Value	Pr > F	
month			45402525	•		0.2254	
Source		DF Tvr	oe III SS	Mean Square	F Value	Pr > F	
month			45402525	8.45402525		0.2254	
			O+l	ad			
	Parameter	Estimate	Standa: Erro		Dn \ 1+1		
	Intercept	99.62848297					
	month		0.750734				
	morren	-1.50050900					
							192
		(b)(4)Trial F600,	, stability _l	oellet feeds (07:52 Saturday		

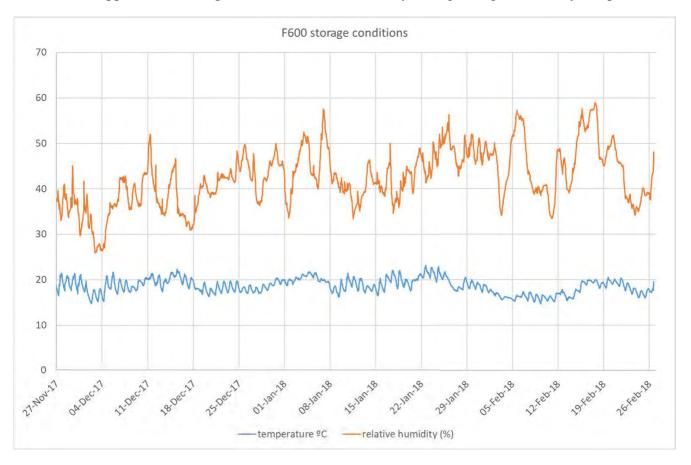
BASF Enzymes LLC Page 38 of 42

The GLM Procedure


			ne GLM Procedur				
		Dependent Va	ariable: pc_Om_	88_pc_DM			
_			Sum of				
Source		DF	Squares		F Value		
Model		1	9.59303155	9.59303155	3.79	0.1909	
Error		2	5.05919870	2.52959935			
Correcte	d Total	3	14.65223024				
	R-Square	Coeff Var	Root MSE	pc_0m_88_p	c DM Mean		
	0.654715	1.631672		po_ooo_p	97.47494		
	0.054715	1.001072	1.550471		37.47434		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	9.59303155	9.59303155		0.1909	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	9.59303155				
morren		•	0100000100	0100000100	0170	011000	
			Standa	rd			
	Parameter	Estimate		or t Value	Pr > t		
	Intercept	99.55265111					
	month	-1.38513765					
	morren	1100010700	0.711200	1130	0.1000		
		(b)(4) Trial F6	300, stability	pellet feeds			183
		(-) (1)	,		07:52 Saturday	, March 1	17, 2018
		Tr	_form=C500pell		-		•
			ne GLM Procedur				
		Number of Obs	servations Read	4			
			servations Used				
				•			
		ты да Trial F6	300, stability	pellet feeds			184
		(6) (1)	· · · · · · · · · · · · · · · · · · ·		07:52 Saturday	/. March 1	
		Tr	form=C500pell				
			_ ' ne GLM Procedur				
			Variable: U_kg				
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model			1185.800000	1185.800000		0.3593	
Error			1703.200000	851.600000	1.09	0.0090	
Correcte	d Total	3	2889.000000	651.000000			
OUT ECTE	u Total	3	2889.000000				
	R-Square	e Coeff Va	ar Root MS	E U_kg_as_:	is Mean		
	0.410453				40.5000		
	01110100	0.00010	2011021		1010000		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	1185.800000	1185.800000	1.39	0.3593	
morren		·	1100100000	1100100000	1100	010000	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	1185.800000	1185.800000	1.39	0.3593	
morren		·	1100100000	1100100000	1100	0.0000	
			Standa	rd			
	Parameter	Estimate			Pr > t		
	Intercept	563.6000000					
	month	-15.4000000					
					0.0000		
		ты́ al F6	600, stability	pellet feeds			185
			,		07:52 Saturday	, March 1	
		Tr	_form=C500pell				
			 ne GLM Procedur				
		Dependent \	/ariable: U_kg_	88_pc_DM			
		•	Sum of	<u> </u>			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	1350.183427	1350.183427		0.3384	
Error		2	1734.462143	867.231071	1.50	0.0004	
Correcte	d Total	3	3084.645570	337.201071			
00116016	a local	3	555-10-5570				
	R-Square	Coeff Var	Root MSE	U kg 88 p	c DM Mean		
	0.437711	5.430824		2_i,8_00_bi	542.2527		
	01701111	0.1-1000 2 -	. 25177079				

BASF Enzymes LLC Page 39 of 42

Source month		DF 1 1	Type I SS 350.183427	Mean Square 1350.183427	F Value 1.56	Pr > F 0.3384	
Source month			ype III SS 350.183427		F Value 1.56	Pr > F 0.3384	
			Standa	ırd			
	Parameter	Estimate	Err		Pr > t		
	Intercept	566.9018737	24.638623		0.0019		
	month	-16.4327930	13.169898	-1.25	0.3384		
		(b)(4) Trial F60	O stability	nallat faads			186
		(B) (4) 11 1 a 1 1 0 0	o, stability		7:52 Saturday	y, March 17	
		Tr_					
			GLM Procedur				
		Dependent v	ariable: pc_0 Sum of	m_as_1s			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1 4	0.51510006	40.51510006	1.39	0.3593	
Error		2 5	8.19304977	29.09652489			
Correc	ted Total	3 9	8.70814983				
	D Cauco	e Coeff Var	Root MS	re no Om oo i	is Moon		
	R-Squar 0.41045			. – – –	9.90758		
	0111010	0.000.00	0.00				
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1 4	0.51510006	40.51510006	1.39	0.3593	
Coupos		DE T	uno III CC	Maan Cauana	F	Do > F	
Source month			ype III SS 0.51510006	Mean Square 40.51510006	F Value 1.39	Pr > F 0.3593	
morren		' 7	0.51510000	40.31310000	1.03	0.0000	
			Standa	ırd			
	Parameter	Estimate	Err	or t Value	Pr > t		
	Intercept	104.1774492			0.0019		
	month	-2.8465804	2.412323	-1.18	0.3593		
		(b)(4) Trial F60	O. stability	pellet feeds			187
		(6) (4) 202 . 33	o, otam===t,		7:52 Saturday	y, March 17	
		Tr_					
			GLM Procedur				
		Dependent Var	Sum of	88_bc_nw			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	45.6089095	45.6089095	1.56	0.3384	
Error		2	58.5897630	29.2948815			
Correc	ted Total	3 1	04.1986725				
	R-Square	Coeff Var	Root MSE	no 0m 88 no	DM Moan		
	0.437711	5.430824	5.412475	pc_0m_88_pc_ g	_DM Mean 99.66213		
	0.1.01.1.1	01.0002.	01112170				
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1 4	5.60890952	45.60890952	1.56	0.3384	
Source		DF T	vno III co	Moon Causes	F Value	Pr > F	
month			ype III SS 5.60890952	Mean Square 45.60890952	1.56	0.3384	
MOTICII		, 4	J. 00090902	40100000000	1.50	0.0004	
			Standa	ırd			
	Parameter	Estimate	Err	or t Value	Pr > t		
	Intercept	104.1924740	4.528401		0.0019		
	month	-3.0202288	2.420532	223 -1.25	0.3384		


BASF Enzymes LLC Page 40 of 42

Appendix 6 – Temperature profile in the conditioner during pelleting

BASF Enzymes LLC Page 41 of 42

Appendix 7 – Temperature and relative humidity during storage of stability samples

BASF Enzymes LLC Page 42 of 42

Appendix 19: Sources of Vitamins and Minerals Used in the In-Feed Stability Studies

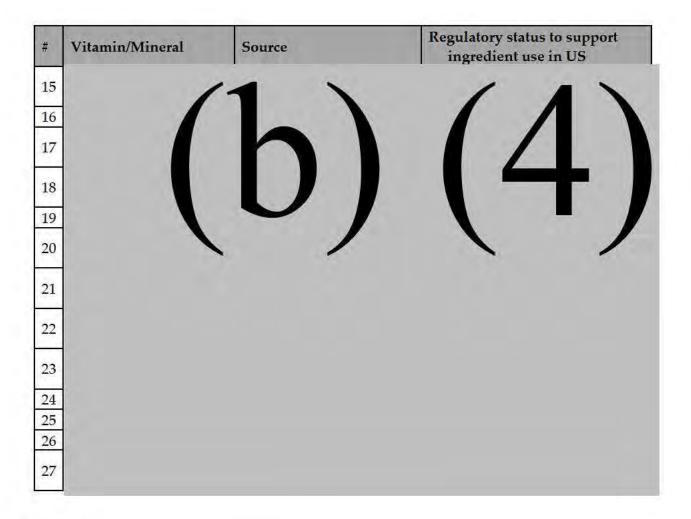
BASF Enzymes LLC Page 1 of 3

(b)(4)

Date 27th March 2018

Products: CIBENZA® PHYTAVERSE® L10 Phytase Enzyme and

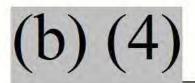
CIBENZA® PHYTAVERSE® G10 Phytase Enzyme


TO WHOM IT MAY CONCERN:

The table below provides source and regulatory status for the ingredients in the vitamin-mineral premix used in the following studies conducted at (b) (4)

- Homogeneity evaluation of CIBENZA PHYTAVERSE G10 phytase enzyme in feed (Unique Study Code: F598),
- Stability evaluation of CIBENZA PHYTAVERSE G10 phytase enzyme in feed (Unique Study Code: F597),
- 3) Homogeneity evaluation of CIBENZ PHYTAVERSE L10 phytase enzyme in feed (Unique Study Code: F599), and
- Stability evaluation of CIBENZA PHYTAVERSE L10 phytase enzyme in feed (Unique Study Code: F600).

#	Vitamin/Mineral	Source	Regulatory status to support ingredient use in US
1	/	4	/ 4 \
2			
3			
4			
5			•
6			
7			
8			
9			
10			
11			
12			
13			
14			


Sincerely,

(b)(4)

BASF Enzymes LLC Page 3 of 3

Appendix 20: Homogeneity Evaluation of CIBENZA® PHYTAVERSE® L10 Phytase Enzyme in Feed

BASF Enzymes LLC Page 1 of 27

(b)(4)

Homogeneity evaluation of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feed

Unique Study Code: F599

FINAL REPORT Date: 9th May 2018

Study sponsor: Novus International Inc. and BASF Enzymes LLC.

Signed by Study Director, Study Sponsor and Study Monitor:

(b)(6)	MAY 14, 2018	lex Van Dry	Drew 10, May 2018	
Study Director	Study S	Study Monitor		
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs, Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	

The report is confidential. Nothing from this issue may be reproduced and/or published without previous consent from IRTA, only if it is accorded by the contracting parties on the contract signed to involve this activity.

(b)(4)

Page 1 of 26

Final report F599/ Organic code: 0602 / Activity code: A2369

Date: 9th May 2018

Rev. 1

Table of contents

1	Summary	3
	Summary Table 1. Homogeneity of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds	3
2	Quality statement	
3	Study title and unique study code	
4	Study objective	
5	Study location	
6	Important dates & duration of the study	
7	Test products	
	Table 1. Details of test product	
8	Key study personnel	
9	Material and methods	
9.		
	Table 2. Experimental Treatments.	
9.	•	
9.	**	
	Figure 1. Basic study design	7
9.		
	Table 3. Composition (g/kg) of the basal diet	
	Table 4. Composition of vitamin-mineral premix	
	Table 5. Calculated analyses of the basal diet (g/kg)	
9.	, (C C)	
9.	6 Feeds manufacture	9
9	9.6.1 Short description of the process	9
9.	7 Feeds samples at manufacture	10
9.		
	Table 6. Sampling plan	10
9.	9 Statistics	10
10	Results	11
	Table 7. Analyzed values of experimental diets	11
	Table 8. Homogeneity of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds	11
11	Discussion	11
12	Conclusions	11
13	References	12
14	List of Appendices	12
	Appendix 1- Curricula vitae of Study Director & Study Monitor	13
	Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® L10 phytase enzyme used (3 batches)	
	Appendix 3 - Relevant laboratory reports	
	Appendix 4 - Raw data	
	Appendix 5 - Statistical printouts	24
	Appendix 6 – Temperature profile in the conditioner during pelleting	26

1 Summary

The objective of this study was to evaluate the Homogeneity of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds (post pellet liquid application).

For each batch, the homogeneity of the test article was determined by measuring phytase activity in 10 subsamples taken at different time points at bagging.

Results are presented next in Summary Table 1.

Summary Table 1. Homogeneity of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds													
Phytase U/kg as is					Phytase U/kg 88% DM								
		N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr	form				/1 \	\ /	1				/1 \	1	4
A250	pellet	10	264		(\mathbf{h})	1 (.	ZL 1	10	268		(h)		/I \
B250	pellet	10	277			<i>/</i> \ '	T /	10	280		(0)	' (-	+ /
C250	pellet	10	284		\ /			10	286			-	

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

According the results of the present homogeneity study in feeds, CIBENZA® PHYTAVERSE® L10 phytase enzyme:

• Presented good mixing homogeneity (CV \sim 7 to 11%), actual CVs below to 2× the CV of the method itself (10%) for all 3 batches tested in pelleted form (post pellet application).

BASF Enzymes LLC Page 4 of 27

2 Quality statement

The study, Homogeneity evaluation of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feed (Unique Study Code: F599), was conducted in compliance with current quality standards and regulatory requirements as applicable for US animal food requirements.

Procedures, documentation, equipment and records were examined in order to assure that the study was performed in accordance with the regulations specified herein and with the protocol and relevant Standard Operating Procedures.

Signed and dated:

(b) (4)	MAY 14, 2018	low Vandrous 2018	Drew Law 10, May 2018
Study Director	Study S	Study Monitor	
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

3 Study title and unique study code

Homogeneity evaluation of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feed.

Unique study code: F599

4 Study objective

To evaluate the homogeneity of three batches of CIBENZA® PHYTAVERSE® L10 phytase enzyme in pelleted feeds (post pellet liquid application of CIBENZA® PHYTAVERSE® L10 phytase enzyme).

5 Study location

(b) (4)

6 Important dates & duration of the study

Date of feeds manufacture: 27th November 2017

Duration of study: 1 day at feed mill, 12th December 2017 end of analysis

7 Test products

	Table 1. Details of test product									
Code	Product	Provider	Lot no		Activity (U/g) [†]					
Code	Troduct	Tiovidei	Manufacture Date	substance	Guaranteed	Analysed				
A	CIBENZA [®] PHYTAVERSE [®] L10 Phytase Enzyme	Novus International, Inc.	CV002C2	6-phytase	10,000	12,247				
В	CIBENZA® PHYTAVERSE® L10 Phytase Enzyme	Novus International, Inc.	190CV005A3	6-phytase	10,000	11,860				
С	CIBENZA® PHYTAVERSE® L10 Phytase Enzyme	Novus International, Inc.	PHY-50104-PO030-F4	6-phytase	10,000	12,247				

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

8 Key study personnel

Study Director: (b) (4), (b)(6)

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager, Specialty Products, Novus International, Inc., 20 Research Park Dr., St. Charles, MO 63304, United States of America, Tel: +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com

BASF Enzymes LLC Page 6 of 27

Study Sponsors: 1) Gavin Bowman, Director, Global Regulatory Affairs, Novus International, 20 Research Park Dr., St. Charles, MO 63304, United States of America Tel: +1 636 926 7402, E-mail: gavin.bowman@novusint.com

2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858 431-8590, Mobile: +1-858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@basf.com. Postal Address: BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121 United States

Feed mill & supervision of diet manufacture:

(b) (4), (b)(6)

Feed analysis (DM and CIBENZA® PHYTAVERSE® L10 phytase enzyme):

(b) (4), (b)(6)

Optional/back-up facility for feed analysis (DM and CIBENZA® PHYTAVERSE® L10 phytase enzyme): Drew Lichtenstein, Novus International, Inc., 20 Research Park Drive, Saint Charles, MO, 63304; United States of America.

9 Material and methods

9.1 Experimental treatments

Number of treated and control groups: Corn/soya based diet was used for homogeneity purposes.

CIBENZA® PHYTAVERSE® L10 phytase liquid enzyme from each batch was added post pelleting to the feed to provide 250 and 500 U/kg feed as detailed in Table 2.

Table 2. Experimental Treatments							
		CIBENZA	® PHYTAVER	SE® L10 phyta	ise enzyme		
Treatment	Product	U/kg feed	mg/kg feed [†]	g to add to 300 kg feed [†]	g for 2.4 kg dilution [‡]		
A250	CIBENZA® PHYTAVERSE® L10 phytase enzyme	250	20.41	/1 \	(1)		
A500	batch CV002C2	500	40.83	(h)	<i>(/</i>)		
B250	CIBENZA® PHYTAVERSE® L10 phytase enzyme	250	21.08	(U)	\ + /		
B500	batch 190CV005A3	500	42.16		\ /		
C250	CIBENZA® PHYTAVERSE® L10 phytase enzyme	250	20.41				
C500	batch PHY-50104-PO030-F4	500	40.83				

[†] inclusion based on actual activity of each batch

9.2 Treatment application

CIBENZA® PHYTAVERSE® L10 phytase enzyme was applied post pelleting.

BASF Enzymes LLC Page 7 of 27

[‡] diluted product applied at 6 kg/ton; 0.6 kg of diluted product is needed to fill the pipeline for post pellet application

9.3 Detailed study design

Figure 1. Basic study design

For each batch and dose of enzyme:

The homogeneity of the test article in pelleted feeds was determined by measuring phytase activity in:

• 10 subsamples taken at fixed intervals at bagging

The amount of endogenous phytase in blank feed has been determined in other studies being values below the level of quantitation.

Feeds were produced as follows:

- Firstly, a 300 kg batch of mash feed was produced.
- Secondly, mash feed was pelleted.
- Thirdly, the corresponding amount of CIBENZA® PHYTAVERSE® L10 phytase enzyme as detailed in Table 2 was applied post pelleting, and later bagged

9.4 Feed composition

Feeds did not contain any antibiotics or any other growth promoters. The ingredients, premix and the calculated analyses of the diets are presented in Table 3 to Table 5.

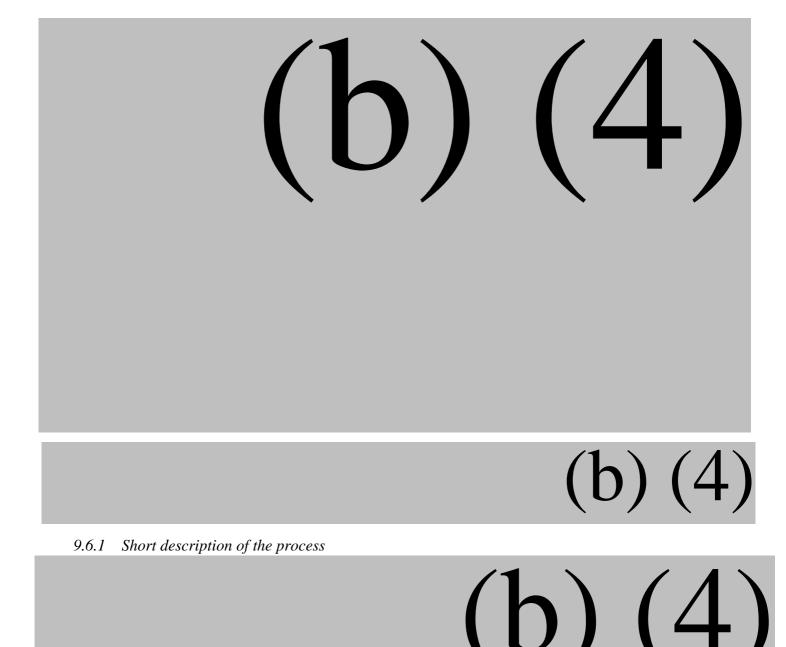
Table 3. Composition (g/kg) of the basal diet				
Corn	577			
Soybean meal 48%	373			
Fat blend	13.69			
Dicalcium phosphate	6.81			
Calcium carbonate	12.12			
Methionine Hydroxy Analogue	1.75			
Premix Min-Vit	10.00			
Sodium chloride	1.94			
L-lysine HCL	2.91			
L-threonine	0.65			

BASF Enzymes LLC Page 8 of 27

Table 4. Composition of vitamin-mineral premix							
	Units	per kg of vitamin- mineral premix	when premix added at 10 kg/ton feed, results in the following values per kg of feed				
Vitamins, provitamins and similar		T					
	IU	1 000 000	/1 \ / / \				
	IU	350 000					
	mg	3 000					
(0)(4)	mg	210	(b)(4)				
\	mg	855					
(b)(4)	mg	470					
	mg	5					
	mg	300					
	mg	2 000					
	mg	1 520					
	mg	6 710					
	mg	150					
	mg	25					
	mg	70 000					
	mg	6 500					
	mg	150					
	mg	1 500					
	mg	8 000					
	mg	8 500					
	mg	20					
	g	50					
	g	150					
	mg	5 000					
		up to 1 kg					

Table 5. Calculated analy	vses of the basal diet (g/kg)
Metabolizable Energy kcal/kg	2864
Dry Matter	868
Ash	58
Crude Fiber	27
Ether Extract	41
Crude Protein	227
Ca	9.6
P	5.0
Dig lysine	14.1
Dig SAA	9.4
Dig threonine	8.4

9.5 Feed analyses


Phytase activity in feeds was determined based on ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity.

BASF Enzymes LLC Page 9 of 27

Dry Matter was determined according AOAC method 934.01: Loss on Drying (Moisture) at 95°-100°C for Feeds.

Premix was firstly analyzed to confirm the absence of phytase activity.

9.6 Feeds manufacture

BASF Enzymes LLC Page 10 of 27

9.7 Feeds samples at manufacture

For each CIBENZA® PHYTAVERSE® L10 phytase enzyme batch and dose:

• 10 grab samples of pelleted feed (~1.1 kg each) were taken at fixed interval times before bagging. From these 10 grab pelleted feed samples:

o Triplicate (b) (4)

Homogeneity samples were placed in zip-lock plastic bags labelled with the unique study code (F599), treatment code (A250 / A500 / B250 / B500 / C250 / C500), date of manufacture and the analysis required (DM, phytase activity).

9.8 Feed sampling plan

	1	Table 6. Sampling p	olan
Treatment	Feed form	n at sampling	Final Samples NOVUS (b) (4)
A250	pellet	10 × ~1.1 kg	(1)
A500	pellet	10 × ~1.1 kg	
B250	pellet	10 × ~1.1 kg	INIA
B500	pellet	10 × ~1.1 kg	
C250	pellet	10 × ~1.1 kg	() (.
C500	pellet	10 × ~1.1 kg	

For homogeneity analysis, A250, B250 and C250 samples were analyzed in (b) (4) lab within 10 working days after production of the feeds containing CIBENZA® PHYTAVERSE® L10 phytase enzyme; the A500, B500 and C500 homogeneity samples were kept frozen serving as back up samples. The 250 U/kg samples were refrigerated (4°C) until tested to make sure they reflected accurate activity values at the time the feed was manufactured. One set of samples was dispatched to NOVUS (Reus, Spain) as backup samples. A second set of samples was sent to (b) (4) lab for analysis. A third set of samples was sent (b) (4) lab for storage as backup samples.

9.9 Statistics

For each CIBENZA® PHYTAVERSE® L10 phytase enzyme batch:

Homogeneity: Mean CIBENZA® PHYTAVERSE® L10 phytase enzyme activity (arithmetic mean)
and variation (standard deviation) was used to express the result as a unique value described as the
coefficient of variation.

Calculations:

10 Results

The results are summarized in Table 7 and Table 8. Values from proximate analysis were within expected ranges.

	Table 7. Analyzed values of experimental diets						
Sample	Dry matter (%)	Crude protein (%)	Ether extract (%)	Ash (%)			
A250 pellet	87.0	22.9	3.9	5.5			
A500 pellet	87.3	23.0	3.8	5.5			
B250 pellet	87.3	23.0	3.8	5.5			
B500 pellet	87.4	22.9	3.8	5.5			
C250 pellet	87.2	23.3	3.9	5.4			
C500 pellet	87.5	23.2	3.8	5.5			

	Table 8. Homogeneity of CIBENZA® PHYTAVERSE® L10 phytase enzyme in feeds												
	Phytase U/kg as is Phytase U/kg 88% DM												
		N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr	form				/1 \		4 \				/1 \		1
A250	pellet	10	264			\	/I \	10	268		(\mathbf{h})) (Δ L Λ
B250	pellet	10	277		\mathbf{U}	/ \	+ <i>)</i>	10	280		\mathcal{L}	<i>,</i> (.	T /
C250	pellet	10	284		\ /			10	286		\ /		

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

11 Discussion

Dry matter was quite similar among samples $(87.1\%\pm0.4)$ and the correction for constant DM (88%) did not change the results of the coefficients of variation for homogeneity. Phytase activity ranged from 223 to 320 U/kg as is (225 to 323 U/kg at 88% DM). Considering each enzyme batch, the average activities were: 264 U/kg as is for A250, 277 U/kg as is for B250, and 284 U/kg as is for C250.

The homogeneity of mixing for the three CIBENZA® PHYTAVERSE® L10 phytase enzyme batches tested expressed as Coefficients of Variation were 7%, 7% and 11% when standardized at 88% DM content for A250, B250 and C250 respectively. These small variations among batches are considered within the expected fluctuations due to the method variability itself.

All these CVs of the homogeneity were close to $1 \times$ or even below the CV of the normal analytical variation of the method itself (normal analytical CV is 10%), and therefore the CVs of the homogeneity were considered good (CV<2×analyticalCV).

Per the protocol, back up samples of A500, B500, and C500 were not tested, because the lowest inclusion rate of 250 U/kg demonstrated good homogeneity.

12 Conclusions

According the results of the present homogeneity study in feeds, CIBENZA® PHYTAVERSE® L10 phytase enzyme:

• Presented good mixing homogeneity (CV \sim 7 to 11%), actual CVs below to 2× the CV of the method itself (10%) for all 3 batches tested.

BASF Enzymes LLC Page 12 of 27

13 References

ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity

SAS Institute Inc. 2012. Base SAS® 9.4 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Statutory Instrument 1999 No. 1663. The Feeding Stuffs (Sampling and Analysis) Regulation 1999.

14 List of Appendices

Appendix 1 - Curricula vitae of Study Director & Study Monitor

Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® L10 phytase enzyme used (3 batches)

Appendix 3 - Relevant laboratory reports

Appendix 4 - Raw data

Appendix 5 - Statistical printouts

Appendix 6 - Temperature profile in the conditioner during pelleting

BASF Enzymes LLC Page 13 of 27

Study Director:

(b)(6)

Study Monitor:

Name: Drew Lichtenstein

Qualifications: B.S. Biochemistry (Michigan State University 1982), PhD Biochemistry (University of

Wisconsin-Madison 1990)

Present Position: Research Manager, Specialty Products, Novus International

Experience: Over 35 years research experience in biochemistry and cell biology; more than 8 years of

experience in animal feed enzymes.

BASF Enzymes LLC Page 14 of 27

Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® L10 phytase enzyme used (3 batches)

BASF Enzymes LLC Page 15 of 27

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: CV002C2

Date of Manufacture: August 14, 2014

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (1)	Visual
рН	5.0 - 5.2	(0)(4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20		Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000		FDA BAM
	≤ 30		FDA BAM
Total Coliform (MPN/g)			
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin	1000000		
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin	NMT 200 ppb		TLC
Otoriginatocystill	14III 1 200 ppb		120

Page 1 of 2

PCBs	10,000 pg/g	(h)	(4)	GC/HRMS
Dioxins	1pg/g	(0)	(4)	GC/HRMS

* Results of retesting performed in May 2017

(b) (4)
Approved by:

Date: June 7, 2017

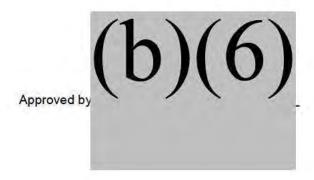
¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: 190CV005A3

Date of Manufacture: August 11, 2014

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (1)	Visual
рН	5.0 - 5.2	(0) (4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20	~ / ~ /	Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
	~0,		FDA BAM
Total Plate Count (cfu/g)	≤ 50,000	9.00	
Total Coliform (cfu/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (MPN/g)	Run and Record		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin			
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
Sterigmatocystin	NMT 200 ppb		TLC


Page 1 of 2

PCBs	10,000 pg/g	(h) (1)	GC/HRMS
Dioxins	1pg/g	(0)(4)	GC/HRMS

* Results of retesting performed in May 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

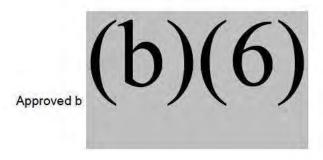
Date: June 7, 2017

CIBENZA® PHYTAVERSE® L10 Phytase Enzyme (Test Article VR006)

Lot number: PHY-50104-PO030-F4

Date of Manufacture: September 11, 2015

Specification	Specification Limit	Test Result	Method
Appearance	Amber to brown liquid	(b) (1)	Visual
рН	5.0 - 5.2	(0)(4)	Untapped
Specific gravity (g/mL)	1.05 - 1.20	1 1 1 1	Pycnometer
Sediment (% v/v)	≤ 0.5		QC0232
Activity (U/g)	≥ 10,000		ISO 30024
Lead (mg/kg)	≤ 5		ICP-MS
Arsenic (mg/kg)	< 2		ICP-MS
Cadmium (mg/kg)	< 0.5		ICP-MS
Mercury (mg/kg)	< 0.5		ICP-MS
Total Plate Count (cfu/g)	≤ 50,000		FDA BAM
Total Coliform (MPN/g)	≤ 30		FDA BAM
E. coli (/25g)	Absent		FDA BAM
Salmonella (/25g)	Absent		FDA BAM
Yeast and Mold (CFU/g)	Run and Record		FDA BAM
Staphylococcus aureus (/g)	Absent		FDA BAM
Production Organism (CFU/g)	Absent		QC0214
Antibiotic Activity (Zone of Inhibition)	Absent		JECFA
Mycotoxin	1507.0000		
Aflatoxin B1	NMT 1.0 ppb		HPLC
Aflatoxin B2	NMT 1.0 ppb		HPLC
Aflatoxin G1	NMT 1.0 ppb		HPLC
Aflatoxin G2	NMT 1.0 ppb		HPLC
Fumonisin B1	NMT 0.1 ppm		LCMSMS
Fumonisin B2	NMT 0.1 ppm		LCMSMS
Fumonisin B3	NMT 0.1 ppm		LCMSMS
Ochratoxin A	NMT 2.0 ppb		HPLC
Deoxynivalenol	NMT 0.6 ppm		LCMSMS
Acetyldeoxynivalenol	NMT 0.8 ppm		LCMSMS
Fusarenon X	NMT 0.4 ppm		LCMSMS
Nivalenol	NMT 0.6 ppm		LCMSMS
T-2 Toxin	NMT 0.2 ppm		LCMSMS
HT-2 Toxin	NMT 0.2 ppm		LCMSMS
Neosolaniol	NMT 0.4 ppm		LCMSMS
Diacetoxyscirpenol	NMT 0.4 ppm		LCMSMS
Zearalenone	NMT 43.1 ppb		HPLC
	NMT 200 ppb		TLC
Sterigmatocystin	MMT 200 ppb		ILC


Page 1 of 2

PCBs	10,000 pg/g	(b) (4	1) GC/HRMS
Dioxins	1pg/g	(0) (-	GC/HRMS

* Results of retesting performed in May 2017

¹ The limits of detection (LOD) for each of the assays and methods match that of the stated less than (<) values above.

Date: June 7, 2017

Appendix 3 - Relevant laboratory reports

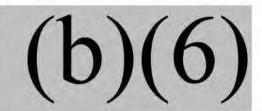
BASF Enzymes LLC Page 22 of 27

CERTIFICATE OF ANALYSIS

Company:	Novus International Ltd and BASF Enzymes LLC								
Type of sample:		F599 feeds							
	172041	to	172046						
Laboratory ref. :	172126	to	172135						
Laboratory ref. :	172140	to	172149						
	172157	to	172166						
Reception date:	28th November 2017								
Analysis starting date:	7 th December 2017								
Analysis finishing date:	12th December 2017								

Sample description:

See Results section


Analysis performed:

- Moisture -dry matter- by oven drying –method 2 (SOP 0602-L-10001) (AOAC, 2000)
- Nitrogen -crude protein- by combustion -Dumas method (SOP 0602-L-10118) (AOAC, 2000)
- Ether extraction a Soxtec system -method 3B (SOP 0602-L-10003) (AOAC, 2000)
- Ash after mulfle furnace incineration -method 12 (SOP 0602-L-10002) (AOAC, 2000)
- Phytase (SOP 0602-L-10143; ISO 30024:2009. Animal feeding stuffs Determination of phytase activity.)

Results:

LAB. REF.	SAMPLE DESCRIPTION	CRUDE PROTEIN (%)	ETHER EXTRACT (%)	ASH (%)
172041	A250 pallet	34		2.2
172042	A500 pellet		- \ (Λ
172043	B250 pellet		\mathbf{n}	
172044	B500 pellet) 4	
172045	C250 pellet		~ / (• /
172046	C500 pellet		,	

LAB.		PHYTASE	DM	LAB.	-Arteritore and a	PHYTASE	DM	LAB,	1000 A 1000 A 1000 A 1000 A	PHYTASE	DM
REF.	DESCRIPTION	U/kg	%	REF.	DESCRIPTION	U/kg	%	REF.	DESCRIPTION	11/40	0/.
172126	A250 PELLET HOM 1	1611	1)	172140	B250 PELLET HOM 1	(h) (1)	172157	C250 PELLET HOM 1	(h) (4)
172127	A250 PELLET HOM 2	(0)(4)	172141	B250 PELLET HOM 2	(0)(4)	172158	C250 PELLET HOM 2	(0) (. '/
172128	A250 PELLET HOM 3	, ,		172142	B250 PELLET HOM 3	() (. /	172159	C250 PELLET HOM 3		
172129	A250 PELLET HOM 4			172143	B250 PELLET HOM 4			172160	C250 PELLET HOM 4		
172130	A250 PELLET HOM 5			172144	B250 PELLET HOM 5			172161	C250 PELLET HOM 5		
172131	A250 PELLET HOM 6			172145	B250 PELLET HOM 6			172162	C250 PELLET HOM 6		
172132	A250 PELLET HOM 7			172146	B250 PELLET HOM 7			172163	C250 PELLET HOM 7		
172133	A250 PELLET HOM 8			172147	B250 PELLET HOM 8			172164	C250 PELLET HOM 8		
172134	A250 PELLET HOM 9	1	- 17	172148	B250 PELLET HOM 9			172165	C250 PELLET HOM 9		
172135	A250 PELLET HOM 10		000	172149	B250 PELLET HOM 10	1 1070		172166	C250 PELLET HOM 10		

Appendix 4 - Raw data

Obs	enzyme	form	homogeneity	Trt	lab_ref	dose	Tr	location	U_kg_as_is DM_p U_kg_88_p_DM
1	Α	pellet	yes	A250pellet	172126	250	A250	1	14 \ 1 1 \
2	Α	pellet	yes	A250pellet	172127	250	A250	2	
3	Α	pellet	yes	A250pellet	172128	250	A250	3	(b)(4)
4	Α	pellet	yes	A250pellet	172129	250	A250	4	IU ALTI
5	Α	pellet	yes	A250pellet	172130	250	A250	5	() (-)
6	Α	pellet	yes	A250pellet	172131	250	A250	6	
7	Α	pellet	yes	A250pellet	172132	250	A250	7	
8	Α	pellet	yes	A250pellet	172133	250	A250	8	
9	Α	pellet	yes	A250pellet	172134	250	A250	9	
10	Α	pellet	yes	A250pellet	172135	250	A250	10	(2)
11	В	pellet	yes	B250pellet	172140	250	B250	1	
12	В	pellet	yes	B250pellet	172141	250	B250	2	
13	В	pellet	yes	B250pellet	172142	250	B250	3	
14	В	pellet	yes	B250pellet	172143	250	B250	4	
15	В	pellet	yes	B250pellet	172144	250	B250	5	
16	В	pellet	yes	B250pellet	172145	250	B250	6	
17	В	pellet	yes	B250pellet	172146	250	B250	7	
18	В	pellet	yes	B250pellet	172147	250	B250	8	
19	В	pellet	yes	B250pellet	172148	250	B250	9	
20	В	pellet	yes	B250pellet	172149	250	B250	10	
21	C	pellet	yes	C250pellet	172157	250	C250	1	
22	С	pellet	yes	C250pellet	172158	250	C250	2	
23	С	pellet	yes	C250pellet	172159	250	C250	3	
24	С	pellet	yes	C250pellet	172160	250	C250	4	
25	C	pellet	yes	C250pellet	172161	250	C250	5	
26	С	pellet	yes	C250pellet	172162	250	C250	6	
27	C	pellet	yes	C250pellet	172163	250	C250	7	
28	C	pellet	yes	C250pellet	172164	250	C250	8	
29	C	pellet	yes	C250pellet	172165	250	C250	9	
30	С	pellet	yes	C250pellet	172166	250	C250	10	

BASF Enzymes LLC Page 24 of 27

Appendix 5 - Statistical printouts

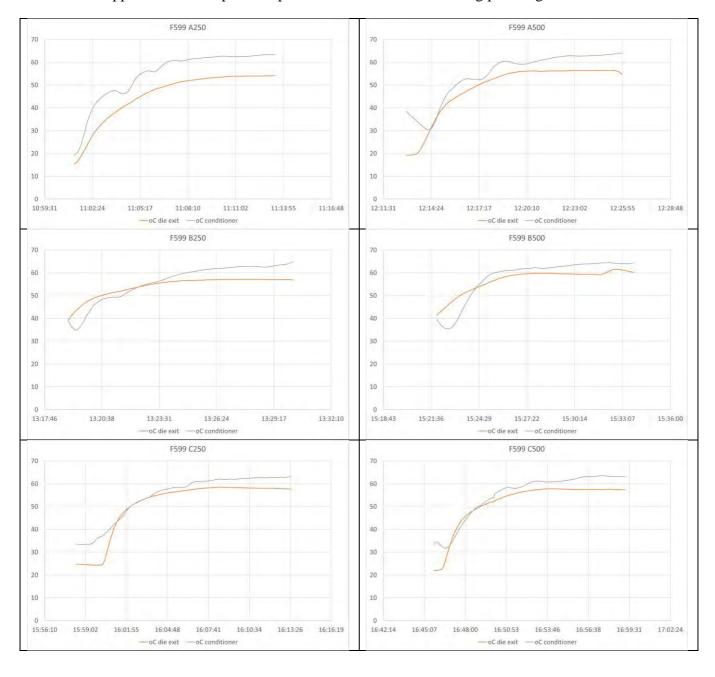
				(b) (4	4) Trial F	599	15:34 Friday, January 12, 2018 3					
0bs	enzyme	form	homogeneity	Trt	lab_ref	dose	Tr	location	U_kg_ as_is	DM_p	U_kg_88_ p_DM	
1	Α	pellet	yes	A250pellet	172126	250	A250	1	259	/1 \	(1)	
2	Α	pellet	yes	A250pellet	172127	250	A250	2	245	(n)	(ΔI)	
3	Α	pellet	yes	A250pellet	172128	250	A250	3	279	(U)	(T)	
4	Α	pellet	yes	A250pellet	172129	250	A250	4	267	` /		
5	Α	pellet	yes	A250pellet	172130	250	A250	5	271			
6	Α	pellet	yes	A250pellet	172131	250	A250	6	265			
7	Α	pellet	yes	A250pellet	172132	250	A250	7	299			
8	Α	pellet	yes	A250pellet	172133	250	A250	8	238			
9	Α	pellet	yes	A250pellet	172134	250	A250	9	253			
10	Α	pellet	yes	A250pellet	172135	250	A250	10	265			
11	В	pellet	yes	B250pellet	172140	250	B250	1	282			
12	В	pellet	yes	B250pellet	172141	250	B250	2	252			
13	В	pellet	yes	B250pellet	172142	250	B250	3	267			
14	В	pellet	yes	B250pellet	172143	250	B250	4	291			
15	В	pellet	yes	B250pellet	172144	250	B250	5	301			
16	В	pellet	yes	B250pellet	172145	250	B250	6	267			
17	В	pellet	yes	B250pellet	172146	250	B250	7	301			
18	В	pellet	yes	B250pellet	172147	250	B250	8	290			
19	В	pellet	yes	B250pellet	172148	250	B250	9	253			
20	В	pellet	yes	B250pellet	172149	250	B250	10	270			
21	С	pellet	yes	C250pellet	172157	250	C250	1	223			
22	С	pellet	yes	C250pellet	172158	250	C250	2	268			
23	С	pellet	yes	C250pellet	172159	250	C250	3	304			
24	С	pellet	yes	C250pellet	172160	250	C250	4	272			
25	С	pellet	yes	C250pellet	172161	250	C250	5	317			
26	С	pellet	yes	C250pellet	172162	250	C250	6	254			
27	С	pellet	yes	C250pellet	172163	250	C250	7	320			
28	С	pellet	yes	C250pellet	172164	250	C250	8	307			
29	С	pellet	yes	C250pellet	172165	250	C250	9	287			
30	С	pellet	yes	C250pellet	172166	250	C250	10	288			

BASF Enzymes LLC Page 25 of 27

(b)(4)Trial F599

15:34 Friday, January 12, 2018 4

			U_kg_as_is						U_kg_88_p_DM				
		N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr	form			(b)	(4))				(b)	(4)		
A250	pellet	10	264			299	238	10	268		5	303	241
B250	pellet	10	277			301	252	10	280		3	305	254
C250	pellet	10	284			320	223	10	286		9	323	225


(b)(4) Trial F599

16:37 Saturday, February 24, 2018 8

			U_kg_as_is				DM_p						
		N	Mean	cv	StdDev	Max	Min	N	Mean	cv	StdDev	Max	Min
Tr	form			(b)	(4)					(b)	(4)		
A250	pellet	10	264		` /	299	238	10	86.8			86.9	86.7
B250	pellet	10	277			301	252	10	87.2			87.5	86.8
C250	pellet	10	284			320	223	10	87.2			87.4	87.0
All	•	30	275			320	223	30	87.1			87.5	86.7

Page 26 of 27

Appendix 6 – Temperature profile in the conditioner during pelleting

BASF Enzymes LLC Page 27 of 27

Appendix 21: Stability Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Feed

BASF Enzymes LLC Page 1 of 56

(b) (4)

Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feed

Unique Study Code: F597

FINAL REPORT Date: 2nd June 2018

Study sponsor: Novus International Inc. and BASF Enzymes LLC.

Signed by Study Director, Study Sponsor and Study Monitor:

(b)(6)	June 11/2018	Rox Van Dr 11 June 2018	Drew 11, June 2018
Study Director		ponsors	Study Monitor
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

The report is confidential. Nothing from this issue may be reproduced and/or published without previous consent from (b) (4) only if it is accorded by the contracting parties on the contract signed to involve this activity.

(b) (4)

Page 1 of 55

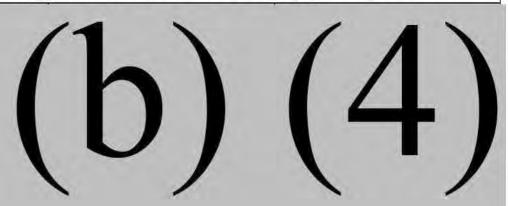
Final report F597/ Organic code: 0602 / Activity code: A2369

Nate and lune ante

Table of contents

1	Summary	
	Summary Table 1. Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds	3
2	Quality statement	6
3	Study title and unique study code	7
4	Study objective	7
5	Study location	7
6	Important dates & duration of the study	7
7	Test products	7
	Table 1. Details of test product	7
8	Key study personnel	7
9	Material and methods	8
9	.1 Experimental treatments	8
	Table 2. Experimental Treatments	8
9	.2 Treatment application	
9	.3 Detailed study design	9
	Figure 1. Basic study design	
9	.4 Feed composition	
	Table 3. Composition (g/kg) of the basal diet	
	Table 4. Composition of vitamin-mineral premix	
	Table 5. Calculated analyses of the basal diet (g/kg)	
9	.5 Feeds manufacture	
	9.5.1 Short description of the process	
9	.6 Feeds samples at manufacture	
9	.7 Feed sampling plan	
	Table 6. Sampling plan	
	.8 Statistics	
10	Results	
	Table 7. Analyzed values of experimental diets	
	Table 8. Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds (actual & relative values)	
	Table 9. Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds (regressions)	
11	Discussion	
	Conclusions	
13	References	
14	List of Appendices	
	Appendix 1- Curricula vitae of Study Director & Study Monitor	
	Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)	
	Appendix 3 - Relevant laboratory reports	
	Appendix 4 - Raw data	
	Appendix 5 - Statistical printouts	
	Appendix 6 – Temperature profile in the conditioner during pelleting	
	Appendix 7 – Temperature and relative humidity during storage of stability samples	55

1 Summary

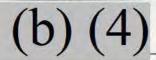

The objective of this study was to evaluate the stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds.

For each batch, dose and form, the stability of the test article was determined by measuring phytase activity in unique feed samples after 0, 1, 2 and 3-months storage at ambient conditions.

Results are presented next in Summary Table 1.

Sum	mary Tab	ole 1	. Stability	of CI	BENZA® PHYTAVERS	SE® G10 phytase enz	yme in feeds
			Phytase	DM	Phytase	Phytase	Phytase
		N	U/kg as is	%	U/kg 88% DM	% 0 month as is	% 0 month 88%DM
Tr form	month					/1	\
A250mash	0	1	319	87.3	_	1 r	^
	1	1	340	87.2	_		<i>,,</i> (4)
	2	1	343	87.7		()	
1250 11	3	1	312	86.6	202	1000	100.0
A250pellet	0	2	299	87.2	302	100.0	100.0
	1	1	271	87.3			(b) (4)
	2	2	223	87.7	224	74.6	74.1
A 500 1	3	2	250	87.7	251	83.6	83.1
A500mash	0	1	624	87.5	_	/ ◀ \	
	2	1	597 637	87.4 87.8	-		
					-		
A 500 11 4	3	1	657	87.5	-		
A500pellet	0	1	491 491	87.2	_	\ 	\ T /
	2	1	438	87.2 87.5	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•
	3		532	87.5	-		
B250mash	0	2	329	87.3	331	100.0	100.0
B230masn	1	1	281	87.4	331	100.0	
	2	2	268	87.6	269	81.4	(b) (4) 81.2
	3	2	255	87.5	256	77.5	77.3
B250pellet	0	1	236	87.2	230	11.3	
B230penet	1	1	224	87.3			(b) (4)
	2	2	219	87.4	220	92.6	92.4
	3	1	269	87.3	220	92.0	92.4
B500mash	0	1	638	87.3			4
Dominasii	1	1	554	87.3			
	2	1	566	87.6			
	3	1	624	87.5			
B500pellet	0	1	489	87.1			
Взооренес	1	1	409	87.1			
	2	1	444	87.5			
	3	1	469	87.3			
C250mash	0	1	308	87.7			
	1	1	319	87.3			
	2	1	305	87.6			
	3	1	340	87.7			
C250pellet	0	1	232	86.7			
·	1	1	294	86.8			
	2	1	193	87.0			
	3	1	280	87.0			
C500mash	0	1	541	87.5			
	1	1	556	87.7			
	2	1	536	87.8			
	3	1	444	87.7			
C500pellet	0	1	455	86.9			
_	1	1	465	87.0			
	2	1	377	87.2			
	3	1	490	87.1			

BASF Enzymes LLC Page 4 of 56


[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

BASF Enzymes LLC Page 5 of 56

According to the results of the present stability study in feeds, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

- Was stable over time (1, 2 and 3-months storage at ambient conditions) for all three batches (A & B & C), for both feed forms (mash & pellet) and at both concentrations tested (250 & 500 U/kg) as demonstrated by the slope of linear regressions of phytase activity over time not being significantly different from 0 (flat line, no significant loss of activity).
- Presented good stability (in general ±10% of 0-month value) up to 3-months in pelleted feeds for all three batches (A & B & C), for both feed forms (mash & pellet) and at both concentrations tested (250 & 500 U/kg). Exceptions at three months were: A250 pellet (84%), B250 mash (78%) and C500 mash (82%) on the lower side, and B250 pellet (114%) and C250 pellet (120%) on the upper side. The variation in activity at 3-months was considered to be within the range of expected values, especially considering the other dose/form for the same batches of enzyme did not differ from their respective T=0 activity by more than 14% (A500 pellet [108%] and A250 mash [98%] as references for A250 pellet, B500 mash [98%] and B250 pellet [114%] as references for B250 mash, and C250 mash [110%] and C500 pellet [108%] as references for C500 mash).

BASF Enzymes LLC Page 6 of 56

2 Quality statement

The study, Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feed (Unique Study Code: F597), was conducted in compliance with current quality standards and regulatory requirements as applicable for US animal food requirements.

Procedures, documentation, equipment and records were examined in order to assure that the study was performed in accordance with the regulations specified herein and with the protocol and relevant Standard Operating Procedures.

Signed and dated:

(b)(6)	Just 11/2018	lex Var Dr 11 June 2018	Drew 2018
Study Director	Study S	ponsors	Study Monitor
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

3 Study title and unique study code

Stability evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feed.

Unique study code: F597

4 Study objective

To evaluate the Stability of three batches of CIBENZA® PHYTAVERSE® G10 phytase enzyme in mash and pelleted feeds.

5 Study location

(b)(4)

6 Important dates & duration of the study

Date of feeds manufacture: 23rd and 24th November 2017

Duration of study: 2 days at feed mill, 14th March 2018 end of analysis

7 Test products

	Table 1. Details of test product								
Code	Product	Provider	Lot no	Active	Activity (U/g) [†]				
Code	Troduct	Tiovidei	Manufacture Date	substance	Guaranteed	Analysed			
A	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P23941 Made: 08 October 2014	6-phytase	10,000	13,951			
В	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P26641 Made: 08 October 2014	6-phytase	10,000	13,742			
С	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: RO15271001 Made: 28 September 2015	6-phytase	10,000	13,522			

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

8 Key study personnel

Study Director: (b) (4), (b)(6)

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager, Specialty Products, Novus International, Inc., 20 Research Park Dr., St. Charles, MO 63304, United States of America, Tel: +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com

BASF Enzymes LLC Page 8 of 56

Study Sponsors: 1) Gavin Bowman, Director, Global Regulatory Affairs, Novus International, 20 Research Park Dr., St. Charles, MO 63304, United States of America Tel: +1 636 926 7402, E-mail: gavin.bowman@novusint.com

2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858 431-8590, Mobile: +1-858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@basf.com. Postal Address: BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121 United States

Feed mill & supervision of diet manufacture:

(b) (4), (b)(6)

Feed analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme):

(b) (4), (b)(6)

Optional/back-up facility for feed analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme): Drew Lichtenstein, Novus International, Inc., 20 Research Park Drive, Saint Charles, MO, 63304; United States of America.

9 Material and methods

9.1 Experimental treatments

Number of treated and control groups: Corn/soya based diet was used for stability purposes.

CIBENZA® PHYTAVERSE® G10 phytase enzyme from each batch was added in serial mixing steps to the mash feed to provide 250 and 500 U/kg feed as detailed in Table 2, that was later pelleted.

Table 2. Experimental Treatments						
		CIBENZA	® PHYTAVERSE®	G10 phytase enzyme		
Treatment	Product	U/kg feed	mg/kg feed [†]	g to add to 200 kg feed [†]		
A250	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	/ ◀ \			
A500	batch P23941	500				
B250	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	$I \cap I$			
B500	batch P26641	500	\ 	\ \ 		
C250	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250		• • • • • • • • • • • • • • • • • • • •		
C500	batch RO15271001	500				

[†] inclusion based on actual activity of each batch

9.2 Treatment application

CIBENZA® PHYTAVERSE® G10 phytase enzyme was mixed with a fraction of 10 kg soya in serial mixing steps, mash feed was then produced and later pelleted.

BASF Enzymes LLC Page 9 of 56

9.3 Detailed study design

Figure 1. Basic study design

For each batch and dose of enzyme:

The stability of the test article in mash and pelleted feeds was determined by measuring phytase activity of composite samples obtained at the time of feed manufacturing and after storage at ambient conditions for the following periods and for each batch of enzyme:

- 0 months
- 1 months
- 2 months
- 3 months

The amount of endogenous phytase in blank feed has been determined in previous studies being values below the level of quantitation and therefore was not determined in this study.

Feeds were produced as follows:

- Firstly, a fraction of 10 kg soya from the feed was mixed in serial mixing steps with the corresponding amount of CIBENZA® PHYTAVERSE® G10 phytase enzyme depending on actual activity of each batch as detailed in Table 2.
- Secondly, a 200 kg batch of mash feed was produced by including the 10 kg soya containing CIBENZA® PHYTAVERSE® G10 phytase enzyme prepared as described above.
- Mash feed was then pelleted and bagged.

9.4 Feed composition

Feeds did not contain any enzymes, antibiotics or any other growth promoters. Feed for fattening turkeys during the Grower phase was used as a matrix. The ingredients, premix and the calculated and actual analyses of the diets are presented in Table 3 to Table 5.

Table 3. Composition (g/kg) of the basal diet						
Corn	/1 \ / / \					
Soybean meal 48%						
Fat blend	(())(4)					
Dicalcium phosphate						
Calcium carbonate						
Methionine Hydroxy Analogue						
Premix Min-Vit						
Sodium chloride						
L-lysine HCL						
L-threonine						

BASF Enzymes LLC Page 10 of 56

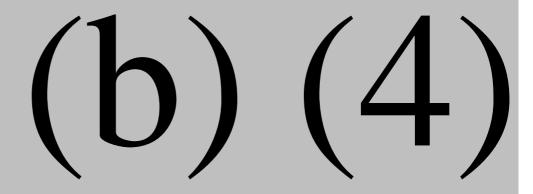

Table 4. Composition of vitamin-mineral premix					
	Units	per kg of vitamin-mineral premix	when premix added at 10 kg/ton feed, results in the following values per kg of feed		
Vitamins, provitamins and similar					
vitamin A (3a672)	IU	1 000 000			
vitamin D ₃ (E-671)	IU	350 000			
vitamin E (alfa-tocopherol, 3a700)	mg	3 000			
vitamin B ₁ (thiamine mononitrate 3a821)	mg	210	(b) (4)		
vitamin B ₂ 3,000 mg	mg	855	(\cup)		
vitamin B ₆ (3a831)	mg	470			
vitamin B ₁₂ 13 mg	mg	5			
vitamin K ₃ (menadione sodium bisulphate, 3a710)	mg	300			
vitamin C	mg	2 000			
calcium pantothenate (3a841)	mg	1 520			
nicotinic acid (3a314)	mg	6 710			
folic acid (3a316)	mg	150			
biotin (3a880)	mg	25			
choline chloride	mg	70 000			
Oligoelements					
Fe (E-1) (from FeSO ₄ ·H ₂ O)	mg	6 500			
I (3b202) (from Ca(IO3) ₂)	mg	150			
Cu (E-4) (from CuSO ₄ ·5H ₂ O)	mg	1 500			
Mn (E-5) (from MnO)	mg	8 000			
Zn (3b603) (from ZnO)	mg	8 500			
Se (E-8) (from Na ₂ SeO ₃)	mg	20			
Amino acids					
L-lysine monochlorhydrate	g	50			
DL-methionine	g	150			
Other	· · ·				
ethoxyquin (E324)	mg	5 000			
Mg oxide, Na bicarbonate,		un to 1 kg			
Na chloride, Ca carbonate		up to 1 kg			

Table 5. Calculated analyses of the basal diet (g/kg)					
Metabolizable Energy kcal/kg	2864				
Dry Matter	868				
Ash	58				
Crude Fiber	27				
Ether Extract	41				
Crude Protein	227				
Ca	9.6				
P	5.0				
Dig lysine	14.1				
Dig SAA	9.4				
Dig threonine	8.4				

9.5 Feeds manufacture

(b) (4)

BASF Enzymes LLC Page 11 of 56

9.5.1 Short description of the process

Under general and corporative	(b) (4)

9.6 Feeds samples at manufacture

For each CIBENZA® PHYTAVERSE® G10 phytase enzyme batch and dose:

- 10 grab samples of mash feed (~1.1 kg each) were taken from several points of the mixer.
- A portion of these grab mash feed samples was combined and homogenized and then:
 - O Triplicate (NOVUS, (b) (4) backup) (b) (4)

 at each time point one sample was sent to NOVUS, a second one analyzed for phytase activity at (b) (4) lab, while the third sample was retained at (b) (4) at -20°C as a backup sample).
- 10 grab samples of pelleted feed (~1.1 kg each) were taken at bagging.
- A portion of these grab pelleted feed samples was combined and homogenized and then:
 - Triplicate (NOVUS, (b) (4) backup)

 at each time point one sample was sent to NOVUS, a second one analyzed for phytase activity at (b) (4)s lab, while the third sample was retained at (b) (4) at -20°C as a backup sample; all 0 month (A250, B250, C250, A500, B500, & C500) pelleted feeds were subjected to proximate analysis).

BASF Enzymes LLC Page 12 of 56

Stability samples were labelled with the unique study code (F597), treatment code (A250 / A500 / B250 / B500 / C250 / C500), feed form (mash / pellet), date of manufacture and the analysis required (DM, phytase activity, proximate).

9.7 Feed sampling plan

	7 tu 6 f tu	Table 6. Sa	ampling plan			
Treatment	Feed form	Month storage	Analysis	Final Samples		
i reatment				NOVUS (b) (4) lab (b) (4) backup		
		10x1.1k	g samples: A por	tion of each of 10 samples combined and		
			homogenized th	en split for stability: 3x4x250 g		
		0	stability	(1 \ (1 \		
	MASH	1	stability	(h)(/I)		
		2	stability	(0)(4)		
A250		3	stability			
		10x1.1k		tion of each of 10 samples combined and		
				en split for stability: 3x4x250 g		
	PELLET	0	stability &	(1 \ / 1 \		
	1 2222 1		proximate	(h)(/)		
		1	stability	(1))(4)		
		2	stability	(\circ)		
		3	stability			
		10x1.1kg		tion of each of 10 samples combined and		
		0		en split for stability: 3x4x250 g		
	MASH	0	stability	(1-)		
		1	stability	(D) (4		
A 500		3	stability			
A500		_	stability			
		10x1.1kg samples: A portion of each of 10 samples combined and homogenized then split for stability: 3x4x250 g				
				ien split for stability: 3x4x250 g		
	PELLET	0	stability & proximate	(1)		
		1	stability	(n)		
		2	stability	10117		
		3	stability			
		_	,	feach of 10 samples combined and		
		10x1.1kg samples: A portion of each of 10 samples combined and homogenized then split for stability: 3x4x250 g				
	MASH	0	stability	/		
		1	stability	(h)(A)		
		2	stability	(b) (4)		
B250		3	stability	(°) (')		
B23 V				tion of each of 10 samples combined and		
			homogenized then split for stability: 3x4x250 g			
	DEL	^	stability &			
	PELLET	0	proximate			
		1	stability	IDII4I		
		2	stability	(0)(T)		
		3	stability			

BASF Enzymes LLC Page 13 of 56

		Table 6. Sa	mpling plan	
T	F 1.6	Month	A 1 ·	Final Samples
Treatment	Feed form	storage	Analysis	NOVUS (b) (4
		10x1.1kg		tion of each of 10 samples combined and
				en split for stability: 3x4x250 g
		0	stability	(1 \ (1\)
	MASH	1	stability	(h)
		2	stability	(0)(4)
B500		3	stability	
		10x1.1kg		tion of each of 10 samples combined and
				en split for stability: 3x4x250 g
		0	stability &	(1 \ (1)
			proximate	
	PELLET	1	stability	↓
		2	stability	
		3	stability	· · · ·
		10x1.1kg		tion of each of 10 samples combined and
				en split for stability: 3x4x250 g
		0	stability	(1 \ (1)
	MASH	1	stability	(h)
		2	stability	(0)(7)
C250		3	stability	
		10x1.1kg		tion of each of 10 samples combined and
				en split for stability: 3x4x250 g
	PELLET	0	Stability &	(1 \ / 1 \
			proximate	
		1	stability	(1))(4
		2	stability	(\circ)
		3	stability	
		10	x1.1kg samples:	A portion of each of 10 samples combined and homogenized then split for stability samples
		0	stability	/1 \ / 4 \
	MASH	1	stability	(h)(l)
	1411 1511	2	stability	(0)(4)
C500		3	stability	
•		_		A portion of each of 10 samples combined and
			arring bumples.	homogenized then split for stability samples
		0	stability &	(1) (1)
		0	proximate	(h)
	PELLET	1	stability	()) (4
		2	stability	(0)(1)
		3	stability	

For stability analysis, A250, B250, C250, A500, B500 and C500 0-month stability samples were analysed in (b) (4)'s lab within 10 working days after production of the feeds containing CIBENZA® PHYTAVERSE® G10 phytase enzyme. The initial samples to be tested at time zero were refrigerated (4°C) until analysed to make sure they reflected the activity values at time zero. All other samples were kept together at (b) (4) in a cardboard box (temperature and humidity monitored) protected from light and at room temperature. Samples were dispatched to NOVUS-Reus for backup, and (b) (4) lab for analysis or (b) (4) storage after the corresponding time (1, 2 or 3-months). When phytase analysis results presented unexpected values, the back-up samples were also analysed; this was the case for the following samples: A250 pellet & B250 mash both at 0, 2 & 3-months, and B250 pellet at 2 months (average values of original and back-up samples were taken into account).

BASF Enzymes LLC Page 14 of 56

9.8 Statistics

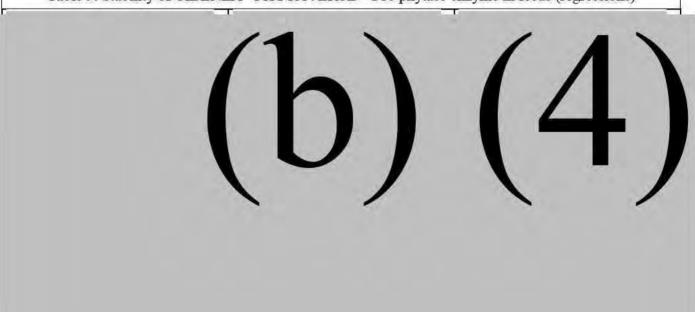
For each CIBENZA® PHYTAVERSE® G10 phytase enzyme batch, dose and feed form:

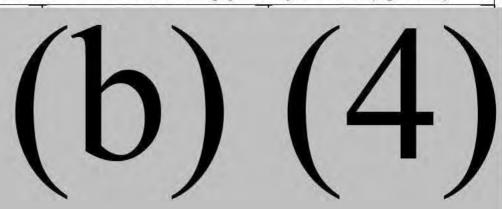
• The data was fitted to least squares regression, with the upper and lower 95% confidence limits shown. The regression line of CIBENZA® PHYTAVERSE® G10 phytase enzyme activity vs. time was calculated and the slope tested to be significantly different from 0.

10 Results

The results are summarized in Table 7 to Table 9. Values from proximate analysis were within expected ranges.

	Table 7. Ana	alyzed values of expen	rimental diets	
Sample	Dry matter (%)	Crude protein (%)	Ether extract (%)	Ash (%)
A250 pellet	87.2	22.8	4.1	5.5
A500 pellet	87.2	22.9	4.0	5.5
B250 pellet	87.2	23.0	4.0	5.5
B500 pellet	87.1	23.0	3.9	5.4
C250 pellet	86.7	23.2	3.8	5.4
C500 pellet	86.9	23.0	3.6	5.5


Table 8. Stal	bility of C	CIBE	ENZA® PHYTA	VERSE® G1	0 phytase enzyme	in feeds (actual a	& relative values)
		N	Phytase U/kg as is	DM %	Phytase U/kg 88% DM	Phytase % 0 month as is	Phytase % 0 month 88%DM
Tr_form	month				+	14	\
A250mash	0	1					$\Lambda / \Lambda \Lambda$
	1	1) (4)
	2	1				()	<i>/</i>
	3	1				`	
A250pellet	0	2	299	87.2	302	100.0	100.0
	1	1	_				(b) (4)
	2	2	223	87.7	224	74.6	74.1
	3	2	250	87.7	251	83.6	83.1
A500mash	0	1			,_		
	1	1					
	2	1					
	3	1					
A500pellet	0	1					
	1	1					\
	2	1			•		
7250 1	3	1	222	07.0	1 224	1000	1000
B250mash	0	2	329	87.3	331	100 0	100 0 (b) (4)
	1	1	27.0	07.4	77.0		(b) (4)
	2	2	268	87.6	269	81.4	81.2
D250:11-4	3	2	255	87.5	256	77.5	77.3
B250pellet	1	1					(b)(4)
	2	2	219	07.4	220	92.6	92.4
	3	1	219	87.4		92.0	92.4
B500mash	0	1				/1_	
DJUUIIIasii	1	1				I n	
	2	1				\ U	'
	3	1					
	5	1					


BASF Enzymes LLC Page 15 of 56

	N	Phytase U/kg as is	DM %	Phytase U/kg 88% DM	Phytase % 0 month as is	Phytase % 0 month 88%DM
B500pellet	0 1					
	1 1	_ /4	1			
	2 1					
C250mash	3 1 0 1					
C230masn	1 1	-				
	2 1					
	3 1					
C250pellet	0 1				N. Contraction	
	1 1					
	2 1					
	3 1					
C500mash	0 1					
	2 1	_				
	3 1	-				
C500pellet	0 1					
	1 1					
	2 1					
	3 1					

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

Table 9. Stability of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds (regressions)

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

11 Discussion

Dry matter was quite similar among samples (87.3%±0.7) and the correction for constant DM (88%) did not greatly change the results; DM did not vary over storage time.

All samples were analyzed in duplicate, and when phytase analysis results presented unexpected values, the back-up samples were also analyzed in duplicate. The back-up samples analyzed were: A250 pellet & B250 mash both at 0, 2 & 3-months, and B250 pellet at 2 months. Where backup samples were analyzed, the results are the average of the original and backup analyses. Except for B250 mash at 0-month, all back-up samples resulted in higher phytase activity than the original samples.

For Batch A, phytase results for A250 mash, A500 mash and A500 pellet over time were quite constant, with the phytase activity at the end of the 3-months storage period 98%, 105% and 108% respectively that of the initial activity. The slope of regression lines of phytase activity over time of storage for these three treatments were not significantly different from 0 (P=0.887, P=0.288 and P=0.790 respectively). For A250 pellet, though, the results varied over time, decreasing to 91% at 1-month, 75% at 2-months and "recovering" to 84% at 3-months; the slope of the regression line was not significantly different from 0 (P=0.213). As increasing the phytase activity over time is unrealistic, this variation is considered to be due to analytical artifacts more than real loss of activity, especially taking into account that A500 pellet and the A250 mash, which was used to produce the A250 pellets, retained 108% and 98%, respectively, of the initial activity at the end of the storage period.

For batch B, phytase results for B250 pellet, B500 mash and B500 pellet slightly varied over time, especially at the 500 U/kg dose. But the phytase activity at the end of storage period was 114%, 98% and 96% respectively that of the initial activity at 0-month. The slope of regression lines of phytase activity over time of storage were not significantly different from 0 (P=0.476, P=0.887 and P=0.883 respectively).

BASF Enzymes LLC Page 17 of 56

For B250 mash the variation over time was higher, decreasing to 86% at 1-month, 81% at 2-months and 77% at 3-months; the slope of the regression line was not significantly different from 0 (P=0.058). Moreover, taking into account that treatments B500 mash and B250 pellets produced from the B250 mash retained 98% and 114%, respectively, of the initial activity at the end of the storage period, the variations in B250 mash are considered to be the results of analytical variation more than real loss of phytase activity.

For batch C, C250 mash phytase activity was quite constant over time, being 110% at the end of the storage period, and the slope of the regression line over time was not significantly different from 0 (P=0.341). Results varied more for C250 pellet and C500 pellet. For C250 pellet, the 1- and 3-month time points were 127% and 121%, respectively, of the initial activity, while the 2-month time point was 83% of the initial activity. The C500 pellet varied from 102% at 1 month, to 83% at 2 months, to 108% at 3 months. Finally, C500 mash changed from 103% to 99% to 82% of the initial activity over the three months of the study. The slopes of the regression lines for these three treatments were not significantly different from 0 in all cases (P=0.200, P=0.967 and P=0.887). The variability among these three treatments are considered analytical artifacts rather than actual losses of activity. For the C500 mash treatment where 82% of the initial activity remained after 3 months storage, the results are considered to be due more to analytical variation than real loss of activity because the C250 mash (110% retained at 3 months) and C500 pellets (108% retained at 3 months), which was produced from the C500 mash, were both within 10% of their initial phytase activity.

12 Conclusions

According to the results of the present stability study in feeds, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

- Was stable over time (1, 2 and 3-months storage at ambient conditions) for all three batches (A & B & C), at both feed forms (mash & pellet) and at both concentrations tested (250 & 500 U/kg) as demonstrated by slope of linear regressions of phytase activity over time not being significantly different from 0 (flat line, no significant loss of activity).
- Presented good stability (in general ±10% of 0-month value) up to 3-months in pelleted feeds for all three batches (A & B & C), for both feed forms (mash & pellet) and at both concentrations tested (250 & 500 U/kg). Exceptions at three months were: A250 pellet (84%), B250 mash (78%) and C500 mash (82%) on the lower side, and B250 pellet (114%) and C250 pellet (120%) on the upper side. The variation in activity at 3-months was considered to be within the range of expected values, especially considering the other dose/form for the same batches of enzyme did not differ from their respective T=0 activity by more than 14% (A500 pellet [108%] and A250 mash [98%] as references for A250 pellet, B500 mash [98%] and B250 pellet [114%] as references for B250 mash, and C250 mash [110%] and C500 pellet [108%] as references for C500 mash).

BASF Enzymes LLC Page 18 of 56

13 References

ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity

SAS Institute Inc. 2012. Base SAS® 9.4 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Statutory Instrument 1999 No. 1663. The Feeding Stuffs (Sampling and Analysis) Regulation 1999.

14 List of Appendices

- Appendix 1 Curricula vitae of Study Director & Study Monitor
- Appendix 2 Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)
- Appendix 3 Relevant laboratory reports
- Appendix 4 Raw data
- Appendix 5 Statistical printouts
- Appendix 6 Temperature profile in the conditioner during pelleting
- Appendix 7 Temperature and relative humidity during storage of stability samples

BASF Enzymes LLC Page 19 of 56

Appendix 1- Curricula vitae of Study Director & Study Monitor

Study Director:

Name: Dr (b)(6)

Study Monitor:

Name: Drew Lichtenstein

Qualifications: B.S. Biochemistry (Michigan State University 1982), PhD Biochemistry (University of

Wisconsin-Madison 1990)

Present Position: Research Manager, Specialty Products, Novus International

Experience: Over 35 years research experience in biochemistry and cell biology; more than 8 years of

experience in animal feed enzymes.

BASF Enzymes LLC Page 20 of 56

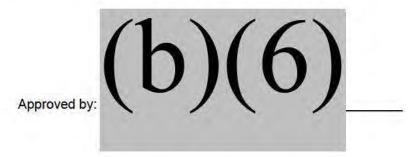
Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)

BASF Enzymes LLC Page 21 of 56

CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme (Test Article VR005)

Lot number: P23941

Date of Manufacture: October 8, 2014


Specification Limit	Test Result
White to Beige granules	(h) (1)
≥ 0.50	(0)(4)
<2% on 20 mesh <10% thru 140 mesh	\ / \ /
NLT 10,000	
≤ 12	
≤5	
< 2	
< 0.5	
0.000	
COST WAR	
304,300	
Absent	
Absent	
NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 0.8 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm NMT 0.4 ppm NMT 0.4 ppm NMT 0.4 ppm	
	White to Beige granules ≥ 0.50 <2% on 20 mesh <10% thru 140 mesh NLT 10,000 ≤12 ≤5 <2 <0.5 <0.5 ≤50,000 ≤30 Absent Absent Run and Record Absent

PCBs	10,000 pg/g	(h)	(1)
Dioxins	1 pg/g	(0)	(4)

* Production organism testing was performed on the enzyme concentrate used to produce this

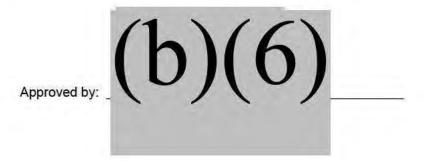
** Results of retesting performed in March 2017.

Date: March 29, 2017

CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme (Test Article VR005)

Lot number: P26641

Date of Manufacture: October 8, 2014


Specification	Specification Limit	Test Result
Appearance	White to Beige granules	(b) (1
Bulk Density-untapped (g/cm3)	≥ 0.50	(0)(4
Particle size (mesh)	<2% on 20 mesh <10% thru 140 mesh	
Activity (U/g)	NLT 10,000	
Loss on Drying (%)	≤ 12	
Lead (mg/kg)	≤ 5	
Arsenic (mg/kg)	< 2	
Cadmium (mg/kg)	< 0.5	
Mercury (mg/kg)	< 0.5	
Total Plate Count (cfu/g)	≤ 50,000	
Total Coliform (cfu/g)	≤ 30	
E. coli (/25g)	Absent	
Salmonella (/25g)	Absent	
Yeast and Mold (CFU/g)	Run and Record	
Staphylococcus aureus (/g)	Absent	
Production Organism (CFU/g)	Absent	
Antibiotic Activity (Zone of Inhibition) Mycotoxin	Absent	
Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B2 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol	NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm	
Diacetoxyscirpenol Zearalenone	NMT 0.4 ppm NMT 43.1 ppb	4

Sterigmatocystin	NMT 200 ppb	-(b) (4)
PCBs	10,000 pg/g	(0) (1
Dioxins	1 pg/g	

^{*} Production organism testing was performed on the enzyme concentrate used to produce this

^{**} Results of retesting performed in March 2017.

Date: March 29, 2017

CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme (Test Article VR005)

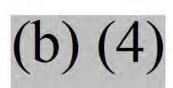
Lot number: RO15271001

Date of Manufacture: September 28, 2015

Specification	Specification Limit	Test
Appearance	White to Beige granules	(b) (4)
Bulk Density-untapped (g/cm ³)	≥ 0.50	(-) (-)
Particle size (mesh)	<2% on 20 mesh <10% thru 140 mesh	
Activity (U/g)	NLT 10,000	
Loss on Drying (%)	≤ 12	
Lead (mg/kg)	≤ 5	
Arsenic (mg/kg)	< 2	
Cadmium (mg/kg)	< 0.5	
Mercury (mg/kg)	< 0.5	
Total Plate Count (cfu/g)	≤ 50,000	
Total Coliform (cfu/g)	≤ 30	
	Absent	
E. coli (/25g)		
Salmonella (/25g)	Absent	
Yeast and Mold (CFU/g)	Run and Record	
Staphylococcus aureus (/g)	Absent	
Production Organism (CFU/g)	Absent	
Antibiotic Activity (Zone of Inhibition)	Absent	
Mycotoxin Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B2 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol	NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 0.8 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.6 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm	
Diacetoxyscirpenol	NMT 0.4 ppm	<43.1
Zearalenone	NMT 43.1 ppb	<43.1

Sterigmatocystin	NMT 200 ppb	(b)(4)
PCBs	10,000 pg/g	(0)(4)
Dioxins	1 pg/g	

^{*} Production organism testing was performed on the enzyme concentrate used to produce this dry product.


(b) (4)_

Date: March 29, 2017

^{**} Results of retesting performed in March 2017.

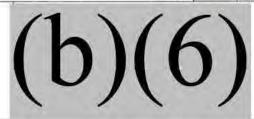
Appendix 3 - Relevant laboratory reports

BASF Enzymes LLC Page 28 of 56

CERTIFICATE OF ANALYSIS

Company:	Novus International Inc and BASF Enzymes LLC					
Type of sample:	F597 feeds					
	172006 to 172011 172032 to 172037					
Laboratory ref. :	180004 to 180015 180069 to 180080					
The state of the s	181548 to 181559 181804 to 181010					
Reception date:	28th November 2017					
Analysis starting date:	1st December 2017					
Analysis finishing date:	22 nd March 2018					

Sample description: See Results section


Analysis performed:

- Moisture -dry matter- by oven drying -method 2 (SOP 0602-L-10001) (AOAC, 2000)
- Nitrogen -crude protein- by combustion -Dumas method (SOP 0602-L-10118) (AOAC, 2000)
- Ether extract on a Soxtec system -method 3B (SOP 0602-L-10003) (AOAC, 2000)
- Ash after muffle furnace incineration -method 12 (SOP 0602-L-10002) (AOAC, 2000)
- Phytase (SOP 0602-L-10143; ISO 30024:2009. Animal feeding stuffs Determination of phytase activity.)

Results:

LAB, REF.	SAMPLE DESCRIPTION	LORUNE PROTEINIUM	LETHER EXT	RACTUALLASE	17931
172032	A250 pellet stab 0 mes	/1	1	/ 4	1
172033	A500 pellet stab 0 mes	/ -			
172034	B250 pellet stab 0 mes				
172035	B500 pellet stab 0 mes			1 -	
172036	C250 pellel stab 0 mes	10			
172037	C500 pellet stab 0 mes		/	1	/

LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DM (%)	LAB. REF	SAMPLE DESCRIPTION	PHYTASE (U/kg)	DM (%)	LAB. REF.	SAMPLE DESCRIPTION	PHYTASE (UVa)	DM (%)
172006	A250 mash stab 0 mes	11 \	(1)	180004	A250 mash stab 1 mes	(1)	(1)	180069	A250 mash stab 2 mes	(1-) (1)
172007	A500 mash stab 0 mes	(h) (180005	A500 mash stab 1 mes	(h)	(4)	180072	A500 mash stab 2 mes	(D)	41
172008	B250 mash stab 0 mes	(0)(T /	180006	B250 mash stab 1 mes	(0)	(T)	180070	B250 mash stab 2 mes	(-) (-/
172009	B500 mash stab 0 mes	, ,		180007	B500 mash stab 1 mes	` '	1	180073	3500 mash stab 2 mes		
172010	C250 mash stab 0 mes			180008	C250 mash stab 1 mes			180071	C250 mash stab 2 mes		
172011	C500 mash stab 0 mes			180009	C500 mash stab 1 mes			180074	C500 mash slab 2 mes		
172032	A250 pellet stab 0 mes			180010	A250 pellet stab 1 mes	1		180075	A250 pellet stab 2 mes	T.	
172033	A500 pellet stab 0 mes			180011	A500 pellet stab 1 mes			180078	A500 pellet stab 2 mes		
172034	B250 pellet stab 0 mes			180012	B250 petlet stab 1 mes			180076	B250 pellet stab 2 mes		
172035	B500 pellet stab 0 mes			180013	B500 pellet stab 1 mes			180079	B500 petiet stab 2 mes		
172036	C250 pellet stab 0 mes			180014	C250 pellet stab 1 mes		J.	180077	C250 pellet stab 2 mes		
172037	C500 pellet stab 0 mes		(b) (4	180015	C500 pellet stab 1 mes			180080	C500 pellet stab 2 mes		
LAB.	SAMPLE	PHYTASE	DM	LAB.	SAMPLE	PHYTASE	DM	LAB.	SAMPLE	PHYTASE	DM
REF.	DESCRIPTION	1111.01	no.	REF.	DESCRIPTION	/U/ka1	1361	REF.	DESCRIPTION	(0/kg)	(%)
181548	A250 mash stab 3 mes	(h) 1	1	181554	A250 pellet stab 3 mes	(1-)	(1)	181804	A250 pellet stab 0 mes	11 \ /	1
181549	A500 mash slab 3 mes		41	181555	A500 pellet stab 3 mes	(\mathbf{n})	4	181805	A250 pellet stab 2 mes	(n)	41
181550	B250 mash slab 3 mes	(-) (181556	B250 pellet stab 3 mes		()	181805	A250 pellet stab 3 mes.	(0)(1)
181551	B500 mash stab 3 mes			181557	B500 pellet stab 3 mes	13.		181807	8250 mash stab 0 mas		
181552	C250 mash stab 3 mes	1		181558	C250 pellet stab 3 mes			181808	8250 mash stab 2 mes		
181553	C500 mash stab 3 mes	(b	(4)	181559	C500 pellet stab 3 mes		(b) (4)	181809	B250 mash stab 3 mes		
		100	1 (.)				(0) (4)	181810	8250 pellet slab 2 men		

Appendix 4 - Raw data

Obs	enzyme	form	Tr	Tr_form	lab_ref	dose	
1	A	mash	A250	A250mash	172006	250	(b) $(4)^{\circ}$ (b) (4)
2	A	mash	A500	A500mash	172007	500	(b) (4)°
3	В	mash	B250 B500	B250mash B500mash	172008 172009	250 500	
5	C		C250	C250mash		250	0
6	C	mash	C500	C500mash	172010 172011	500	0
7	A	pellet				250	0
8	A	pellet		A500pellet	172032 172033	500	0
9	В	pellet			172034	250	0
10	В	pellet			172034	500	0
11	C	pellet		of the second of the second	172035	250	0
12	C	pellet			172037	500	o
13	A	mash	A250	A250mash	180004	250	1
14	A	mash	A500	A500mash	180004	500	1
15	В	mash	B250	B250mash	180005	250	i
16	В	mash	B500	B500mash	180007	500	i
17	C	mash	C250	C250mash	180007	250	1
18	C	mash	C500	C500mash	180009	500	i
19	A	pellet			180010	250	i
20	A	pellet		AND COUNTY OF CASE	180010	500	i
21	В	pellet		Age is the fall of the second	180011	250	i
22	В	pellet		The second secon	180013	500	1
23	C	pellet			180014	250	i
24	C	pellet		A STATE OF THE STA	180015	500	1
25	A	mash	A250	A250mash	180069	250	2
26	A	mash	A500	A500mash	180072	500	2
27	В	mash	B250	B250mash	180070	250	2
28	В	mash	B500	B500mash	180073	500	2
29	C	mash	C250	C250mash	180071	250	2
30	C	mash	C500	C500mash	180074	500	2
31	A	pellet			180075	250	2
32	A	pellet			180078	500	2
33	В	pellet			180076	250	2
34	В	pellet			180079	500	2
35	C	2 40 10 10 10 10 10 10 10 10 10 10 10 10 10		C250pellet	180077	250	2
36	C			C500pellet	180080	500	2
37	A	mash	A250	A250mash	181548	250	3
38	Α	mash	A500	A500mash	181549	500	3
39	В	mash	B250	B250mash	181550	250	3
40	В	mash	B500	B500mash	181551	500	3
41	C	mash	C250	C250mash	181552	250	3
42	C	mash	C500	C500mash	181553	500	3
43	Α			A250pellet	181554	250	3
44	Α	Carried Strawn		A500pellet	181555	500	3
45	В	Account to		B250pellet	181556	250	3
46	В			B500pellet	181557	500	3
47	C			C250pellet	181558	250	3
48	C			C500pellet	181559	500	3
49	Α	The state of the s		A250pellet	181804	250	0
50	Α	200		A250pellet	181805	250	2
51	A			A250pellet	181806	250	3
52	В	mash	B250	B250mash	181807	250	0
53	В	mash	B250	B250mash	181808	250	2
54	В	mash	B250	B250mash	181809	250	3
55	В	pellet		B250pellet	181810	250	2

BASF Enzymes LLC Page 30 of 56

Appendix 5 - Statistical printouts

BASF Enzymes LLC Page 31 of 56

Tr_form m			U_kg as_is		U_kg 88_pc-	pc_Om-	pc_0m- _88_p-	
				DM_p	_DM	_as_is	c_DM	pc_Om-
		N	Mean	Mean	Mean	Mean	Mean	Mean
A250mash 0	onth		/1	1				
AZJOIIIAJII U		1						
1		1				•		
2		1				`	•	
3		1						
A250pellet 0		2	299	87.2	302	100.0	100.0	100.0
1		1					(b	(4)
2		2	223	87.7	224	74.6	74.1	100.6
3		2	250	87.7	251	83.6	83.1	100.6
A500mash 0		1	/1	1	\			
1		1						
2		1		U				- /
3		1				`	•	
A500pellet 0		1						
1		1						
2		1						
3		1						
B250mash 0		2	329	87.3	331	100.0	100.0	100.0
1		1					(b)	(4)
2		2	268	87.6	269	81.4	81.2	100.2
3		2	255	87.5	256	77.5	77.3	100.2
B250pellet 0		1				(h)	\ (1
1		1				(\mathbf{D}_{j})) (7
2		2	219	87.4	220	92.6	92.4	100.3
3		1	11		\		1	
B500mash 0		1		1				
1		1		U				
2		1						
3		1						

(Continued)

BASF Enzymes LLC Page 33 of 56

					т			
			U_kg as_is	DM_p	U_kg 88_pc- _DM	pc_0m- _as_is	pc_0m- _88_p- c_DM	pc_Om-
		N	Mean	Mean	Mean	Mean	Mean	Mean
Tr_form	month		/-	1			1	
B500pellet	0	1		1				_ }
	1	1		U		•		
	2	1					•	
	3	1	-					
C250mash	0	1						
	1	1						
	2	1						
	3	1						
C250pellet	0	1						
	1	1						
	2	1						
	3	1						
C500mash	0	1	-					
	1	1	-					
	2	1	-					
	3	1						
C500pellet	0	1						
	1	1						
	2	1						
	3	1						

BASF Enzymes LLC Page 34 of 56

13:26 Wednesday, March 14, 2018

								U_kg_		U_kg_88_	pc_Om_ pc_Om_
0bs	enzyme	dose	form	month	Tr	Tr_form	FREQ	as_is	a Ma	pc_DM	as_is 88_pc_DM pc_Om_DM
1	A		mash	0		A250mash	1			_ · _	
2	Α	250	mash	1	A250	A250mash	1	1-	1		
3	Α	250	mash	2	A250	A250mash	1				
4	Α	250	mash	3	A250	A250mash	1				
5	Α	250	pellet	0	A250	A250pellet	2				
6	Α	250	pellet	1	A250	A250pellet	1			, ,	
7	Α	250	pellet	2	A250	A250pellet	2				
8	Α	250	pellet	3	A250	A250pellet	2				
9	Α	500	mash	0	A500	A500mash	1	•		•	•
10	Α	500	mash	1	A500	A500mash	1				
11	Α	500	mash	2	A500	A500mash	1				
12	Α	500	mash	3	A500	A500mash	1				
13	Α	500	pellet	0	A500	A500pellet	1				
14	Α	500	pellet	1	A500	A500pellet	1				
15	Α		pellet	2		A500pellet	1				
16	Α	500	pellet	3	A500	A500pellet	1				
17	В	250	mash	0		B250mash	2				
18	В	250	mash	1	B250	B250mash	1				
19	В		mash	2		B250mash	2				
20	В	250	mash	3		B250mash	2				
21	В		pellet	0	B250	B250pellet	1				
22	В		pellet	1		B250pellet	1				
23	В		pellet	2	B250	B250pellet	2				
24	В		pellet	3		B250pellet	1				
25	В	500	mash	0	B500	B500mash	1				
26	В	500	mash	1		B500mash	1				
27	В		mash	2		B500mash	1				
28	В		mash	3		B500mash	1				
29	В		pellet	0		B500pellet	1				
30	В		pellet	1		B500pellet	1				
31	В		pellet	2		B500pellet	1				
32	В		pellet	3		B500pellet	1				
33	С		mash	0		C250mash	1				
34	С		mash	1		C250mash	1				
35	С		mash	2		C250mash	1				
36	С		mash	3		C250mash	1				
37	С		pellet	0		C250pellet	1				
38	С		pellet	1		C250pellet	1				
39	С		pellet	2		C250pellet	1				
40	С		pellet	3		C250pellet	1				
41	С		mash	0		C500mash	1				
42	С		mash	1		C500mash					
43	C		mash	2		C500mash	1				
44	С		mash	3		C500mash	1				
45 46	С		pellet	0		C500pellet	1				
46 47	С		pellet	1		C500pellet	1				
47 49	С		pellet	2		C500pellet	1				
48	С	500	pellet	3	0000	C500pellet	1				

BASF Enzymes LLC Page 35 of 56

	(b)(4) Inial	EEO7 ctability	foods			135
	(b) (4) ITTAL	F597, stability		3:26 Wednesday,	March 1	135 4. 2018
		Tr form=A250mas				
		_ The GLM Procedur				
	Number of O	bservations Read	4			
	Number of O	bservations Used	4			
	(b)(4) Trial	F597, stability	feeds			136
				3:26 Wednesday,		
		The GLM Procedur				
	Debeugen.	t Variable: U_kg	_as_is			
Source	DF	Sum of Squares	Mean Square	F Value	Dr > F	
Model		16.2000000	•		0.8484	
Error	2			0.00	0.0404	
Corrected Total	3	705.0000000	01111000000			
33.1.33.33	•					
R-Sc	quare Coeff	Var Root MS	E U_kg_as_i	is Mean		
0.02	22979 5.649	320 18.5580	2 32	28.5000		
Source		Type I SS	•			
month	1	16.20000000	16.20000000	0.05	0.8484	
Counce	DE	Type III 00	Moon Course	F Value	Dn > F	
Source month	DF 1	Type III SS 16.20000000			Pr > F 0.8484	
MOTTETT	1	10.2000000	10.2000000	0.05	0.0404	
		Standa	rd			
Parameter	Estima			Pr > t		
Intercept						
month .	-1.80000			0.8484		
	(b)(4) Trial	F597, stability	feeds			137
				3:26 Wednesday,		
		Tr_form=A250mas	h			
	•	The GLM Procedur	е			
	•	The GLM Procedur Variable: U_kg_	е			
Coupe	Dependent	The GLM Procedur Variable: U_kg_ Sum of	e 88_pc_DM			
Source	Dependent DF	The GLM Procedur Variable: U_kg_ Sum of Squares	e 88_pc_DM Mean Square	F Value	Pr > F	
Model	Dependent DF 1	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331	e 88_pc_DM Mean Square 7.7282331	F Value		
Model Error	Dependent DF 1 2	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656	e 88_pc_DM Mean Square	F Value	Pr > F	
Model	Dependent DF 1	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331	e 88_pc_DM Mean Square 7.7282331	F Value	Pr > F	
Model Error Corrected Total	Dependent DF 1 2 3	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987	e 88_pc_DM Mean Square 7.7282331 299.5559328	F Value 0.03	Pr > F	
Model Error Corrected Total	Dependent DF 1 2 3	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc	F Value 0.03	Pr > F	
Model Error Corrected Total R-Squ	Dependent DF 1 2 3	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc	F Value 0.03 c_DM Mean	Pr > F	
Model Error Corrected Total R-Squ	Dependent DF 1 2 3	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc	F Value 0.03 c_DM Mean 331.4650	Pr > F	
Model Error Corrected Total R-Squ 0.012	Dependent DF 1 2 3 uare Coeff Vancous 5.2215	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pd	F Value 0.03 C_DM Mean 331.4650 F Value	Pr > F 0.8871	
Model Error Corrected Total R-Squ 0.012	Dependent DF 1 2 3 Jare Coeff V: 2735 5.2215	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc	F Value 0.03 c_DM Mean 331.4650 F Value	Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month Source	Dependent DF 1 2 3 Hare Coeff Vo. 2735 5.2215 DF 1 DF	The GLM Procedur Variable: U_kg_	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value	Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month	Dependent DF 1 2 3 uare Coeff Vo. 2735 5.2215	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value	Pr > F 0.8871 Pr > F 0.8871	
Model Error Corrected Total R-Squ 0.012 Source month Source	Dependent DF 1 2 3 Hare Coeff Vo. 2735 5.2215 DF 1 DF	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value	Pr > F 0.8871 Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month Source month	Dependent DF 1 2 3 Uare Coeff Vo. 2735 5.2215 DF 1 DF 1	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value 0.03	Pr > F 0.8871 Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month Source month	Dependent DF 1 2 3 Uare Coeff Vo 5.2215 DF 1 DF 1 DF 1	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value 0.03	Pr > F 0.8871 Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month Source month	Dependent DF 1 2 3 Jure Coeff V: 2735 5.2215 DF 1 DF 1 Estima: 333.32989	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019	Pr > F 0.8871 Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept	Dependent DF 1 2 3 Uare Coeff Vo 5.2215 DF 1 DF 1 DF 1	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019	Pr > F 0.8871 Pr > F 0.8871 Pr > F	
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept	Dependent DF 1 2 3 June Coeff Vi 2735 5.2215 DF 1 DF 1 Estima 333.329896 -1.243240	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019	Pr > F 0.8871 Pr > F 0.8871 Pr > F	138
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month	Dependent DF 1 2 3 June Coeff Vi 2735 5.2215 DF 1 DF 1 Estima 333.32989 -1.24324 (b) (4) Trial	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647 7.740231 F597, stability	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds	F Value 0.03 C_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019 0.8871	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month	Dependent DF 1 2 3 June Coeff Vi 2735 5.2215 DF 1 DF 1 Estima 333.32989 -1.24324 (b) (4) Trial	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647 04 7.740231	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds	F Value 0.03 C_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019 0.8871	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month	Dependent DF 1 2 3 Dare Coeff Voltage 2735 5.2215 DF 1 DF 1 Estima 333.32989 -1.24324	The GLM Procedur Variable: U_kg_	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds 13 h	F Value 0.03 C_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019 0.8871	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month	Dependent DF 1 2 3 Dare Coeff Voltage 2735 5.2215 DF 1 DF 1 Estima 333.32989 -1.24324	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647 7.740231 F597, stability Tr_form=A250mas The GLM Procedur t Variable: pc_0	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds 13 h	F Value 0.03 C_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019 0.8871	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month	Dependent DF 1 2 3 Juane Coeff Va 2735 5.2215 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1	The GLM Procedur Variable: U_kg_ Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647 7.740231 F597, stability Tr_form=A250mas The GLM Procedur t Variable: pc_0 Sum of	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds h	F Value 0.03 c_DM Mean 331.4650 F Value 0.03 F Value 0.03 Pr > t 0.0019 0.8871	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month Source	Dependent DF 1 2 3 Juane Coeff Va 2735 5.2215 DF 1 DF 1 D	The GLM Procedur Variable: U_kg Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647 04 7.740231 F597, stability Tr_form=A250mas The GLM Procedur t Variable: pc_0 Sum of Squares	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds 13 h	F Value	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month Source Model	Dependent DF 1 2 3 Juane Coeff Va 2735 5.2215 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1 DF 1	The GLM Procedur Variable: U_kg_	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds 13 h	F Value	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018
Model Error Corrected Total R-Squ 0.012 Source month Source month Parameter Intercept month Source	Dependent DF 1 2 3 Juane Coeff Va 2735 5.2215 DF 1 DF 1 D	The GLM Procedur Variable: U_kg Sum of Squares 7.7282331 599.1118656 606.8400987 ar Root MSE 72 17.30768 Type I SS 7.72823305 Type III SS 7.72823305 Standa te Err 84 14.480647 04 7.740231 F597, stability Tr_form=A250mas The GLM Procedur t Variable: pc_0 Sum of Squares	e 88_pc_DM Mean Square 7.7282331 299.5559328 U_kg_88_pc Mean Square 7.72823305 Mean Square 7.72823305 rd or t Value 53 23.02 69 -0.16 feeds 13 h	F Value	Pr > F 0.8871 Pr > F 0.8871 Pr > F 0.8871	138 4, 2018

BASF Enzymes LLC Page 36 of 56

	R-Square 0.022979	Coeff Va 5.64932		. – – –	is Mean 02.9781		
Source month		DF 1	Type I SS 1.59196549	Mean Square 1.59196549	F Value 0.05	Pr > F 0.8484	
Source month		DF 1	Type III SS 1.59196549	Mean Square 1.59196549	F Value 0.05	Pr > F 0.8484	
			Standa	ırd			
	Parameter	Estimate					
	Intercept month	103.8244514			0.0022 0.8484		
		_{b)(4)} Trial F5	97, stability		:26 Wednesda	v. March 14	139 1. 2018
		Т	r_form=A250mas	sh			
			e GLM Procedur riable: pc_0m_ Sum of				
Source		DF	Squares				
Model Error			0.74741459 57.94143987	0.74741459 28.97071994	0.03	0.8871	
Correcte	d Total		58.68885446	26.97071994			
	R-Square 0.012735	Coeff Var 5.221572	Root MSE 5.382446	pc_0m_88_pc_	_DM Mean 103.0809		
Source month		DF 1	Type I SS 0.74741459	Mean Square 0.74741459	F Value 0.03	Pr > F 0.8871	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	0.74741459	0.74741459	0.03	0.8871	
			Standa	und			
	Parameter	Estimate		or t Value	Pr > t		
	Intercept	103.6608943			0.0019		
	month	-0.3866302	2.407102	.82 -0.16	0.8871		
	(b)(4) Trial F5	97, stability				140
		Tr	form=4250nell	13: et	:26 Wednesda	y, March 14	1, 2018
			_ TOTML=A230pe11 e GLM Procedur				
			ervations Read				
	ſ	Number of Obs	ervations Used	4			
	(_{b)(4)} Trial F5	97, stability	feeds			141
		т	. f 1050m. 11		:26 Wednesda		
			_TOTML=A250pell e GLM Procedur	.et ·e			
		Dependent	Variable: U_kg	_as_is			
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model			1901.250000	1901.250000	3.15	0.2180	
Error			1207.500000	603.750000			
Correcte	d lotal	3	3108.750000				
	R-Square 0.611580	Coeff Va 9.42332			s Mean 0.7500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	1901.250000	1901.250000	3.15	0.2180	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month			1901.250000	1901.250000	3.15	0.2180	
			0+1	and			
	Parameter	Estimate	Standa Err		Pr > t		
	•				1-1		

BASF Enzymes LLC Page 37 of 56

Intercept 290.0000000 20.55784522 14.11 0.0050

-19.5000000 10.98863049 month -1.77 0.2180

> (b)(4) Trial F597, stability feeds 142

13:26 Wednesday, March 14, 2018 ------ Tr_form=A250pellet ------

The GLM Procedure

Dependent Variable: U_kg_88_pc_DM

Sum of

Squares Mean Square F Value Pr > F Source DF 2047.843575 2047.843575 3.26 0.2127 Model 1

1256.149102 628.074551 Error 2

3303.992677 Corrected Total 3

> R-Square Coeff Var Root MSE U_kg_88_pc_DM Mean 0.619809 9.550053 25.06142 262.4218

F Value Source DF Type I SS Mean Square Pr > Fmonth 1 2047.843575 2047.843575 3.26 0.2127

Source DF Type III SS Mean Square F Value Pr > Fmonth 2047.843575 2047.843575 3.26 1 0.2127

Standard

Parameter Estimate Error t Value Pr > |t|
292.7784569 20.96788462 13.96 0.0051 Estimate Error t Value Pr > |t|Intercept month -20.2378041 11.20780577 -1.81 0.2127

(b)(4) Trial F597, stability feeds

13:26 Wednesday, March 14, 2018 ----- Tr_form=A250pellet

The GLM Procedure

Dependent Variable: pc_0m_as_is

Sum of

Source DF Squares Mean Square F Value Pr > F Model 1 212.6654064 212.6654064 3.15 0.2180 2 135.0656033 67.5328016 Error

Corrected Total 3 347.7310097

> Coeff Var Root MSE 9.423327 8.217834 R-Square pc_Om_as_is Mean 0.611580 87.20736

Source DF Type I SS Mean Square F Value Pr > F 3.15 month 1 212.6654064 212.6654064 0.2180

Source DF Type III SS Mean Square F Value Pr > F month 212.6654064 212.6654064 3.15 0.2180 1

Standard

Estimate Parameter Error t Value | Pr > |t|

 96.98996656
 6.87553352
 14.11

 -6.52173913
 3.67512725
 -1.77

 0.0050 Intercept month 0.2180

(b)(4) Trial F597, stability feeds

144

13:26 Wednesday, March 14, 2018 ----- Tr_form=A250pellet -----

The GLM Procedure

Dependent Variable: pc_Om_88_pc_DM

Sum of

Mean Square Source DF Squares F Value Pr > F3.26 Model 1 224.7829359 224.7829359 0.2127

Error 2 137.8820562 68.9410281

362.6649921 Corrected Total

> pc_Om_88_pc_DM Mean R-Square Coeff Var Root MSE 0.619809 9.550053 8.303073 86.94270

Source DF Type I SS Mean Square F Value Pr > F

month		1	224.7829359	224.7829359	3.26	0.2127	
Source month		DF 1	Type III SS 224.7829359	•		Pr > F 0.2127	
			Standa	ard			
	Parameter	Estima	ate Eri	ror t Value	Pr > t		
	Intercept	97.00014			0.0051		
	month	-6.70496	735 3.713247	732 -1.81	0.2127		
		(b)(A) Trial	F597, stability	faads			145
		(0) (4)	1007, Stability		3:26 Wednesday	, March	
			- Tr_form=A500mas				
			The GLM Procedu	re			
		Number of	Observations Read	d 4			
		Number of	Observations Used	d 4			
		(b)(4) Trial	F597, stability				146
			- Tr_form=A500mas		3:26 Wednesday		
			The GLM Procedu				
		Depende	nt Variable: U_ko				
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	966.050000	966.050000	2.08	0.2863	
Error		2	930.700000	465.350000			
Correcte	d Total	3	1896.750000				
		2					
	R-Square		Var Root MS				
	0.509319	3.43	0930 21.5719	97 62	28.7500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	966.0500000	966.0500000		0.2863	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	966.0500000	966.0500000	2.08	0.2863	
			0+===	al			
	Parameter	Estim	Standa		Pr > t		
	Intercept		000 18.048407				
	month	13.9000					
		(b)(4) Trial	F597, stability				147
					3:26 Wednesday		
		Donandan	The GLM Procedu				
		peheunell	t Variable: U_kg_ Sum of	_00_bc_pM			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	942.170446	942.170446		0.2876	
Error		2	914.412923	457.206462	2.55	0.20.0	
Correcte	d Total	3	1856.583369				
		Coeff					
	0.507475	3.382	098 21.38239	9	632.2225		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	942.1704460	942.1704460		0.2876	
onen		•	3.211737700	5.211, 54400	2.00	5.2010	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	942.1704460	942.1704460	2.06	0.2876	
			Standa				
	Parameter	Estim		ror t Value	Pr > t		
	Intercept	611.6318			0.0009		
	month	13.7271	297 9.562494	104 1.44	0.2876		

BASF Enzymes LLC Page 39 of 56

148

(b)(4) Trial F597, stability feeds

			In form-AFOOmo		3:26 Wednesda		-
			he GLM Procedu				
		Dependent	Variable: pc_0	JIII_as_1s			
0		DE	Sum of	Maan Onuana	E V-1	D= > E	
Source		DF	Squares		F Value		
Model		1	24.81020916		2.08	0.2863	
Error		2	23.90234632	11.95117316			
Corrected	l Total	3	48.71255547				
	R-Square	Coeff V	ar Root MS				
	0.509319	3.4309	30 3.4570	47 1	00.7612		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	24.81020916	24.81020916	2.08	0.2863	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	24.81020916	24.81020916		0.2863	
morren		•	21101020010	21101020010	2.00	0.2000	
			Standa	ard			
	Parameter	Estimat			Pr > t		
	Intercept	97.4198717					
	month	2.2275641	0 1.546038	837 1.44	0.2863		
		(b)(4) Trial F	597, stability				149
					3:26 Wednesda		
			Tr_form=A500ma	sh			
		T	he GLM Procedui	re			
		Dependent V	ariable: pc_0m_	88 pc DM			
			Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	23.90086009	23.90086009			
Error		2	23.19671078	11.59835539		0.20.0	
Corrected	l Total	3	47.09757087	1110000000			
00110000	TOCAL	J	47.03737007				
	D. Caucho	Cooff Van	Doot MCE	no 0m 00 no	DM Moon		
	R-Square	Coeff Var		. – – –	_		
	0.507475	3.382098	3.405636		100.6959		
Source		DF	Type I SS	•	F Value		
month		1	23.90086009	23.90086009	2.06	0.2876	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	23.90086009	23.90086009	2.06	0.2876	
			Standa	ard			
	Parameter	Estimat	e Eri	ror t Value	Pr > t		
	Intercept	97.4164040	0 2.849359				
	month	2.1863604					
		211000001	1102001		012070		
		ara Inial E	597, stability	foodo			150
		(b) (4) 11 Lal 1	597, Stability		Nodpoodo	v Manah 1	
		т	- f1		3:26 Wednesda		-
			_	let			
			he GLM Procedui				
			servations Read				
		Number of Ob	servations Used	d 4			
		(b)(4) Trial F	597, stability	feeds			151
					3:26 Wednesda		
		T	r_form=A500pel:	let			
			_ he GLM Procedui				
			Variable: U_k				
		,	Sum of	- -			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model			245.000000	245.000000	0.12		
					0.12	0.7000	
Error	l Total	2	4209.000000	2104.500000			
Corrected	i lotat	3	4454.000000				

BASF Enzymes LLC Page 40 of 56

	R-Square 0.055007	Coeff Var 9.400580	Root MSE 45.87483		s Mean 8.0000		
Source month			Type I SS 5.0000000	Mean Square 245.0000000	F Value 0.12	Pr > F 0.7655	
Source month			pe III SS 5.0000000	Mean Square 245.0000000	F Value 0.12	Pr > F 0.7655	
			Standar	·d			
	Parameter	Estimate	Erro	r t Value			
	Intercept month	477.5000000 7.0000000	38.3816362 20.5158475		0.0064 0.7655		
	MOTICI	7.0000000	20.3136473	0.54	0.7033		
	(1	o)(4) Trial F597	, stability f		· OC Wadaaada	. Namah d	152
		Tr_f	orm=A500pelle		:26 Wednesday		
		The	GLM Procedure				
0		Dependent Var	Sum of		F. Val	D= > E	
Source Model		DF 1 1:	Squares 98.512645	Mean Square 198.512645	F Value 0.09	Pr > F 0.7902	
Error			11.158579	2155.579290			
Correcte	d Total	3 45	09.671224				
	R-Square 0.044019	Coeff Var 9.441518			_DM Mean 491.7452		
Source		DF	Type I CC	Moon Squano	E Volue	Dn > E	
month			Type I SS 8.5126454	Mean Square 198.5126454	F Value 0.09	Pr > F 0.7902	
Source month			pe III SS 8.5126454	Mean Square 198.5126454	F Value 0.09	Pr > F 0.7902	
monen.		1 10	010120101	10010120101	0.00	017002	
	Donomoton	Fatimata	Standar		Do > 1+1		
	Parameter Intercept	Estimate 482.2937489	Erro 38.8446328		Pr > t 0.0064		
	month	6.3009943	20.7633296		0.7902		
	27	Trial E507	etability f	ands			153
	(I	o)(4) Trial F597	, stability i		:26 Wednesday	/, March 14	
			GLM Procedure riable: pc Om				
			Sum of				
Source		DF	Squares	Mean Square		Pr > F	
Model Error			0.1625595 4.5886237	10.1625595 87.2943119	0.12	0.7655	
Correcte	d Total		4.7511832				
	R-Square	Coeff Var	Root MSE	pc_0m_as_	is Moan		
	0.055007	9.400580	9.343143	. – – –	9.38900		
Source			Type I SS	Mean Square	F Value	Pr > F	
month		1 10	.16255947	10.16255947	0.12	0.7655	
Source		DF Ty	pe III SS	Mean Square	F Value	Pr > F	
month			.16255947	10.16255947	0.12	0.7655	
			Standar	·d			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	97.25050916	7.8170338		0.0064		
	month	1.42566191	4.1783803	5 0.34	0.7655		
	(I	o)(4) Trial F597	, stability f	eeds			154
		T	0.0m=AE00==11-		:26 Wednesday		
		_	GLM Procedure				

BASF Enzymes LLC Page 41 of 56

Dependent Variable: pc_Om_88_pc_DM Sum of Squares Mean Square F Value Source DF Pr > F Mode1 8.0759645 8.0759645 0.09 0.7902 1 175.3881407 Frror 87.6940704 2 183.4641052 Corrected Total 3 Coeff Var R-Square Root MSE pc_Om_88_pc_DM Mean 0.044019 9.441518 9.364511 99.18438 Type I SS F Value Source DF Mean Square Pr > F8.07596453 8.07596453 month 0.09 0.7902 1 Mean Square Source DF Type III SS F Value Pr > F8.07596453 8.07596453 0.09 month 1 0.7902 Standard Error t Value Pr > |t| Parameter Estimate 97.27802532 7.83491220 12.42 0.0064 1.27090240 4.18793673 0.30 0.7902 Intercept month 1.27090240 4.18793673 0.30 0.7902 (b)(4) Trial F597, stability feeds 155 13:26 Wednesday, March 14, 2018 The GLM Procedure Number of Observations Read Number of Observations Used (b)(4) Trial F597, stability feeds 156 13:26 Wednesday, March 14, 2018 ------ Tr_form=B250mash ------The GLM Procedure Dependent Variable: U_kg_as_is Sum of Source DF Squares Mean Square F Value Pr > F Model 1 2773.012500 2773.012500 15.68 0.0583 2 353.675000 176.837500 Error 3126.687500 Corrected Total 3 Coeff Var Root MSE U_kg_as_is Mean R-Square 0.886885 4.701026 13.29803 282.8750 Source DF Type I SS Mean Square F Value Pr > F month 2773.012500 2773.012500 15.68 0.0583 1 Pr > F Source DF Type III SS Mean Square F Value month 2773.012500 2773.012500 15.68 0.0583 1 Standard Parameter Error t Value Pr > |t| Estimate 318.2000000 11.12592693 22.5500000 5.94705810 28.60 0.0012 Intercept -3.96 month 0.0583 (b)(4) Trial F597, stability feeds 157 13:26 Wednesday, March 14, 2018 ----- Tr_form=B250mash ------The GLM Procedure Dependent Variable: U_kg_88_pc_DM Sum of Mean Square F Value Pr > F Source DF Squares 15.85 Model 1 2859.890299 2859.890299 0.0577 Error 2 360.832057 180.416028 3220.722356 Corrected Total 3 Coeff Var U_kg_88_pc_DM Mean R-Square Root MSE 0.887965 4.717346 13.43190 284.7344

BASF Enzymes LLC Page 42 of 56

Mean Square F Value

Pr > F

Type I SS

DF

Source

month		1	2859.890299	2859.890299	15.85	0.0577	
Source month		DF 1	Type III SS 2859.890299		F Value 15.85	Pr > F 0.0577	
			Standa	ırd			
	Parameter Intercept month	Estimate 320.6084510 -23.9160628	11.237936	28.53	Pr > t 0.0012 0.0577		
		(b)(4) Trial F5	597, stability				158
		1	Tr_form=B250mas	13 h	:26 Wednesda		
		Th	ne GLM Procedur	·e			
		Dependent	Variable: pc_0 Sum of	ili_as_is			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	256.9692041	256.9692041	15.68	0.0583	
Error Correcte	d Total	2 3	32.7743143 289.7435185	16.3871572			
	R-Squar	e Coeff Va	ar Root MS	E pc_0m_as_	is Mean		
	0.88688			. – – –	6.11111		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	256.9692041	256.9692041	15.68	0.0583	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	256.9692041		15.68	0.0583	
			Standa	ınd			
	Parameter	Estimate		or t Value	Pr > t		
	Intercept	96.86453577			0.0012		
	month	-7.16894977	1.810367	76 -3.96	0.0583		
		ты (4) Trial F5	597, stability	feeds			159
				13	:26 Wednesda		4, 2018
			r_torm=B250mas ne GLM Procedur	h			
			ariable: pc_Om_ Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	261.0175868	261.0175868	15.85	0.0577	
Error		2	32.9325613	16.4662807			
Correcte	d Total	3	293.9501481				
	R-Square 0.887965	Coeff Var 4.717346	Root MSE 4.057867	pc_0m_88_pc	_DM Mean 86.02013		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	261.0175868	261.0175868	15.85	0.0577	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	261.0175868	261.0175868	15.85	0.0577	
			Standa	ırd			
	Parameter	Estimate	e Err		Pr > t		
	Intercept	96.85792561			0.0012		
	month	-7.22520016	1.814733	-3.98	0.0577		
		(b)(4) Trial F5	597, stability		OG Wadassis	y Manak 1	160
		Tr	_form=B250pell	13 et	:26 Wednesda		
			 ne GLM Procedur				
			servations Read				
		Number of Obs	servations Used	4			
		(b)(4) Trial F5	597, stability	feeds			161

BASF Enzymes LLC Page 43 of 56

					:26 Wednesda		4, 2018
			_	Let			
			ie GLM Procedur				
		Dependent	Variable: U_kg	g_as_is			
0		D.E.	Sum of		E 1/-1	D E	
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	437.112500	437.112500	0.80	0.4666	
Error	d Tatal		1099.075000	549.537500			
Correcte	d lotal	3	1536.187500				
	D. Caucas	Coeff Va	n Doot M	NE II ka oo ia	Moon		
	R-Square 0.284544				6.8750		
	0.284544	9.89645	30 23.4422	22 230	0.8750		
Counce		DE	Tuno I CC	Maan Cauana	Г Vol., о	Do > F	
Source		DF	Type I SS		F Value	Pr > F	
month		1	437.1125000	437.1125000	0.80	0.4666	
Sounce		DE	Tuno III CC	Moon Squano	E Volue	Dn > E	
Source			Type III SS 437.1125000	•	F Value	Pr > F	
month		Į.	437.1125000	437.1125000	0.80	0.4666	
			Standa	and			
	Parameter	Estimate		ror t Value	Pr > t		
	Intercept	222.8500000			0.0077		
	month	9.3500000	10.483077	779 0.89	0.4666		
	27	Dan Trial Es	97, stability	foods			162
	(I	b) (4)	197, Stability		:26 Wednesday	. March 1	
		Tr	form=R250nell	let			
			TOTM=B230pell ne GLM Procedur				
			/ariable: U_kg_				
		Dependent v	Sum of	_00_pc_bw			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	428.519926	428.519926	0.76	0.4759	
					0.70	0.4759	
Error Correcte	d Total	2 3	1131.619227 1560.139152	565.809613			
Connecte	u lotal	J	1300.139132				
	R-Square	Coeff Var	Root MSE	II ka 88 nc	DM Mean		
	R-Square	Coeff Var			_		
	R-Square 0.274668	Coeff Var 9.960571			_DM Mean 238.8091		
Source	·	9.960571	23.78675	5 2	238.8091	Pr > F	
Source month	·	9.960571 DF	23.78675 Type I SS	Mean Square	F Value	Pr > F 0.4759	
Source month	·	9.960571	23.78675	5 2	238.8091	Pr > F 0.4759	
month	·	9.960571 DF 1	23.78675 Type I SS 428.5199257	Mean Square 428.5199257	F Value 0.76	0.4759	
month Source	·	9.960571 DF 1 DF	23.78675 Type I SS 428.5199257 Type III SS	Mean Square 428.5199257 Mean Square	F Value 0.76	0.4759 Pr > F	
month	·	9.960571 DF 1	23.78675 Type I SS 428.5199257	Mean Square 428.5199257	F Value 0.76	0.4759	
month Source	·	9.960571 DF 1 DF	23.78675 Type I SS 428.5199257 Type III SS	Mean Square 428.5199257 Mean Square 428.5199257	F Value 0.76	0.4759 Pr > F	
month Source	0.274668	9.960571 DF 1 DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa	Mean Square 428.5199257 Mean Square 428.5199257	F Value 0.76 F Value 0.76	0.4759 Pr > F	
month Source	0.274668 Parameter	9.960571 DF 1 DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa	Mean Square 428.5199257 Mean Square 428.5199257 ard or t Value	F Value 0.76 F Value 0.76 Pr > t	0.4759 Pr > F	
month Source	0.274668 Parameter Intercept	9.960571 DF 1 DF 1 Estimate 224.9226627	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa e Err 7 19.901425	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30	F Value 0.76 F Value 0.76 Pr > t 0.0077	0.4759 Pr > F	
month Source	0.274668 Parameter	9.960571 DF 1 DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa e Err 7 19.901425	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30	F Value 0.76 F Value 0.76 Pr > t	0.4759 Pr > F	
month Source	0.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa Enr 19.901425	Mean Square 428.5199257 Mean Square 428.5199257 ard for t Value 531 11.30	F Value 0.76 F Value 0.76 Pr > t 0.0077	0.4759 Pr > F	163
month Source	0.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa e Err 7 19.901425	Mean Square 428.5199257 Mean Square 428.5199257 ard for t Value 531 11.30 929 0.87	F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	
month Source	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa e Err 7 19.901425 7 10.637755	Mean Square 428.5199257 Mean Square 428.5199257 ard for t Value 531 11.30 929 0.87	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	4, 2018
month Source	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa e Err 7 19.901425 7 10.637755	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 929 0.87 feeds 13	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	4, 2018
month Source	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637758 697, stability C_form=B250pell De GLM Procedur	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 529 0.87 feeds 13.	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	4, 2018
month Source	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637759 697, stability	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 529 0.87 feeds 13.	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	4, 2018
month Source	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637758 697, stability C_form=B250pell He GLM Procedur Variable: pc_C	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 629 0.87 feeds 13. Let	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	4, 2018
month Source month	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637759 697, stability C_form=B250pell De GLM Procedur Variable: pc_C Sum of Squares	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 629 0.87 feeds 13. Let	F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759	0.4759 Pr > F 0.4759	4, 2018
month Source month	O.274668 Parameter Intercept month	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa Enr 19.901425 10.637759 197, stability C_form=B250pell De GLM Procedur Variable: pc_C Sum of Squares 78.4818479	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 629 0.87 feeds 13. Let	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 C26 Wednesday	0.4759 Pr > F 0.4759 y, March 14	4, 2018
month Source month Source Model	O.274668 Parameter Intercept month	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637759 697, stability C_form=B250pell De GLM Procedur Variable: pc_C Sum of Squares	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 631 11.30 629 0.87 feeds 13. Let The Om_as_is Mean Square 78.4818479	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 C26 Wednesday	0.4759 Pr > F 0.4759 y, March 14	4, 2018
Month Source Model Error	O.274668 Parameter Intercept month	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Tr Dependent DF 1 2	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa Enr 19.901425 10.637755 697, stability Encome B250pell GEM Procedur Variable: pc_C Sum of Squares 78.4818479 197.3346380	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 631 11.30 629 0.87 feeds 13. Let The Om_as_is Mean Square 78.4818479	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 C26 Wednesday	0.4759 Pr > F 0.4759 y, March 14	4, 2018
Month Source Model Error	O.274668 Parameter Intercept month	9.960571 DF 1 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 629 0.87 feeds Mean Square 78.4818479 98.6673190	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 226 Wednesday	0.4759 Pr > F 0.4759 y, March 14	4, 2018
Month Source Model Error	O.274668 Parameter Intercept month	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Tr Dependent DF 1 2	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Frr 19.901425 10.637759 697, stability 2 form=B250pell 19 GLM Procedur Variable: pc_0 Sum of Squares 78.4818479 197.3346380 275.8164859	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 631 11.30 629 0.87 feeds 13. Mean Square 78.4818479 98.6673190 SE pc_0m_as_:	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 226 Wednesday	0.4759 Pr > F 0.4759 y, March 14	4, 2018
Month Source Model Error	O.274668 Parameter Intercept month d Total R-Square	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3 Coeff Va	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Frr 19.901425 10.637759 697, stability 2 form=B250pell 19 GLM Procedur Variable: pc_0 Sum of Squares 78.4818479 197.3346380 275.8164859	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 631 11.30 629 0.87 feeds 13. Mean Square 78.4818479 98.6673190 SE pc_0m_as_:	F Value	0.4759 Pr > F 0.4759 y, March 14	4, 2018
Month Source Model Error	O.274668 Parameter Intercept month d Total R-Square	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3 Coeff Va	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Frr 19.901425 10.637758 697, stability 2-form=B250pell De GLM Procedur Variable: pc_C Sum of Squares 78.4818479 197.3346380 275.8164859 Ar Root MS 60 9.93314	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 529 0.87 feeds 13. Let	F Value	0.4759 Pr > F 0.4759 y, March 14	4, 2018
Source month Source Model Error Correcte	O.274668 Parameter Intercept month d Total R-Square	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3 Coeff Va 9.89645	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Frr 19.901425 10.637759 697, stability 2 form=B250pell 19 GLM Procedur Variable: pc_0 Sum of Squares 78.4818479 197.3346380 275.8164859	Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 631 11.30 629 0.87 feeds 13. Mean Square 78.4818479 98.6673190 SE pc_0m_as_:	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 26 Wednesda F Value 0.80 is Mean 00.3708	0.4759 Pr > F 0.4759 y, March 14 Pr > F 0.4666	4, 2018
Source Model Error Correcte	O.274668 Parameter Intercept month d Total R-Square	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3 Coeff Va 9.89645 DF	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637755 697, stability 2 form=B250pell De GLM Procedur Variable: pc_0 Sum of Squares 78.4818479 197.3346380 275.8164859 Type I SS	Mean Square 428.5199257 Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 929 0.87 feeds 13: Let	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 C26 Wednesday F Value 0.80 is Mean 00.3708 F Value	0.4759 Pr > F 0.4759 Pr > F 0.4666	4, 2018
Source Model Error Correcte	O.274668 Parameter Intercept month d Total R-Square	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3 Coeff Va 9.89645 DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Err 19.901425 10.637755 697, stability 2 form=B250pell De GLM Procedur Variable: pc_0 Sum of Squares 78.4818479 197.3346380 275.8164859 Type I SS	Mean Square 428.5199257 Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 929 0.87 feeds 13: Let	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 C26 Wednesday F Value 0.80 is Mean 00.3708 F Value	0.4759 Pr > F 0.4759 Pr > F 0.4666	4, 2018
Source month Source Model Error Correcte Source month	O.274668 Parameter Intercept month d Total R-Square	9.960571 DF 1 Estimate 224.9226627 9.2576447 b)(4) Trial F5 Tr Th Dependent DF 1 2 3 Coeff Va 9.89645 DF 1	23.78675 Type I SS 428.5199257 Type III SS 428.5199257 Standa E Frr 19.901425 10.637759 397, stability 2 form=B250pell 10 GLM Procedur Variable: pc_0 Sum of Squares 78.4818479 197.3346380 275.8164859 Type I SS 78.48184789	Mean Square 428.5199257 Mean Square 428.5199257 Mean Square 428.5199257 Ard For t Value 531 11.30 629 0.87 feeds Mean Square 78.4818479 98.6673190 SE pc_0m_as_: 42 10 Mean Square 78.48184789	F Value 0.76 F Value 0.76 F Value 0.76 Pr > t 0.0077 0.4759 226 Wednesday F Value 0.80 F Value 0.80	0.4759 Pr > F 0.4759 y, March 14 Pr > F 0.4666	4, 2018

BASF Enzymes LLC Page 44 of 56

	Parameter	Estimate	Standa Err		Pr > t		
	Intercept month	94.42796610 3.96186441			0.0077 0.4666		
		(b)(4) Trial F5	597, stability		:26 Wednesday	/. March 1	164 14. 2018
				et			
			ne GLM Procedur ariable: pc_Om_ Sum of				
Source		DF		Mean Square	F Value	Pr > F	
Model			75.4946437		0.76	0.4759	
Error Corrected	d Total	2 3	199.3634021 274.8580458	99.6817011			
	R-Square 0.274668	Coeff Var 9.960571	Root MSE 9.984072	pc_0m_88_pc	_DM Mean 100.2359		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	75.49464366	75.49464366	0.76	0.4759	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	75.49464366	75.49464366	0.76	0.4759	
			Standa	.rd			
	Parameter	Estimate	e Err	or t Value	Pr > t		
	Intercept	94.40734309			0.0077		
	month	3.88573400	4.465012	90 0.87	0.4759		
		(b)(4) Trial F5	597, stability				165
		1	Tr_form=B500mas		:26 Wednesday		
			ne GLM Procedur				
			servations Read				
		Number of Obs	servations Used	4			
		(b)(4) Trial F5	597, stability	feeds			166
		-	In form-DECOmes		:26 Wednesday		
			Tr_form=B500mas ne GLM Procedur				
			Variable: U_kg				
0		DE.	Sum of		E W-1	D	
Source Model		DF 1	Squares 45.000000	Mean Square 45.000000	F Value 0.02	Pr > F 0.9071	
Error			5166.000000	2583.000000	0.02	010071	
Corrected	l Total	3	5211.000000				
	R-Squar 0.00863				s Mean 5.5000		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	45.00000000	45.00000000	0.02	0.9071	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month			45.00000000	45.00000000	0.02	0.9071	
			.				
	Parameter	Estimate	Standa Err		Pr > t		
	Intercept	600.0000000			0.0050		
	month	-3.0000000			0.9071		
		(b)(4) Trial F	597, stability	feeds			167
		(v) (1) 11 1 a 1 C	, Stability		:26 Wednesday	, March 1	
			r_form=B500mas				
			ne GLM Procedur				

BASF Enzymes LLC Page 45 of 56

Dependent Variable: U_kg_88_pc_DM Sum of DF Squares F Value Pr > F Source Mean Square 68.823839 Mode1 68.823839 0.03 1 0.8865 5276.798875 Frror 2638.399437 2 5345.622714 Corrected Total 3 Coeff Var Root MSE R-Square U_kg_88_pc_DM Mean 0.012875 51.36535 599,4299 8.569034 F Value Source DF Type I SS Mean Square Pr > F month 68.82383881 68.82383881 1 0.03 0.8865 DF Pr > F Source Type III SS Mean Square F Value month 68.82383881 68.82383881 0.03 1 0.8865 Standard t Value Parameter Estimate Error Pr > |t|14.08 Intercept 604.9950674 42.97533719 0.0050 month -3.7100900 22.97128398 -0.16 0.8865 (b)(4) Trial F597, stability feeds 168 13:26 Wednesday, March 14, 2018 ------ Tr_form=B500mash ------The GLM Procedure Dependent Variable: pc_Om_as_is Sum of Mean Square F Value Pr > F Source DF Squares Model 1.1055316 1.1055316 0.02 0.9071 1 Error 126.9150264 63.4575132 2 Corrected Total 128.0205580 3 Coeff Var Root MSE R-Square pc_Om_as_is Mean 0.008636 93.33856 8.534546 7.966022 Source DF Type I SS Mean Square F Value Pr > F month 1.10553159 1.10553159 0.02 1 0.9071 Source DF Mean Square F Value Pr > FType III SS month 1.10553159 1.10553159 0.02 0.9071 1 Standard Parameter Estimate Error t Value Pr > |t| 94.04388715 14.11 0.0050 6.66485253 Intercept -0.47021944 3.56251353 month -0.13 0.9071 (b)(4) Trial F597, stability feeds 13:26 Wednesday, March 14, 2018 ----- Tr_form=B500mash -----The GLM Procedure Dependent Variable: pc_Om_88_pc_DM Sum of Source DF Squares Mean Square F Value Pr > F0.03 Model 1 1.6632662 1.6632662 0.8865 Error 2 127.5244320 63.7622160 Corrected Total 129.1876981 R-Square Coeff Var Root MSE pc_Om_88_pc_DM Mean 93.18582 0.012875 8.569034 7.985125 Source DF Type I SS F Value Pr > FMean Square month 1.66326615 1.66326615 0.03 0.8865 1 DF Pr > FSource Type III SS Mean Square F Value 1.66326615 1.66326615 month 0.03 0.8865

BASF Enzymes LLC Page 46 of 56

Estimate

Parameter

Standard

Error

t Value

Pr > |t|

	Intercept month	94.05096631 -0.57676098	6.6808346 3.5710563		0.0050 0.8865		
		(b)(4) Trial F597,	stahility f	aads			170
		(0) (4) 11 141 1 337 ;	Stability 1		3:26 Wednesday	, March	
		Tr_fc	rm=B500pelle	t			
			GLM Procedure				
		Number of Observ		4			
		Number of Observ	ations Used	4			
		(b)(4) Trial F597,	stability f	eeds			171
	'				3:26 Wednesday		
		Tr_fc					
			GLM Procedure				
		Dependent Var	Sum of	as_15			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model			31.250000	31.250000	0.02		
Error		2 353	37.500000	1768.750000			
Correcte	d Total	3 356	88.750000				
	R-Square 0.008757				s Mean 2.7500		
	0.008757	9.289124	42.05651	45	02.7500		
Source		DF 1	Type I SS	Mean Square	F Value	Pr > F	
month			25000000	31.25000000	0.02	0.9064	
Source			e III SS	Mean Square			
month		1 31.	25000000	31.25000000	0.02	0.9064	
			Standar	d			
	Parameter	Estimate	Erro		Pr > t		
	Intercept	456.5000000			0.0059		
	month	-2.5000000	18.8082428		0.9064		
		_{(b)(4)} Trial F597,	stability f				172
	'		•	13	3:26 Wednesday		14, 2018
	'	Tr_fc	orm=B500pelle	13 t			14, 2018
	'	Tr_fc	orm=B500pelle GLM Procedure	13 t			14, 2018
	'	Tr_fc The G Dependent Vari	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of	13 t 8_pc_DM			14, 2018
Source	'	Tr_fo The O Dependent Vari	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares	t 8_pc_DM Mean Square	F Value	Pr > F	14, 2018
Source Model	'	Tr_fc The C Dependent Vari DF 1 4	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305	13 t 8_pc_DM Mean Square 49.824305			14, 2018
Source Model Error		DF 1 2	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305	t 8_pc_DM Mean Square	F Value	Pr > F	14, 2018
Source Model		DF 1 2	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305	13 t 8_pc_DM Mean Square 49.824305	F Value	Pr > F	14, 2018
Source Model Error	d Total	DF 1 2	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305	13 t	F Value 0.03	Pr > F	14, 2018
Source Model Error		DEPENDENT OF A SECOND S	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 49.824305 09.305522 59.129827	13 t	F Value 0.03	Pr > F	14, 2018
Source Model Error Correcte	d Total R-Square	DF 1 2 2 360 3 365 Coeff Var 9.303373	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120	13 t	F Value 0.03 	Pr > F 0.8833	14, 2018
Source Model Error Correcte Source	d Total R-Square	DF 1 2 366 3 365 Coeff Var 9.303373	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120	13 t	F Value 0.03 E_DM Mean 456.6215 F Value	Pr > F 0.8833	14, 2018
Source Model Error Correcte	d Total R-Square	DF 1 2 366 3 365 Coeff Var 9.303373	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120	13 t	F Value 0.03 	Pr > F 0.8833	14, 2018
Source Model Error Correcte Source month	d Total R-Square	DF 1 2 366 3 365 Coeff Var 9.303373	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523	13 t	F Value 0.03 -DM Mean 456.6215 F Value 0.03	Pr > F 0.8833 Pr > F 0.8833	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square	Tr_fc The C Dependent Vari DF 1 2 2 360 3 365 Coeff Var 9.303373 DF 1 1 49.	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 DE III SS	13 t	F Value 0.03 -DM Mean 456.6215 F Value 0.03 F Value	Pr > F 0.8833 Pr > F 0.8833 Pr > F	14, 2018
Source Model Error Correcte Source month	d Total R-Square	Tr_fc The C Dependent Vari DF 1 2 2 360 3 365 Coeff Var 9.303373 DF 1 1 49.	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523	13 t	F Value 0.03 -DM Mean 456.6215 F Value 0.03	Pr > F 0.8833 Pr > F 0.8833	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square	Tr_fc The C Dependent Vari DF 1 2 2 360 3 365 Coeff Var 9.303373 DF 1 1 49.	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 DE III SS	13 t	F Value 0.03 -DM Mean 456.6215 F Value 0.03 F Value	Pr > F 0.8833 Pr > F 0.8833 Pr > F	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square 0.013616	Dependent Variate Control DF 1 2 360 3 365 Coeff Var 9.303373 DF 1 49. DF Typ 1 49. Estimate	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 19.129823 19.129823 19.129823 19.129827 Standar Erro	13 t	F Value 0.03 2_DM Mean 456.6215 F Value 0.03 F Value 0.03	Pr > F 0.8833 Pr > F 0.8833 Pr > F	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square 0.013616 Parameter Intercept	Dependent Variation DF	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 19.129823 19.129823 19.129823 19.129827 Standar Erro 35.5423259	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059	Pr > F 0.8833 Pr > F 0.8833 Pr > F	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square 0.013616	Dependent Variate Control DF 1 2 360 3 365 Coeff Var 9.303373 DF 1 49. DF Typ 1 49. Estimate	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 19.129823 19.129823 19.129823 19.129827 Standar Erro	13 t	F Value 0.03 2_DM Mean 456.6215 F Value 0.03 F Value 0.03	Pr > F 0.8833 Pr > F 0.8833 Pr > F	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square 0.013616 Parameter Intercept month	Dependent Variable Coeff Var 9.303373 DF 1 49. Estimate 461.3565965 -3.1567168	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 De III SS 82430523 Standar Erro 35.5423259 18.9981723	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059	Pr > F 0.8833 Pr > F 0.8833 Pr > F	14, 2018
Source Model Error Correcte Source month Source	d Total R-Square 0.013616 Parameter Intercept month	Dependent Variation DF	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 De III SS 82430523 Standar Erro 35.5423259 18.9981723	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059	Pr > F 0.8833 Pr > F 0.8833	14, 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.013616 Parameter Intercept month	Dependent Variable Coeff Var 9.303373 DF 1 49. Estimate 461.3565965 -3.1567168	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 De III SS 82430523 Standar Erro 35.5423259 18.9981723	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059 0.8833	Pr > F 0.8833 Pr > F 0.8833 Pr > F 0.8833	173 14, 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.013616 Parameter Intercept month	DF 1 49. Coeff Var 9.303373 DF 1 49. DF 1 49. DF 1 49. DF 1 Typ 1 49. Estimate 461.3565965 -3.1567168 (b) (4) Trial F597,	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 Standar Erro 35.5423259 18.9981723 stability f	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059 0.8833	Pr > F 0.8833 Pr > F 0.8833 Pr > F 0.8833	173 14, 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.013616 Parameter Intercept month	DF 1 49. DF Typ 1 49. Estimate 461.3565965 -3.1567168 (b) (4) Trial F597,	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 Standar Erro 35.5423259 18.9981723 stability f Orm=B500pelle GLM Procedure riable: pc_0m	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059 0.8833	Pr > F 0.8833 Pr > F 0.8833 Pr > F 0.8833	173 14, 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.013616 Parameter Intercept month	Dependent Variation of The Control o	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 Standar Erro 35.5423259 18.9981723 Stability f Orm=B500pelle GLM Procedure riable: pc_0m Sum of	13 t	F Value	Pr > F 0.8833 Pr > F 0.8833	173 14, 2018
Source Model Error Correcte Source month Source month	d Total R-Square 0.013616 Parameter Intercept month	Dependent Variation of The Control o	orm=B500pelle GLM Procedure Lable: U_kg_8 Sum of Squares 19.824305 19.305522 19.129827 Root MSE 42.48120 Type I SS 82430523 Standar Erro 35.5423259 18.9981723 stability f Orm=B500pelle GLM Procedure riable: pc_0m	13 t	F Value 0.03 E_DM Mean 456.6215 F Value 0.03 F Value 0.03 Pr > t 0.0059 0.8833	Pr > F 0.8833 Pr > F 0.8833 Pr > F 0.8833	173 14, 2018

BASF Enzymes LLC Page 47 of 56

Error Corrected	d Total	2	147.9376550 149.2445247	73.9688275			
	R-Square 0.008757			. – – –	is Mean 2.58691		
Source month		DF 1	Type I SS 1.30686974	Mean Square 1.30686974	F Value 0.02	Pr > F 0.9064	
Source month		DF 1	Type III SS 1.30686974	Mean Square 1.30686974	F Value 0.02	Pr > F 0.9064	
			Standar	rd			
	Parameter Intercept month	Estimate 93.35378323 -0.51124744	7.1957056	12.97	Pr > t 0.0059 0.9064		
		(b)(4) Trial F5	597, stability f		:26 Wednesday	y, March 1	174 4, 2018
			_form=B500pelle				
			ne GLM Procedure ariable: pc_Om_8 Sum of				
Source		DF	Squares	Mean Square		Pr > F	
Model Error		1 2	2.0398364 147.7670968	2.0398364 73.8835484	0.03	0.8833	
Corrected	d Total	3	149.8069332	7010000404			
	R-Square 0.013616	Coeff Var 9.303373	Root MSE 8.595554	pc_0m_88_pc	_DM Mean 92.39180		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	2.03983644	2.03983644	0.03	0.8833	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	2.03983644	2.03983644	0.03	0.8833	
			Standar	rd			
	Parameter	Estimate			Pr > t		
	Intercept	93.34988386					
	month	-0.63872317	3.8440486	31 -0.17	0.8833		
			597, stability f	13	:26 Wednesday		
			r_torm=0250masr ne GLM Procedure				
		Number of Obs	servations Read servations Used	4 4			
		(b)(4) Trial F5	597, stability f		:26 Wednesday	y, March 1	176 4, 2018
			_				
			ne GLM Procedure Variable: U_kg_ Sum of				
Source		DF	Squares	Mean Square			
Model Error			336.2000000 417.8000000	336.2000000 208.9000000	1.61	0.3323	
Corrected	d Total		754.0000000	200.000000			
	R-Square 0.445889				s Mean 8.0000		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	336.2000000	336.2000000	1.61	0.3323	
Source month			Type III SS 336.2000000	Mean Square 336.2000000	F Value 1.61	Pr > F 0.3323	

BASF Enzymes LLC Page 48 of 56

Standard

			Standar	d			
	Parameter	Estimate	Erro	r t Value	Pr > t		
	Intercept	305.7000000	12.0925597	0 25.28	0.0016		
	month	8.2000000	6.4637450	4 1.27	0.3323		
		(b)(4) Trial F597,	stability f	ands			177
		(b) (4) ITTAL F597	Stability I		3:26 Wednesday	/, March	
		Tr_1	orm=C250mash				
		-	GLM Procedure				
		Dependent Vari	able: U kg 8	8 pc DM			
		•	Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1 332	2.1094622	332.1094622		0.3411	
Error			2.9635766	216.4817883			
Corrected	d Total		5.0730389				
	R-Square	Coeff Var	Root MSE	U_kg_88_pc	DM Mean		
	0.434089		14.71332	_ 31	- 319.5822		
Source		DF 1	Type I SS	Mean Square	F Value	Pr > F	
month			2.1094622	332.1094622		0.3411	
Source		DF Typ	e III SS	Mean Square	F Value	Pr > F	
month		1 332	2.1094622		1.53	0.3411	
			Standar	d			
	Parameter	Estimate	Erro	r t Value	Pr > t		
	Intercept	307.3573043	12.3100467		0.0016		
	month		6.5799967		0.3411		
		(b)(4) Trial F597	stability f	eeds			178
			•		:26 Wednesday	, March	14, 2018
		Tr_1	orm=C250mash				
		-	GLM Procedure				
		Dependent Var	riable: pc Om	as is			
		•	Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1 35.	44020914	35.44020914	1.61	0.3323	
Error			04199696	22.02099848			
Corrected	d Total		48220611				
	R-Square	Coeff Var	Root MSE	pc_0m_as_	is Mean		
	0.445889		4.692654	. – – –	03.2468		
Source		DF 1	Type I SS	Mean Square	F Value	Pr > F	
month			44020914	35.44020914	1.61	0.3323	
Source		DF Typ	e III SS	Mean Square	F Value	Pr > F	
month			44020914	35.44020914	1.61	0.3323	
			Standar	d			
	Parameter	Estimate	Erro	r t Value	Pr > t		
	Intercept	99.25324675	3.9261557				
	month	2.66233766	2.0986185		0.3323		
		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.0020		
		(b)(4) Trial F597	stability f	eeds			179
		(0) (1)	,		:26 Wednesday	/. March	
		Tr_1	orm=C250mash				
		-	GLM Procedure				
		Dependent Varia					
		,	Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model			76275202	34.76275202		0.3411	
Error			31941171	22.65970585			
Corrected	d Total		08216373	500.0000			
3311 3310		3 30					
	R-Square	Coeff Var	Root MSE	pc_0m_88_pc	: DM Mean		
	उपवधा उ	22311 741		F 5 _ 5 5 5 _ p c	_======================================		

BASF Enzymes LLC Page 49 of 56

	0.434089	4.603923	4.760221		103.3949		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month			34.76275202		1.53	0.3411	
Source			Type III SS			Pr > F	
month		1	34.76275202	34.76275202	1.53	0.3411	
			Standa	and			
	Parameter	Estimate			Pr > t		
	Intercept	99.43974205	3.982686		0.0016		
	month	2.63676893	2.128835	1.24	0.3411		
		Total FF	07 -+	£aada			100
		(b) (4) IF1a1 F5	97, stability		:26 Wednesda	v March 14	180 L 2018
		Tr	form=C250pell	let			
			e GLM Procedur				
			ervations Read				
		Number of Obs	ervations Used	d 4			
		www.Trial E5	97, stability	foods			181
		(0) (4) 11141 13	er, stability		:26 Wednesda	v. March 14	
		Tr	_form=C250pell	Let			
			e GLM Procedur				
		Dependent	Variable: U_k@	g_as_is			
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model		1	92.450000	92.450000	0.03	0.8799	
Error			6316.300000	3158.150000			
Correcte	d Total	3	6408.750000				
	D. 0	055 11-	D+ M	NE 11 los es 4			
	R-Square 0.014426		r Root MS 7 56.1974		s меап 9.7500		
	0.014420	22.3014	30.137-	72 27	3.7500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	92.45000000	92.45000000	0.03	0.8799	
Source		DE	Type III SS	Moon Squano	F Value	Dn > E	
month			92.45000000	Mean Square 92.45000000	0.03	Pr > F 0.8799	
		·		021.10000000	0.00	0.0.00	
			Standa	ard			
	Parameter	Estimate		ror t Value	Pr > t		
	Intercept month	243.3000000 4.3000000			0.0354 0.8799		
	morren	4.000000	23.102230	0.17	0.0755		
		(b)(4) Trial F5	97, stability	feeds			182
					:26 Wednesda		
			_form=C250pell e GLM Procedur	let			
			ariable: U_kg_				
		2000	Sum of	_00_p0_5			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	84.147059	84.147059	0.03	0.8870	
Error Correcte	d Total		6509.670383 6593.817442	3254.835192			
Correcte	d lotal	3	0593.817442				
	R-Square	Coeff Var	Root MSE	U_kg_88_pc	_DM Mean		
	0.012762	22.55008	57.05116	5	252.9976		
Source		DF	Type I ee	Mean Square	F Value	Pr > F	
month			Type I SS 84.14705937	84.14705937	0.03	0.8870	
		•			2.00		
Source			Type III SS	•	F Value	Pr > F	
month		1	84.14705937	84.14705937	0.03	0.8870	
			Standa	ard			
	Parameter	Estimate		ror t Value	Pr > t		
	Intercept	246.8440119			0.0354		

BASF Enzymes LLC Page 50 of 56

month 4.1023666 25.51405570 0.16 0.8870

(b)(4) Trial F597, stability feeds 183 13:26 Wednesday, March 14, 2018 ----- Tr_form=C250pellet ------The GLM Procedure Dependent Variable: pc_0m_as_is Sum of Source DF Squares Mean Square F Value Pr > F 17.176353 17.176353 0.03 0.8799 Mode1 1 2 1173.509958 Frror 586.754979 3 Corrected Total 1190.686311 Coeff Var Root MSE R-Square pc_Om_as_is Mean 0.014426 22.50147 24.22303 107.6509 Source DF Type I SS Mean Square F Value Pr > Fmonth 17.17635256 17.17635256 0.03 0.8799 1 F Value DF Type III SS Mean Square Pr > F Source month 17.17635256 17.17635256 0.03 0.8799 1 Standard Standard

Error t Value Pr > |t| Parameter Intercept month (b)(4) Trial F597, stability feeds 184 13:26 Wednesday, March 14, 2018 ------ Tr_form=C250pellet ------The GLM Procedure Dependent Variable: pc_Om_88_pc_DM Sum of Mean Square F Value Pr > F DF Squares Source 15.178686 0.03 Model 1 15.178686 0.8870 1174.232864 2 587.116432 Error 3 1189.411550 Corrected Total R-Square Coeff Var Root MSE pc_Om_88_pc_DM Mean 107.4519 0.012762 22.55008 24.23049 Type I SS Source DF Mean Square F Value Pr > Fmonth 15,17868597 15.17868597 0.03 0.8870 1 Type III SS Mean Square F Value 15.17868597 15.17868597 0.03 Source DF Pr > F month 0.8870 1 Standard Estimate Error t Value 104.8383585 20.27267872 5.17 1.7423367 10.83620258 0.16 Error t Value |Pr > |t|Parameter 0.0354 Intercept month 0.8870 (b)(4) Trial F597, stability feeds 13:26 Wednesday, March 14, 2018 ----- Tr_form=C500mash ------The GLM Procedure Number of Observations Read 4 Number of Observations Used (b)(4) Trial F597, stability feeds 186 13:26 Wednesday, March 14, 2018 ----- Tr_form=C500mash The GLM Procedure Dependent Variable: U_kg_as_is Sum of Source DF Squares Mean Square F Value Pr > F 4836.050000 4836.050000 3.30 Model 1 0.2109 Error 2930.700000 1465.350000

BASF Enzymes LLC Page 51 of 56

	R-Square 0.622661	Coeff V 7.3721	ar Root MS 50 38.2798	SE U_kg_as_i: 9 519	s Mean 9.2500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	4836.050000	4836.050000	3.30	0.2109	
Source		DF 1	Type III SS 4836.050000		F Value 3.30	Pr > F	
month		I	4836.050000	4836.050000	3.30	0.2109	
			Standa	ırd			
	Parameter	Estimat		or t Value	Pr > t		
	Intercept month	565.900000 -31.100000			0.0032 0.2109		
	IIIOITEII	-31.100000	0 17.119267	-1.62	0.2109		
	(_{b)(4)} Trial F	597, stability				1
			Tr_form=C500mas	sh	:26 Wednesday		
			he GLM Procedur				
		Dependent	Variable: U_kg_ Sum of	_88_pc_DM			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	5040.859999	5040.859999	3.57		
Error		2		1413.767494			
Corrected	d Total	3	7868.394987				
	R-Square	Coeff Va	r Root MSE	U_kg_88_pc	DM Mean		
	0.640647	7.21391			- 521.2162		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	5040.859999	5040.859999	3.57	0.1996	
0		DE	T III 00	Maan Course	F	D= > E	
Source month		DF 1	Type III SS 5040.859999		F Value 3.57	Pr > F 0.1996	
morren			0010100000	0010100000	0107	011000	
	D	Fatimat	Standa		D 1+1		
	Parameter Intercept	Estimat 568.843736		or t Value 137 18.08	Pr > t 0.0030		
	month	-31.751724			0.1996		
	_	T E	507 - 4-6-1-1-4				1
			597, stability	13	:26 Wednesday		
			Tr_form=C500mas	13 sh			
			Tr_form=C500mas he GLM Procedur	13 sh re			
			Tr_form=C500mas	13 sh re			
Source		T	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares	13 sh re m_as_is Mean Square	F Value	Pr > F	
Model		T Dependent DF 1	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961	13 sh			
	is.	T Dependent DF	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961 100.1329092	13 sh re m_as_is Mean Square	F Value	Pr > F	
Model Error	is.	T Dependent DF 1 2	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961	13 sh	F Value	Pr > F	
Model Error	is.	T Dependent DF 1 2	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961 100.1329092 265.3657053 ar Root MS	13 sh e e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_i	F Value 3.30	Pr > F	
Model Error	i Total R-Square	T Dependent DF 1 2 3	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961 100.1329092 265.3657053 ar Root MS	13 sh e e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_i	F Value 3.30 is Mean	Pr > F	
Model Error Corrected Source	i Total R-Square	T Dependent DF 1 2 3 Coeff V 7.3721 DF	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961 100.1329092 265.3657053 ar Root MS 50 7.07576	13 sh e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_i 55 99 Mean Square	F Value 3.30 is Mean 5.97967 F Value	Pr > F 0.2109 Pr > F	
Model Error Corrected	i Total R-Square	DF 1 2 3 Coeff V 7.3721	Tr_form=C500mas he GLM Procedur Variable: pc_0	13 sh e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_i	F Value 3.30 is Mean 5.97967	Pr > F 0.2109	
Model Error Corrected Source month	i Total R-Square	T Dependent DF 1 2 3 Coeff V 7.3721 DF 1	Tr_form=C500mas he GLM Procedur Variable: pc_0	13 sh e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_; 5 99 Mean Square 165.2327961	F Value 3.30 is Mean 5.97967 F Value 3.30	Pr > F 0.2109 Pr > F 0.2109	
Model Error Corrected Source	i Total R-Square	T Dependent DF 1 2 3 Coeff V 7.3721 DF	Tr_form=C500mas he GLM Procedur Variable: pc_0 Sum of Squares 165.2327961 100.1329092 265.3657053 ar Root MS 50 7.07576	13 sh e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_i 55 99 Mean Square	F Value 3.30 is Mean 5.97967 F Value	Pr > F 0.2109 Pr > F	
Model Error Corrected Source month	i Total R-Square	T Dependent DF 1 2 3 Coeff V 7.3721 DF 1 DF	Tr_form=C500mas he GLM Procedur Variable: pc_0	13 sh e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_ 55 99 Mean Square 165.2327961 Mean Square 165.2327961	F Value 3.30 is Mean 5.97967 F Value 3.30 F Value	Pr > F 0.2109 Pr > F 0.2109 Pr > F	
Model Error Corrected Source month	Total R-Square 0.622661	T Dependent DF 1 2 3 Coeff V 7.3721 DF 1 DF 1	Tr_form=C500mas he GLM Procedur Variable: pc_0	13 sh e m_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_ 55 99 Mean Square 165.2327961 Mean Square 165.2327961	F Value 3.30 is Mean 5.97967 F Value 3.30 F Value 3.30	Pr > F 0.2109 Pr > F 0.2109 Pr > F	
Model Error Corrected Source month Source	i Total R-Square	T Dependent DF 1 2 3 Coeff V 7.3721 DF 1 DF	Tr_form=C500mas he GLM Procedur Variable: pc_0	13 sh re lm_as_is Mean Square 165.2327961 50.0664546 SE pc_0m_as_ S5 99 Mean Square 165.2327961 Mean Square 165.2327961 ard for t Value	F Value 3.30 is Mean 5.97967 F Value 3.30 F Value	Pr > F 0.2109 Pr > F 0.2109 Pr > F	

3 7766.750000

Corrected Total

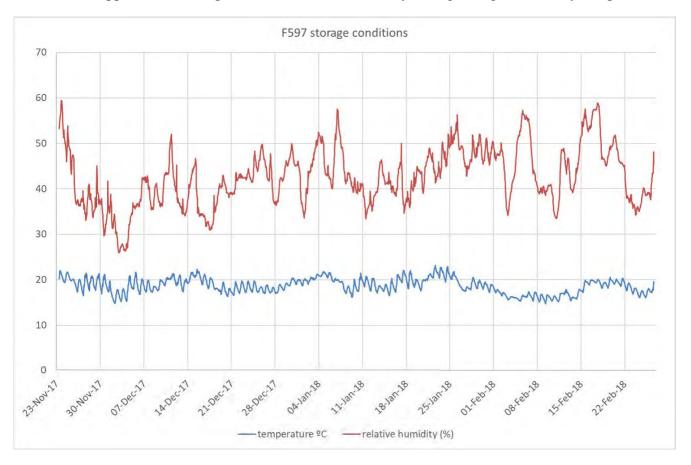
BASF Enzymes LLC Page 52 of 56

13:26 Wednesday, March 14, 2018

				sh			
			ne GLM Procedur				
		Dependent va	ariable: pc_Om_ Sum of	_88_pc_DM			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model			170.1234330			0.1996	
Error			95.4261692	47.7130846			
Correcte	ed Total	3	265.5496022				
	R-Square	Coeff Var		pc_0m_88_pc	_		
	0.640647	7.213917	6.907466		95.75195		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	170.1234330	170.1234330	3.57	0.1996	
Source		DF	Type III SS	Mean Square	F Value	Pr > F	
month		1	170.1234330	170.1234330	3.57	0.1996	
	Danamatan	Fatimat	Standa		الما حالما		
	Parameter	Estimate					
	Intercept month	104.5015499 -5.8330684			0.0030 0.1996		
	morren	3.000000-	0.003112	1.03	0.1550		
		(b)(4) Trial F5	597, stability	feeds			190
			,		:26 Wednesday	y, March 1	4, 2018
		T1	_form=C500pell	.et			
			ne GLM Procedur				
			servations Read				
		Number of Obs	servations Used	l 4			
		Thial E	597, stability	foods			191
		(b) (4) IIIaI I	Jar, Stability		:26 Wednesday	v. March 1	
		Tr	form=C500pell	.et			-
			ne GLM Procedur				
		Dependent	Variable: U_kg	_as_is			
			Sum of				
Source		DF	Squares				
Model			14.450000	14.450000	0.00	0.9550	
Error Correcte	od Total	2 3	7122.300000 7136.750000	3561.150000			
Correcte	u iotai	3	7130.750000				
	R-Square	e Coeff Va	ar Root MS	SE U_kg_as_i	s Mean		
	0.00202				6.7500		
Source		DF	Type I SS		F Value	Pr > F	
month		1	14.45000000	14.45000000	0.00	0.9550	
•		5.5	T		= \ .	5 . 5	
Source month		DF 1	Type III SS 14.45000000	Mean Square 14.45000000	F Value 0.00	Pr > F	
month		1	14.45000000	14.45000000	0.00	0.9550	
			Standa	ırd			
	Parameter	Estimate			Pr > t		
	Intercept	444.2000000	49.927998	816 8.90	0.0124		
	month	1.7000000	26.687637	759 0.06	0.9550		
		(b) (4) Trial F5	597, stability		- 00 W- d d		192
		т.	form-CEOOnoll	13 et	:26 Wednesday		
			ne GLM Procedur				
			/ariable: U_kg_				
		F - 11. A - 11.	Sum of	- -' -			
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	8.243989	8.243989	0.00	0.9665	
Error		2	7355.392316	3677.696158			
Correcte	ed Total	3	7363.636305				
	R-Square	Coeff Var	Deat 1105		B		
	R-Sallare						
	0.001120				_DM Mean 451.6885		

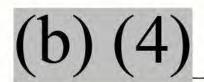
BASF Enzymes LLC Page 53 of 56

Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	8.24398897	8.24398897	0.00	0.9665	
Source			Type III SS			Pr > F	
month		1	8.24398897	8.24398897	0.00	0.9665	
			Standa	rd			
	Parameter	Estimate			Pr > t		
	Intercept	449.7624441			0.0125		
	month	1.2840552	27.120826	0.05	0.9665		
		ரு <u>ம</u> ு Trial F5	97, stability	feeds			193
			•	13	3:26 Wednesday		
			_				
			e GLM Procedur Variable: pc_0				
		Dependent	Sum of	III_a5_15			
Source		DF	Squares	Mean Square		Pr > F	
Model		1	0.6979833	0.6979833	0.00	0.9550	
Error			344.0309141	172.0154571			
Correcte	ed Total	3	344.7288975				
	R-Square	Coeff Va	r Root MS	E pc_0m_as_	is Mean		
	0.002025	13.3576	7 13.1154	7 9	8.18681		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	0.69798334	0.69798334	0.00	0.9550	
Source				Mean Square		Pr > F	
month		1	0.69798334	0.69798334	0.00	0.9550	
			Standa	rd			
	Parameter	Estimate	Err	or t Value	Pr > t		
	Intercept	97.62637363			0.0124		
	month	0.37362637	5.865414	85 0.06	0.9550		
		(b)(4) Trial F5	97, stability	feeds			194
			•	13	3:26 Wednesday	•	•
			_form=C500pell e GLM Procedur				
			riable: pc_0m_				
		·	Sum of				
Source		DF	Squares	Mean Square	F Value	Pr > F	
Model		1	0.3880504	0.3880504	0.00	0.9665	
Error			346.2235617	173.1117809			
Correcte	ed Total	3	346.6116122				
	R-Square	Coeff Var	Root MSE	pc_0m_88_pc	_DM Mean		
	0.001120	13.42607	13.15720		97.99738		
Source		DF	Type I SS	Mean Square	F Value	Pr > F	
month		1	0.38805044	0.38805044	0.00	0.9665	
				•		-	
Source			Type III SS	Mean Square	F Value	Pr > F	
month		1	0.38805044	0.38805044	0.00	0.9665	
			Standa	rd			
	Parameter	Estimate			Pr > t		
	Intercept	97.57949751	11.008099	14 8.86	0.0125		
	month	0.27858587	5.884076	49 0.05	0.9665		


BASF Enzymes LLC Page 54 of 56

Appendix 6 – Temperature profile in the conditioner during pelleting

BASF Enzymes LLC Page 55 of 56


Appendix 7 – Temperature and relative humidity during storage of stability samples

BASF Enzymes LLC Page 56 of 56

Appendix 22: Homogeneity Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Feed

BASF Enzymes LLC Page 1 of 30

(b)(4)

Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feed

Unique Study Code: F598

FINAL REPORT Date: 10th May 2018

Study sponsor: Novus International Inc. and BASF Enzymes LLC.

Signed by Study Director, Study Sponsor and Study Monitor:

(b)(6)	MAY 14, 2018	Par Van Don 10 May 2018	11, May 2018
Study Director		ponsors	Study Monitor
(b)(6), (b) (4)	Gavin Bowman Director, Global Regulatory Affairs, Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

The report is confidential. Nothing from this issue may be reproduced and/or published without previous consent from (b) (4) only if it is accorded by the contracting parties on the contract signed to involve this activity.

(b) (4)

Page 1 of 29

Final report F598/ Organic code: 0602 / Activity code: A2369

Date: 10th May 2018

Rev. 1

Table of contents

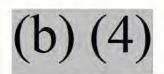
1	Summary	3
	Summary Table 1. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds	3
2	Quality statement	
3	Study title and unique study code	
4	Study objective	
5	Study location	
6	Important dates & duration of the study	
7	Test products	
	Table 1. Details of test product.	
8	Key study personnel	5
9	Material and methods	6
9		
	Table 2. Experimental Treatments.	6
9	2 Treatment application	6
9	3 Detailed study design	7
	Figure 1. Basic study design	7
9	4 Feed composition	7
	Table 3. Composition (g/kg) of the basal diet	7
	Table 4. Composition of vitamin-mineral premix	8
	Table 5. Calculated analyses of the basal diet (g/kg)	
9	5 Feeds manufacture	8
	9.5.1 Short description of the process	9
9	6 Feeds samples at manufacture	9
9	7 Feed sampling plan	10
	Table 7. Sampling plan	10
9	8 Statistics	10
10	Results	
	Table 7. Analyzed values of experimental diets	
	Table 8. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds	11
11	Discussion	11
12	Conclusions	12
13	References	13
14	List of Appendices	
	Appendix 1- Curricula vitae of Study Director & Study Monitor	
	Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)	15
	Appendix 3 - Relevant laboratory reports	
	Appendix 4 - Raw data	
	Appendix 5 - Statistical printouts	25
	Appendix 6 – Temperature profile in the conditioner during pelleting	29

1 Summary

The objective of this study was to evaluate the Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds.

For each batch, the homogeneity of the test article was determined by measuring phytase activity in 10 subsamples taken at different location points of the mixer (mash) or at bagging (pelleted).

Results are presented next in Summary Table 1.


S	Summary Table 1. Homogeneity of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feeds								.s				
	U/kg as is								U/kg	88% DM			
		N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr	form			1		/	4 \			/-		/	4
A250	mash	10	321		\sim		1 \	10	323		\sim		1 \
	pellet	10	295			1 4		10	298			1 4	
B250	mash	10	310			\ _	T /	10	311	\ \		\ _	T /
	pellet	10	306					10	308	-		\	
C250	mash	10	292					10	294				
	pellet	10	269					10	273				

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

According the results of the present homogeneity study in feeds, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

• Presented good mixing homogeneity (CV \sim 7 to 15%), actual CVs below to 2× the CV of the method itself (10%) for all 3 batches tested both in mash and pelleted form

BASF Enzymes LLC Page 4 of 30

2 Quality statement

The study, Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feed (Unique Study Code: F598), was conducted in compliance with current quality standards and regulatory requirements as applicable for US animal food requirements.

Procedures, documentation, equipment and records were examined in order to assure that the study was performed in accordance with the regulations specified herein and with the protocol and relevant Standard Operating Procedures.

Signed and dated:

(b)(6)	MAY 14, 2018	low Var 8018	Drew 7018
Study Director		ponsors	Study Monitor
(b) (4), (b)(6)	Gavin Bowman Director, Global Regulatory Affairs Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

3 Study title and unique study code

Homogeneity evaluation of CIBENZA® PHYTAVERSE® G10 phytase enzyme in feed.

Unique study code: F598

4 Study objective

To evaluate the homogeneity of three batches of CIBENZA® PHYTAVERSE® G10 phytase enzyme in mash and pelleted feeds.

5 Study location

(b)(4)

6 Important dates & duration of the study

Date of feeds manufacture: 23rd and 24th November 2017

Duration of study: 2 days at feed mill, 7th December 2017 end of analysis

7 Test products

	Table 1. Details of test product								
Code	Product	Provider	Lot no	Active	Activity (U/g) [†]				
Code	Troduct	Tiovidei	Manufacture Date	substance	Guaranteed	Analysed			
A	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P23941 Made: 08 October 2014	6-phytase	10,000	13,951			
В	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P26641 Made: 08 October 2014	6-phytase	10,000	13,742			
С	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: RO15271001 Made: 28 September 2015	6-phytase	10,000	13,522			

[†] One phytase unit is the amount of enzyme that releases 1 μmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

8 Key study personnel

Study Director: (b) (4), (b)(6)

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager, Specialty Products, Novus International, Inc., 20 Research Park Dr., St. Charles, MO 63304, United States of America, Tel: +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com

BASF Enzymes LLC Page 6 of 30

Study Sponsors: 1) Gavin Bowman, Director, Global Regulatory Affairs, Novus International, 20 Research Park Dr., St. Charles, MO 63304, United States of America Tel: +1 636 926 7402, E-mail: gavin.bowman@novusint.com

2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858 431-8590, Mobile: +1-858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@basf.com. Postal Address: BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121 United States

Feed mill & supervision of diet manufacture:

(b) (4), (b)(6)

Feed analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme):

(b) (4), (b)(6)

Optional/back-up facility for feed analysis (DM and CIBENZA® PHYTAVERSE® G10 phytase enzyme): Drew Lichtenstein, Novus International, Inc., 20 Research Park Drive, Saint Charles, MO, 63304; United States of America.

9 Material and methods

9.1 Experimental treatments

Number of treated and control groups: Corn/soya based diet was used for homogeneity purposes.

CIBENZA® PHYTAVERSE® G10 phytase enzyme from each batch was added in serial mixing steps to the mash feed to provide 250 and 500 U/kg feed as detailed in Table 2, that was later pelleted.

	Table 2. Experimental Treatments							
		CIBENZA	® PHYTAVERSE® (G10 phytase enzyme				
Treatment	Product	U/kg feed	mg/kg feed [†]	g to add to 200 kg feed [†]				
A250	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	/ ◀ \					
A500	batch P23941	500						
B250	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250	$I \cap I$					
B500	batch P26641	500	\ <i> </i> 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
C250	CIBENZA® PHYTAVERSE® G10 phytase enzyme	250		''				
C500	batch RO15271001	500						

[†] inclusion based on actual activity of each batch

9.2 Treatment application

CIBENZA® PHYTAVERSE® G10 phytase enzyme was mixed with a fraction of 10 kg soya in serial mixing steps, mash feed was then produced and later pelleted.

BASF Enzymes LLC Page 7 of 30

9.3 Detailed study design

Figure 1. Basic study design

For each batch and dose of enzyme:

The homogeneity of the test article in the mash and pelleted feeds was determined by measuring phytase activity in:

- 10 subsamples taken at different places of the mixer for mash feed
- 10 subsamples taken at different times at bagging for pelleted feed

The amount of endogenous phytase in blank feed has been determined in other studies being values below the level of quantitation.

Feeds were produced as follows:

- Firstly, a fraction of 10 kg soya from the feed was mixed in serial mixing steps with the corresponding amount of CIBENZA® PHYTAVERSE® G10 phytase enzyme depending on actual activity of each batch as detailed in Table 2.
- Secondly, a 200 kg batch of mash feed was produced by including the 10 kg soya containing CIBENZA® PHYTAVERSE® G10 phytase enzyme prepared as described above.
- Mash feed was then pelleted and bagged.

9.4 Feed composition

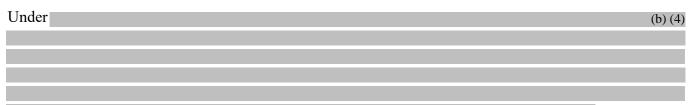
Feeds did not contain any enzymes, antibiotics or any other growth promoters. The ingredients, premix and the calculated and actual analyses of the diets are presented in Table 3 to Table 5.

Table 3. Composi	Table 3. Composition (g/kg) of the basal diet					
Corn	577					
Soybean meal 48%	373					
Fat blend	13.69					
Dicalcium phosphate	6.81					
Calcium carbonate	12.12					
Methionine Hydroxy Analogue	1.75					
Premix Min-Vit	10.00					
Sodium chloride	1.94					
L-lysine HCL	2.91					
L-threonine	0.65					

BASF Enzymes LLC Page 8 of 30

Table 4. Compo	sition of	vitamin-mineral j	premix
	Units	per kg of vitamin- mineral premix	when premix added at 10 kg/ton feed, results in the following values per kg of feed
Vitamins, provitamins and similar			
	IU	1 000 000	
	IU	350 000	
	mg	3 000	I h I I I
(b)(4)	mg	210	(b)(4)
\	mg	855	$(\cup) (\cdot)$
()	mg	470	
	mg	5	
	mg	300	
	mg	2 000	
	mg	1 520	
	mg	6 710	
	mg	150	
	mg	25	
	mg	70 000	
		6.500	
	mg	6 500	
	mg	150	
	mg	1 500	
	mg	8 000	
	mg	8 500	
	mg	20	
		50	
	g	150	
	g	130	
	mg	5 000	
	ate	up to 1 kg	
	ate	up to 1 Kg	

Table 5. Calculated analyses of the basal diet (g/kg)			
Metabolizable Energy kcal/kg	2864		
Dry Matter	868		
Ash	58		
Crude Fiber	27		
Ether Extract	41		
Crude Protein	227		
Ca	9.6		
P	5.0		
Dig lysine	14.1		
Dig SAA	9.4		
Dig threonine	8.4		


9.5 Feeds manufacture

(b) (4)

BASF Enzymes LLC Page 9 of 30

9.5.1 Short description of the process

9.6 Feeds samples at manufacture

For each CIBENZA® PHYTAVERSE® G10 phytase enzyme batch:

- 10 grab samples of mash feed (~1.1 kg each) were taken from several points of the mixer. From these 10 grab mash feed samples:
 - o Triplicate (NOVUS, (b) (4)
- 10 grab samples of pelleted feed (~1.1 kg each) were taken at bagging. From these 10 grab pelleted feed samples:
 - o Triplicate (NOVUS, (b) (4)

Homogeneity samples were placed in zip-lock plastic bags labelled with the unique study code (F598), treatment code (A250 / A500 / B250 / B500 / C250 / C500), feed form (mash / pellet), date of manufacture and the analysis required (DM, phytase activity).

BASF Enzymes LLC Page 10 of 30

9.7 Feed sampling plan

_		Table 6. Sampling	plan		
Treatment	Feed form	n at compling		Final Samples	
Treatment	reatment reed form n at sa	n at sampling	NOVUS	(b) (4) lab	(b) (4) backup
A250	mash	10 × ~1.1 kg	10 × 250g	/ 4 \	/ 4 >
	pellet	10 × ~1.1 kg	10 × 250g		\mathcal{L}
A500	mash	10 × ~1.1 kg	10 × 250g	\mathbf{I}	
	pellet	10 × ~1.1 kg	10 × 250g	\mathbf{U}	\ T /
B250	mash	10 × ~1.1 kg	10 × 250g		
	pellet	10 × ~1.1 kg	10 × 250g		
B500	mash	10 × ~1.1 kg	10 × 250g		
	pellet	10 × ~1.1 kg	10 × 250g		
C250	mash	10 × ~1.1 kg	10 × 250g		
	pellet	10 × ~1.1 kg	10 × 250g		
C500	mash	10 × ~1.1 kg	10 × 250g		
	pellet	10 × ~1.1 kg	10×250 g		

For homogeneity analysis, A250, B250 and C250 samples were analyzed in (b) (4) lab within 10 working days after production of the feeds containing CIBENZA® PHYTAVERSE® G10 phytase enzyme; the A500, B500 and C500 homogeneity samples were kept frozen serving as back up samples. The 250 U/kg samples were refrigerated (4°C) until tested to make sure they reflected accurate activity values at the time the feed was manufactured. One set of samples was dispatched to NOVUS (b) (4) as backup samples. A second set of samples was sent to (b) (4) lab for analysis. A third set of samples was sent (b) (4) lab for storage as backup samples.

9.8 Statistics

For each CIBENZA® PHYTAVERSE® G10 phytase enzyme batch:

---1- -----

• Homogeneity: Mean CIBENZA® PHYTAVERSE® G10 phytase enzyme activity (arithmetic mean) and variation (standard deviation) was used to express the result as a unique value described as the coefficient of variation.

Calculations:

	wnere:	
$\%CV = \frac{s}{y}x \ 100$	%CV= coefficient of variation	Σ = summation
$\overline{y} = \frac{\sum y_i}{n}$	s= standard deviation	y_i = individual result from
$S = S^2$	s^2 = variance	each sample
$S^2 = \frac{\sum (y_i^2) - n\overline{y}^2}{n-1}$	\overline{y} = mean	n= total number of samples

BASF Enzymes LLC Page 11 of 30

10 Results

The results are summarized in Table 7 and Table 8. Values from proximate analysis were within expected ranges.

	Table 7. An	alyzed values of exper	imental diets	
Sample	Dry matter (%)	Crude protein (%)	Ether extract (%)	Ash (%)
A250 pellet	87.2	22.8	4.1	5.5
A500 pellet	87.2	22.9	4.0	5.5
B250 pellet	87.2	23.0	4.0	5.5
B500 pellet	87.1	23.0	3.9	5.4
C250 pellet	86.7	23.2	3.8	5.4
C500 pellet	86.9	23.0	3.6	5.5

	Table	8. H	omogen	eity of	CIBENZA	® PHY	ΓAVER	RSE®	G10 phy	tase en	zyme in fe	eds	
				U	/kg as is					U/kg	g 88% DM		
		N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min
Tr	form			, _		-	4			/1	ı 💉	/	4 \
A250	mash	10	321		_ \		4 \	10	323		\sim		1 \
	pellet	10	295		7 1			10	298			1 4	+)
B250	mash	10	310	1		\ -	т /	10	311	1		1	•
	pellet	10	306					10	308			•	
C250	mash	10	292					10	294				
	pellet	10	269					10	273				

[†] One phytase unit is the amount of enzyme that releases 1 µmol of inorganic phosphate from phytate per minute under the conditions of the assay (Phytate concentration: 5.0 mM, pH: 5.5, Temperature: 37°C, Incubation time: 30 min) (ISO 30024:2009). Normal analytical variation for the method is 10%.

11 Discussion

Dry matter was quite similar among samples (87.3%±0.7) and the correction for constant DM (88%) did not change the results of the coefficients of variation for homogeneity. Mean phytase activity ranged from 292 to 321 U/kg (as-is) for mash feeds and from 269 to 306 U/kg (as-is) for pelleted feeds. Considering mash and pellets for each enzyme batch, the average activities were: 308 U/kg (as-is) for both A250 and B250, and 281 U/kg (as-is) for C250.

The overall, homogeneity of mixing for the three CIBENZA® PHYTAVERSE® G10 phytase enzyme batches tested expressed as Coefficients of Variation were on average 9%, 12% and 10% when standardized at 88% DM content. The average CV values for mash feeds were 12% and that for pelleted feeds was 9%. Individually per enzyme batch and feed form, the CV values were 8%, 15% and 12% for mash A250, B250 and C250 respectively, and 11%, 8% and 8% for pelleted A250, B250 and C250 respectively. CV of homogeneity slightly increased by pelleting for A250, while it decreased for B250 and C250. All these small variations are considered within the expected fluctuations due to the method variability itself.

All these CVs of the homogeneity were close to $1\times$ and always <1.5× the CV of the normal analytical variation of the method itself (normal analytical CV is 10%), and therefore the CVs of the homogeneity are considered good (CV<2×analyticalCV).

Per the protocol, back up samples of A500, B500, and C500 were not tested, because the lowest inclusion rate of 250 U/kg demonstrated good homogeneity.

BASF Enzymes LLC Page 12 of 30

12 Conclusions

According the results of the present homogeneity study in feeds, CIBENZA® PHYTAVERSE® G10 phytase enzyme:

• Presented good mixing homogeneity (CV \sim 7 to 15%), actual CVs below to 2× the CV of the method itself (10%) for all 3 batches tested, and both in mash and pelleted form.

BASF Enzymes LLC Page 13 of 30

13 References

ISO 30024:2009. Animal feeding stuffs – Determination of phytase activity

SAS Institute Inc. 2012. Base SAS® 9.4 Guide to Information Maps. Cary, NC: SAS Institute Inc.

Statutory Instrument 1999 No. 1663. The Feeding Stuffs (Sampling and Analysis) Regulation 1999.

14 List of Appendices

Appendix 1 - Curricula vitae of Study Director & Study Monitor

Appendix 2 - Certificate of analysis of CIBENZA® PHYTAVERSE® G10 phytase enzyme used (3 batches)

Appendix 3 - Relevant laboratory reports

Appendix 4 - Raw data

Appendix 5 - Statistical printouts

Appendix 6 – Temperature profile in the conditioner during pelleting

BASF Enzymes LLC Page 14 of 30

Study Director:

(b)(6)

Study Monitor:

Name: Drew Lichtenstein

Qualifications: B.S. Biochemistry (Michigan State University 1982), PhD Biochemistry (University of

Wisconsin-Madison 1990)

Present Position: Research Manager, Specialty Products, Novus International

Experience: Over 35 years research experience in biochemistry and cell biology; more than 8 years of

experience in animal feed enzymes.

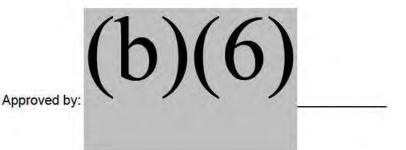
BASF Enzymes LLC Page 15 of 30

BASF Enzymes LLC Page 16 of 30

CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme (Test Article VR005)

Lot number: P23941

Date of Manufacture: October 8, 2014


Specification	Specification Limit	Test Result
Appearance	White to Beige granules	(b) (1
Bulk Density-untapped (g/cm ³)	≥ 0.50	(0) (4
Particle size (mesh)	<2% on 20 mesh <10% thru 140 mesh	
Activity (U/g)	NLT 10,000	
Loss on Drying (%)	≤ 12	
Lead (mg/kg)	≤5	
Arsenic (mg/kg)	< 2	
Cadmium (mg/kg)	< 0.5	
Mercury (mg/kg)	< 0.5	
Total Plate Count (cfu/g)	≤ 50,000	
Total Coliform (MPN/g)	≤ 30	
E. coli (/25g)	Absent	
Salmonella (/25g)	Absent	
Yeast and Mold (CFU/g)	Run and Record	
Staphylococcus aureus (/g)	Absent	
Production Organism (CFU/g)	Absent	
Antibiotic Activity (Zone of Inhibition)	Absent	
Mycotoxin Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B2 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol Diacetoxyscirpenol Zearalenone Sterigmatocystin	NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 3.0 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.5 ppm NMT 0.4 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm NMT 0.9 ppm	

PCBs	10,000 pg/g	(h) (1)
Dioxins	1 pg/g	(U)(4)

* Production organism testing was performed on the enzyme concentrate used to produce this

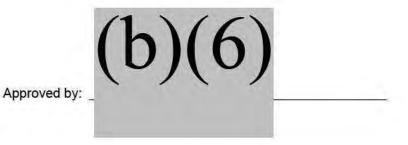
** Results of retesting performed in March 2017.

Date: March 29, 2017

CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme (Test Article VR005)

Lot number: P26641

Date of Manufacture: October 8, 2014


Specification Limit	Test Result
White to Beige granules	(b)(4)
≥ 0.50	(0) (1)
<2% on 20 mesh <10% thru 140 mesh	
NLT 10,000	
≤ 12	
≤5	
< 2	
< 0.5	
< 0.5	
≤ 50,000	
≤30	
Absent	
Absent	
Run and Record	
Absent	
23 80 30 5 7 5 7	
Absent	
NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 0.8 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm	
	White to Beige granules ≥ 0.50 <2% on 20 mesh <10% thru 140 mesh NLT 10,000 ≤12 ≤5 <2 <0.5 <0.5 <50,000 ≤30 Absent Absent Run and Record Absent

Sterigmatocystin	NMT 200 ppb	(b)(4)
PCBs	10,000 pg/g	(0) (1)
Dioxins	1 pg/g	

^{*} Production organism testing was performed on the enzyme concentrate used to produce this dry product.

^{**} Results of retesting performed in March 2017.

Date: March 29, 2017

CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme (Test Article VR005)

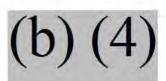
Lot number: RO15271001

Date of Manufacture: September 28, 2015

Specification	Specification Limit	Test Result
Appearance	White to Beige granules	(b)(4)
Bulk Density-untapped (g/cm ³)	≥ 0.50	$(\mathbf{U})(\mathbf{T})$
Particle size (mesh)	<2% on 20 mesh <10% thru 140 mesh	
Activity (U/g)	NLT 10,000	
Loss on Drying (%)	≤ 12	
Lead (mg/kg)	≤ 5	
Arsenic (mg/kg)	< 2	
Cadmium (mg/kg)	< 0.5	
Mercury (mg/kg)	< 0.5	
Total Plate Count (cfu/g)	≤ 50,000	
Total Coliform (cfu/g)	≤ 30	
E. coli (/25g)	Absent	
Salmonella (/25g)	Absent	
Yeast and Mold (CFU/g)	Run and Record	
The state of the s	Absent	
Staphylococcus aureus (/g)		
Production Organism (CFU/g)	Absent	
Antibiotic Activity (Zone of Inhibition)	Absent	
Mycotoxin Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Fumonisin B1 Fumonisin B3 Ochratoxin A Deoxynivalenol Acetyldeoxynivalenol Fusarenon X Nivalenol T-2 Toxin HT-2 Toxin Neosolaniol Diacetoxyscirpenol	NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 1.0 ppb NMT 0.1 ppm NMT 0.1 ppm NMT 0.1 ppm NMT 2.0 ppb NMT 3.0 ppm NMT 0.8 ppm NMT 0.4 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.2 ppm NMT 0.4 ppm NMT 0.4 ppm	
Diacetoxyscirpenol Zearalenone	NMT 0.4 ppm NMT 43.1 ppb	

Sterigmatocystin	NMT 200 ppb	(b) (4)
PCBs	10,000 pg/g	(0) (4)
Dioxins	1 pg/g	

^{*} Production organism testing was performed on the enzyme concentrate used to produce this dry product.


(b)(6)__

Date: March 29, 2017

^{**} Results of retesting performed in March 2017.

Appendix 3 - Relevant laboratory reports

BASF Enzymes LLC Page 23 of 30

CERTIFICATE OF ANALYSIS

Company:	Novus International Inc and BASF Enzymes LLC				
Type of sample:	F598 feeds				
Laboratory ref. :	172032 to 172037 172012 to 172021 172022 to 172031 172059 to 172068 172069 to 172078 172087 to 172096 172097 to 172106				
Reception date:	28th November 2017				
Analysis starting date:	1st December 2017				
Analysis finishing date:	22th March 2018				

Sample description: See Results section

Analysis performed:

- Moisture -dry matter- by oven drying -method 2 (SOP 0602-L-10001) (AOAC, 2000)
- Nitrogen -crude protein- by combustion -Dumas method (SOP 0602-L-10118) (AOAC, 2000)
- Ether extract on a Soxtec system -method 3B (SOP 0602-L-10003) (AOAC, 2000)
- Ash after muffle furnace incineration -method 12 (SOP 0602-L-10002) (AOAC, 2000)
- Phytase (SOP 0602-L-10143; ISO 30024:2009. Animal feeding stuffs Determination of phytase activity.)

Results:

LAB, REF.	SAMPLE DESCRIPTION	CRUDE PROTEIN (%) ETHER EXTRACT (%) ASH (%)
172032	A250 pellet stab 0 mes	11 \ / 11
172033	A500 pellet stab 0 mes	
172034	B250 pellet stab 0 mes	
172035	B500 pellet stab 0 mes	
172036	C250 pellet stab 0 mes	(~)(.)
172037	C500 pellet stab 0 mes	() ()

LAB.		PHYTASE	DM	LAB.	Total Association of	PHYTASE	DM	LAB.	- Invanish and	PHYTASE	DM
REF.	DESCRIPTION	U/ka	%	REF.	DESCRIPTION	U/ka	%	REF.	DESCRIPTION	Hika	14
172012	A250 MASH 1	(1-) /	11	172059	B250 MASH 1	(1)	(1)	172087	C250 MASH 1	(h)	11
172013	A250 MASH 2	(b)	41	172060	B250 MASH 2	(b)	(4)	172038	C250 MASH 2		14
172014	A250 MASH 3	(~) (. /	172061	8250 MASH 3	(0)		172089	C250 MASH 3	(0)	1.
172015	A250 MASH 4			172062	B250 MASH 4	2		172090	C250 MASH 4		
172016	A250 MASH 5	1		172063	B250 MASH 5			172091	C250 MASH 5		
172017	A250 MASH 6	T	- 3	172064	B250 MASH 6		- 3	172092	C250 MASH 6	-	
172018	A250 MASH 7			172065	8250 MASH 7		- 3	172093	C250 MASH 7		
172019	A250 MASH 8	Ī		172066	B250 MASH 8		1	172094	C250 MASH 8		
172020	A250 MASH 9	1)		172067	B250 MASH 9			172095	C250 MASH 9		
172021	A250 MASH 10		13.	172068	B250 MASH 10			172096	C250 MASH 10		
172022	A250 PELLET 1			172069	B250 PELLET 1			172097	C250 PELLET 1		
172023	A250 PELLET 2			172070	B250 PELLET 2		- 8	172098	C250 PELLET 2		
172024	A250 PELLET 3			172071	B250 PELLET 3		1	172099	C250 PELLET 3		
172025	A250 PELLET 4			172072	B250 PELLET 4			172100	C250 PELLET 4		
172026	A250 PELLET 5			172073	B250 PELLET 5			172101	C250 PELLET 5		
172027	A250 PELLET 6	1		172074	B250 PELLET 6			172102	C250 PELLET 6		
172028	A250 PELLET 7			172075	B250 PELLET 7			172103	C250 PELLET 7		
172029	A250 PELLET 8			172076	8250 PELLET 8		- 8	172104	C250 PELLET 8		
172030	A250 PELLET 9			172077	8250 PELLET 9		1	172105	C250 PELLET 9		
172031	A250 PELLET 10			172078	B250 PELLET 10	200	7 VILE 1	172106	C250 PELLET 10		

(b)(6)

Appendix 4 - Raw data

Obs	enzyme	form	homogeneity	Trt	lab ref	dose	Tr	location	U kg as is	DM p U kg 88 p DM
1 2	A	mash	yes	A250mash	172012	250	A250	1	349	(1) (1)
	A	mash	yes	A250mash	172013	250	A250	2	270	(b)
3	A	mash	yes	A250mash	172014	250	A250	3	305	IUIIT
4	A	mash	yes	A250mash	172015	250	A250	4	328 315	
5	A	mash	yes	A250mash	172016	250	A250	5		
6	A	mash	yes	A250mash	172017	250	A250	6	354	
7	A	mash	yes	A250mash	172018	250	A250	7	303	
8	A	mash	yes	A250mash	172019	250	A250	8	333	
9	A	mash	yes	A250mash	172020	250	A250	9	319	
10	A	mash	yes	A250mash	172021	250	A250	10	335	
11	A	pellet	yes	A250pellet	172022	250	A250	1	303	
12	A	pellet	yes	A250pellet	172023	250	A250	2	310	
13	A	pellet	yes	A250pellet	172024	250	A250	3	268	
14	A	pellet	yes	A250pellet	172025	250	A250	4	295	
15	A	pellet	yes	A250pellet	172026	250	A250	5	310	
16	A	pellet	yes	A250pellet	172027	250	A250	6	342	
17	Α	pellet	yes	A250pellet	172028	250	A250	7	321	
18	Α	pellet	yes	A250pellet	172029	250	A250	8	235	
19	A	pellet	yes	A250pellet	172030	250	A250	9	268	
20	Α	pellet	yes	A250pellet	172031	250	A250	10	295	
21	В	mash	yes	B250mash	172059	250	B250	1	242	
22	В	mash	yes	B250mash	172060	250	B250	2	292	
23	В	mash	yes	B250mash	172061	250	B250	3	287	
24	В	mash	yes	B250mash	172062	250	B250	4	286	
25	В	mash	yes	B250mash	172063	250	B250	5	341	
26	В	mash	yes	B250mash	172064	250	B250	6	284	
27	В	mash	yes	B250mash	172065	250	B250	7	332	
28	В	mash	yes	B250mash	172066	250	B250	8	402	
29	В	mash	yes	B250mash	172067	250	B250	9	279	
30	В	mash	yes	B250mash	172068	250	B250	10	350	
31	В	pellet	yes	B250pellet	172069	250	B250	1	259	
32	В	pellet	yes	B250pellet	172070	250	B250	2	323	
33	В	pellet	yes	B250pellet	172071	250	B250	3	314	
34	В	pellet	yes	B250pellet	172072	250	B250	4	313	
35	В	pellet	yes	B250pellet	172073	250	B250	5	306	
36	В	pellet	yes	B250pellet	172074	250	B250	6	320	
37	В	pellet	yes	B250pellet	172075	250	B250	7	350	
38	В	pellet	yes	B250pellet	172076	250	B250	8	303	
39	В	pellet	yes	B250pellet	172077	250	B250	9	283	
40	В	pellet	yes	B250pellet	172078	250	B250	10	285	
41	C	mash	yes	C250mash	172087	250	C250	1	318	
42	C	mash	yes	C250mash	172088	250	C250	2	270	
43	C	mash	yes	C250mash	172089	250	C250	3	323	
44	C	mash	yes	C250mash	172090	250	C250	4	251	
45	C	mash	yes	C250mash	172091	250	C250	5	291	
46	C	mash	yes	C250mash	172092	250	C250	6	320	
47	C	mash	yes	C250mash	172093	250	C250	7	289	
48	C	mash	yes	C250mash	172094	250	C250	8	224	
49	C	mash	yes	C250mash	172095	250	C250	9	312	
50	C	mash	yes	C250mash	172096	250	C250	10	326	
51	C	pellet	yes	C250pellet	172097	250	C250	1	269	
52	C	pellet	yes	C250pellet	172098	250	C250	2	269	
53	C	pellet	yes	C250pellet	172099	250	C250	3	281	
54	C	pellet	yes	C250pellet	172100	250	C250	4	298	
55	C	pellet	yes	C250pellet	172101	250	C250	5	246	
56	C	pellet	yes	C250pellet	172102	250	C250	6	301	
57	C	pellet	yes	C250pellet	172103	250	C250	7	241	
58	C	pellet	yes	C250pellet	172104	250	C250	8	244	
59	C	pellet	yes	C250pellet	172105	250	C250	9	269	
	c	pellet	yes	C250pellet	172106	250	C250	10	276	

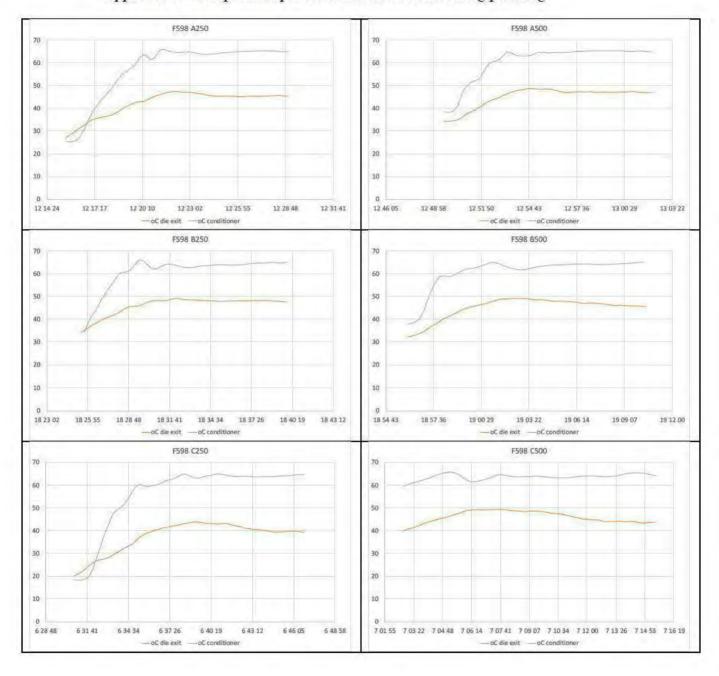
BASF Enzymes LLC Page 25 of 30

Appendix 5 - Statistical printouts

BASF Enzymes LLC Page 26 of 30

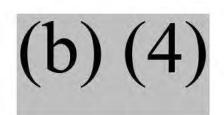
0bs	enzyme	form	homogeneity	Trt	lab_ref	dose	Tr	location	U_kg_ as_is	U DM_p	_kg_88_ p_DM
1	Α	mash	yes	A250mash	172012	250	A250	1	349	(h)	(Λ)
2	Α	mash	yes	A250mash	172013	250	A250	2	270	(U)	(+)
3	A	mash	yes	A250mash	172014	250	A250	3	305		
4	A	mash	yes	A250mash	172015	250	A250	4	328		
5	A	mash	yes	A250mash	172016	250	A250 A250	5	315		
6 7	A A	mash mash	yes yes	A250mash A250mash	172017 172018	250 250	A250 A250	6 7	354 303		
8	A	mash	yes	A250mash	172018	250	A250	8	333		
9	A	mash	yes	A250mash	172019	250	A250	9	319		
10	A	mash	yes	A250mash	172021	250	A250	10	335		
11	Α	pellet	yes	A250pellet	172022	250	A250	1	303		
12	Α	pellet	yes	A250pellet	172023	250	A250	2	310		
13	Α	pellet	yes	A250pellet	172024	250	A250	3	268		
14	Α	pellet	yes	A250pellet	172025	250	A250	4	295		
15	Α	pellet	yes	A250pellet	172026	250	A250	5	310		
16	Α	pellet	yes	A250pellet	172027	250	A250	6	342		
17	Α	pellet	yes	A250pellet	172028	250	A250	7	321		
18	Α	pellet	yes	A250pellet	172029	250	A250	8	235		
19	Α	pellet	yes	A250pellet	172030	250	A250	9	268		
20	A	pellet	yes	A250pellet	172031	250	A250	10	295		
21	В	mash	yes	B250mash	172059	250	B250	1	242		
22	В	mash	yes	B250mash	172060	250	B250	2	292		
23	В	mash	yes	B250mash	172061	250	B250	3	287 286		
24 25	B B	mash mash	yes	B250mash B250mash	172062 172063	250 250	B250 B250	4 5	286 341		
26	В	mash	yes yes	B250mash	172064	250	B250	6	284		
27	В	mash	yes	B250mash	172065	250	B250	7	332		
28	В	mash	yes	B250mash	172066	250	B250	8	402		
29	В	mash	yes	B250mash	172067	250	B250	9	279		
30	В	mash	yes	B250mash	172068	250	B250	10	350		
31	В	pellet	yes	B250pellet	172069	250	B250	1	259		
32	В	pellet	yes	B250pellet	172070	250	B250	2	323		
33	В	pellet	yes	B250pellet	172071	250	B250	3	314		
34	В	pellet	yes	B250pellet	172072	250	B250	4	313		
35	В	pellet	yes	B250pellet	172073	250	B250	5	306		
36	В	pellet	yes	B250pellet	172074	250	B250	6	320		
37	В	pellet	yes	B250pellet	172075	250	B250	7	350		
38	В	pellet	yes	B250pellet	172076	250	B250	8	303		
39	В	pellet	yes	B250pellet	172077	250	B250	9	283		
40 41	B C	pellet mash	yes	B250pellet C250mash	172078 172087	250 250	B250 C250	10 1	285 318		
42	C	mash	yes	C250mash	172087	250	C250	2	270		
43	C	mash	yes yes	C250mash	172088	250	C250	3	323		
44	C	mash	yes	C250mash	172009	250	C250	4	251		
45	C	mash	yes	C250mash	172091	250	C250	5	291		
46	C	mash	yes	C250mash	172092	250	C250	6	320		
47	С	mash	yes	C250mash	172093	250	C250	7	289		
48	С	mash	yes	C250mash	172094	250	C250	8	224		
49	С	mash	yes	C250mash	172095	250	C250	9	312		
50	С	mash	yes	C250mash	172096	250	C250	10	326		
51	С	pellet	yes	C250pellet	172097	250	C250	1	269		
52	С	pellet	yes	C250pellet	172098	250	C250	2	269		
53	С	pellet	yes	C250pellet	172099	250	C250	3	281		
54	С	pellet	yes	C250pellet	172100	250	C250	4	298		
55 56	С	pellet	yes	C250pellet	172101	250	C250	5	246		
56 57	C C	pellet pellet	yes	C250pellet C250pellet	172102 172103	250 250	C250 C250	6 7	301 241		
5 <i>7</i> 58	C	pellet	yes yes	C250pellet	172103	250 250	C250	<i>7</i> 8	241		
59	C	pellet	yes	C250pellet	172104	250	C250	9	269		
60	C	pellet	yes	C250pellet	172106	250	C250	10	276		
	-	r	, , , ,					. .	_, •		

Page 27 of 30 **BASF Enzymes LLC**


		U_kg_as_is							U_kg_88_p_DM							
		N	Mean	CV	StdDev	Max	Min	N	Mean	CV	StdDev	Max	Min			
Tr	form															
A250	mash	10	321	7.7	24.7	354	270	10	323	7.7	24.8	356	272			
	pellet	10	295	10.4	30.7	342	235	10	298	10.5	31.4	346	237			
B250	mash	10	310	14.9	46.2	402	242	10	311	14.9	46.4	404	243			
	pellet	10	306	8.2	25.2	350	259	10	308	8.3	25.5	352	260			
C250	mash	10	292	11.8	34.6	326	224	10	294	11.9	35.0	327	225			
	pellet	10	269	7.8	21.1	301	241	10	273	7.8	21.3	306	244			

BASF Enzymes LLC Page 28 of 30

		U_kç	g_as_is		g_as_i- s_CV	_	U_kg_88_p- _DM		U_kg_88_p- _DM_CV		DM_p		_p_CV
		N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
Tr										1			
A250		2	308	2	9	2	310	2	9	2	 87	2	0
B250		2	308	2	12	2	310	2	12	2	87	2	0
C250		2	281	2	10	2	283	2	10	2	87	2	0
form													
mash		1 3 	308	3	11	3	309	3 	12	3	 88 	3	0
pellet		3	290	3	9	3	293	3	9	3	87	3	0
Tr	 form 	 			1					1			
A250	∥ mash └───	1	321			1						1	0
	pellet	1 	295	1	L	J			\	T		1	0
B250	∥ mash └───	1	310									1	0
	pellet	1	306									1	0
C250	mash L	1	292									1	0
	pellet	1	269									1	0
All		6 	299									6	0


Page 29 of 30

Appendix 6 - Temperature profile in the conditioner during pelleting

Appendix 23: Evaluation of the Thermostability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Pelleted Poultry Feed

BASF Enzymes LLC Page 1 of 29

Evaluation of the thermostability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in pelleted poultry feed. Study 01-17.

BASF Enzymes LLC Page 2 of 29

Title:

Evaluation of the thermostability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in pelleted poultry feed. Study 01-17.

Prepared for: Novus International, Inc.

Prepared by:

(b)(4)

March 2018

Author:

(b)(6)

(b) (4), (b)(6)	Today of oliver	Carla John Sons	9, July 2018
	Study 9	Sponsors	Study Monitor
	Gavin Bowman, Director, Global Regulatory Affairs, Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America	Roxanna Van Dom Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International 20 Research Park Dr., St. Charles, MO 63304, United States of America

Table of Contents

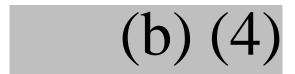
1. 2.		maryy Locations	
	2.1. 2.2.	Feed Production Enzyme Testing Laboratory	
		tification of Test Article	
	3.1.	Classification	
	3.2.	Source Organism	
	3.3.	Trade Name	. 6
	3.4.	Active Ingredient	
	3.5.	Safety/Hazard Warning	
	3.6. 3.7.	Lot Number and Manufacturing Date	
4.		Date	
4. 5.		Date	
6.		ose	
7.	Scop	e	. 7
8.	Expe	rimental Design	. 7
	8.1.	Composition of the Mash Feed	
	8.2.	Preparation of the Mash Feed	
	8.3. 8.4.	Mixing of enzyme Pelletizing	
		Product	
		lation Section	
		ole Packaging/Justification for Simulator Bags	
	11.1.	Justification for Simulator Bags	12
	11.2.	Sample Packaging	
12	. Samı	ole Labeling	12
13	. Sam	oling	13
	13.1.	Control Feed without CIBENZA® PHYTAVERSE® G10 phytase enzyme	13
	13.2.	Samples Containing CIBENZA® PHYTAVERSE® G10 phytase enzyme	
	13.3.	Overview of Sampling	
14	. Analy	ytical Methods	14
	14.1.	Phytase enzyme assay method	
	14.2.	Physical appearance	
	14.3.	Loss on Drying	
	•	ase Activity Dosestional Test and Acceptance Limits	
	16.1.	Physical Appearance	15
17	'. Samı	ole Disposal	15
		ges to the Protocol	
19). Resu	lts	
	19.1.	Phytase Results	
	19.2. 19.3.	Proximate Analysis Results	
	17.3.	Loss on arying	10

20. Discussion	16
21. Conclusions	18
22. Key Study Personnel	18
Appendix 1 Trial Documents	19
Appendix 2 Certificates of Analysis	25
Appendix 3 Protocol Amendment	28

BASF Enzymes LLC

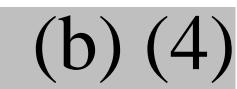
1. Summary

The objective of this study was to evaluate the thermostability of 6-phytase enzyme activity in feeds supplemented with CIBENZA® PHYTAVERSE® G10 phytase enzyme pelleted at varying temperatures during feed production.


Results (Summary Table 1) from this thermostability (pelleting) trial with CIBENZA® PHYTAVERSE® G10 phytase enzyme showed that:

- Both the 250 U/kg and 500 U/kg doses retained over 80% of the initial (mash) phytase activity at pelleting temperatures up to 80°C with a conditioning time of approximately 60 seconds.
- Overall average phytase activity at the 85°C pelleting temperature with a conditioning time (also known as retention time) of approximately 60 seconds was greater than 85% of the initial phytase activity.
- The 250 U/kg dose retained more than 80% of the initial phytase activity at pelleting temperatures up to 88°C with a conditioning time of approximately 60 seconds.
- Overall average of the phytase activity was reduced to approximately 60% when the pelleting temperature was 90°C with a conditioning time of approximately 60 seconds.

Summary Table 1 Phytase Activity in Pelleted Feed						
Condition	Dose A	verages	Overall			
Condition	250 U/kg	500 U/kg	Average			
Mash	/1	/ 4 \	100%			
Pellet 65°C			99%			
Pellet 75°C		(4)	93%			
Pellet 80°C	$\neg (\cup)$	\ ' / T	91%			
Pellet 85°C			87%			
Pellet 88°C			76%			
Pellet 90°C			61%			


2. Study Locations

2.1. Feed Production

2.2. Enzyme Testing Laboratory

Samples for testing were sent to (b) (4)

BASF Enzymes LLC Page 6 of 29

3. Identification of Test Article

3.1. Classification

Feed enzyme preparation used in poultry and swine feed.

3.2. Source Organism

Pseudomonas fluorescens BD50104.

3.3. Trade Name

CIBENZA® PHYTAVERSE® G10 phytase enzyme.

3.4. Active Ingredient

6-phytase (E.C. 3.1.3.26)

Guaranteed Activity: 10,000 U/g

3.5. Safety/Hazard Warning

See SDS.

3.6. Lot Number and Manufacturing Date

Batch/Lot no.: P26641

Manufacturing date: October 8, 2014

Batch/Lot no.: P23941

Manufacturing date: October 8, 2014

Batch/Lot no.: RO15271001

Manufacturing date: September 28, 2015

3.7. Manufacturing Date of Feeds

Feed was manufactured on October 8, 2017 at the analyses were performed at

(b) (4). Phytase

(b)(4) in

(b)(6)beginning on October 30, 2017.

4. Start Date

October 8, 2017

5. End Date

October 9, 2017

6. Purpose

The purpose of this study is to evaluate the thermostability of 6-phytase enzyme activity in feeds supplemented with CIBENZA® PHYTAVERSE® G10 phytase enzyme at pelleted at varying temperatures during feed production. The resulting data will be used to establish recommended

BASF Enzymes LLC Page 7 of 29

temperature conditions when pelleting feed containing CIBENZA® PHYTAVERSE® G10 phytase enzyme.

7. Scope

The phytase activity data was collected and evaluated according to established international standards.

8. Experimental Design

The CIBENZA® PHYTAVERSE® G10 phytase enzyme Test Article lots chosen for the thermostability study (i.e. Lot n°: P26641, P23941, and RO15271001) comply with all applicable specifications and Standard Operating Procedures (SOPs).

The vitamin and mineral premix was tested for phytase activity prior to being used in manufacturing the feed to ensure that it was negative for phytase activity.

8.1. Composition of the Mash Feed

The composition of the feed is found in Table 1. The composition of the vitamin-mineral premix is found in Table 2. The calculated content of the vitamin-mineral premix is found in Table 3. The calculated nutritional content of each diet is listed in Table 4.

Table 1. Composition of Poultry Feed				
Ingredients	Inclusion, %			
Corn	66.50			
Soybean meal 48	26.20			
Soy oil	4.40			
Salt	0.40			
Limestone	1.00			
Mono calcium Phosphate	0.50			
Vitamin premix	1.00			
CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	=			
Total	100.0			

Table 2. Composition of vitamin-mineral premix				
Component		per kg of vitamin-mineral premix	per kg Feed at 10 kg/MT	
Vitamins, provitamins and similar				
	IU	1000000	(1) (1)	
	IU	350000	(h)(4)	
	mg	3000	(U)	
	mg	210		
(0)(4)	mg	855		
10/11/	mg	470		
() (-)	mg	5		
	mg	300		
	mg	2000		
	mg	1520		
	mg	6710		
	mg	150		
	mg	25		
	mg	70000		
	,			
	mg	6500		
	mg	150		

BASF Enzymes LLC Page 8 of 29

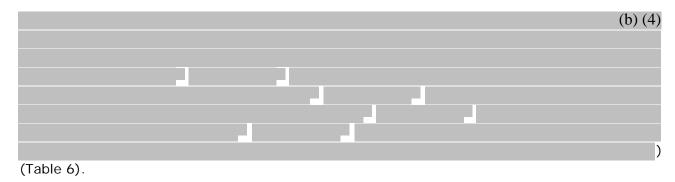
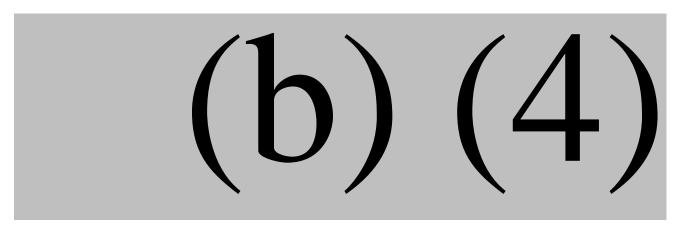
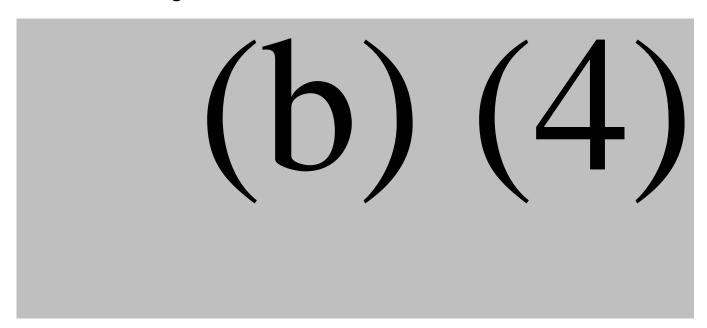
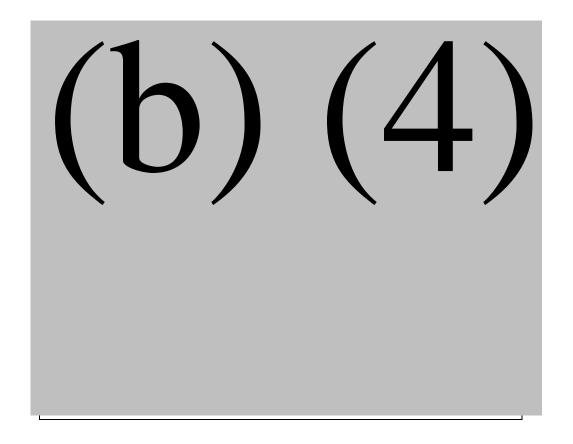

Table 2. Composition of vitamin-mineral premix					
Component		per kg of vitamin-mineral premix	per kg Feed at 10 kg/MT		
	mg	1500	(h) (1)		
	mg	8000	<u>(U)(4)</u>		
	mg	8500			
	mg	20			
	g	50			
()	g	150			
	mg	5000			
		up to 1 kg			

Table 3. Calculated Analyses of Vitamin/Mineral Premix					
Calculated Analyses Units Results					
Crude protein	%	2.024			
Ash	%	81.660			
Dry matter	%	83.680			
Calcium	%	20.000			
Phosphorous	%	0.053			
Sodium	%	6.776			
Chloride	%	6.078			
Potassium	%	0.011			
Sulphur	%	0.599			


Table 4. Calculated Analyses of Experimental Rations					
Calculated Analyses	Units	Broiler diet			
Crude protein	%	17.78			
Crude fat	%	7.45			
Crude fiber	%	2.11			
Calcium	%	0.75			
Phosphorus-Total	%	0.46			
Phosphorus available	%	0.22			
Sodium	%	0.23			
Chloride	%	0.23			
Potassium	%	0.79			
Met	%	0.28			
Cys	%	0.30			
Me+Cys	%	0.58			
Lys	%	0.91			
His	%	0.48			
Tryp	%	0.20			
Thr	%	0.67			
Arg	%	0.29			
Iso	%	0.73			
Leu	%	1.61			
Phe	%	0.87			
Tyr	%	0.66			
Val	%	0.84			
Phe+Tyr	%	1.95			
Linoleic acid	%	2.57			
Sulphur	%	0.16			
Magnesium	%	0.18			
Betaine	%	0.15			

BASF Enzymes LLC Page 9 of 29


8.2. Preparation of the Mash Feed


8.3. Mixing of enzyme

8.4. Pelletizing

BASF Enzymes LLC Page 10 of 29

9. Test Product

Table	Table 5 Details of test product								
Code	Product	Provider	Lot n°	Active	Activity ((U/g) [†]			
Code	Product	Provider	Manufacture Date	substance	Guaranteed	Analyzed			
А	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P23941 Made: 08 October 2014	6-phytase	10,000	13,951			
В	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: P26641 Made: 08 October 2014	6-phytase	10,000	13,742			
С	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme	Novus International, Inc.	Lot: RO15271001 Made: 28 September 2015	6-phytase	10,000	13,522			

10. Calculation Section

The minimum phytase activity in CIBENZA® PHYTAVERSE® G10 phytase enzyme is 10,000 U/g. In this study, a sufficient quantity from each of the three lots of CIBENZA® PHYTAVERSE® G10

BASF Enzymes LLC Page 11 of 29

phytase enzyme was incorporated into two batches of feed so that the low and high target concentration of 6-phytase in the final feed was present at the intended rate of 250 U/kg or at 500 U/kg, respectively.

<u>Calculations for Batch A2 with low inclusion level in feed:</u>

<u>Calculations for Batch A5 with high inclusion level in feed:</u>

<u>Calculations for Batch B2 with low inclusion level in feed:</u>

(b)
$$(4)$$

<u>Calculations for Batch B5 with high inclusion level in feed:</u>

Calculations for Batch C2 with low inclusion level in feed:

Calculations for Batch C5 with high inclusion level in feed:

The amount of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme added to each 320 kg batch is summarized in Table 6.

BASF Enzymes LLC Page 12 of 29

Table 6. Amount of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme added to each diet						
Feed Batch n ^o	CIBENZA® PHYTAVERSE® G10 Phytase Enzyme Lot n°	Inclusion level	CIBENZA® PHYTAVERSE® G10 phytase enzyme added to 320 kg			
Batch D – control	not applicable	0 U/kg	0.00 g			
Batch A2 – low inclusion level	P23941	250 U/kg	5.73 g			
Batch A5 – high inclusion level	P23941	500 U/kg	11.47 g			
Batch B2 – low inclusion level	P26641	250 U/kg	5.82 g			
Batch B5 – high inclusion level	P26641	500 U/kg	11.64 g			
Batch C2 – low inclusion level	RO15271001	250 U/kg	5.92 g			
Batch C5 – high inclusion level	RO15271001	500 U/kg	11.83 g			

11. Sample Packaging/Justification for Simulator Bags

11.1. Justification for Simulator Bags

Feed is typically delivered in bulk to storage bins prior to being consumed by the intended animal species. If not delivered in bulk, the feed would be typically packaged in paper bags or a suitable bag that would physically contain the feed but would not offer much protection against moisture or vapor transmission. Approximately 1 kg of feed samples containing CIBENZA® PHYTAVERSE® G10 Phytase Enzyme from each of the three lots were packaged in sample bags which are representative of the ones used for commercial purposes.

11.2. Sample Packaging

In this thermostability study, (b) (4) packaged the feed samples containing each of the three lots of CIBENZA® PHYTAVERSE® G10 phytase enzyme and the control feed into sample bags and closed them. Two portions of mash for each batch of feed (total of 14 portions) and 12 pellet portions for each batch of feed (total 84 portions) were packaged into sample bags. One portion of mash and one portion of pellets at each pelleting condition were shipped to the enzyme testing facility for analysis. Table 7 outlines the details of samples that were collected.

12. Sample Labeling

Bags for the enzyme activity analysis were labeled appropriately for evaluating phytase activity at different pelleting temperatures. The samples were labeled with a unique label containing information relevant to the study and the sample. The following information was placed on each label:

- Study Number
- Compound name and concentration
- CIBENZA® PHYTAVERSE® lot no.
- Feed Form
- Batch Number
- Portion Designation
- Conditioning (Pelleting) Temperature
- Feed Mfg. Date

BASF Enzymes LLC Page 13 of 29

13. Sampling

13.1. Control Feed without CIBENZA® PHYTAVERSE® G10 phytase enzyme

For the control batch of feed, portion A (1 kg) of the mash and for each pelleting condition was shipped to the testing site for analysis and portion B (1 kg) was stored refrigerated at DTI as backup. Portion A was evaluated for phytase activity, loss on drying, and physical appearance. Four independent 50 g sub-portions were analyzed for phytase activity. The average of all four analyses were used to state the phytase activity in each feed portion. A single sub-portion was analyzed for moisture content. No abnormalities in physical appearance were noted.

The purpose of assaying the feed without added enzyme was to determine whether there is any feed matrix interference in the assay procedure. The phytase activity of all control mash and pellet samples was below the limit of quantification (LOQ) of the method (60 U/kg) for all samples (Table 8).

Proximate analysis was performed on the mash feed including fat, crude fiber, crude protein, phosphorus and calcium. A sample was also analysed for moisture content by loss on drying.

13.2. Samples Containing CIBENZA® PHYTAVERSE® G10 phytase enzyme

For every batch of feed containing CIBENZA® PHYTAVERSE® phytase enzyme, portion A (1 kg) of the mash and each pelleting condition was shipped to the testing site for analysis and portion B (1 kg) was stored refrigerated at ^{[b) (4)} as backup. Portion A was evaluated for phytase activity, loss on drying, and physical appearance. Four independent 50 g sub-portions were analyzed for phytase activity. The average of all four analyses was used to state the phytase activity in each feed portion. No abnormalities in physical appearance were noted.

13.3. Overview of Sampling

Table 7 Sampling and Labelling of Feed Portions							
CIBENZA® PHYTAVERSE® G10 Lot no.	Batch Number	PHYTAVERSE® G10 Target Dose	Feed Form	Pelleting Temperature	Labeling Nomenclature		
-	D	None, Control	Mash	N/A	MDA & MDB		
-	D	None, Control	Pellet	65°C	P65DA & P65DB		
-	D	None, Control	Pellet	75°C	P75DA & P5D7B		
-	D	None, Control	Pellet	80°C	P80DA & P80DB		
-	D	None, Control	Pellet	85°C	P85DA & P85DB		
-	D	None, Control	Pellet	88°C	P88DA & P88DB		
-	D	None, Control	Pellet	90°C	P90DA & P90DB		
P23941	A250	250 FTU/ kg feed	Mash	N/A	MA2A & MA2B		
P23941	A250	250 FTU/ kg feed	Pellet	65°C	P65A2A & P65A2B		
P23941	A250	250 FTU/ kg feed	Pellet	75°C	P75A2A & P75A2B		
P23941	A250	250 FTU/ kg feed	Pellet	80°C	P80A2A & P80A2B		
P23941	A250	250 FTU/ kg feed	Pellet	85°C	P85A2A & P85A2B		
P23941	A250	250 FTU/ kg feed	Pellet	88°C	P88A2A & P88A2B		
P23941	A250	250 FTU/ kg feed	Pellet	90°C	P90A2A & P90A2B		
P23941	A500	500 FTU/ kg feed	Mash	N/A	MA5A & MA5B		
P23941	A500	500 FTU/ kg feed	Pellet	65°C	P65A5A & P65A5B		
P23941	A500	500 FTU/ kg feed	Pellet	75°C	P75A5A & P75A5B		
P23941	A500	500 FTU/ kg feed	Pellet	80°C	P80A5A & P80A5B		
P23941	A500	500 FTU/ kg feed	Pellet	85°C	P85A5A & P85A5B		
P23941	A500	500 FTU/ kg feed	Pellet	88°C	P88A5A & P88A5B		

BASF Enzymes LLC Page 14 of 29

Table 7 Samp	ling and	Labelling of Fe	ed Porti	ons	
CIBENZA® PHYTAVERSE® G10 Lot no.	Batch Number	PHYTAVERSE® G10 Target Dose	Feed Form	Pelleting Temperature	Labeling Nomenclature
P23941	A500	500 FTU/ kg feed	Pellet	90°C	P90A5A & P90A5B
P26641	B250	250 FTU/ kg feed	Mash	N/A	MB2A & MB2B
P26641	B250	250 FTU/ kg feed	Pellet	65°C	P65B2A & P65B2B
P26641	B250	250 FTU/ kg feed	Pellet	75°C	P75B2A & P75B2B
P26641	B250	250 FTU/ kg feed	Pellet	80°C	P80B2A & P80B2B
P26641	B250	250 FTU/ kg feed	Pellet	85°C	P85B2A & P85B2B
P26641	B250	250 FTU/ kg feed	Pellet	88°C	P88B2A & P88B2B
P26641	B250	250 FTU/ kg feed	Pellet	90°C	P90B2A & P90B2B
P26641	B500	500 FTU/ kg feed	Mash	N/A	MB5A & MB5B
P26641	B500	500 FTU/ kg feed	Pellet	65°C	P65B5A & P65B5B
P26641	B500	500 FTU/ kg feed	Pellet	75°C	P75B5A & P75B5B
P26641	B500	500 FTU/ kg feed	Pellet	80°C	P80B5A & P80B5B
P26641	B500	500 FTU/ kg feed	Pellet	85°C	P85B5A & P85B5B
P26641	B500	500 FTU/ kg feed	Pellet	88°C	P88B5A & P88B5B
P26641	B500	500 FTU/ kg feed	Pellet	90°C	P90B5A & P90B5B
RO15271001	C250	250 FTU/ kg feed	Mash	N/A	MC2A & MC2B
RO15271001	C250	250 FTU/ kg feed	Pellet	65°C	P65C2A & P65C2B
RO15271001	C250	250 FTU/ kg feed	Pellet	75°C	P75C2A & P75C2B
RO15271001	C250	250 FTU/ kg feed	Pellet	80°C	P80C2A & P80C2B
RO15271001	C250	250 FTU/ kg feed	Pellet	85°C	P85C2A & P85C2B
RO15271001	C250	250 FTU/ kg feed	Pellet	88°C	P88C2A & P88C2B
RO15271001	C250	250 FTU/ kg feed	Pellet	90°C	P90C2A & P90C2B
RO15271001	C500	500 FTU/ kg feed	Mash	N/A	MC5A & MC5B
RO15271001	C500	500 FTU/ kg feed	Pellet	65°C	P65C5A & P65C5B
RO15271001	C500	500 FTU/ kg feed	Pellet	75°C	P75C5A & P75C5B
RO15271001	C500	500 FTU/ kg feed	Pellet	80°C	P80C5A & P80C5B
RO15271001	C500	500 FTU/ kg feed	Pellet	85°C	P85C5A & P85C5B
RO15271001	C500	500 FTU/ kg feed	Pellet	88°C	P88C5A & P88C5B
RO15271001	C500	500 FTU/ kg feed	Pellet	90°C	P90C5A & P90C5B

14. Analytical Methods

14.1. Phytase enzyme assay method

Mash and pelleted feed were assayed for 6-phytase activity using the validated and verified method ISO 30024 ("Animal feeding stuffs - Determination of phytase activity").

14.2. Physical appearance

Samples were checked for mold, insect infestation, and other changes by visual inspection and the observations were recorded.

14.3. Loss on Drying

Mash and pelleted feed were analyzed for loss on drying using method AOAC 934.01 ("Loss on Drying [Moisture] at 95-100°C for Feeds").

15. Phytase Activity Doses

Feed containing three doses were prepared.

- Control diet, (0 units of Phytase activity per kg feed)
- Low inclusion level in feed (250 units of Phytase activity per kg feed).

BASF Enzymes LLC Page 15 of 29

• High inclusion level in feed (500 units of Phytase activity per kg feed)

16. Additional Test and Acceptance Limits

16.1. Physical Appearance

Material shows no visible presence of mold growth or other situation that renders the sample unacceptable for enzyme thermostability evaluation.

17. Sample Disposal

Backup samples remaining at (b) (4) may be disposed of in an appropriate manner after testing is completed or terminated, and with authorization by the Sponsors or his/her representatives. If authorization for disposal is not received by the storage laboratory within 2 months after the testing is completed, the storage laboratory is to contact the Study Sponsors.

18. Changes to the Protocol

There protocol was amended to change the Novus Sponsor to Gavin Bowman, Director, Global Regulatory Affairs. An amendment to the protocol was issued (Appendix 3).

19. Results

Certificates of Analysis for proximate composition and enzyme activity are found in Appendix 2

19.1. Phytase Results

Phytase activity in mash and pelleted samples shown in Table 8 is the average of quadruplicate analyses except where noted in the text (see Section 20). The conditioning time (retention time) for all pelleted feeds was approximately 60 seconds.

Table 8 Pl	Table 8 Phytase Activity in Mash and Pelleted Samples										
Lab Reference	Sample Description	Average Phytase Activity (U/kg)	RSD	Percent of Corresponding Mash Activity							
171843	D NONE CONTROL MASH MDA	<loq< td=""><td>10%</td><td>N/A</td></loq<>	10%	N/A							
171844	D NONE CONTROL PELLET 65°C P65DA	<loq< td=""><td>13%</td><td>N/A</td></loq<>	13%	N/A							
171845	D NONE CONTROL PELLET 75°C P75DA	<loq< td=""><td>10%</td><td>N/A</td></loq<>	10%	N/A							
171851	D NONE CONTROL PELLET 80°C P80DA	<loq< td=""><td>40%</td><td>N/A</td></loq<>	40%	N/A							
171852	D NONE CONTROL PELLET 85°C P85DA	<loq< td=""><td>14%</td><td>N/A</td></loq<>	14%	N/A							
171853	D NONE CONTROL PELLET 88°C P88DA	<loq< td=""><td>24%</td><td>N/A</td></loq<>	24%	N/A							
171854	D NONE CONTROL PELLET 90°C P90DA	<loq< td=""><td>5%</td><td>N/A</td></loq<>	5%	N/A							
171831	P23941 A250 MASH MA2A	320	14%	N/A							
171831	P23941 A250 MASH MA2A (repeat)	265	9%	N/A							
171832	P23941 A250 PELLET 65°C P65A2A	237	4%	89%							
171833	P23941 A250 PELLET 75°C P75A2A	275	6%	104%							
171834	P23941 A250 PELLET 80°C P80A2A	284	7%	107%							
171835	P23941 A250 PELLET 85°C P85A2A	211	5%	80%							
171836	P23941 A250 PELLET 88°C P88A2A	211	8%	80%							
171842	P23941 A250 PELLET 90°C P90A2A	114	4%	43%							
171859	P23941 A500 MASH MA5A	519	4%	N/A							
171860	P23941 A500 PELLET 65°C P65A5A	476	5%	92%							
171861	P23941 A500 PELLET 75°C P75A5A	448	6%	86%							
171862	P23941 A500 PELLET 80°C P80A5A	424	8%	82%							
171869	P23941 A500 PELLET 85°C P85A5A	444	5%	86%							
171864	P23941 A500 PELLET 88°C P88A5A	369	5%	71%							

BASF Enzymes LLC Page 16 of 29

Table 8 Pl	hytase Activity in Mash and Pello	eted Samples		
Lab		Average		Percent of
Reference	Sample Description	Phytase Activity	RSD	Corresponding
Reference		(U/kg)		Mash Activity
171865	P23941 A500 PELLET 90°C P90A5A	287	6%	55%
171866	P26641 B250 MASH MB2A	233	6%	N/A
171867	P26641 B250 PELLET 65°C P65B2A	281	10%	121%
171868	P26641 B250 PELLET 75°C P75B2A	233	3%	100%
171886	P26641 B250 PELLET 80°C P80B2A	218	3%	93%
171887	P26641 B250 PELLET 85°C P85B2A	244	9%	105%
171888	P26641 B250 PELLET 88°C P88B2A	199	12%	85%
171889	P26641 B250 PELLET 90°C P90B2A	174	6%	75%
171909	P26641 B500 MASH MB5A	435	5%	N/A
171909	P26641 B500 MASH MB5A (Repeat)	578	2%	82%
171910	P26641 B500 PELLET 65°C P65B5A	474	4%	78%
171911	P26641 B500 PELLET 75°C P75B5A	449	10%	73%
171912	P26641 B500 PELLET 80°C P80B5A	419	5%	72%
171913	P26641 B500 PELLET 85°C P85B5A	416	3%	59%
171933	P26641 B500 PELLET 88°C P88B5A	343	3%	59%
171934	P26641 B500 PELLET 90°C P90B5A	342	4%	82%
172168	RO15271001 C250 MASH MC2A	251	12%	N/A
172169	RO15271001 C250 PELLET 65°C P65C2A	259	12%	103%
172170	RO15271001 C250 PELLET 75°C P75C2A	235	8%	94%
172171	RO15271001 C250 PELLET 80°C P80C2A	231	6%	92%
172172	RO15271001 C250 PELLET 85°C P85C2A	243	5%	97%
172191	RO15271001 C250 PELLET 88°C P88C2A	204	9%	81%
172192	RO15271001 C250 PELLET 90°C P90C2A	181	5%	72%
172189	RO15271001 C500 MASH MC5A	530	6%	N/A
172190	RO15271001 C500 PELLET 65°C P65C5A	496	3%	93%
172200	RO15271001 C500 PELLET 75°C P75C5A	450	2%	85%
172201	RO15271001 C500 PELLET 80°C P80C5A	470	7%	89%
172202	RO15271001 C500 PELLET 85°C P85C5A	392	7%	74%
172203	RO15271001 C500 PELLET 88°C P88C5A	368	4%	69%
172204	RO15271001 C500 PELLET 90°C P90C5A	291	6%	55%

19.2. Proximate Analysis Results

Values from the proximate analysis were within the expected ranges (Table 9).

Table 9 Proximate Analysis Results						
Analyte	Value (%)					
Crude protein	17.02					
Ether Extract	8.01					
Ash	4.47					
Crude fiber	1.60					
Phosphorus	0.40					
Calcium	0.70					

19.3. Loss on drying

Loss on drying was measured at 11.9 % resulting in a dry matter content of 88.1%.

20. Discussion

Phytase activity in mash was generally within 7% of the targeted dose (Table 10). The exceptions were feed batches A250 (enzyme batch P23941) and B500 (enzyme batch P26641) where phytase activity was 128% and 87%, respectively, of the dose (Table 8). Therefore, these two samples were retested in quadruplicate. Because the mean phytase activity for

BASF Enzymes LLC Page 17 of 29

batch A250 was nearly 30% higher than the expected dose, the original quadruplicate analysis was excluded from the results. Phytase activity for batch A250 was 106% (265 U/kg) of the expected dose after being reanalyzed (Table 8). Both sets of analyses (original and repeat) were included for batch B500 because the original analysis was only 13% lower than the expected level. Average activity for B500 mash was 506 U/kg including all eight replicates.

Table 10 Phytase Activity in Mash										
Parameter	P23	3941	P26	641	RO152	71001				
	A250	A500	B250	B500	C250	C500				
Expected (U/kg)					(h	(4)				
Actual (U/kg)					(0	<i>)</i> (¬)				
% of Expected	106%	104%	93%	101%	100%	106%				

At pelleting temperatures from 65°C to 80°C, average phytase activity in pellets, as a percentage of the activity measured in the corresponding mash feed, was approximately 100% at the 250 U/kg dose and varied from 93% to 84% for the 500 U/kg dose (Table 11Error! Reference source not found.). Average phytase activity in pelleted feed was greater than 80% at a pelleting temperature of 85°C for both doses (Table 11Error! Reference source not found.). Recovery of phytase activity for individual enzyme batches ranged from 80% to 105% at 85°C for the 250 dose, while that for the 500 U/kg dose was 74% to 86% (Table 11Error! Reference source not found.). The average phytase activity for the 250 U/kg dose was 82% of the corresponding mash sample at 88°C, while that for the high dose was 69% at the same pelleting temperature. The range for the 250 U/kg dose at 88°C was 80% to 85%, while that for the 500 U/kg dose was 68% to 71% (Table 11Error! Reference source not found.). Percent activity retained at the 90°C pelleting temperature was relatively constant for the 500 U/kg dose (55%, 55%, and 68%), but varied for the 250 U/kg dose (43%, 72% and 75%) (Table 11). The conditioning time (retention time) for all pelleted feed was approximately 60 seconds

Table 11 F	Table 11 Phytase Activity (% from analyzed value in mash)										
Condition	P23	941	P26641 R015271001 Dose Averages			RO15271001 Dose Averages					
Condition	A250	A500	B250	B500	C250	C500	250 U/kg	500 U/Kg	Average		
Mash	100%	100%	100%	100%	100%	100%	100%	100%	100%		
Pellet 65°C						14	1	/ 4 \	99%		
Pellet 75°C								I I	93%		
Pellet 80°C									91%		
Pellet 85°C								\ 	87%		
Pellet 88°C								\	76%		
Pellet 90°C			1	i.	i.		<u>, </u>	, , , , , , , , , , , , , , , , , , ,	61%		

A trend for lower percent activity retained was noticed when comparing the 500 U/kg dose to the 250 U/kg dose (Table 11). An investigation conducted to determine root cause for this observation was inconclusive. Analysis of the raw data showed there were no clerical or calculation errors. Similarly, a technical review of the raw absorbance data and standard curve data (slopes and intercepts) did not reveal a source for the observed phytase activity results. Another possible explanation for this observation is that the percent recovery values were biased low by higher-than-expected phytase activity in the corresponding mash samples. However, this explanation was ruled out as well because there no substantial difference between the 250 U/kg and 500 U/kg doses with respect to the percent of expected phytase activity measured in the mash (Table 10).

BASF Enzymes LLC Page 18 of 29

21. Conclusions

Results from this thermostability (pelleting) trial with CIBENZA $^{\$}$ PHYTAVERSE $^{\$}$ G10 phytase enzyme showed that:

- Both the 250 U/kg and 500 U/kg doses retained over 80% of the initial (mash) phytase activity at pelleting temperatures up to 80°C with a conditioning time (also known as retention time) of approximately 60 seconds.
- Overall average phytase activity at the 85°C pelleting temperature with a conditioning time of approximately 60 seconds, 85% of the initial phytase activity was retained.
- The 250 U/kg dose retained more than 80% of the initial phytase activity at pelleting temperatures up to 88°C.
- Overall average of the phytase activity was reduced to approximately 60% when the pelleting temperature was 90°C with a conditioning time of approximately 60 seconds.

(b) (4), (b)(6)

22. Key Study Personnel

Study Director:

External Study Monitor: Drew Lichtenstein, Ph.D. Research Manager International, Inc., 20 Research Park Dr., St. Charles, MO 63304, Ur +1 314 453-7793, E-mail: drew.lichtenstein@novusint.com	
Study Sponsors: 1) Gavin Bowman, Director, Global Regulatory A 7402, E-mail: gavin.bowman@novusint.com. Postal Address: Novus Park Drive, St. Charles, MO 63304 United States.	
2) Roxanna Van Dorn, Sr. Regulatory Affairs Specialist, Phone: +1 858-349-7339, Fax: +1-973-307-2549, E-mail: roxanna.vandorn@BASF Enzymes LLC, 3550 John Hopkins Court, San Diego, CA 92121	basf.com. Postal Address
Feed mill supervisor:	(b) (4), (b)(6)
Enzyme analysis laboratory manager:	(b) (4), (b)(6)

BASF Enzymes LLC Page 19 of 29

Appendix 1 Trial Documents

FIRM: Novus International Inc.

Study no. 01-17 Trial No. 1, Control Mixture: Corn based diet

Test product: Cibenza Phytaverse G10 Inclusion rate: 0 g/320 kg diet

Pellet Press: Simon Heesen Die: Ø 3x 35 mm

(b) (4) - Pilot Plant (b)(6) Test at: Date: October 9, 2017

Test at.	(0) (4)	- FIIOL FI	am	(0)(0)	Date.	Octobe	21 9, 2017
Composition of mixture:	Moisture in mash: 11.9 %						
66.5 % Corn	1.0 % Vitamins/minerals, T&V						
26.2 % Hipro Soya 48		0.5	% Monoc	alcium Pho	sfate		
4.4 % Soya Oil		0.4 %	Salt				
1.0 % Limestone							
Hammer milling, mm				3,5			
Fat addition				Horizontal	mixer		
Fat temperature, °C				20			
Steam addition				Cascade Mi	xer (155 r	pm)	
Steam pressure, bars				2			
Test Temperature.		65	75	80	85	88	90
Meal temperature, °C		64.8-65.3	74.8-74.9	79.9-80.0	84.9-85.1	87.9-88.1	90.0-90.2
Capacity, kg/h		300	300	300	300	300	300
Pellet press, amp.		9	9	9	9	9	9
Meal,kg. + enzyme, g	0						
Meal, kg	320						
Mixing time, Meal. + enzyme, min.	0						
Feed mixture, min.	10						
Cooling time, min.	15-17	15-17	15-17	15-17	15-17	15-17	15-17
Pelleting time, min		0-10.0	10.0-21	21-31.5	31.5-42	42-52.5	52.5-63
Sample collect, min		8.5-10	19.5-21	30-31.5	40.5-42	51-52.5	61.5-63

Cold meal 21 c. samples: Blank, no enzyme, Meal from Horizontal mixer + Pellets of each temp. (65-75-80-88-90 C), 1,0 kg of each Cascade mixer: Filling 5500-5570 g feed Retention time 64-65 sec

Open steam valve: no. 1 Pallet adjustment no: 2

BASF Enzymes LLC Page 20 of 29

Study no. 01-17 Mixture: Corn based diet Trial No. 2, Batch A250

Test product: Cibenza Phytaverse G10 Lot P23941 Inclusion rate: 5.73 g/ 320 kg diet

Pellet Press: Simon Heesen Die: Ø 3x 35 mm

(b) (4) - Pilot Plant (b)(6)Test at: October 9, 2017 Date:

Composition of mixture:		Mo	isture in	m	ash:	11.9 %		
66.5 % Corn	1.0 % Vitamins/minerals, T&V							
26.2 % Hipro Soya 48	0.5 % Monocalcium Phosfate							
4.4 % Soya Oil	0.4 % Salt							
1.0 % Limestone	6 Limestone							
Hammer milling, mm				3,5	5			
Fat addition				Н	orizontal 1	mixer		
Fat temperature, °C				20)			
Steam addition				Ca	ascade Mi	xer (155 r _]	pm)	
Steam pressure, bars				2				
Test Temperature.		65	75		80	85	88	90
Meal temperature, °C		65.0-66.0	74.9-75.	1 ′	79.9-80.1	85.0-85.2	87.9-88.0	90.1-90.2
Capacity, kg/h		300	300		300	300	300	300
Pellet press, amp.		9	9		9	9	9	9
Meal,kg. + enzyme, g	10+5,74							
Meal, kg	310							
Mixing time,								
Meal. + enzyme, min.	10							
Feed mixture, min.	10							
Cooling time, min.	15-17	15-17	15-17		15-17	15-17	15-17	15-17
Pelleting time, min		0-10.5	10.5-21		21-31.5	31.5-42	42-52.5	52.5-63
Sample collect, min		9-10.5	19.5-21		30-31.5	40.5-42	51-52.5	61.5-63

Cold meal 21 c. samples: Blank, no enzyme, Meal from Horizontal mixer + Pellets of each temp. (65-75-80-88-90 C), 1,0 kg of each Cascade mixer: Filling 5500-5570 g feed Retention time 64-65 sec

Open steam valve: no. 1 Pallet adjustment no: 2

BASF Enzymes LLC Page 21 of 29

Study no. 01-17 Mixture: Corn based diet Trial No. 3, Batch A500

Test product: Cibenza Phytaverse G10 Lot P23941 Inclusion rate: 11.48 g/ 320 kg diet

Pellet Press: Simon Heesen Die: Ø 3x 35 mm

(b) (4) - Pilot Plant (b)(4)Test at: October 9, 2017 Date:

Composition of mixture:	Moisture in mash: 11.9 %							
66.5 % Corn		1.0 % Vitamins/minerals, T&V						
26.2 % Hipro Soya 48		0.5 % Monocalcium Phosfate						
4.4 % Soya Oil	0.4 % Salt							
1.0 % Limestone	1.0 % Limestone							
Hammer milling, mm				3,5				
Fat addition				Horizontal	mixer			
Fat temperature, °C				20				
Steam addition				Cascade M	ixer (155 r	pm)		
Steam pressure, bars	2							
Test Temperature.		65	75	80	85	88	90	
Meal temperature, °C		65.4-65.7	74.9-75.2	2 79.7-80.0	84.9-85.0	88.0-88.2	90.0-90.1	
Capacity, kg/h		300	300	300	300	300	300	
Pellet press, amp.		9	9	9	9	9	9	
Meal,kg. + enzyme, g	10+11.48							
Meal, kg	310							
Mixing time,								
Meal. + enzyme, min.	10							
Feed mixture, min.	10							
Cooling time, min.	15-17	15-17	15-17	15-17	15-17	15-17	15-17	
Pelleting time, min		0-10.5	10.5-21	21-31.5	31.5-42	42-52.5	52.5-63	
Sample collect, min		9-10.5	19.5-21	30-31.5	40.5-42	51-52.5	61.5-63	

Cold meal 21 c. samples: Blank, no enzyme, Meal from Horizontal mixer + Pellets of each temp. (65-75-80-88-90 C), 1,0 kg of each Cascade mixer: Filling 5500-5570 g feed Retention time 64-65 sec

Open steam valve: no. 1 Pallet adjustment no: 2

BASF Enzymes LLC Page 22 of 29

Study no. 01-17 Mixture: Corn based diet Trial No. 4, Batch B250

Test product: Cibenza Phytaverse G10 Lot P26641 Inclusion rate: 5.83 g/ 320 kg diet

Pellet Press: Simon Heesen Die: Ø 3x 35 mm

(b) (4) - Pilot Plant (b)(6)Test at: October 9, 2017 Date:

Composition of mixture:	Moisture in mash: 11.9 %							
66.5 % Corn		1.0 % Vitamins/minerals, T&V						
26.2 % Hipro Soya 48		0.5 % Monocalcium Phosfate						
4.4 % Soya Oil	0.4 % Salt							
1.0 % Limestone	1.0 % Limestone							
Hammer milling, mm				3,5				
Fat addition				Horizontal	mixer			
Fat temperature, °C				20				
Steam addition				Cascade Mi	xer (155 r	pm)		
Steam pressure, bars	2							
Test Temperaturs.		65	75	80	85	88	90	
Meal temperature, °C		65.0-65.3	74.9-75.2	80.0-80.2	84.9-85.2	87.5-87.8	90.2	
Capacity, kg/h		300	300	300	300	300	300	
Pellet press, amp.		9	9	9	9	9	9	
Meal, kg + enzyme, g	10+5.83							
Meal, kg	310							
Mixing time,								
Meal. + enzyme, min.	10							
Feed mixture, min.	10							
Cooling time, min.	15-17	15-17	15-17	15-17	15-17	15-17	15-17	
Pelleting time, min		0-10.5	10.5-21	21-31.5	31.5-42	42-52.5	52.5-63	
Sample collect, min		9-10.5	19.5-21	30-31.5	40.5-42	51-52.5	61.5-63	

Cold meal 21 c. samples: Blank, no enzyme, Meal from Horizontal mixer + Pellets of each temp. (65-75-80-88-90 C), 1,0 kg of each Cascade mixer: Filling 5500-5570 g feed Retention time 64-65 sec

Open steam valve: no. 1 Pallet adjustment no: 2

BASF Enzymes LLC Page 23 of 29

Study no. 01-17 Mixture: Corn based diet Trial No. 5, Batch B500

Test product: Cibenza Phytaverse G10 Lot P26641 Inclusion rate: 11.64 g/ 320 kg diet

Pellet Press: Simon Heesen Die: Ø 3x 35 mm

(b) (4) - Pilot Plant (b)(6)Test at: October 9, 2017 Date:

Composition of mixture:		Mo	isture in	n	nash:	11.9 %		
66.5 % Corn	1.0 % Vitamins/minerals, T&V							
26.2 % Hipro Soya 48	0.5 % Monocalcium Phosfate							
4.4 % Soya Oil	0.4 % Salt							
1.0 % Limestone	1.0 % Limestone							
Hammer milling, mm				3,	,5			
Fat addition				Η	orizontal ı	mixer		
Fat temperature, °C				20	0			
Steam addition				C	ascade Mi	xer (155 r _]	pm)	
Steam pressure, bars				2				
Test Temperaturs.		65	75		80	85	88	90
Meal temperature, °C		64.5-65.0	75.0-75.	1	79.9-80.0	85.0-85.3	87.9-88.0	90.1-90.2
Capacity, kg/h		300	300		300	300	300	300
Pellet press, amp.		9	9		9	9	9	9
Meal, kg + enzyme, g	10+11.64							
Meal, kg	310							
Mixing time,								
Meal. + enzyme, min.	10							
Feed mixture, min.	10							
Cooling time, min.	15-17	15-17	15-17		15-17	15-17	15-17	15-17
Pelleting time, min		0-10.5	10.5-21		21-31.5	31.5-42	42-52.5	52.5-63
Sample collect, min		9-10.5	19.5-21		30-31.5	40.5-42	51-52.5	61.5-63

Cold meal 21 c. samples: Blank, no enzyme, Meal from Horizontal mixer + Pellets of each temp. (65-75-80-88-90 C), 1,0 kg of each Cascade mixer: Filling 5500-5570 g feed Retention time 64-65 sec

Open steam valve: no. 1 Pallet adjustment no: 2

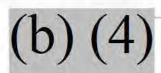
BASF Enzymes LLC Page 24 of 29

Study no. 01-17 Trial No. 6, Batch C250 Mixture: Corn based diet

Test product: Cibenza Phytaverse G10 Lot R015271001 Inclusion rate: 5.94 g/ 320 kg diet

Pellet Press: Simon Heesen Die: Ø 3x 35 mm

(b) (4) - Pilot Plant (b)(6)Test at: October 9, 2017 Date:


Composition of mixture:		Mo	isture in	mash:	11.9 %		
66.5 % Corn		1.0	% Vitam	nins/minerals, T&V			
26.2 % Hipro Soya 48		0.5	% Mono	calcium Pho	osfate		
4.4 % Soya Oil		0.4	% Salt				
1.0 % Limestone							
Hammer milling, mm				3,5			
Fat addition				Horizontal	mixer		
Fat temperature, °C				20			
Steam addition				Cascade M	ixer (155 r _]	pm)	
Steam pressure, bars				2			
Test Temperaturs.		65	75	80	85	88	90
Meal temperature, °C		64.9-65.2	74.7-75.4	1 79.7-79.9	85.1-85.3	88.1	90.0-90.2
Capacity, kg/h		300	300	300	300	300	300
Pellet press, amp.		9	9	9	9	9	9
Meal, kg + enzyme, g	10+5.94						
Meal, kg	310						
Mixing time,							
Meal. + enzyme, min.	10						
Feed mixture, min.	10						
Cooling time, min.	15-17	15-17	15-17	15-17	15-17	15-17	15-17
Pelleting time, min		0-10.5	10.5-21	21-31.5	31.5-42	42-52.5	52.5-63
Sample collect, min		9-10.5	19.5-21	30-31.5	40.5-42	51-52.5	61.5-63

Cold meal 21 c. samples: Blank, no enzyme, Meal from Horizontal mixer + Pellets of each temp. (65-75-80-88-90 C), 1,0 kg of each Cascade mixer: Filling 5500-5570 g feed Retention time 64-65 sec

Open steam valve: no. 1 Pallet adjustment no: 2

BASF Enzymes LLC Page 25 of 29

Appendix 2 Certificates of Analysis

MONOGASTRIC NUTRITION REGISTERS & FORMS

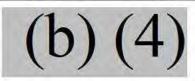
R-0602-L-40003-04

CERTIFICATE OF ANALYSIS

Company:	NOVUS INTERNATIONAL, Inc.		
Type of sample:	Feed		
Laboratory ref. :	171744		
Reception date:	16 th October 2017		
Analysis starting date:	25 th October 2017		
Analysis finishing date:	28 th November 2017		

Sample description:

Mash feed produced at the


(b) (4) for proximate analysis

Analysis performed:

- AOAC, 2000:
 - o Moisture -dry matter- by oven drying -method nº 925.09 (SOP 0602-L-10001)
 - o Nitrogen -crude protein- by combustion -Dumas method nº 968.06 (SOP 0602-L-10118)
 - o Ether extract on a Soxtec system -method nº 920.39 (SOP 0602-L-10003)
 - o Ash after muffle furnace incineration -method nº 942.05 (SOP 0602-L-10002)
 - o Phosphorus colorimetry for nitromolibdic-vanadate complex method nº 965.17 (SOP 0602-L-10019)
 - o Crude fibre on Ankom filter bags fibre analyzer method nº 962.09 (SOP 0602-L-10126)
 - o Calcium by Atomic Absorption spectrophotometry method nº 968.08

Results:

RESULT (%)
(b) (1)
-(0)(4)

(b)(6)

Date: 22nd June 2018

(0)

ANIMAL NUTRITION REGISTERS & FORMS

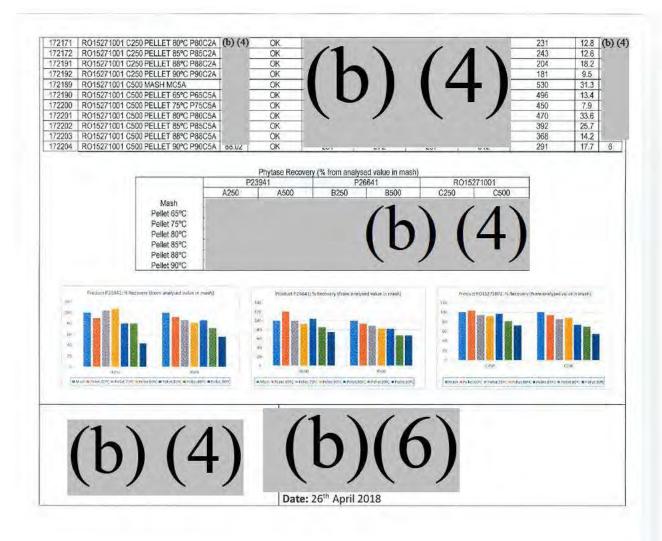
R-0602-L-40003-04

CERTIFICATE OF ANALYSIS

Company:	NOVUS INTERNATIONAL, Inc.		
Type of sample:	Feeds		
Laboratory ref. :	171831 to 171836, 171842 to 171845, 171851 to 171854, 171859 to 171862, 171864 to 171869, 171886 to 171889, 171909 to 171913, 171933 to 171934, 172168 to 172172, 172189 to 172192, 172200 to 172204		
Reception date:	16 st October 2017		
Analysis starting date:	ting date: 30 th October 2017		
Analysis finishing date:	16th January 2018		

Sample description:

Forty nine feeds produced at the (b) (4) for phytase, dry matter and physical appearance evaluation, internally identified as IRTA trial L-220.


Analysis performed:

Determination of phytase activity, according to ISO 30024:2009 spectrophotometric method (6) (4) nethod 0602-L-10143).

Determination of dry matter (DM) content according to AOAC (2000) gravimetric method nº 925.09.

-			
D	es	 40	

LAB. REF.	SAMPLE DESCRIPTION	DM (%)	PHYSICAL ASPECT	PHYTASE (FTU/kg)	PHYTASE (FTU/kg)	PHYTASE (FTU/kg)	PHYTASE (FTU/kg)	PHYTASE (FTU/kg) (average)	st.dv.	CV (%)
171843	D NONE CONTROL MASH MDA	(b) (4)	OK		- 35		26	29	2.9	(b) (4
171844	D NONE CONTROL PELLET 65°C P65DA		OK	/1	1	/ 4 \	35	33	4.2	1
171845	D NONE CONTROL PELLET 75°C P75DA	T	OK	1 6	1		35	37	3.6	10
171851	D NONE CONTROL PELLET 80°C P80DA		OK	17 July 20			24	22	8.5	Till
171852	D NONE CONTROL PELLET 85°C P85DA		OK	(b			22	25	3.5	Ti:
171853	D NONE CONTROL PELLET 88°C P88DA		OK		/	/	24	25	5.8	10
171854	D NONE CONTROL PELLET 90°C P90DA		OK			, ,	26	24	1.3	10
171831	P23941 A250 MASH MA2A		OK	Ti			322	320	46.2	10
171831	P23941 A250 MASH MA2A (repetition)		OK	Ti.			271	265	22.8	Ti'
171832	P23941 A250 PELLET 65°C P65A2A		OK	Ti i			226	237	9.6	10
171833	P23941 A250 PELLET 75°C P75A2A		OK	0			286	275	16,5	Ť
171834	P23941 A250 PELLET 80°C P80A2A		OK	T)			309	284	19.2	Ti-
171835	P23941 A250 PELLET 85°C P85A2A		OK	T)			209	211	10.8	T
171836	P23941 A250 PELLET 88°C P88A2A		OK	T)			216	211	17.1	T
171842	P23941 A250 PELLET 90°C P90A2A		OK	Ti.			110	114	4.8	1
171859	P23941 A500 MASH MA5A	T	OK	Tr.			498	519	19.5	16
171860	P23941 A500 PELLET 65°C P65A5A		OK				467	476	26.0	T
171861	P23941 A500 PELLET 75°C P75A5A		OK	11			418	448	27.5	1
171862	P23941 A500 PELLET 80°C P80A5A		OK	10			472	424	34.2	TO .
171869	P23941 A500 PELLET 85°C P85A5A		OK	1			418	444	20.1	
171864	P23941 A500 PELLET 88°C P88A5A	8	OK	T)			364	369	18.8	
171865	P23941 A500 PELLET 90°C P90A5A	8	OK	1			268	287	17.1	10
171866	P26641 B250 MASH MB2A	T	OK	The second			255	233	14.8	TN.
171867	P26641 B250 PELLET 65°C P65B2A		OK				292	281	27.8	1
171868	P26641 B250 PELLET 75°C P75B2A	8	OK	ŢĮ.			236	233	6.4	10
171886	P26641 B250 PELLET 80°C P80B2A		OK				227	218	6.6	
171887	P26641 B250 PELLET 85°C P85B2A		OK	II)			249	244	21.2	T)
171888	P26641 B250 PELLET 88°C P88B2A		OK				191	199	24.1	TI.
171889	P26641 B250 PELLET 90°C P90B2A		OK	0			171	174	11.2	10
171909	P26641 B500 MASH MB5A		OK	T			415	435	23.1	TO .
171909	P26641 B500 MASH MB5A (repetitition)		OK				560	578	14.4	To .
171910	P26641 B500 PELLET 65°C P65B5A		OK				487	474	17.9	
171911	P26641 B500 PELLET 75°C P75B5A		OK	1			388	449	44.2	Til
171912	P26641 B500 PELLET 80°C P80B5A		OK				404	419	19.1	
171913	P26641 B500 PELLET 85°C P85B5A		OK	.0			427	416	11.0	10
171933	P26641 B500 PELLET 88°C P88B5A		OK	Ų			353	343	11.3	
171934	P26641 B500 PELLET 90°C P90B5A	9	OK				347	342	14.2	N.
172168	RO15271001 C250 MASH MC2A	9	OK	i.			235	251	29.0	14
172169	RO15271001 C250 PELLET 65°C P65C2A		OK	10			275	259	30.1	1.4
172170	RO15271001 C250 PELLET 75°C P75C2A	00121	OK	1			213	235	18.3	10

BASF Enzymes LLC Page 28 of 29

Appendix 3 Protocol Amendment

The Novus sponsor of the Study was changed. The protocol was amended accordingly as shown below.

Evaluation of the thermostability of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in pelleted poultry feed

Study no. 01-17

Amendment to Protocol

It is hereby stated that Mr. Gavin Bowman replaces Study Sponsor from Novus International, Mr. Sanjay Nimkar.

Signed by Study Director, Study Sponsors and Study Monitor:

(b) (4), (b)(6)	FEB 28, 2018	ROK VA DO 8 2018	Fren 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Study St	ponsors	Study Monitor
	Gavin Bowman Director, Global Regulatory Affairs Novus International 20 Research Park Dr. St. Charles, MO 63304, United States of America	Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court, San Diego, CA 92121, United States of America	Drew Lichtenstein Research Manager, Specialty Products Novus International -20 Research Park Dr., St. Charles, MO 63304, United States of America

BASF Enzymes LLC Page 29 of 29

BASF Enzymes LLC Page 1 of 3

Date

27th March 2018

Product:

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme

TO WHOM IT MAY CONCERN:

The table below provides source and regulatory status for the ingredients in the vitamin-mineral premix used in "Evaluation of the thermostability of CIBENZA PHYTAVERSE G10 Phytase Enzyme in pelleted poultry feed" (Study no. 01-17; (b) (4) code L220) conducted at the (b) (4) provided the vitamin-mineral premix used in this study.

#	Vitamin/Mineral	Source	Regulatory status to support ingredient use in US
1	1.	1	
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			

#	Vitamin/Mineral	Source	Regulatory status to support ingredient use in US
18		14	/ 4
19			
20		n	
21			
22			
23			
24			
25 26			
27			

Sincerely,

Study Director

(b)(4)

BASF Enzymes LLC

Appendix 26: The Effects of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme on Bone Ash of Broilers Fed Reduced Phosphorus Diets

BASF Enzymes LLC Page 1 of 110

Final Report Amendment

Study Number

Effective Date
Amendment Number
Author
Final Report Section Affected

NV-13-2
Date of Study Investigator's signature

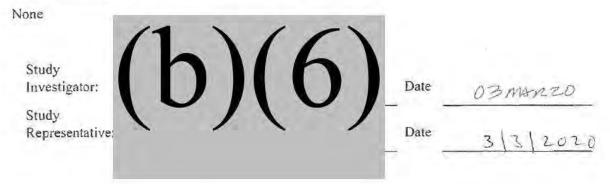
(b)(6)

14. Results and Evaluation

Changes are shown here with strikethroughs, and additions are highlighted.

14. Results and Evaluation

The main effect of treatment on percent tibia ash was statistically significant (Table 1). The percent tibia ash in the PC group was significantly higher than that observed NC and 250 U groups (53.50% vs. 44.75% and 51.24% respectively), but not significantly different from the 500 U group (52.86%). Both the 250 and 500 U groups had significantly higher ash values than the negative control group (51.24% and 52.86% vs. 44.75% respectively). Additionally, ash values in the 500 U group were significantly higher than values in the 250 U group (52.86% vs. 51.24% respectively).


The main effect of treatment on magnesium and phosphorus % values was statistically significant (Table 1). For phosphorus and magnesium values, values in the PC group were significantly higher than the NC and 250 U group (17.92%, 0.79% vs. 16.98%, 0.64% and 17.31%, 0.71% respectively). Phosphorus and magnesium values for the 250 and 500 U groups were significantly higher than the NC (17.31%, 0.71% and 17.76%, 0.75% vs. 16.98%, 0.64% respectively). Calcium values were not affected by treatment (Table 1). The additional necropsy and bone assessment in the NC birds at study end resulted in an average hip pop-out score of 1.10 out of 2.00 and an average of 0.82 out of 2.00 for bone softening on gross evaluations. No joint abnormalities were noted on examination of this group.

The main effect of treatment on average body weight gain was statistically significant for each time period (Table 1). During Days 0 – 14, gain in the PC group was not significantly different from the gain seen in the NC group. Gain in both the 250 and 500 U groups was significantly higher than both the PC and NC groups (0.304 kg, 0.310 kg and 0.292 kg, 0.282 kg respectively). During Days 14 – 28 and overall (Day 0 – 28), gain in the PC group was significantly higher than the gain seen in the NC group (0.928 kg vs. 0.751 kg and 1.221 kg vs. 1.033 kg respectively). Gain in the 250 and 500 U groups was significantly higher than the gain in the NC group (0.940 kg and 0.973 kg, vs. 0.751 kg respectively for days 14-28 and 1.244 kg, 1.283 kg vs. 1.033 kg respectively for 0-28 days). Gain in the 500 U dose group was also significantly higher than the gain in PC group (2.04 0.973 kg vs 1.96 0.928 kg for days 14-28 and 1.283 kg vs. 1.221 kg for days 0-28).

Reason for Amendment:

This amendment is necessary to amend inadvertent typographical errors in the original final report.

Anticipated Impact on the Study:

(b)(4)

INVESTIGATOR FINAL REPORT

The effects of CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme on bone ash of broilers fed reduced phosphorus diets.

Project No.:

NV-13-2

STUDY SPONSOR

Novus International, Inc. 20 Research park Drive St. Charles, MO 63304

TEST FACILITY

(b)(4)

November 2016

BASF Enzymes LLC Page 4 of 110

Table of Contents

1. Ti	tle	5
1.1.	Study Number	5
2. St	udy Objective	5
2.1.	Study Pivotal vs. non-Pivotal	5
2.2.	Standards Applied to Study Conduct	5
3. Ke	ey Study Personnel	5
3.1.	Sponsor	5
3.2.	Study Investigator	5
3.3.	General Study Personnel	6
3.4.	Test Facility Personnel	6
4. Str	udy Locations	7
5. Ke	ey Study Dates	8
6. Ex	sperimental Materials	8
6.1	I.1. Test Article	8
7. Ma	aterials and Methods	9
7.1.	Study Design	9
7.2.	Blinding of Study	9
7.3.	Randomization and Blocking	9
7.4.	Animal Selection and Identification	10
7.5.	Housing and Management	10
7.6.	Animal Disposal	
7.7.	Treatments	
7.7	7.1. Treatment Descriptions	12
7.7	7.2. Control Groups	
7.7	7.3. Test Article Administration	12
7.8.	Diets	12
7.8		
7.8		
7.8	3.3. Feeding Program	
7.9.	Bone Ash (Tibia) Sample Analysis	
7.9		

7.9.2.	Percent Bone Ash	14
7.9.3.	Tibia Ash Calculations	15
7.9.4.	Tibia Mineral Analysis	15
8. Anin	nal Variables	15
8.1. Sc	ales	15
8.2. Uı	nits of Measure	15
8.3. Bi	ird Weights	15
8.3.1.	Average Weight Gain	15
8.4.	Feed Consumption	15
8.4.1.	Average Feed Intake	15
8.5. M	ortality and Removal Weights	15
8.6. Pe	erformance Data	15
8.6.1.	Average Feed Conversion Ratio	16
8.6.2.	Adjusted Feed Conversion Ratio	16
Accoun	ntability and Disposition of Test Article, Feed and Animals	16
10. Statisti	ical Methods	16
11. Protoco	ol Amendments and Deviations	16
12. Archive	es	17
3. Institut	tional Animal Care and Use Committee Information	18
4. Results	s and Evaluation	18
5. Conclu	sion	21
6. Accura	ncy of Report Statement	22
7. Referen	nces	23
8. List of	Appendices	24
	Records	
Appendix	I - Blocking Table	25
Appendix	2 - Diet Formulations	25
Appendix	3 - Statistical Analysis Report	26
Appendix	4 - Analysis of Ingredients (Eurofins)	32
Appendix	5 - Analysis of Feed (Eurofins)	34
Appendix	6 - Dose Confirmation Analysis Report (BASF)	58
Annendix	7 – Performance Data	50

Page 6 of 110

Appendix 8 -	Tibia Ar	nalysis Data	Summary		8:
--------------	----------	--------------	---------	--	----

Page 7 of 110

1. Title

The effects of CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme on bone ash of broilers fed reduced phosphorus diets.

1.1. Study Number

NV-13-2

2. Study Objective

The study was used to demonstrate utility of the additive and thus to build the regulatory dossier of CIBENZA® PHYTAVERSE™ G10 for its use as a feed ingredient. The study evaluated the utility of adding CIBENZA® PHYTAVERSE™ G10 at two potential minimum doses (250 and 500 U/kg diet) in broilers fed diets containing sub-optimum levels of non-phytate phosphorus by assessing tibia ash levels, as an indicator of phosphorous availability.

2.1. Study Pivotal vs. non-Pivotal

The study was pivotal. The study was used to demonstrate the utility of the additive and thus to build the regulatory dossier of CIBENZA® PHYTAVERSE™ G10 for its use as a feed ingredient.

2.2. Standards Applied to Study Conduct

The study was conducted consistent with good clinical practice guidance as provided by the FDA's Guidance for Industry – Good Clinical Practice (VICH GL 9) GFI No. 85.

3. Key Study Personnel

3.1. Sponsor

(b)(6)

Novus International, Inc. 20 Research park Drive St. Charles, MO 63304 Phone: 314-576-8886

E-mail:

(b)(6)@novusint.com

3.2. Study Investigator

(b) (4), (b)(6)

Page 8 of 110

3.3. General Study Personnel

(b) (4), (b)(6)

Sponsor Representative

Study Monitor

Principle Investigator Collaborative Testing Facility – Tibia Analysis

Study Statistician

Study investigator, bird evaluation, bird randomization, tibia collection

Test facility management

Feed manufacture, weigh birds, verify data

Feed manufacture

Bird placement, bird identification, verify data

Data recording; Data management

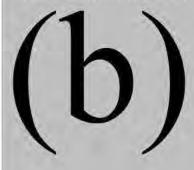
Pen observations, bird identification

Feed manufacture

Pen observations, data recording

Bird placement, weigh birds, weigh feed

Bird placement, weigh birds, weigh feed


(b) (4), (b)(6)

Bird placement, weigh birds, weigh feed

Assist with randomization

4. Study Locations

Test Facility/Live Phase:

Page 10 of 110

5. Key Study Dates

Study Days	Calendar Date(s)	Activities
NA	17FEB15	Study initiation (Protocol Signature).
NA	18FEB15 to 20MAR15	Feed manufacture.
Day 0	20MAR15	Start of live phase. Assessed chick health. Determined average chick weight and assured compliance. Neck tagged birds. Random assignment of chicks to pens. Weighed birds by pen. Administration of starter treatment diets.
Day 14	03APR15	Collected and weighed uneaten starter feed per pen. Weighed birds by pen. Fed grower treatment diets.
Day 28	17APR15	Collected and weighed uneaten grower feed per pen. Weighed birds by pen. Fed finisher treatment diets. Collected right and left legs from selected birds. Mortality evaluation on select birds. Euthanized and dispose of remaining study birds. End of study.

6. Experimental Materials

6.1.1. Test Article

CIBENZA® PHYTAVERSETM G10

Generic Name:	Phytase
Active/Inactive Ingredient:	Pseudomonas fluorescens fermentation extract, with a wheat flour carrier. The phytase liquid concentrate contains sucrose, sodium citrate, sodium chloride, sodium propionate, potassium sorbate, ar sodium benzoate. The liquid concentrate was dried onto food grawheat flour for a dry preparation.
Trade Name:	CIBENZA® PHYTAVERSE™ G10
Chemical Name:	6-phytase
Lot Number:	P26641
Formulation:	Dry Granule
Concentration:	13813 U/g
Expiry Date:	TBD

The test article was supplied by the Sponsor packaged in plastic nalgene bottles. The test article was stored in a secured, temperature –controlled, dry area out of direct sunlight. CIBENZA® PHYTAVERSETM G10 is stable at 25° C for a minimum of 6 months. The sponsor provided the testing facility with a Material Safety Data Sheet (MSDS) for CIBENZA® PHYTAVERSETM G10. The MSDS is included in the study records. All test article use was recorded and included in the study records.

Page 11 of 110

7. Materials and Methods

7.1. Study Design

On study day 0 birds were randomly assigned to one of four (4) treatment groups (Trt A, Trt, B, Trt C, and Trt D).

The treatment groups consisted of the following:

- Positive control The diet met or exceeded the NRC 1994 and industry standards.
- Negative control The diet met or exceeded the NRC 1994 standards with the
 exception of non-phytate phosphorus formulated to 0.3% non-phytate P (NPP) for
 starter (days 0-14), and 0.26% NPP for grower (days 14-28).
- Negative control diet with 250 U CIBENZA® PHYTAVERSE™ G10 per kg feed
- Negative control diet with 500 U CIBENZA® PHYTAVERSE™ G10 per kg feed U was defined as the amount of enzyme that catalyzes the release of one micromole phosphate from the phytate per minute at 37°C at pH 5.5 in accordance to the assay.

7.2. Blinding of Study

Pens within each block were randomly assigned to one (1) of four (4) letter blinding codes (A, B, C, & D). The sponsor held the treatment code that related the treatment number to the blinded treatment letter code. All investigators and lab personnel at the testing facility were blinded to treatment levels and did not have access to the treatment codes. The feed mill manger, feed mill technician, and the data manager were not blinded.

Test articles were provided by the sponsor in pre-measured bottles labeled with the treatment letter code and were added to the mixed treatment diets according to the treatment code. Wheat flour was used as a placebo in order to protect blinding.

7.3. Randomization and Blocking

The experimental design was a randomized complete block design. The blocking factor was the pen location within the house. The test facility was divided into twelve blocks containing four pens each. The random assignment of blinding code/diets to pens was conducted using a computer random number generator (Microsoft Excel) as depicted in the blocking table (Appendix 1 – Blocking Table). Blinding codes/diets were randomly assigned to pens within the block such that one pen was fed each diet/treatment.

Birds were allocated to individual pens randomly according to (b) (4) SOP B-10.

7.4. Animal Selection and Identification

960 Male Cobb 500 birds (20 birds per pen. 48 pens) were purchased as day-of-hatch chicks from (b) (4), (b) (4). Chicks were a commercial strain. Chicks hatched from eggs laid by young breeders were avoided. All birds were visually evaluated upon arrival at the test facility. Only birds that appeared healthy and alert were assigned to the study.

Birds were identified with a unique tag number attached to the neck. Any tags lost during the study were immediately replaced with a tag with the same number.

Birds were weighed by pen on study day 0 prior to placement on experimental diets and the chick average weight per pen was between 40 grams and 44 grams. Birds were placed on study at approximately one day of age. No acclimation period was utilized.

7.5. Housing and Management

Housing

Birds were housed in an environmentally controlled facility that was adjusted as necessary to maintain bird comfort. Environmental conditions of space, temperature, lighting, bird density, feeder space, and waterer space were similar for all treatment groups. Containment was in accordance with The Guide for the Care and Use of Agricultural Animals in Research and Teaching (Ag Guide), Federation of Animal Science Societies, third edition, January 2010.

Birds were placed in floor pens with concrete floors containing an appropriate depth of clean wood shavings to provide a comfortable environment for the chicks. Additional shavings were added to pens if they became to damp for comfortable conditions for the birds during the study. Each pen was approximately 3'X 5' providing approximately 0.75ft² per bird (excluding feeder and water space).

Heat was provided to the facility via 4 house has heaters located on the south side of the building. Cooling was provided to the facility by evaporative cooling cell pads with negative pressure ventilation. Negative pressure ventilation was provided by exhaust fans, air circulating tubes and a plenum.

Lighting was provided via incandescent lights and a commercial lighting program was used.

Feed and Watering Method

Feed was provided by a feeder tray for each pen for the first 4 days of the study. Feed was provided ad libitum throughout the study via one hanging tube feeder per pen. Water was provided ad libitum by one (1) automatic nipple drinker (4 nipples each drinker) per pen. Drinkers were checked twice daily and cleaned as needed to ensure a clean and constant water supply to the birds.

Feed Manufacture

Feed manufacture was according to (b) (4). All experimental diets were manufactured at the Colorado Quality Research Feed Mill. A 500 pound capacity vertical mixer (Seedburo Equipment Company) and a 4,000 pound vertical mixer (Prater Industries) were used to prepare the starter, grower and finisher diets. Mixing time ranged from 8-12 minutes depending upon batch size (b) (4)

Basal diets were stored in bulk storage bins labeled with study number and diet type. Test articles in pre-measured bottles labeled with the blinded treatment letter code were added to the appropriate diet according to (b) (4) Treatment diets were further identified with the appropriate blinded treatment letter code and diets phase type and were stored in separate bulk storage boxes and/or bags. All treatment diets were stored in the feed mill storage facility at ambient conditions after manufacture.

Animal Observations

The test facility, pens and birds were observed at least twice daily for general flock conditions, lighting, water, feed, ventilation and unanticipated events. All Animals were observed regularly by qualified personnel and any adverse effects recorded.

Environmental/Weather Recording Devices

A digital thermometer/hygrometer was located at approximately the center of the testing facility near animal height. High/low reading of temperature and humidity were recorded once daily. Details of the recording device used and location were included in the study records.

7.6. Animal Disposal

Birds in poor condition, unlikely to survive, in pain, distress or requiring therapy, were removed from the study and necropsied by the investigator or technicians blinded to treatment identification. When sex-slips were noted they were removed, euthanized, weighed and recorded on the pen mortality records. Removed birds and mortalities were necropsied to the extent necessary to determine the probable cause of death. The date and of results of the necropsy were recorded on the pen mortality record. Any excessive, unexplained mortality was reported immediately to the sponsor.

Birds did not enter the food and feed chain. Birds were euthanized by carbon dioxide inhalation. Carcasses were disposed of by landfill via commercial dumpster. Reconciliation of test animals is documented in the study records.

Medications and Vaccinations

Birds were vaccinated for Mareks at the hatchery. Upon receipt (Day 0), birds were also vaccinated for Newcastle and Infectious Bronchitis via a spray cabinet. The vaccine was obtained from

(b) (4) identified as Newcastle-Bronchitis Vaccine, B1 type, B1 strain, Massachusetts type. Live virus (lot number 1401371 expiration date 30JUN15).

(b) (4)

ESB334, expiration date OCT 2015). No additional vaccinations or medications were used.

(b) (4) Project No NV-13-2

7.7. Treatments

7.7.1. Treatment Descriptions

Treatment	Blinding Code	Diet	CIBENZA® PHYTAVERSE™ G10 (U/kg diet)
1	D	Positive Control	0
2	A	Negative Control	0
3	В	Negative Control	250
4	С	Negative Control	500

7.7.2. Control Groups

Two control treatment groups were used. One a positive control treatment group was fed diets containing or exceeding NRC recommended levels for all nutrients, and a negative control treatment group that was fed diets containing or exceeding NRC recommended levels of all nutrients with the exception of non-phytate phosphorus.

7.7.3. Test Article Administration

The experimental test article was homogenously mixed into the daily feed rations as outlined in the treatment description. The test article was administered by oral consumption of feed. There was no withdrawal period and the birds and excess feed did not enter the food or feed chain.

7.8. Diets

Starter and grower diets were fed in mash form. The starter diet was feed from study day 0 to study day 14. The grower diet was feed from study days 14 to study day 28. Diet changes were conducted at the same time for all treatment groups and pens.

Positive Control Diet

The positive control diets comprised primarily of corn and soybean meal with macro- and micro- mineral and vitamin supplementation to meet or exceed the NRC (1994) and industry broiler nutrient requirements.

Negative Control Diet

The negative control diets consisted of the same characteristics as the positive control with available or non-phytate phosphorus formulated 0.15% less than the positive control diet in the corresponding phase. The negative control diets met all other NRC (1994) and industry broiler nutrient requirements.

7.8.1. Feed Sampling

For each phase and treatment a composite sample (approximately 2,500 grams) was collected according to CQR SOP FM-4. Each composite sample was split into 3 sub-samples: two ~1000 grams each and one, ~500 grams. Each sub-sample was labeled with the study number, blinding code, diet phase, and mixing date.

Page 15 of 110

7.8.2. Feed Analysis

Feed was analyzed prior to commencement of the study. Acceptable feed was within 15% of the intended level for assessment of crude protein, methionine, calcium, total phosphorus, and non-phytate phosphorus. The results of feed analysis were approved by the sponsor prior to the initiation of the study.

One ~500 gram sub-sample was sent to

 (b) (4) for analysis. Results are included in (Appendix 5- Analysis of Feed (Eurofins)) and the final study records.

(b) (4) (4) (4) (Complete) (Compl

7.8.2.1. Nutrient Analysis

For each phase and treatment one ~500 gram sub-sample was sent to
 (b) (4) for analysis. Results are included in (Appendix 4 –
 Analysis of Ingredients (b) (4)) and the final study records.

Assays Performed and Method

Moisture (AOAC 930.15)
Crude Protein (AOAC 990.03; 992.15 Mod)
Methionine (AOAC 994.12)
Calories by bomb calorimeter (Parr instrument method)
Ash (AOAC 942.05)
Calcium and Total Phosphorus (AOAC 965.17/985.01 Mod)

7.8.2.2. Enzyme Analysis

For each phase and treatment one ~1,000 gram sub-sample was sent to BASF Enzymes LLC for analysis. Results are included in (Appendix 6—Dose Confirmation Analysis Report (BASF)) and the final study records.

Assays Performed

Phytase for evaluation of CIBENZA® PHYTAVERSE™ G10 activity.

Phytic Acid

Phytic acid in feed was determined by mathematical calculation of phytate bound phosphorus levels in feed.

Phytic acid levels were used to calculate the non-phytate bound phosphorus (NPP)

Non-Phytate Phosphorus (NPP) = Total P - phytate P

Page 16 of 110

7.8.3. Feeding Program

Feed added and removed was weighed and recorded for each pen. Diet changes were conducted at the same time for all pens. The feeding period for the starter diet was from study days 0-14, and the grower diet from study days 14-28.

7.9. Bone Ash (Tibia) Sample Analysis

Percent tibia bone ash is a direct indicator of poultry phosphorus status and the efficacy of CIBENZA® PHYTAVERSE™ G10 in animals fed reduced non-phytate phosphorus. Results are included in (Appendix 8 – Tibia Analysis Data Summary) and the final study records. AOAC 968.08 Section Db and AOAC 985.01 procedures for analyzing ash minerals using an ICP instrument

7.9.1. Tibia Sample Collection

On study day 28 at the end of the study, the five (5) surviving birds within each pen with the lowest neck tag numbers were selected for bone-ash measurements. Selected birds were euthanized by carbon dioxide. Both the right and left legs (tibias) were harvested from each selected bird.

Each tibia was labeled with the bird number, study number, collection date, and sample description (right or left tibia). Both tibias were frozen at approximately - 20° C. Once frozen, the right legs (tibias) were shipped to the (b) (4) (b) (4) for bone ash analysis. The left legs (tibias) remained frozen as a backup at (b) (4) until the results were received from the right leg (tibia) until bone ash analysis.

In addition, all remaining birds in the NC group (Treatment A) were euthanized at study day 28 and each bird evaluated for femoral bone pliability, hip pop-out, and femorotibial joint gross examination. For hip pop-out they were given a score of 0 if both hip joints were normal, a score of 1 if one hip was affected by femoral head epiphyseal slipping, or a score of 2 if both hip joints were affected. For joint score they were given a 0 if both femorotibial joints were normal on gross examination, a score of 1 if one joint was affected, and a score of 2 if both joints had evidence of joint pathology. For femoral bone pliability a score of 0 was given for normal bone pliability, a score of 1 if one femur had reduced breaking/bending strength by subjective evaluation, and a score of 2 if both femurs displayed evidence of reduced bone strength.

7.9.2. Percent Rone Ash

The (b) (4) conducted analysis by thawing the right leg (tibia) samples and manually removing adhering tissue from the tibia after boiling. The individual bone samples were fat-extracted by use of a mixture of ether and methanol (90% and 10%, respectively). The individual bone samples were labeled and dried at 100° C overnight to determine drone bone weight (AOAC, 1990) then ashed in a muffle furnace at 600° C for 16 hours to determine fat-free dried bone ash. The percentage bone ash was determined by the ratio of remaining ash weight to fat-free dry bone weight multiplied by 100. For each pen

Page 17 of 110

the results for all 5 right tibia samples were averaged so the pen served as the experimental unit.

7.9.3. Tibia Ash Calculations

Percent tibia ash was determined by the ratio of remaining ash weight to fat free dry bone weight multiplied by 100.

Fat-free dry bone ash % = [Fat-free dried bone ash (FFBA)/Fat-free dried bone weight (FFBW)]*100

7.9.4. Tibia Mineral Analysis

minerals using an ICP instrument.

The tibia ash was further analyzed for calcium, phosphorus and magnesium by
(b) (4) utilizing
AOAC 968.08 Section Db and AOAC 985.01 procedures for analyzing ash

8. Animal Variables

8.1. Scales

Scales used in weighting feed, feed additives, and birds were licensed by the (b) (4) (b) (4) At each use, the scales were checked using standard weights according to B-9.

8.2. Units of Measure

Weights were recorded in kilogram (kg) or gram (g) and were recorded on the data collection form.

8.3. Bird Weights

Birds were weighed by pen at placement (study day 0), study days 14, and 28.

8.3.1. Average Weight Gain

Average bird weigh gain by pen was calculated for study days 0-14, 0-28, and 14-28.

8.4. Feed Consumption

Feed offered was weighed in by pen. Feed removed was weighed by pen on study day 14, and study day 28.

8.4.1. Average Feed Intake

Average feed intake was calculated as the difference between feed offered and feed per pen calculated for study days 0-14, 0-28, and 14-28.

8.5. Mortality and Removal Weights

Weights of birds that died or were removed was recorded on the pen mortality record. Mortality and removal weights were used to calculate the adjusted Feed Conversion Ratio (FCR).

8.6. Performance Data

Results are included in (Appendix 7 – Performance Data) and the final study records.

8.6.1. Average Feed Conversion Ratio

Average Feed Conversion Ratio was calculated by dividing the total feed consumption in a pen divided by the total weight of surviving birds from that pen.

8.6.2. Adjusted Feed Conversion Ratio

Adjusted Feed Conversion Ratio was calculated by dividing the total feed consumption in a pen divided by the total weight of surviving birds and the weight of removed or mortality birds from that pen.

9. Accountability and Disposition of Test Article, Feed and Animals

All unused test article, unused feed, and animals were documented and those documents were included in the final study records.

10. Statistical Methods

Pen was considered the experimental unit for all outcomes.

The data were analyzed using the following model:

$$Yijk = \mu + Bi + Tj + Eijk$$

Where: μ = the overall mean, Bi = the effect of the ith block, Tj = the effect of the jth dietary treatment, and Eijk = residual error.

Data were analyzed using ANOVA (the (b) (4) procedure in version 9.4) and means were separated by LSDs, with the threshold for statistical significance set at the customary 5% level.

The Statistical Analysis Report is included in (Appendix 3 – Statistical Analysis Report) and the final study records.

11. Protocol Amendments and Deviations

All planned changes to the final approved protocol were documented as amendments. All unplanned changes to the approved protocol were documented as deviations. The amendment/deviation contained, but was not limited to: the study number, amendment/deviation number, name of Study Investigator, identification of the protocol section and page number affected, reason(s) for the protocol amendment/deviation, how the change affected the study, and effective date. Protocol changes were discussed and agreed upon by the Study Monitor. Protocol amendments were signed and dated by the Study Investigator and Sponsor Representative. Copies of amendments/deviations were provided to the Study Monitor. Amendments/deviations were appended to the protocol and were addressed as follows:

Amendments

and are included in the study records. There were four amendments during this study. The amendments are summarized below

O.	4	tu)	ю	-	Amendment Number
Release of feed Treatment 3. Novus released the feed for the study even though Treatment 3 feed did not meet the intended level of 250 units +/- 15% (Protocol sections 8.8.2.2.1)	Addition of the analysis of calcium, phosphorus and magnesium content of the tibias. (Protocol sections 8.6.1.2, 9.1 and 9.1.2)	Additional assessment for femoral pliability, hip pop-out and femoro-tibial joint gross exam on treatment A tibia collection birds and birds that displayed lameness during the study. (Protocol sections 9.2 and 9.2.5)	The study was ended early on day 28 for humane reasons. (Protocol sections 6.2, 7.2, 8.8.4, 9.1.1, 9.1.2, 9.2.1, and 9.2.3)	The birds arrived the evening prior to placement and were placed study day 0 at approximately one day of age. (Protocol section 8.4.1)	Purpose & Sections Effected
Little to no impact	Improves study	Little to	Little to no impact	None	Impact on Study

Deviations

There were no deviations during the study.

12. Archives

included in investigator final report. respective facility. All original data and records generated by outside consultants and laboratories were retained at the facilities for a minimum of three years. Full data sets (copies of all raw data) were submitted to (b) (4) and were utilized and Data and records generated by outside laboratories and consultants were archived at the

archive following submission to CVM. The exact copy of the final report and all study records will be kept for five years in the(b) (4) located at records, statistician's report, sponsors' data and reported will be stored by the sponsor. An Upon study completion, the study Investigator's final study report, original data and study (b) (4) (b) (4)archive is

(b) (4) Project No NV-13-2

Investigators Final Report

Page 17 of 107

13. Institutional Animal Care and Use Committee Information

Studies with livestock species including studies with poultry, the nature described herein, are not regulated under the Animal Welfare Act (United States Code, Title 7, Sections 2131-2156), and therefore do not require oversight by an Institutional Animal Care and Use Committee.

14. Results and Evaluation

The main effect of treatment on percent tibia ash was statistically significant (Table 1). The percent tibia ash in the PC group was significantly higher than that observed NC and 250 U groups (53.50% vs. 44.75% and 51.24% respectively), but not significantly different from the 500 U group (52.86%). Both the 250 and 500 U groups had significantly higher ash values than the negative control group (51.24% and 52.86% vs. 44.75% respectively). Additionally, ash values in the 500 U group were significantly higher than values in the 250 U group (52.86% vs. 51.24% respectively).

The main effect of treatment on magnesium and phosphorus % values was statistically significant (Table 1). For phosphorus and magnesium values, values in the PC group were significantly higher than the NC and 250 U group (17.92%, 0.79% vs. 16.98%, 0.64% and 17.31%, 0.71% respectively). Phosphorus and magnesium values for the 250 and 500 U groups were significantly higher than the NC (17.31%, 0.71% and 17.76%, 0.75% vs. 16.98%, 0.64% respectively). Calcium values were not affected by treatment (Table 1). The additional necropsy and bone assessment in the NC birds at study end resulted in an average hip pop-out score of 1.10 out of 2.00 and an average of 0.82 out of 2.00 for bone softening on gross evaluations. No joint abnormalities were noted on examination of this group.

The main effect of treatment on average body weight gain was statistically significant for each time period (Table 1). During Days 0 – 14, gain in the PC group was not significantly different from the gain seen in the NC group. Gain in both the 250 and 500 U groups was significantly higher than both the PC and NC groups (0.304 kg, 0.310 kg and 0.292 kg, 0.282 kg respectively). During Days 14 – 28 and overall (Day 0 – 28), gain in the PC group was significantly higher than the gain seen in the NC group (0.928 kg vs. 0.751 kg and 1.221 kg vs. 1.033 kg respectively). Gain in the 250 and 500 U groups was significantly higher than the gain in the NC group (0.940 kg and 0.973 kg, vs. 0.751 kg respectively for days 14-28 and 1.244 kg, 1.283 kg vs. 1.033 kg respectively for 0-28 days). Gain in the 500 U dose group was also significantly higher than the gain in PC group (2.04 kg vs 1.96 kg for days 14-28 and 1.283 kg vs. 1.221 kg for days 0-28).

The main effect of treatment and average daily feed intake was statistically significant for Days 14 – 28 and 0 - 28 (Table 1). No differences between groups were detected during the first 2 weeks of the treatment period. During Days 14 – 28, feed intake in the PC group was significantly higher than the intake seen in the NC group (1.96 kg vs. 1.54 kg respectively). Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group (1.99 kg and 2.04 kg vs. 1.54 kg respectively). Intake in the 500 U dose group was also significantly higher than the intake in PC group and the 250 U group (2.04 kg vs. 1.96 kg and 1.99 kg respectively). Overall (Day 0 – 28), intake in the PC group was significantly higher than the intake seen in the NC group (1.27 kg vs 1.06 kg respectively). Intake in the 250 and

500 U groups was significantly higher than the intake in the NC group (1.30 kg and 1.32 kg vs. 1.06 kg respectively). Intake in the 500 U dose group was also significantly higher than the intake in PC group (1.32 kg vs. 1.27 kg respectively).

The main effect of treatment on average feed intake per bird was statistically significant for Days 14 – 28 and 0 - 28 (Table 1). No differences between groups were detected during the first 2 weeks of the treatment period. During Days 14 – 28, feed intake in the PC group was significantly higher than the intake seen in the NC group (1.387 kg vs. 1.213 kg respectively). Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group (1.401 kg and 1.449 kg vs. 1.213 kg respectively). Intake in the 500 U dose group was also significantly higher than the gain in PC group and the 250 U group (1.449 kg vs. 1.387 kg and 1.401 kg respectively). Overall (Day 0 – 28), intake in the PC group was significantly higher than the intake seen in the NC group (1.798 kg vs. 1.671 kg respectively). Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group (1.822 kg and 1.873 kg vs. 1.671 kg respectively). Intake in the 500 U dose group was also significantly higher than the intake in PC group (1.873 kg vs. 1.798 kg respectively).

The main effect of treatment on feed to gain ration (FCR, adjusted for mortality and culls) was statistically significant for Days 0 – 14, Days 14 – 28 and 0 - 28 (Table 1). During Days 0 – 14 and overall (Day 0 – 28), FCR in the PC group was significantly improved as compared to the FCR seen in the NC group (1.4939 vs. 1.5744 for days 0-14 and 1.4721 vs. 1.5403 for 0-28 days respectively). FCR in the 250 and 500 U groups was significantly improved versus the FCR in the NC group (1.3849 and 1.3573 vs. 1.4572 respectively for days 0-14, 1.4902 and 1.4806 vs. 1.5744 for days 14-28, and 1.4643 and 1.4504 vs. 1.5403 for days 0-28 respectively). FCR in the 500 U dose group was also significantly improved as compared to the FCR in PC group (1.3573 vs. 1.4038 for days 0-14, 1.4806 vs. 1.4939 for days 14-28, and 1.4504 vs. 1.4721 for days 0-28 respectively). During Days 14 – 28, FCR in the PC group was significantly improved as compared to the FCR seen in the NC group (1.4939 vs. 1.5744 respectively). FCR in the 250 and 500 U groups was significantly improved versus the FCR in the NC group (1.4902 and 1.4806 vs. 1.5744 respectively). FCR in the 250 U and 500 U dose groups was not significantly different from the FCR in PC group.

No statistically significant treatment differences were seen for mortality during the starter phase (Table 1). During the grower phase, and subsequently overall, mortality rates were significantly higher in the negative control group as compared to the other 3 groups (Table 1).

Page 22 of 110

Table 1. Least squares means and square errors

Variable	Positive Control	Negative Control	NC + 250U	NC + 500U	SEM	Overall P-value for treatment
Tibia Ash, %	53.50a	44.75c	51,24b	52,86a	0.5315	<0.0001
Tibia Ash Calcium, %	37.80	37.93	37.55	38.24	0.3448	0.4197
Tibia Ash Magnesium, %	0.79a	0.64d	0.71c	0.75b	0.0084	<0.0001
Tibia Ash Phosphorus, %	17.92a	16.98c	17.31b	17.76a	0.1514	<0.0001
Average Pen Weight Gain, kg (bird basis)						
0-14d	0.292b	0.282b	0.304a	0.310a	0.0038	<0.0001
14-28d	0.928b	0.751c	0.940b	0.973a	0.0075	<0.0001
0-28d	1.221b	1.033c	1.244Ъ	1.283a	0.0101	< 0.0001
Pen Daily Feed Intake, kg						
0-14d	0.58	0.58	0.60	0,60	0.0079	0,2576
14-28d	1.96b	1.54c	1.99b	2.04a	0.0165	< 0.0001
0-28d	1.27b	1.06c	1.30ab	1.32a	0.0112	< 0.0001
Average Feed Intake, bird basis, kg		-				
0-14d	0.411	0.413	0.421	0.421	0.0055	0.4747
14-28d	1.3876	1.213c	1.4016	1.449a	0.0137	<.0001
0-28d	1.798b	1.671c	1.822ab	1.873a	0.0195	<.0001
Feed Conversion Ratio†						
0-14d	1,4038b	1.4572a	1.3849bc	1.3573c	0.0137	0.0001
14-28d	1.4939b	1.5744a	1.4902b	1.4806b	0.0052	<0.0001
0-28d	1.4721b	1.5403a	1.4643bc	1.4504c	0.0050	<0.0001
Mortality						
0-14d	0.83%	1.25%	0.41%	0.41%	0.47	0.5495
14-28d	0.00%b	9.70%a	0.00%b	0.83%b	0.80	<0.0001
0-28d	0.83%b	10.83%a	0.42%b	1.25%b	0.95	< 0.0001

abcd: within a row, values with no letters in common are significantly different at P < 0.05 †Adjusted for mortality and culls

Page 23 of 110

15. Conclusions:

The results of this study indicate and support the addition of CIBENZA® PHYTAVERSE™ G10 at either 250 or 500 U/kg of feed to diets containing sub-optimal levels of non-phytate phosphorous.

This trial was terminated prematurely on study 28 due to progressive lameness and the inability to obtain feed and water in the phosphorous deficient diet fed birds. In order to maintain humane and ethical treatment of the study birds, the trial was terminated following data collection on study day 28. The significant increase in mortality identified in the deficient phosphorous diet fed group from days 14 to 28 is likely the result of the inability to maintain homeostasis secondary to a non-ambulatory state resulting in a reduction in feed and water intake.

The bone assessment evaluations in the NC group at study end are indicative of loss of bone strength and integrity due to the decrease levels of available phosphorous in the tibia ash results in this treatment group. The incidence of hip pop-out and soft bone identified in this group is due to the reduced phosphorous availability in the diet resulting in deficient levels of phosphorous and magnesium deposition in the bone and subsequent lameness. The most severely affected pens tended to have the lowest phosphorous and magnesium levels on bone ash analysis of the remaining birds. The most severely affected pens in the NC group had lower numbers of birds remaining at study day 28 for evaluation due to the more severely affected birds having already been euthanized or died therefore pen to pen comparisons of gross bone and joint pathology in the NC group is subjective. Since no other treatment groups had bone assessments performed at study end no comparisons across treatments were made.

In this study, the addition of either 250 or 500 U of CIBENZA® PHYTAVERSE™ G10 per kg of phosphorous deficient feed resulted in improved growth performance evidenced by increases in average feed intake, average body weight gain, and a lower average feed conversion ratio in a dose-dependent manner, with the higher dose resulting in better performance compared to birds fed a phosphorous deficient diet alone from 0 to 28 days of age. Bone parameters for birds were also improved at both inclusion levels compared to the birds fed the phosphorous deficient diet alone. In addition, the inclusion of CIBENZA® PHYTAVERSE™ G10 at the higher level of 500 U/kg of phosphorous deficient feed also significantly improved performance parameters compared to a diet supplying a standard level of phosphorous from 0 to 28 days of age.

These findings support the addition of CIBENZA® PHYTAVERSE™ G10 at either 250 or 500 U/kg of feed to ameliorate negative performance effects secondary to a diet that contains sub-optimal levels of non-phytate phosphorous.

16. Accuracy of Report Statement

This report is a complete and accurate representation of all study observations as provided by

(b)(6)

Date Date

17. References

The use of percent bone ash as an indicator of phytase efficacy is supported by the following peer-reviewed literature.

- Li Y. C., D. R. Ledoux, T. L. Veum, V. Raboy, and D. S. Ertl. 2000. Effects of low phytic acid corn on phosphorus utilization, performance, and bone mineralization in broiler chicks. Poultry Science 79:1444-1450.
- Pillai, P. B., T. O'Connor-Dennie, C. M. Owens, and J. L. Emmert. 2006. Efficacy of an Escherichia coli phytase in broilers fed adequate or reduced phosphorus diets and its effect on carcass characteristics. Poult. Sci. 10:1737-1745.
- Pintar, J., B. Homen, K. Gazic, D. Grbesa, M. Sikiric, and T. Cerny. 2004. Effects of supplemental phytase on performance and tibia ash of broilers fed different cereal based diets. Czech. J. Anim. Sci. 49 (12):542-548.
- Powell, S., T. D. Bidner, and L. L. Southern. 2011. Phytase supplementation improved growth performance and bone characteristics in broilers fed varying levels of dietary calcium. Poult. Sci. 90:604-608.
- Rousseau, X., M. P. Letourneau-Montminy, N. Meme, M. Magnin, Y. Nys, and A. Narcy. 2012. Phosphorus utilization in finishing broiler chickens: Effect of dietary calcium and microbial phytase. Poult. Sci. 11:2829-2837.
- Quantitative Determination of Phytate in the Presence of High Inorganic Phosphate Analytical Biochemistry Vol. 77:536-539 (1977).
- Walk, C. L., C. L. Wyatt, R. Upton, and A. P. McElroy. 2011. Effect of diet and phytase on the performance and tibia ash of broilers exposed to live coccidia oocyst vaccine. J. Appl. Poult. Res. 20 (2):153-161.

Page 26 of 110

18. List of Appendices

Appendix 1: Blocking Table

Appendix 2: Diet Formulations

Appendix 3: Statistical Analysis Report

Appendix 4: Analysis of Ingredients (Eurofins)

Appendix 5: Analysis of Feed (Eurofins)

Appendix 6: Dose Confirmation Analysis Report (BASF)

Appendix 7: Performance Data

List of Reported Tables and Graphs

Table 1. Mortality and Removal Weights of Cobb 500 Broilers Days 0 - 28

Table 2. Summary of Mortalities & Removals of Cobb 500 Broilers Days 0 - 28

Table 3. Feed Added and Weighed Back by Pen Study Days 0 - 28

Table 4. Summary by Treatment of Feed Added and Weighed Back by Pen Study Days 0 - 28

Table 5. Day 0 Pen Weights of Cobb 500 Broilers (20MAR15)

Table 6. Day 0 Pen Weights of Cobb 500 Broilers Summarized by Treatment (20MAR 15)

Table 7. Day 14 Pen Weights of Cobb 500 Broilers (03APR 15)

Table 8. Weights and Performance of Cobb 500 Broilers Study Days 0-14 (03APR15)

Table 9. Weights and Performance of Cobb 500 Broilers by Treatment Study Days 0-14 (03APR15)

Table 10. Day 28 Pen Weights of Cobb 500 Broilers (17APR 15)

Table 11. Weights and Performance of Cobb 500 Broilers Study Days 0 - 28 (17APR15)

Table 12. Weights and Performance of Cobb 500 Broilers by Treatment Study Days 0 - 28 (17APR15)

Table 13. Weights and Performance of Cobb 500 Broilers Study Days 14-28 (17APR15)

Table 14. Weights and Performance of Cobb 500 Broilers by Treatment Study Days 14-28 (17APR15)

Graph 1. Body Weights and Performance Study of Cobb 500 Broilers Study Days 0 - 14 (03APR15)

Graph 2. Body Weights and Performance Study of Cobb 500 Broilers Study Days 0-28 (17APR15)

Graph 3. Body Weights and Performance Study of Cobb 500 Broilers Study Days 14-28 (17APR15)

Appendix 8: Tibia Analysis Data Summary

Table 15. Tibia Ash Weights of Cobb 500 Broilers

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen

Table 17. Tibia Ash Weights of Cobb 500 Broilers Summarized by Treatment

Table 18. Tibia Ash Calcium, Phosphorus, and Magnesium Results

Table 19. Tibia Ash Calcium, Phosphorus, and Magnesium Results by Treatment

Graph 4. Tibia Ash Weights of Cobb 500 Broilers

Graph 5. Tibia Ash Calcium, Phosphorus, and Magnesium Results

Appendix 9: SAS Report

19. List of Records

Excel Printouts

Body Weights, Feed & Mortality

Pen Observations & Adverse Events

Sample Collection Form & Mortality Evaluations

Collaborative Lab. Analysis Results - Feed

Collaborative Lab. Analysis Results - Tibias

Diet Formulations, Feed Prep., Accounting & Disp.

Test Articles, Feed Additives & Samples

Bird Receipt, Accounting, Vaccination & Disposition

Daily Logs, House Obs., Scale Check & Note to File

Protocol & Personnel

Resumes & CV's

Relevant SOP's

Record of Communication, Monitor Visits, & Correspondence

(b) (4) Project No NV-13-2

Investigators Final Report

Appendix 1 - Blocking Table

Trt					В	locks	& Per	าร				
	1	2	3	4	5	6	7	8	9	10	11	12
A	85	87	92	96	103	108	111	115	123	129	133	135
В	84	88	91	97	105	109	113	118	124	128	134	138
C	86	90	94	98	104	107	112	117	125	130	132	136
D	83	89	93	95	106	110	114	116	126	127	131	137

Appendix 2 - Diet Formulations

	(+) control	(-) control	(+) control	(-) control	(+) control	(-) control
	Starter	Starter	Grower	Grower	Finisher	Finisher
Corn	56.795%	56.795%	61.811%	61.811%	66.764%	66.764%
Soybean Meal	35.810%	35.810%	31.502%	31.602%	26.190%	26,190%
Soy Oil	1.947%	1.947%	2.114%	2.114%	2.401%	2.401%
Dicalcium Phosphate	1.821%	1.006%	1.632%	0.817%	1.512%	0.697%
Sand	1.401%	1.674%	0.742%	1.013%	1.270%	1.540%
(b) (4)Limestone	0.994%	1.534%	0.905%	1.448%	0.849%	1.392%
Salt, Plain	0.440%	0.442%	0.443%	0.444%	0.446%	0.448%
DL-Methionine	0.299%	0.299%	0.263%	0.263%	0.214%	0.214%
Choline Chloride 60%	0.196%	0.196%	0.207%	0.207%	0.114%	0.114%
(b) (4) Poultry NRC Mineral Premix	0.140%	0.140%	0.140%	0.140%	0.140%	0.140%
Poultry NRC Vitamin Premix	0.100%	0.100%	0.100%	0.100%	0.100%	0.100%
Salinomycin	0.041%	0.041%	0.041%	0.041%	0.000%	0.000%
Threonine	0.008%	0.008%	0.000%	0.000%	0.000%	0.000%
L-Lysine	0.008%	0.008%	0.000%	0.000%	0.000%	0.000%

Study No. NV-13-2 Statistical Analysis Report Page 1 of 5

Statistical Analysis Report

The effects of CIBENZA® PHYTAVERSETM G10 Phytase Enzyme on bone ash of broilers fed reduced phosphorus diets

Study No. NV-13-2

Sponsor:

Novus International, Inc. 20 Research park Drive St. Charles, MO 63304

Study location:

Prepared By:

(b)(6) 12 Apr 2014

Study Design:

Nine hundred and sixty (960) chicks were randomized to 48 pens of 20 birds each. The experimental design was a randomized complete block design. The blocking factor was pen location within the house. The test facility was divided into twelve blocks of four pens in each block.

Treatments were as follows:

- Positive control This diet was designed to meet or exceed NRC 1994 and industry standards.
- Negative control (NC) This diet was designed to meet or exceed NRC 1994 standards with the exception of non-phytate phosphorus which was formulated to 0.3%non-phytate P (NPP) for starter (0-14d) and 0.26%NPP for grower (14-28d).
- 3. NC with 250 U CIBENZA® PHYTAVERSETM G10 per kg diet
- NC with 500 U CIBENZA® PHYTAVERSE™ G10 per kg diet

Pen weight weights were obtained on Day 0, 14 and 28. Feed weighbacks were collected on Days 14 and 28. Feed issue was as needed.

At the end of the study, the 5 surviving birds within each pen with the lowest neck numbers were used for bone-ash measurement.

Statistical Methods:

Pen was considered the experimental unit for all outcomes.

The data were analyzed using the following model:

$$Y_{ijk} = \mu + B_i + T_i + E_{ijk}$$

Where: μ = the overall mean, B_i = the effect of the ith block. T_j = the effect of the jth dietary treatment, and E_{ijk} = residual error.

Data were analyzed using ANOVA (the GLM procedure in SAS, SAS Institute, Cary NC; version 9.4) and means were separated by LSDs, with the threshold for statistical significance set at the customary 5% level.

Results:

Tibia percent ash: The main effect of treatment was statistically significant (Table 1). The percent tibia ash in the PC group was significantly higher than that observed NC and 250 U groups, but not significantly different from the 500 U group. Both the 250 and 500 U groups had significantly higher ash values than the negative control group. Additionally, ash values in the 500 U group were significantly higher than values in the 250 U group.

Bone minerals: The main effect of treatment on magnesium and phosphorus % values was statistically significant (Table 1). For phosphorus and magnesium values, values in the PC group were significantly

Page 30 of 110

higher than the NC and 250 U group. Phosphorus and magnesium values for the 250 and 500 U groups were significantly higher than the NC. Calcium values were not affected by treatment (Table 1).

Gain: The main effect of treatment was statistically significant for each time period (Table 1).

During Days 0 – 14, gain in the PC group was not significantly different from the gain seen in the NC group. Gain in both the 250 and 500 U groups was significantly higher than both the PC and NC groups.

During Days 14 - 28 and overall (Day 0 - 28), gain in the PC group was significantly higher than the gain seen in the NC group. Gain in the 250 and 500 U groups was significantly higher than the gain in the NC group. Gain in the 500 U dose group was also significantly higher than the gain in PC group.

Average Daily Feed Intake: The main effect of treatment was statistically significant for Days 14 – 28 and 0 - 28 (Table 1). No differences between groups were detected during the first 2 weeks of the treatment period.

During Days 14 – 28, feed intake in the PC group was significantly higher than the intake seen in the NC group. Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group. Intake in the 500 U dose group was also significantly higher than the gain in PC group and the 250 U group.

Overall (Day 0 - 28), intake in the PC group was significantly higher than the intake seen in the NC group. Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group. Intake in the 500 U dose group was also significantly higher than the intake in PC group.

Average Feed Intake per bird: The main effect of treatment was statistically significant for Days 14 - 28 and 0 - 28 (Table 1). No differences between groups were detected during the first 2 weeks of the treatment period.

During Days 14 – 28, feed intake in the PC group was significantly higher than the intake seen in the NC group. Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group. Intake in the 500 U dose group was also significantly higher than the intake in PC group and the 250 U group.

Overall (Day 0-28), intake in the PC group was significantly higher than the intake seen in the NC group. Intake in the 250 and 500 U groups was significantly higher than the intake in the NC group. Intake in the 500 U dose group was also significantly higher than the intake in PC group.


Feed to Gain ratio (FCR, adjusted for mortality and culls): The main effect of treatment was statistically significant for Days 0 - 14. Days 14 - 28 and 0 - 28 (Table 1).

During Days 0 – 14 and overall (Day 0 – 28). FCR in the PC group was significantly improved as compared to the FCR seen in the NC group. FCR in the 250 and 500 U groups was significantly improved versus the FCR in the NC group. FCR in the 500 U dose group was also significantly improved as compared to the FCR in PC group.

During Days 14 – 28. FCR in the PC group was significantly improved as compared to the FCR seen in the NC group. FCR in the 250 and 500 U groups was significantly improved versus the FCR in the NC group. FCR in the 250 U and 500 U dose groups was not significantly different from the FCR in PC group.

(b) (4) Project No NV-13-2

Page 31 of 110

Investigators Final Report

Study No. NV-13-2 Statistical Analysis Report

Page 4 of 5

Mortality: No statistically significant treatment differences were seen for mortality during the starter phase (Table 1). During the grower phase, and subsequently overall, mortality rates were significantly higher in the negative control group as compared to the other 3 groups (Table 1).

BASF Enzymes LLC

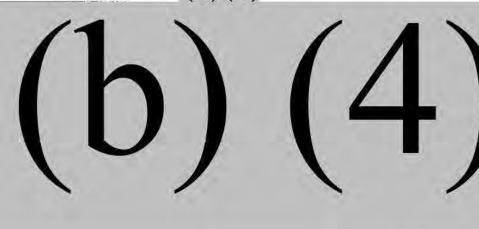

Page 33 of 110

Table 1: Least squares means and square errors

Variable	Positive Control	Negative Control	NC + 250U	NC + 500U	SEM	Overall P-value for treatment
Tibia Ash, %	53.50a	44.75c	51.24b	52.86a	0.5315	< 0.0001
Tibia Ash Calcium. %	37.80	37.93	37.55	38.24	0.3448	0.4197
Tibia Ash Magnesium, %	0.79a	0.64d	0.71c	0.75b	0.0084	< 0.0001
Tibia Ash Phosphorus, %	17.92a	16.98c	17.31b	17.76a	0.1514	< 0.0001
Average Pen Weight Gain, kg (bird basis)						
0-14d	0.292b	0.282b	0.304a	0,310a	0.0038	< 0.0001
14-28d	0.9286	0.751c	0.940b	0.973a	0.0075	< 0.0001
0-28d	1.221b	1.033c	1.244b	1.283a	0.0101	< 0.0001
Pen Daily Feed Intake, kg						
0-14d	0.58	0.58	0.60	0.60	0.0079	0.2576
14-28d	1.96b	1.54c	1.99b	2.04a	0.0165	< 0.0001
0-28d	1.27b	1.06c	1.30ab	1.32a	0.0112	< 0.0001
Average Feed Intake, bird basis, kg						
0-14d	0.411	0.413	0.421	0.421	0.0055	0.4747
14-28d	1.387b	1.213c	1.401b	1.449a	0.0137	<.0001
0-28d	1.798b	1.671c	1.822ab	1.873a	0.0195	<.0001
Feed Conversion Ratio†						
0-14d	1.4038b	1.4572a	1.3849bc	1.3573e	0.0137	0.0001
14-28d	1.4939b	1.5744a	1.4902b	1.4806b	0.0052	<0.0001
0-28d	1.4721b	1.5403a	1.4643bc	1.4504c	0.0050	< 0.0001
Mortality						
0-14d	0.83%	1.25%	0.41%	0.41%	0.47	0.5495
14-28d	0.00%6	9.70%a	0.00%b	0.83%b	0.30	<0.0001
0-28d	0.83%b	10.83%a	0.42%b	1.25%b	0.95	<0.0001

abed: within a row, values with no letters in common are significantly different at P < 0.05 †Adjusted for mortality and culls

Appendix 4 - Analysis of Ingredients (b) (4)

CERTIFICATE OF ANALYSIS

Test

Moisture by Forced Draft Oven

Protein, Combustion

Crude Fat

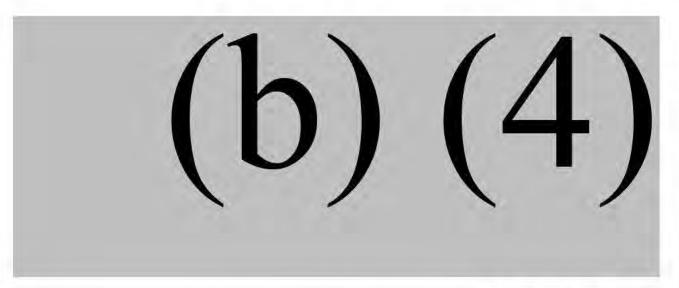
Ash

Calcium

Phosphorus

Physic Acid

Resulti


Method Reference

Method Retrarence
Ash - AOAC 942.05
Ash - AOAC 942.05
Calcium by (9)(9) in Feed Samples - AOAC 985.17 / 985.01 mod
Caude Fist By Ethyl Ether Extraction - AOAC 920.39
Mossbure - Forced Draft Oven - AOAC 930.15
Phosphorus by (9) - AOAC 985.17 / 985.91 mod.
Phytic Aoid - Analytical Beothemistry Vol. 77.538-539 (1977)
Protein - Combustion - AOAC 992.15; AOAC 920.03, AOCS 8a 4e-93

(b) (4) Project No NV-13-2

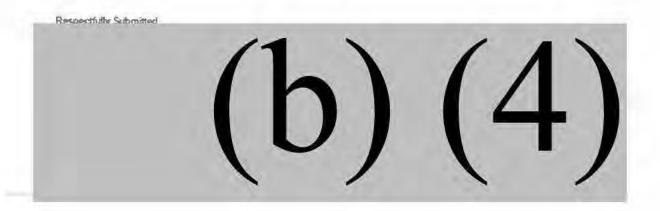
Investigators Final Report

Page 32 of 107

CERTIFICATE OF ANALYSIS

(b) (4)

Test


Mossture - Forced Draft Oven Protein Combustion Crude Fat Ash Calcium Phosphorus Physo Acid

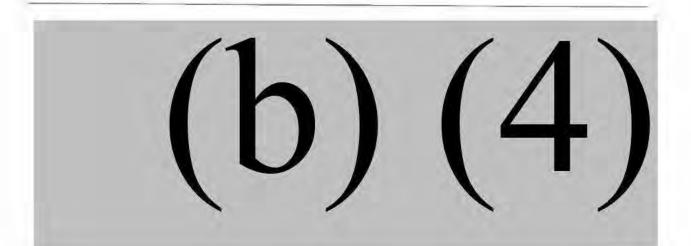
Result

Method Reference

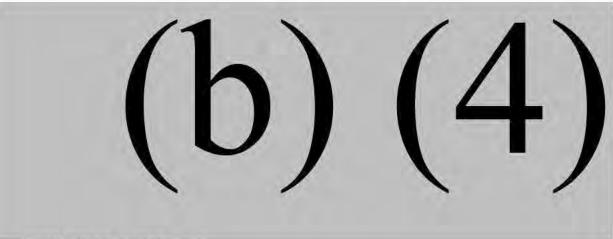
Ash - ACIAC 942.05
Calcium by ICP in Feed Samples - AOAC 965 17 / 985.01 mod
Crude Fat by Petroleum Ether Extraction - AOCS Ba 3-38 Mod
Moisture - Forced Draft Over - AOCS Ba 2a-38
Phosphorus by ICP - ACIAC 965.17 / 985.01 mod.
Phytic Acid - Analytical Biochesnistry Vol. 77:536-539 (1977)
Protein - Combustion - AOAC 992.15; AOAC 990.03, AOCS Ba 4e-93

(b) (4)_{Project} No NV-13-2

(b) (4)


CERTIFICATE OF ANALYSIS

AR-15-QD-027527-01

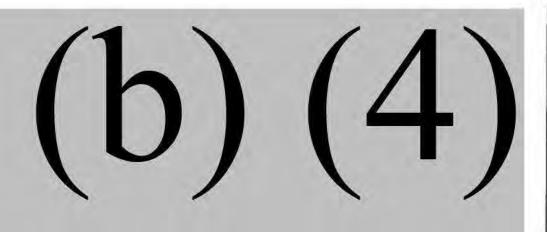

Test	Result	_(07)-0
QD146 Molsture : Forced Draft Oven	The second second	Completed: 62/26/2015
A BAC #38.15 Moisture by Forced Draft Oven QDD52 - Privation - Combustion	(b) (4)	Completed: 02/26/2015
AOAC 992.15; AOAC 990.03 AOCS Ba 4e-83 * Protein, Combustion		
Q0025 - Ash AQAC 942.05		Completed: 02/26/2015
* Ash #9034 - Calories by Bomb Calorimeter		Completed: 03/94/2015
Calories By Bomb Calorineter QD033 - Calorine by ICP in Feed Samples		Annual Control and Annual Control
ACAC 965.17 / 985.01 mod.		Completed: 02/27/2015
90175 - Phosphorus by ICP		Completed: 02/27/2015
AOAC 965.17 / 985.01 mod * Phosphorus		
QD495 - Pinyae Acid Analytical Biochemistry Vol. 77 538-539 (1977)		Completed: 03/07/2015
Phytic Acid QQ177 - Circles & Methionine (AOAC, Milet Math	oes)	Completed: 03/04/2015
AOAC 994.12 mod. * Cystine * Methionise		

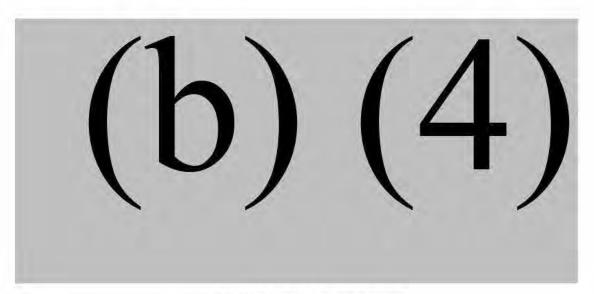
*The test result is covered by our oursest A2LA accreditation.

(b)(4)

(b)(4)

Sample Reference: Project No. NV-13-2

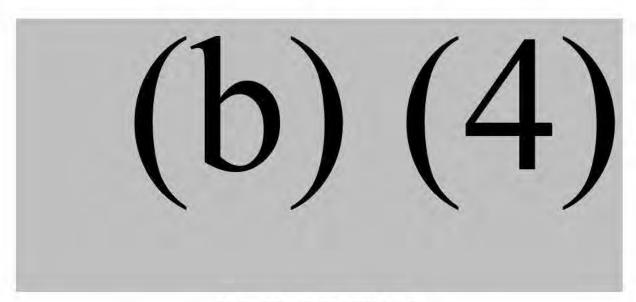

CERTIFICATE OF ANALYSIS


AR-15-QD-027528-01

	Commission of the contract
(b)(4)	Completed: 02/26/2015
× / × /	Completed: 02/26/2015
	Completed: 02/26/2015
	Completed: 03/04/2015
	Completed: 02/27/2015
	compenso, unationio
	Completed: 02/27/2015
	Completed: 03/07/2015
	•
100	Completed: 03/04/2015
	(b) (4)

^{*}The test result is covered by our current A2LA accreditation.

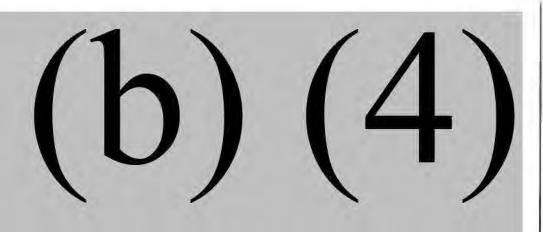
(b) (4)

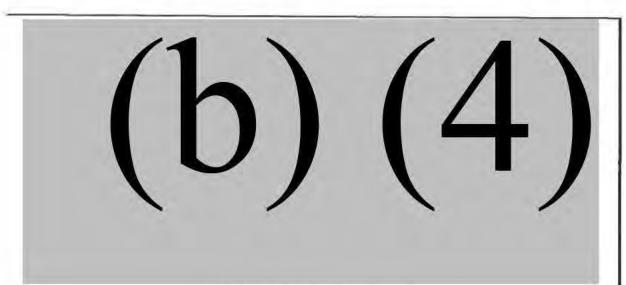


CERTIFICATE OF ANALYSIS AR-15-0D-027529-01

Test	Result		
QD145 - Moisture - Forced Draft Oven	(1) (4)		Completest, 02/26/2015
A OAC 935 15 * Mosture by Forced Oratt Oven	(b)(4)		
QD052 - Protein - Combustion			Completed: 02/27/2015
AOAC 992 15 AOAC 998 03, AOCS Ba 4e-93 1 Protein, Combussion			
QD025 - Ash		15, 500	Completed: 62/26/2015
AOAC 942.05 ' Ash			•
QD834 - Calories by Bomb Calorimeter		NE ST	Completed: 03/04/2015
Parr Instruments			
Calories By Bomb Calorimeter (Q0003 - Calorim by ICP to Feed Samples		575	Completed; 02/27/2015
AOAC 985.17 / 985.01 mod. ' Calcium			
QD175 - Phosphorus by ICP		-	Completed: 02/27/2015
AOAC 985 17 / 985 01 mod * Phesphorus			
QD495 - Phytic Acid		1000	Completed: 03/07/2015
Analytical Biochemistry Vol. 77.536-539 (1977) * Physic Acid			
QQ 177 - Cystine & Methionine (AQAC Most Matrices)	311		Completed: 03/04/2015
ACAC 994.12 mod. * Cystone	7111		
* Medisonste			
*The test result is covered by our owners A2LA accredi	latitur.		

(b) (4)

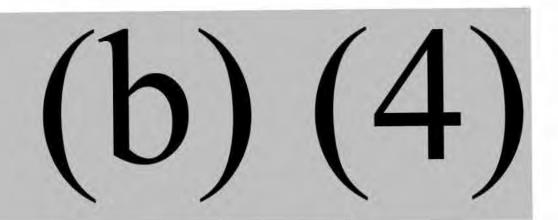

Gentlett of Acaysis AR-18-00-027\$20-01

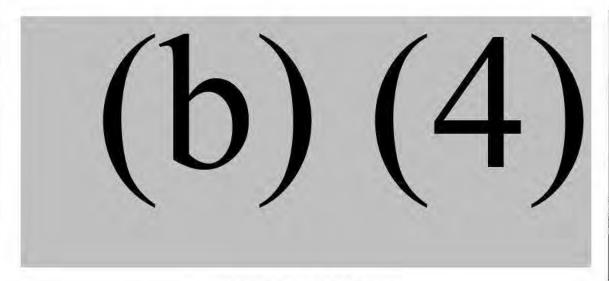


CERTIFICATE OF ANALYSIS AR-15-QD-027530-01

Test	Result
QD146 - Moisture - Forced Draft Oven	Completed: 02/26/2015
ACAC 930 15 * Moisture by Forced Draft Oven GD052 - Protein - Combustion	(4) completed: 02/27/2015
ADAC 992 15: ADAC 990.03; ADCS 8a 4e-93 * Protein, Combustion 90025 - Ash	
AOAC 942.05	Completed: 02/26/2015
Ash G0034 - Calories by Bomb Calorimeter	Completed: 83/94/2015
Part Instruments Calories By Bomb Calorimeter	
QD033 - Calcium by ICP in Fred Samples	Completed: 02/27/2015
AOAC 985 17 / 985 01 mod. * Calcium	
20175 - Phospheros by ICP	Completed: 02/27/2015
AOAC 965 17 / 985 01 mod. * Phosphorus	
2D495 - Phytic Acid	Completed: 03/07/2015
Analytical Biochemistry Vol. 77:536-639 (1977) * Phytic Acid	
20177 - Cystine & Methionice (AOAC, Most Matrices	Completed: 03/04/2015
CAC 964 12 mod. Cystine Methorine	

*The lest result is covered by our current A2LA accreditation.

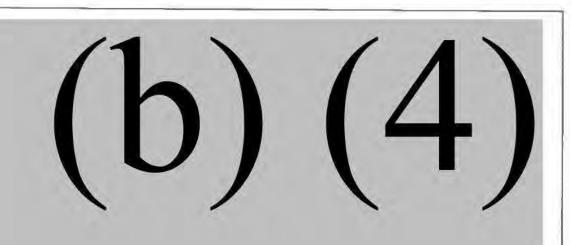


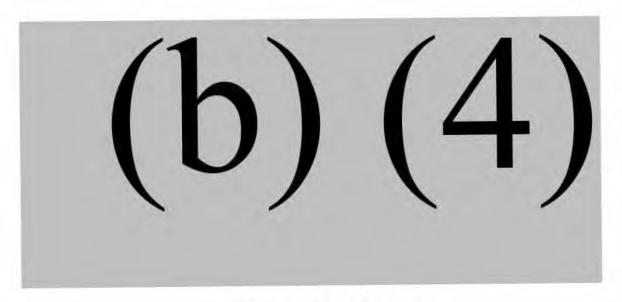


CERTIFICATE OF ANALYSIS AR-15-QD-027531-01

Test	Result		
QD146 Moisture Forced Draft Oven			Completed: 02/26/2015
A WAC Edd 15 Moisture by Forced Draft Oven QD052 = Frete in - Combastion	(b)(4)		Completed: 02/27/2015
AOAC 992.15; AOAC 990.03; AOCS Ba 4e-93 ' Protein, Combustion QUINS - Ash			Completed: 02/26/2015
ACIAC 942.05 Ash C0034 - Calories by Bornb Calorimeter			
Parr Instruments Catories By Bomb Calorimeter			Completed: 03/04/2015
QD033 - Calcium by ICP in Feed Samples ACAC 985 17 985.01 mod ' Catcium			Completed: 02/27/2015
QD175 - Phosphores by ICP		100	Completed: 02/27/2015
ACAC 985:17 / 985:01 mod * Phosphorus GD493 - Physic Acid			Completed: 03/07/2015
Analytical Biochemistry Vol. 77.536-539 (1977) * Phytic Acid			
QQ177 - Cystine & Methiotaine (AOAC, Most Malinges) AOAC MM.12 mod. * Cystine * Methiotaine		No.	Completed: 03/04/2015

[&]quot;The test result is covered by our current A2LA accreditation.

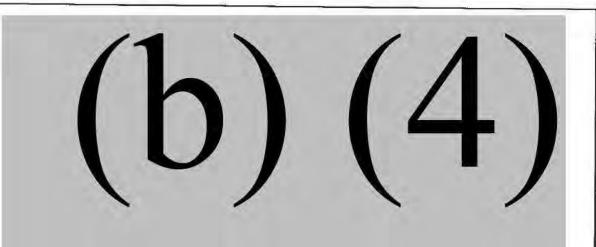

CERTIFICATE OF ANALYSIS AR-15-QD-027532-01

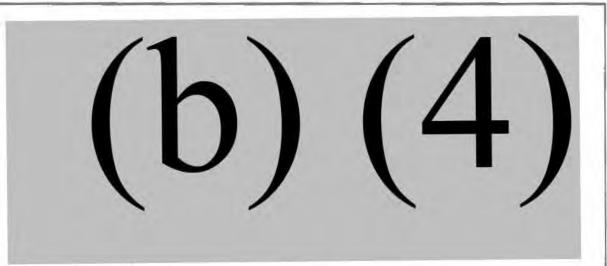

Test	Result		
QD148 - Moisture - Forced Draft Oven			Completed: 02/26/2015
ACAC 930 15 * Mosture by Forced Draft Oven QD052 - Protein - Combustion AOAC 992 15, AOAC 990.03, AOCS Ba 4e-93 * Protein, Combustion QD025 - Ash	(b) (4)	W 3.2.3.	Completed: 02/2/72015
AOAC 942.05 * Ash CO034 - Calories by Bomb Calorimeter			
Parr Instruments Calories By Bomb Calorimeter QD033 - Calcium by ICP in Feed Samples			Completed: 02/04/2015
ACAC 966 17 / 995 01 mod * Calcium GD175**Phosphores by ICP			Completed: 02/27/2015
ACIAC 985.17 / 985.01 mod * Phosphorus QD495 - Physic Acid			Completed: 63/67/2015
Analytical Biochemistry Vol. 77:536-539 (1977) * Phytic Acid GC177 - Cystine & Methionine (AOAC, Must Matrices) AOAC 994 12 mod		100	Completed: 03/04/2015
* Cystine * Methionine			

^{*}The test result is covered by our current A2LA accreditation.

(b)(4)

(b) (4) Project No NV-13-2

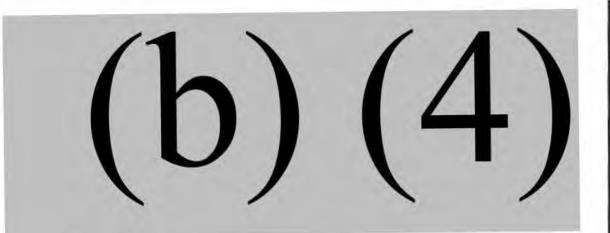


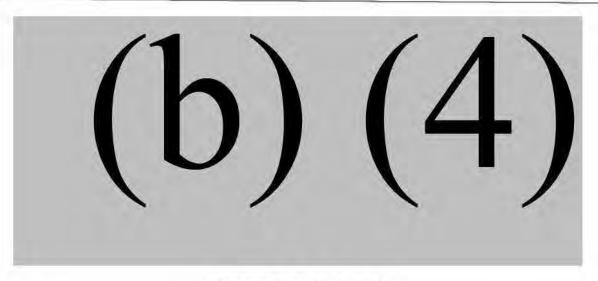

CERTIFICATE OF ANALYSIS

AR-15-QD-027533-01

Test	Result	
QD146 - Moisture - Forced Draft Oven		Completed: 02/26/2015
AOAC 930 15 * Moisture by Forced Draft Oven QD052 - Protein - Combustion	(b) (4)	Completed: 02/26/2015
AOAC 992 15, AOAC 990 83, AOCS Ba 4e-93 * Protein, Combustion		
QD025 - Ash		Completed: 02/26/2015
AOAC 942 05 * Ash		
QD034 - Calories by Bomb Calorimeter		Completed: 03/04/2015
Parr Instruments Calories By Bomb Calorimeter		O
QD033 - Calcium by ICP in Feed Samples		Completed: 02/27/2015
AOAC 965.17 / 985 01 mod. * Calcium		
QD175 - Phosphorus by ICP		Completed: 02/27/2015
AOAC 965 17 / 985 01 mod. * Phosphorus		
QD495 - Phytic Acid		Completed: 03/07/2015
Analytical Biochemistry Vol. 77:536-539 (1977) * Phytic Acid		
QQ177 - Cystine & Methionine (AOAC, Most Matrices)		Completed: 03/04/2015
AOAC 994 12 mod * Cystine * Methionine		

^{*}The test result is covered by our current A2LA accreditation.





CERTIFICATE OF ANALYSIS AR-15-QQ-027534-01

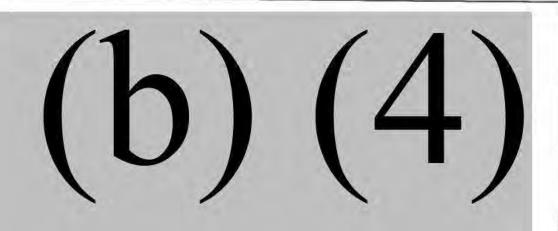
Test	Result		
QD146 - Moisture - Forsed Draft Oven	transmit size		Completed: 02/26/2015
ABAC 838.15 Moisture by Forced Draft Oven O0052 Protein - Combustion	(b) (4)		Completed, 02/26/2015
AOAC 992 15; AOAC 990 03; AOCS Ba 4e-93 * Protein, Combuston Q00025 - ASh			Completed: 02/20/2015
ACAC 942.05 * Ash QD034 * Călories by Bomb Calorimeter			Completed: 03/04/2015
Part Instruments Catories By Bomb Catorimeter OD033 - Catolism by ICP in Feed Samples			Completed: 02/77/2013
ACIAC 965.17 / 985.01 mod. Calcium GD 175 - Phissphorus by ICP			Completed: 02/21/2015
ACAC 965.17 / 985.01 mod. * Phesphanus			
QD495 - Psytic Acid Analytical Biochemistry Vol. 77:538-539 (1977) * Phytic Acid	-		Completed: 03/07/2015
QG 177 Cystine & Methionine (AOAC, Most Matrices) AOAC 904.12 mod. * Cystine * Methionine		- 1	Cample ted; 03/04/2015

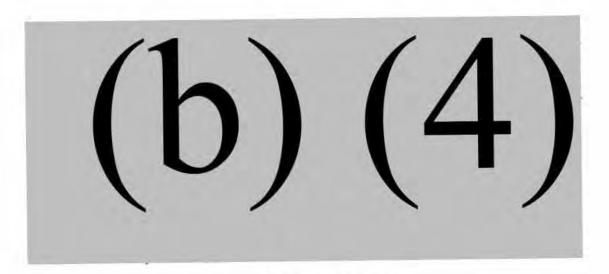
'The test result is covered by our current A2LA accreditation

CERTIFICATE OF ANALYSIS

AR-15-QD-027535-01

Test	Result	
QD146 - Maisture - Forced Draft Oven		Completed, 02/29/2015
AOAC 830 15 ' Moisture by Forced Draft Oven QD852 - Protein - Combustion	(b) (4)	Completed 07/20/2015
AOAC 992.15: AOAC 990.03; AOCS Ba 44-93 * Protein, Combustion GD825 - Ash		
ACAC 942.05 " Ash	-	Completed: 02/26/2015
GD034 - Catories by Bomb Catorimeter Farr Indonesials Catories By Bomb Catorimeter		Completed: 03/04/2015
QD033 - Catcium by ICP in Feed Samples		Completed: 02/27/2015
ACAC 985.17 / 985.01 mod * Catolum GD175 - Phosphorus by ICP		A TOTAL ASSAURANT
AOAC 965.17 / 985.01 mod.		Completed: 02/27/2015
QD495 Phytic Acid 38 Analytical Biochemiery Vol. 77 538-539 (1977)		Completed: 03/07/2015
Phytic Acid QQ177 - Cystine & Methionine (ACAC, Most Matrices)		Completed: 03/04/2015
AOAC 994 12 mod Cystine Methionine		Comprise Corones (3

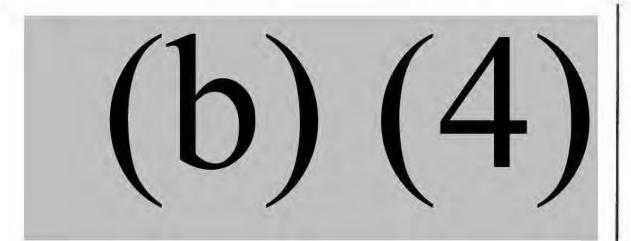

^{*}The test result is covered by our current A2LA accreditation.

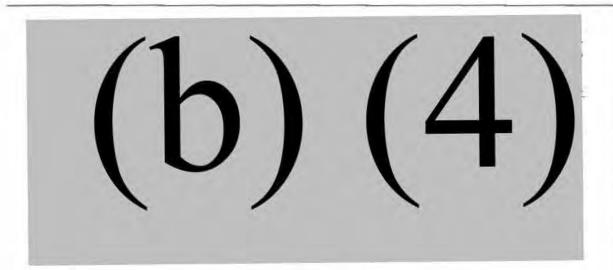

(b)(4)

(b) (4) Project No NV-13-2

Investigators Final Report

Page 50 of 107

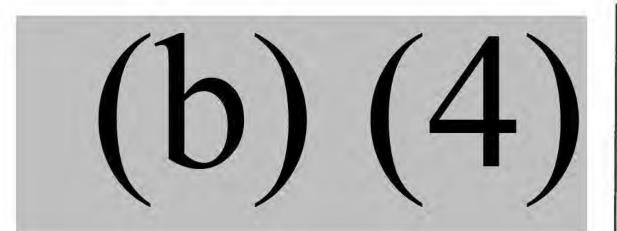


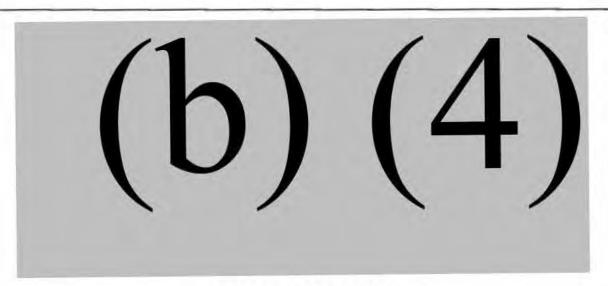


CERTIFICATE OF ANALYSIS AR-15-QD-027536-01

Test	Result	
QD146 - Moisture - Forced Draft Oven		Completed: 02/26/2015
AOAC 930 15 * Moisture by Forced Draft Oven QD052 - Protein - Combustion	(b) (4)	Completed: 02/29/2015
AOAC 992 15 AOAC 990.03 AOCS Bu 4e-83 * Procein, Combustion		
QD025 - Ash		Completed: 02/26/2015
AOAC 942 05 * Asb		
QD004 - Calories by Bomb Calorimeter		Completed: 03/04/2015
Part Instruments Catories By Bornio Catorimeter QD033 - Calciums by ICP in Feed Samples		Completed: 02/2772015
AOAC 965 17 / 985.01 mod ' Calcium		Maria a Tenenggan se
QD175 - Phosphorus by ICP		Completed: 02/27/2015
AOAC 965.17 / 985.01 mod.		
QD495 - Phytic Acid		Completed: 03/07/2015
Analytical Biochemistry Vol. 77 538-539 (1977) * Physic Acid		
QQ177 - Cystine & Methionine (AQAC, Must Matrices)		Completed: 03/04/2015
ACAC 994 12 med. * Cystrie * Methorine		

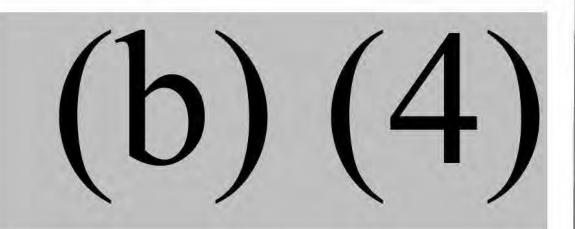
^{*}The test result is covered by our current A2LA accreditation





CERTIFICATE OF ANALYSIS

AR-15-QD-027537-01


Test	Result	
QD146 - Moisture - Forced Diaff Oven		Completed: 02/26/2015
A BAC 030 15 ' Moisture by Forced Draft Oven QD052 - Protein - Combustion	(b) (4)	Completed: 02/26/2015
AOAC 902 15 AOAC 990.03; AOCS Ba 4e-93 * Protein, Combission		
QD025 - Ash		Completed: 02/26/2015
AOAC 942 05 ' Ash		
QD034 - Calories by Bomb Calorimeter		Completed: 03/04/2015
Parr Instruments Catories By Bomb Calonmeter		
QUADO - Calcium by ICP in Feed Samples		Completed: 02/27/2015
AOAC 965.17 / 985.01 mod * Calcium		m. To a mineral of
QD175 - Phosphorus by ICP		Completed: 02/27/2015
AOAC 985.17 / 985.01 mod. * Phespherus		
QD493 - Phytic Acid		Completed: 03/07/2015
Analytical Essentiany Vol. 77.536-539 (1977) * Physic Acid		
QQ177 Cystine & Methionine (AOAC, Most Matrices)		Completed; 03/04/2015
AOAC 994.12 mod. 1 Cystine 1 Methionine		
*The test result is covered by our current A2LA accreditat	ion	

CERTIFICATE OF ANALYSIS AR-15-QD-027538-01

Test	Result	
QD146 - Moisture - Forced Draft Oven		Completed: 02/26/2015
* Moisture by Forced Draft Oven QD052 * Protein - Combustion	(b)(4)	Completed: 02/26/2015
AOAC 992.15: AOAC 990.03; AOCS Ba 4e-93 1 Protein, Combustion		
Q0025 - Ash		Completed: 02/26/2015
AOAC 942 05 ' Ash		
Q0034 - Calories by Bemb Caterimeter		Completed: 03/04/2015
Pair Instruments Calories By Bomb Calorimeter		
QD033 - Calcium by ICP in Feed Samples		Completed: 02/27/2615
AOAC 985.17 / 985.01 mod. * Calcium		
QD175 - Phosphorus by ICP		Completed: 02/27/2015
ACAC 955.17 / 985.01 mod. * Phospherus		
QD495 - Physic Acid		Completed: 03/07/2015
Analytical Biochemistry Vol. 77.538-539 (1977) * Phytic Acid.		
QQ177 - Cystine & Methionine (AOAC, Most Matrices)		Completed: 03/04/2015
AOAC 994 12 mod * Cystine		
* Methion.me		
*The lest result is covered by our current A2LA accreditate	ren.	

Dose Confirmation Analysis Report

Trial Title: The effects of CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme on bone ash of broilers fed reduced phosphorus diets

Protocol Number: NV-13-2

Sample Analysis Date: March 2, 2015

Sample	Description	Dose Chgi	Result (U/kg)
Starter A	Negative Contro	0	(b) (4)
Starter B	CIBENZA® PHYTA VERSETM G10 Phytase Enzyme	250	
Starter C	CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme	500	
Surrer D	Positive Control	0	
Grower A	Negative Control	0	
Grower B	CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme	250	
Grower C	CIBENZA® PHYTAVERSETM G10 Phytase Enzyme	500	
Grower D	Positive Control	0	
Finisher A	Negative Control	0	
Finisher B	CIBENZA® PHYTAVERSE™ G10 Phytase Enzyme	250	
Finisher C	CIBENZA® PHYTAVERSE™ G10 Phylase Enzyme	500	
Finisher D	Positive Control	0	

^{*}Results reported as <60 U/kg are above the limit of detection (LOD=20 U/kg) and below the limit of quantitation (LOQ = 60 U/kg) of the ISO 30024 phytase analytical method used to determine phytase activity.

Approved by: (b)(6)- Date: September 28, 2015

BASE Engines LLC 350 John Hopkins Courl San Diego, CA 92121 www.bast.us

Table 1. Mortality and Ramoval Weights of Code 506 Brotlers Days 6 - 28 (b) (9) project No. NV-13-2 BLDG 7

				-00-		S Ducty Durys II - 84 (2014)	#15 - 05-PF	1033		
		1	No. Birda	8	-	and and a sale		1	NO. BATCH	W. Bird
Freathsenf	Sex	Pers No.	Started	Researy o	Mortality	Casses of Death	R	M	day 14	MPR Days 0-14
1	M	13	20	0	0		0.000		20	0.000
3	м	8.1	20	0	0		0.000	125,3-7-13	20	0.000
2	M	36	20	0	0		0.000	0.000	20	0.000
4	M	86	20	0	0		0.000	Mark Street	20	0.500
2	M	87 58	20	00	00		0.000		20 20	0.000
1	M	89	20	0	2		0.000		20	0.000
4	M	90	20	Ü	0		0.330		200	0.000
3	M	91	20	0	0		0.000	0.000	20	0.200
2	M	92	20	0	01			0.000	20	0.000
1	M	93	20	0	01		0.000	100000	20	0.000
2	M	94	20	0	0		0.000		20	0.000
7	M	96	20	0	0		0.000	0.000	20	0.000
2	M	96	20	0	0		0.000	0.000	29	0.500
3	M	97	30	0	o		0.000	0.000	20	0.000
4	M	543	20	Đ	0		0.000	0.000	20	0.000
2	M	103	20	D	0		0.000	0.000	20	0.000
4	M	104	20	0	0	000		0.000	20	0.000
3	M	105	20	Û	3	SDS #2997	0.000		19	0.145
1	M	106	20	50	1 0	555 #6974	0.000	0.153	19	0.153
2	· ·	108	20	0	0			0.000	20	0.000
3	M	109	20	0	0		0.000		20	0.000
1	M	135	20	0	0		0.000		20	0.000
2	66	111	20	0	11	SD5 #7345		0.082	19	0.882
4	M	112	20	0	3	-0.007/0.40	0.000	0.000	20	0.000
3	M	113	20	0	0		0.000	0.000	20	0.000
1	38	114	20	0	0		0.000	0.000	20	0.000
2	M	115	20	0	Q		2,000		50	0.000
3	M	115	20	ŋ	0		0.000		20	0.000
.4	W	117	20	0	0		0.200	0.000	20	0.000
3	M	118	20	00	0		0.000	0.000	26 20	0.000
3	M	124	20	0	0		0.000		20	0.000
4	M	125	20	0	ŏ		0.000		20	0,000
1	M	138	20	0	0		0.000		20	0.000
1	54	127	20	5	0		0,000		20	0.000
3	M	129	20	0	0		0.000	100000000000000000000000000000000000000	20	0.000
2	M	129	20	1	0	C - BL W7504	0.113	0.000	19	0.113
2	M	130	25	0	1	BAC =1926	0.000	0.043	19	0.043
1	M	131	20	0	0		0.000	0.000	20	0.000
4	M	132	20	0	0		0.000	0.000	20	0.000
2	M	133	20	0	0		0.000		20	0.000
3	M	133	20	0	0	a secure	0.000		20	0.000
2	M	125	20	1	0	C - BL #7950	0.200		21	0.200
1	M	138	20	0	0	COS ROPES	0.000		20	0.000
3	M	1.37 1.32	20	0	0	505 W7573	0.300	0.097	19	0.000
3	96	130	40	D	0		Luche	0.000	al	0.000

Table 1 Mortality and Removal Weights of Cobb 500 Brothers Days 0 - 28 (6)(4) present the law sec. 2.2

)G 7	The second second second	The same	200	100		
		-	8	8	\$100y Grays 14 - 25 (St.	MAKE S			W. Horis	es se
Tradizmeni	Bigot	Pen No.	Recove	N GPT-1888	Cause of Death	R	N	day 28	M/R Days 14-26	Wrt (kg) Days 0-26
1	Ш	83	0	0		2 500	0.000	20	0.000	0.000
3	M	84	0	0	100000000000000000000000000000000000000	0.000	0.000	20	0.000	0.000
2	M	85	4	0	C-BL =2224	0.355		19	0.355	0.355
	M	86	Ü	0	No many trial table	0.000		20	0.000	0.000
3	M	87	2	0	C-51, #2549, C-51, #2550	0.888	0.000	18	0.888	0.883
4	-	89	0	0		0.000	Table 1977	20	0.000	0.000
4	M	90	0	0		0.000	0.000	20	0.000	0.000
3	60	91	0	0		0.000	0.000	20	0.000	0.000
2	W	92	ŏ	7	SQS #6866	E 000	0.000	20	0.478	0.000
1	M	93	0	ō	JUG HODES	0000	0.670	334	0.000	0.476
4	hd .	94	ő	0		0.500	0.000	20		0.000
1	M	25	0	0		0.000	000	20	0.000	0.000
2	M	96	1		SD5 #6928, C-BL #6925	0.510		18	1.063	1,063
3	M	97	D	0	300 HOSEA C/SE 103E3	5.000	0.000	20	0.000	0.000
4	W	98	0	0		0.000	0.000	20	0.000	0.000
2	M	163	0	1	SIDS W2976	0.000	0.565	19	0.545	0.545
4	M	164	0	0	***************************************	0.000	0.000	20	0.000	0.000
3	340	108	0	0		0.000	0.000	19	0.000	A.145
1	M	106	0	0		0.000	0.000	16	0.006	0.753
4	54	107	D	D		0.800	0.000	20	0.000	0.000
2	M	108	2	1	C-BL #7006; C-BL#6994; ACT-BL #6996	1.247	0.937	17	2 984	2.184
2 1	M	109	B	U	100 NOT AND CONTRACTOR OF MEDICAL CONTRACTOR	0.000	0.000	20	0.000	0.000
1	W	110	D	0		0.000	0.000	20	0.000	0.000
2	M	131	1.5	0	C-8L \$7353	0.579	0.000	\$B	0.579	0.661
4	M	112	0	0		0.000	0.000	20	0.000	0.000
3	M	113	0	0		0.000	0.000	20	0.000	0.000
10	M	114	0	D	Carron St. S. Street, March 1981	0.000	0,000	20	0.000	0.000
2	M	1%5	3	1	C-61 =1396 SDS \$1407 C-61 \$350 D-61 \$7950	1.258		16	1751	1.751
4	M	130	0	D		0.000	0.000	20	0.000	0.000
3	34	113	0 0	0		0.000		20	0.000	0.000
2	3.4	123	2	0	00 000 00 00	0.000	0.000	20	0.300	0.000
3	N.	124	0	0	C-BL F7440 C-BL #7433	1.096		1.0	1.096	1.096
4	34	海	Ö	1	SDG #7459	0.000	0.000	20 15	0.000	0.000
3	84	125	0	0	300 9/433	1000	1.227	10.00	1.227	1.227
1	M	127	ä	0		0.000	0.000	20	0.000	0.000
3	M	126	0	0		0.000		20	0.000	0.000
2	N2 1	129	3	ā	C-8L #74GD C-8L #75GZ C-8L #7500	1.425	0.000	16	1,025	1.538
4	3.6	130	0	0	a rec in made of the made of the miles	0.000	0.000	19	0.000	0.043
1	M	131	0	0		0.000		20	0.000	0.000
4	34	132	0	2	SDS #1952	0.000	7 1 1 1 1 1 1 1 1 1	19	0.67E	0.676
2	M	133	1	0	C-BL NTS41	0.346		19	0.346	0.365
3	84	134	0	0	3.33	0.000		20	0.000	0.000
2	M	135	1	9	C-BL #7983, SDG #7549	0.325	0.474	17	0.799	0.323
4	M	1.35	0.	0		0.000	0.000	25	0.000	0.000
1	N	137	D	0		0.000		19	0.000	0.057
3	62	135	C	0		0.000	0.000	20	0.000	0.000

Table 2 Summary of Mostalitime & Removate of Cobb 600 Bradiera Days 6 - 28 (b) (4)Project No. MV-13-2 BLDG 7

						Elboy Coys 0 - 14 (2014)	75 - 757 A Disc	1185		-
	_		NO ESTE			mand and a size learned			NO DECK	10m
Treatment	Sax	Pag No.	Started	Publisher ad	Mortality	Cause of Death	N. Harnowed	% Worts@y	day 14	% M & I 0-14
-1	M	33	20	-	01		G. (75)	0.0%	20	20%
1	M	89	.30	0	0		0.0%	0.0%	20	0.0%
1	M	33	20	Ū	0		0.0%	0.0%	20	0.0%
1	M	95	20	0	0		0.0%	0.0%	20	0.0%
1	м	106	20	0	1	306 A6974	0.0%	5.0%	19	5.0%
1	M	110	20	90	0		0.0%	0.0%	20	0.0%
- 1	M	115	20	0	0		0.0%	0.0%	20	0.0%
7	M	125	20	õ	a l		0.0%	0.0%	20	G.0%
Ť.	M	127	20	0	0		0.0%	0.0%	20	0.0%
1	3.5	131	20	4	0		0.0%	0.0%	20	G.0%
1	M	137	20	0	1	500 #7573	0.0%	5.0%	19	5.0%
Totals & Sin	rages	_	240	9	2		0.0%	0.8%	230	18%
2 1	M	85	25	0	01		10.0%	0.0%	26	20%
2	w	87	20	ū	0		0.0%	0.0%	20	0.0%
2 2	2.0	92	20	0	0		0.0%	0.0%	20	0.0%
2	M	96	20	0	0		0.0%	acs.	20	0.0%
2	8.4	153	20	ü	0		0.0%	0.0%	20	0.0%
2	M.	108	20	0	0	- Vére-morre	0.0%	0.0%	20	20%
2	M	111	25	0	1	SOG F7345	0.0%	5.0%	19	5.0%
2	M	116	20	9 9	0 0		0.0%	0.0%	20	0.0%
2 2	M	129	20	1	0	C-BL W75C4	5.0%	0.0%	19	5.0%
2	44	133	20	0	0	E BE WINDS	0.0%	0.0%	20	0.0%
2	M	135	20	1	ō	C - BL #7550	5.0%	0.0%	19	5.0%
lotate & lore	надан		240	2	1		5.5%	0.4%	237	1.3%
3	W	84	20	0	0		1 0.0%	0.0%	253	0.0%
3	14	86	20	Đ.	0		0.0%	0.0%	20	0.0%
3	146	91	20	0	0		0.0%	0.0%	20	0.0%
			No.	0	0		0.0%	0.0%	250	0.0%
3	66	97	20						100.00	
3	M	165	25	0	11	SDS #2997	0.0%	5.0%	19	5.0%
3	M	165 109	20	0	0	SDS #2997	0.0%	0.0%	19 20	2.0%
3 3	M M	165 109 113	20 20 20	000	0	SD6 #2997	0.0%	0.0%	19 26 20	0.0%
3 3 3	M M M	165 109 113 116	2000	0000	000	SD& #2997	0.0%	0.0%	19 20 20 20	0.0%
3 3 3	NEWN	165 109 113 118 124	**************************************	00000	0000	SDG #2997	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	19 26 26 26 26	0.0% 0.0% 0.0% 0.0%
3 3 3 3 3 3	****	105 109 113 118 124 128	NA NA AN	000000	00000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	20 20 20 20 20 20	0.0% 0.0% 0.0% 0.0%
3 3	NEWN	105 109 113 116 124 128 134	**************************************	000000	00000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	19 28 28 28 28 28 28 28 28 28 28 28 28 28	20% 20% 20% 20% 20%
3 3 3 3 3 3 3		105 109 113 118 124 128	RARRARA	000000	00000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	20 20 20 20 20 20	0.0% 0.0% 0.0% 0.0%
3 3 3 3 5 3 3 3 6588 & 596	A PARTY OF THE PARTY OF T	165 109 113 116 124 128 134 135	***************************************	00000000	000000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	19 20 20 22 20 20 20 20 20 20 20 20 20 20	0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 3 3 3 3 6588 & Asse	M M M M M M M M M M M M M M M M M M M	165 109 113 116 124 128 134 135	***************************************	00000000	00000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	19 20 20 20 20 20 20 20 20 20 20 20 20 20	0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	M M M M M M M M M M M M M M M M M M M	105 109 113 116 124 128 134 135	***************************************	000000000000000000000000000000000000000	000000	SDE #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	19 18 18 18 18 18 18 18 18 18 18 18 18 18	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	M M M M M M M M M M M M M M M M M M M	105 109 113 116 124 128 134 135	**************************************	000000000000000000000000000000000000000	000000	SDE #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	NA SERVE NA	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	M M M M M M M M M	105 109 113 116 124 128 134 135	ผมผลผมผล พล	000000000000000000000000000000000000000	000000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	19 H A H A H A H A H A H A H A H A H A H	20% 20% 20% 20% 20% 20% 20% 20%
3 3 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	M M M M M M M M M M M M M M M M M M M	105 109 113 118 128 128 134 135 36 90 94	**************************************	000000000000000000000000000000000000000	000000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	**************************************	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 3 3 3 6588 & Sou	M M M M M M M M M M M M M M M M M M M	105 109 113 116 124 128 134 135 36 90 94	*****************	000000000000000000000000000000000000000	000000	SDS #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	19 H A H A H A H A H A H A H A H A H A H	20% 20% 20% 20% 20% 20% 20% 20% 20%
3 3 3 3 3 3 6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	M M M M M M M M M M M M M M M M M M M	105 109 113 124 128 138 138 138 139 98 104 101 112 117	กมหมลมแหน่ คลลมสมมล	000000000000000000000000000000000000000	00000000	SDE #2997	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	PHARAGRARY RESERVED	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	M M M M M M M M M M M M M M M M M M M	105 109 110 128 138 138 138 138 138 101 101 117 117 125	กมหมสมมหล พลสมสมมสม	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	PHANARURA BHARARAR BHARAR BHARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARAR	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	M M M M M M M M M M M M M M M M M M M	105 109 114 124 128 134 135 30 96 104 107 117 117 117 117 117 125	กมหลดรถหนี ทรดรถลกกรณ	000000000000000000000000000000000000000	000000000000000000000000000000000000000	506 #2997 5AC F1925	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	***************************************	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 3 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	M M M M M M M M M M M M M M M M M M M	105 109 110 128 138 138 138 138 138 101 101 117 117 125	กมหมสมมหล พลสมสมมสม	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	PHANARURA BHARARAR BHARAR BHARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARARAR BHARAR	00% 00% 00% 00% 00% 00% 00% 00% 00% 00%

Tables 2. Summary of Mortalities & Removals of Code 500 Brollers Days 6 26 (b) (4) Project No. NY-13-2

2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M	83 83 93 1 95 1 106 1 114 1 125 1 127 1 131 1 137 1 13		White accoccoccocc	Cell Well 1	00% 00% 00% 00% 00% 00% 00% 00%	00% 00% 00% 00% 00% 00%	4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1600 14-02 10% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	% at 6 R 0-28 CO%
I M M M M M M M M M M M M M M M M M M M	88 93 95 106 1180 1141 115 127 131 137 137 137 137 137 137 137 137 13	00000000000000000000000000000000000000	000000000000000000000000000000000000000	The state of the s	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	00% 00% 00% 00% 00% 00%	***********	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Totals & Aurerage Totals & Aurerage Totals & Aurerage	93 1 95 1 106 1 110 1 114 1 125 1 127 1 131 1 137 1 13	00000000000000000000000000000000000000	0000000000000000	The state of the s	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	00%	88288888	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Totals & Arrerage Totals & Arrerage Totals & Arrerage A M 2 M 2 M 2 M 2 M 3 M 3 M 3 M 3 M 3 M 3	98 106 110 114 115 127 131 137 137 137 137 137 137 137 137 13	NO-000000000000000000000000000000000000	00000000000000	The state of the s	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	00%	RESERBEE	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Totals & Assertage Totals & Assertage Totals & Assertage A March 1	1 106 1 110 1 114 1 116 1 125 1 131 1 137 1 137	0000000000	000000000000	The state of the s	0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	28688882	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0%
Totals & Aurorage 2 May	110 114 114 115 127 131 131 137 80 90 103 103 101 115	00000000	00000000000	The state of the s	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	8488882	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 5.0%
Totals & American Totals & American 2 March	114 116 125 127 131 131 137 666 1 87 92 96 103 103 101 115	000000	000000000	The state of the s	0.0% 0.0% 0.0% 0.0% 0.0%	0.0%	经知识的 2000	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 5.0%
Totals & Parentage 2 May 2 Ma	1 125 1 127 1 131 1 137 1 137 1 137 1 137 1 137 1 137 1 103 1 103 1 103 1 103 1 103	00000	00000	The state of the s	0.0% 0.0% 0.0% 0.0% 0.0%	0.0%	20 20 20 20 20	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 5.0%
Colonia & Aurorago	127 131 131 137 137 137 137 137 137 137 13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	The state of the s	0.0%	0.0%	20 20 19	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 5.0%
Totals & American	1 13: 1 137 460 1 87 96 1 90 103 103 111 115	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	The state of the s	0.0%	0.0%	20 19	0.0%	8.0% 5.0%
Totals & American	1 35 45 57 95 1 103 103 105 115 115	1 2 5 1 5 2	0 0	The state of the s	0.0%	0.0%	19	0.0%	5.0%
Totalin & American	85 1 87 92 96 103 108 111 115	1 2 5 1 5 2	0 0	The state of the s	0.0%	100			
2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M	85 87 92 96 103 108 111 115	1 2 5 1 5 2	0	The state of the s		0.0%	238	0.0%	CPS
2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M	97 92 96 103 108 111 115	0 1 0 2	0	The state of the s	W-100.7				
2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M	92 96 103 108 111 115	0 1 0 2	0	The state of the s	5.0%	000	13	5.0%	3.0%
2 M 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	96 103 108 111 115	1 0 2	1	ALCOHOL MICHAEL MICHAEL	100%	0.0%	18	10.0%	10.0%
2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 3 M 3 M 3 M 3 M	103 108 111 115	2		SDS #6896	0.0%	5.0%	19	5.0%	50%
2 M 2 M 2 M 2 M 2 M 2 M 2 M 3 M 3 M 3 M 3 M 3 M	108 111 115	2	1	SIDS WESCE, C-BL WESCS	5.0%	5.0%	18	10.0%	10.0%
2 M 2 M 2 M 2 M 2 M 2 M 2 M 3 M 3 M 3 M 3 M 3 M	111		1	SDS #2978	0.0%	5.0%	19	5.0%	5.0%
2 84 2 84 2 84 2 84 2 84 2 84 3 84 3 84 3 84 3 84	115	100	1	C-EL FROS, C-BLHESS, ACT-BL =5996	10.0%	5.0%	17	15.0%	15.0%
2 M 2 M 2 M 2 M 2 M 3 M 3 M 3 M 3 M 3 M 3 M		3	0	C-BL 17383	5.3%	0.0%	18	5.3%	10.0%
2 M 2 M 2 M obsts & Assertage 3 M 3 M 3 M 3 M 3 M 3 M		2	o	C-BL #795, \$08 #7402, C-BL #7353, C-BL #7352 C-BL #7440, C-BL #7433	15.0%	5.0%	16	20.0%	25.0%
2 M 2 M Totate & Azerrago 3 M 3 M 3 M 3 M 3 M 3 M		3	0	C-8L 97490, C-8L 97802; C-8L 97506	15.8%	0.0%	18	10.0%	10.0%
Glass & Asserage 3 M 3 M 3 M 3 M 3 M 3 M 3 M	133	1	0	C-BL #7541	5.0%	D.0%	19	5.0%	50%
3 M 3 M 3 M 3 M 3 M		1	. 1	C-8L \$7553, SDS \$7549	5.3%	5.3%	17	10.5%	15.0%
3 M 3 M 1 M 3 M	20	117	8		7.2%	2.5%	214	9.7%	10.0%
3 M 3 M 3 M 3 M	8.4	101	0	r -	0.0%	0.9%	- 13	W 50	-
3 M 3 M 3 M		0	B		0.0%	0.0%	20	0.0%	0.0%
3 M		0	0		0.0%	0.0%	20	0.0%	0.0%
3 14	97	0	0		0.0%	0.0%	20	0.0%	0.0%
	105	0	Ø.		0.0%	0.0%	19	0.0%	5.0%
	109	0	0		0.0%	0.0%	20)	0.0%	0.0%
	113	0	0		0.0%	0.0%	30	0.0%	0.0%
3 M	1,00	0	0		0.0%	0.0%	20	0.0%	0.0%
3 M	134	0	00		0.0%	0.0%	20	0.0%	0.0%
3 M	134	0	0		20%	0.0%	20	0.0%	0.0%
3 M	138	0	0		0.0%	0.0%	20	0.0%	0.0%
otale & Aretage	NO.	0	0		0.0%	00%	23%	0.0%	0.4%
		-1-		- milant		-			W-2 10
- M	86	01	0		20%		20	0.0%	0.0%
A M	90	0	D		0.0%	0.0%	20	0.0%	0.0%
2 16 2 M	94	0 2	0		0.0%	0.0%	20	0.0%	0.0%
4 M	104	0	0		0.0%	0.0%	20	0.0%	6.0%
2 W	107	o l	0		0.0%	0.0%	20	0.0%	0.0%
4 4	112	0	0		0.0%	0.0%	20	0.0%	0.0%
4 M	117	0	0		0.0%	0.0%	20	0.0%	0.0%
4 14	125	0	1	SDS 57455	0.0%	5.0%	13	5.0%	5.0%
E M	130	5	0		202	0.0%	19	0.0%	10%
A M	1 420	0	1	506 #1952	0.0%	5.0%	19	5.0%	5.0%
t Mi	132	0	2		0.0%	0.0%	237	0.0%	0.0%

Table 3 Feed Added and Weigned Bacs by Pen Study Days 8 - 28 (b) (4) Project No. NV-13-2 acus 7

				\$1,470		GROWER						
			BOST CHIP		MANUAL CLANGE			ALC: NO	AND STATE			
-	_	_	3/17	4/5	0-14	4/3	W13	217	14-28	9-28		
reatment	Bes.	Pen	Poid 1	WB	Consumption	Poed 2	Feed 3	WB	Conductiplion	Consumpti		
1	M	83	14 DE	5.96	8.02	50.00	15.00	6.65	25.12	36.14		
3	M	84	14.00	6.36	7.64	20.00	15.00	1.12	25.88	34.52		
2	W	85	14,00	5.54	8.4G	20,00	15.00	11.55	23.12	31.51		
4	M.	36	14 00	5.60	8.20	20,00	15.00	5.90	25.10	57,50		
2	W	87	14.00	6.06	7.94	20.00	15.00	13.90	21.10	23.04		
3	M	88	14.00	5.96	8.04	20.00	15.00	6.70	29.30	36,34		
1	541	69	14.00	6.42	7.58	20.00	15.00	五12	24.88	34,45		
4	M	90	14.00	5.72	8.25	20.00	15:00	6.20	28.80	37,08		
3	M	91	14.00	5.52	6.48	20.00	15.00	5.70	29.30	36,78		
2	34	32	14 00	5.46	8.54	20.00	15.00	12.50	72.AL	30.38		
1	M	83	14.00	6.25	734	20.00	15.00	6.42	26.50	34.32		
4	M	94	\$4.00	5.58	8.42	26.00	15.00	6.08	23.32	37.3A		
1	24	95	\$4.00	5.36	8.64	20.00	15.00	7.12	27.88	36.52		
2	M	96	14.00	6.32	7,50	20.00	15.00	14 22	20.7%	28.4G		
3	M	97	14 (0)	3.44	6.55	20.00	15.00	7.30	27.70	36.26		
4	M.	98	14 00	5.60	6.40	30.00	15.00	5.92	29.08	37,48		
2 4	M	103	14.00	5.66	8.34	20.00	15.50	13 14	21.84	30.20		
	M	1Q4	14.00	5.74	0.26	20.00	15.00	6.52	28,48	36.74		
3	M	105	14.00	1.88	8.12	20.00	15.00	T.B4	27 16	35.20		
1	M	106	14.00	5.54	8.48	20.00	15.00	8.24	26.76	25.22		
4	M	107	14.00	6.00	8.00	20.00	15.00	7.32	27.58	35.68		
2	M	901	14.00	5.84	8.16	20.00	15.00	12.66	22.34	30.50		
3	M	109	14,00	5.22	8.78	20.00	15.00	7.10	27.90	36,68		
1	M	110	14.00	542	8.58	20.00	15.00	7.60	27.40	25.58		
2 4	М	117	14.00	5.8E	8.14	20.00	15.00	13.60	21,40	25.54		
	M	112	14.00	5.32	II.CS	20.00	15.00	6,66	29.34	23,02		
3	M	213	\$4.00	5,64	8.76	20.00	15.00	6.78	20.22	36.38		
1	M	112	14.00	5,92	8.05	20.00	15.00	7.80	27.20	35.28		
2	M	115	14.00	5.56	8.64	20.00	15.00	\$4.25	20.74	23.18		
1	M	115	14.00	6.34	7.66	20.00	15.00	7.18	27.82	25.48		
	м	117	14.00	5.98	8.02	20.00	15.00	7.42	27.50	25.00		
3 2 3	M	115	14.00	5.32	8.68	20.00	15.00	7.50	27.50	35,18		
2	30	123	14.00	5.76	8.24	20.00	15.00	12.42	22.58	30.82		
3	M	124	14 00	5.20	8.80	20.00	15.00	6.74	23.26	37.06		
4	10	125	14 00	4.98	5.02	20.00	15.00	5.76	29.24	39.26		
1	М	126	\$4.0G	5,55	8.42	20.00	15.00	5.34	23,66	37,08		
1	M	127	14.00	5.82	8.18	20.00	15.00	7.00	28.00	35.18		
3	M	128	14.00	5.22	6.70	26.00	15.00	6.06	28.94	22 72		
2	M	129	14.00	6.66	7.34	20.00	V5.20	15.56	19.44	26.78		
	M	130	14,00	6.12	7,88	20.00	15,00	7.78	27.22	35.10		
1	M	131	14.00	5.18	8.82	20.00	15.30	6.76	20.22	37.04		
4	M	132	14 00	5.38	8.62	20.00	15.00	5.54	20.46	33.05		
3	M	133	14.00	5.92	8.00	20.00	15.00	13,86	21.14	25.22		
	M	134	\$4.00	5.38	8.63	20.00	15.00	6.28	28,72	37.34		
2	M.	135	14.00	£.56	8.84	20.00	15.00	12.94	22.06	30.50		
	M	136	14.00	5.22	8.28	20.00	15.00	5.78	29.22	38.00		
1	M	137	14 00	E.32	7.66	20.00	15.00	8.50	26.50	34,18		
3	M	138	14.00	E 12	7.68	20.00	15,00	8.10	26.30	34.78		

BASF Enzymes LLC

Table 4 Summary by Treatment of Feed Added and Weighed Sack by Pen Study Days 0 - 28 (b) (4) Project No. NV-13-2 BLOG 7

			-	TYAR				CNDA	N.SI	
					MAINTE-STAPPES			Market Street		D
to desire!	B	No.	3/17	425	\$-14	203	D13	4/17	14-28	II-28
mulment	541	Pen	Feed 1	WB	Consumption	Feed 2	Feed 3	WB	Сопяцииран	Consumpti
1	M	63	12.0	5.98	8.02	2000	15.00	6.58	24.12	3.14
1.	M	89	14.00	E.42	7.58	20:00	15.00	8.12	26.88	34.46
1	M	93	14.00	6.25	774	20.00	15.00	8.42	25,50	34.32
1	M	95	14.00	5.35	8.64	20.00	15.00	7.12	27.88	35.52
1	М	1DE	14.00	5.54	8.45	20.00	15.00	8.2A	26.76	35.22
i	M	110	14.00	5.42	8.50	20.00	15.00	7.80	27.40	35.98
1	M	114	14.00	5.92	80,8	20.00	15.00	7.60	27.20	35.28
4	34	116	14,00	6,34	7.56	20,00	15.00	7.18	27.02	35,48
9	м	126	14.00	2.58	8.42	20.00	15.00	8.34	26.66	37.08
1	M	127	14.00	5.82	8.18	20 00	15.00	7.00	25.00	36,18
3	M	131	14.00	5.18	8.02	20,00	15.00	6.78	28.22	37.04
i	34	137	14.00	6.32	7.68	20.00	15.00	8.50	26.50	36.10
Total	-	190	158.00	70.12	97.86	263-00	150.00	E9.98	330.02	427 88
1040	_		100.00	10.10	28.04	A-MANU	100.20	40.50	- 10-10 May 10-10	767 09
2	M	85	12.00	5.54	8.46	20.00	15.00	11.98	23.12	\$1.56
2	M	87	14.00	6.06	7.34	20.00	15.00	13.90	21.10	29.04
2	M	92	14.00	E 48	8.54	20,00	15 00	12.58	22.44	30.56
2	M	96	14.00	£.32	7.68	20,00	15.00	14 22	20,78	28,46
2	M	103	14.00	5.66	8.34	20.00	15,00	13,14	21.86	30,20
2	M	103	14.00	5.84	8.16	20.00	15.00	12.66	22.34	30,50
2	M	111	14.00	5.86	8.14	20.00	15.00	13,60	21.40	29.54
2	M	115	14.00	5.56	8.44	20.00	15.00	14.25	20.74	29.10
2	k#	123	\$2,00	5.78	0.24	20.00	15.00	12.42	22.58	30.62
2	M	129	14,00	6.56	7.34	20.00	15.00	15,56	19.44	25.78
2	M	133	14.00	5.92	0.00	20.00	15.00	13.85	21.14	29.22
2	M	135	11.00	5.56	8,44	20.00	15.00	12.94	22.06	30.50
Total			168.00	70.20	39.60	265.00	160.00	161.00	259.00	356,00
				-						
3	M	84	14 00	6.36	7.64	26.00	15.00	6.12	25.20	34.52
3	M	88	14.00	5.98	8.04	20.00	15.00	6.70	28.30	36,34
3	M	91	14.00	5.52	8.48	25.00	15.00	6.70	28.30	35.78
3	M	97	14.00	5.44	8.55	20.00	15.00	7.30	27.70	36.26
3	M	105	14.00	5.66	8.12	20.00	15.00	7.84	27,16	33.28
3	14	109	14.00	5.22	4.78	20.00	15.00	7.10	27.30	36,68
3	14	113	14.00	5.84	91.0	25.00	15.00	6.78	28.22	36.38
3	M	112	14 00	5.32	8.68	22.00	15.56	7.50	27.50	36.18
3	M	124	14.00	5.20	8.50	20.00	15.00	6.74	25.26	37.06
3	M	120	14.00	5.22	0.70	20.00	15.00	6.06	29,94	37 72
3	M	134	14.00	5.38	8.62	20.00	15.00	6.28	23.72	37.34
Total	M	138	14.00	5.12	7,66	25.00	150.00	8.10	334.78	34,78 833.37
1000	_		100.00	(B/, Mg)	200,04	240.00	100.00	82	334.79	433.32
4	M	86	14.00	5.60	8.20	20.00	15.00	5.90	29,10	37.30
4	M	90	14.00	\$.72	8.26	20.00	15.00	6.20	26.60	52.03
4	M	94	14.00	5,55	8.42	20.00	15.00	5.08	28.92	37.34
4	M	96	14.00	5.60	8.40	20.00	15.00	5.92	29.08	37.48
4	M	104	14.00	5.74	8.26	20.00	15.00	6.52	28.48	36.74
4	M	107	14.00	5.00	6.00	20.00	15.00	7.32	27.68	35,68
4	M	112	14.00	5.32	82.8	20.00	15.00	6.66	28.34	37.03
4	M	117	14 00	5.96	8.02	20.00	15.00	7.42	27.58	35.60
4	M	125	14.00	4.95	9.02	20.00	15.00	5.76	29.24	38.26
4	MA	136	14.00	6.12	7.08	20.00	15.00	7.78	27.22	\$3.10
4	M	132	14.00	5.38	8.52	20.00	15.00	5.54	29 46	38.08
4	M	136	14.00	5.22	8.78	20.00	15.00	5.78	25.22	38.00
	PMI.	1.380			0.79	201.483	15.00	2.70	23.44	300,120

Table 5. Day 0 Pen Weights of Cobb 500 Broilers (20MAR15) (b) (4) Project No. NV-13-2 BLDG 7

Treatment	Sex	Pen No.	Mo. Birda Wedghed	Day 0 Pen VAL	Average Wi
1	M	83	20	0.857	C.043
3	34	84	20	0.848	0.042
2	M	85	20	0.878	0.644
4	M	86	20	0.854	0.943
2	848	87	20	138.0	0.043
3	34	88	20	0.852	0.043
1	M	89	20	0.844	0.042
4	fet.	90	20	0.870	0.044
3	34	91	30	0.847	0.042
2	M	92	29	0.862	0.043
3	M	93	20	0.865	O. Data
4	M	94	20	0.834	0.042
1	M	95	20	0.841	0.042
2	M	96	20	0.820	0.041
3	M	97	20	0.630	0.042
A	M	98	20	0.831	0.042
2	M	103	20	0.854	0.043
4	54	104	20	0.840	0.042
3	M	105	20	0.839	0.042
1	M	106	20	0.835	0.042
4	M	197	20	0.851	0.043
2	M	108	20	0.826	0.041
3	M	109	20	0.535	0.042
1	М	110	26	0.857	0.043
2	M	111	20	0.82€	0.041
4	M	112	20	0.830	0.042
3	M	113	20	0.509	0.040
1	M	114	20	618.0	0.041
2	M	115	20	0.836	0.042
1	M	116	20	0.840	0.042
4	M	117	20	0.834	0.042
3	M	118	20	0.839	0.042
2	W	123	20	0.865	0.043
3	M	124	20	0.865	0.043
4	М	125	20	0.870	0.044
1	M	125	20	0.840	0.042
1	M	127	20	0.844	0.042
3	M	128	26	0.857	0.043
2 4	M	129	20	0.860	0.043
1	M	130	20	0.868	0.043
4	M	131	20	0.846	0.042
	M	132	20	0.855	0.043
2	M	133	20	0.865	0.043
2	M	134	20	0.856 0.848	0.043
4	M	135	20	0.848	0.043
1	M	136	20	0.843	0.042
3	M	137	20	0.857	0.043

BASF Enzymes LLC

Table 6 Day 0 Pen Weights of Cobb 500 Broilers Summarized by Treatment (20MAR15) (b) (4) Project No. NV-13-2 BLOG 7

Treatment	Sex	Pen No.	No Birds Weighed	Day 0 Pen Wit	Sard Average Wt
1	M	83	30	0.857	0.043
30	M	89	20	0.344	0.043
3	M	53	20	0 886	0.044
1	M	95	20	D.841	0.042
10	M	106	20	0.835	0.042
1	M	110	20	2857	0.043
1	M	112	20	0813	0.041
1.1	M	116	20	0.840	0.042
- 6	M	126	20	0.848	0.042
140	M	127	20	0.844	0.042
1.	M	131	20	0.845	0.042
- 1	M	137	20	0.543	0.042
Total/Avera	res		240	0.846	0.042
Standard De	tenderd Deviations			0.017	0.001
CVs				2.01%	2.01%

Trestment	Sex	Pen No.	No. Birda Welgned	Day 6 Pen Wt.	Bird Average Wit
2	M	35	20	0.678	0.04:
2	M	87	20	0.861	0.043
2	M	92 96	20	0.862	0.043
2	M	96	26	0.820	D CAT
2	M	103	20	0.864	0.043
2	M	108	20	0 829	0.04
2	M	111	20	0.526	0.04
2	M	115	20	E 836	0.042
2 2	M	123	20	€.865	0.043
2	M	129	20	0.850	0 043
2	M	133	20	0.865	0.013
2	14	135	20	0.848	0.042
otal/avera	es		240	0.851	0.043
Standard De	vincio	ns	1 12 20 1	0.019	0.001
CVS		*		2.22%	2.22%

Treatment	Sex	Pan No.	No. Birds Weigned	Day 0 Pan Wt.	Bird Avaraga Wt.
3	M	2.4	20	D 848	0.042
3	M	88	20	0.852	0.043
3	M	91	20	0.847	0.042
3	M	97	26	0.830	0.042
3	M	105	26	0.839	0.042
3	M	109	20	0.535	0.042
3	M	113	20	0.809	0.040
3	M	115	20	0.539	0.042
3	M	124	20	0.865	0.043
3	M	126	20	0.857	0.843
3	RA.	134	20	0.856	0.043
3	M	135	26	0.857	0.043
Total Averag	ges		240	0.845	0.042
Standard De	vistion	13		0.015	0.001
CVs				2.31%	1.21%

Treatment	5ex	Pen No.	No. Bitrois Walghad	Day 0 Pen Wt.	Dird Average Wi
4	M	85	20	0.854	0.043
4	3.6	90	20	0.870	0.044
- 3	M	94	20 20	0.834	0.042
4	M	96	20	0.831	0.042
4	M	184	20	0.840	0.042
4	M	107	20	0.851	0.043
4	M	112	20	0.830	0.042
4	M	117	20	0.634	0.042
4	M	125	20	6.870	0.044
4	M	130	20	0.865	0.043
4	34	132	20	0.855	0.043
4	M	136	20	0.861	0.043
TomUAvern	es.		240	0.850	0.042
Standard De	enation	ns.		0.015	0.002
CVs			+	1.80%	1.80%

Page 69 of 110

Table 7 Day 14 Pen Weights of Cobb 500 Broilers (03APR15) (6) (4) Project No. MV-13-2 BLDG 7

Treatment	Sex	Pen No.	Mo. Birds Widghed	Diay 14 Peo Wt.			
-	M	83	20	6,68	0.334		
3	M	84	20	6.40	0.320		
2	M	85	20	6.72	0.335		
4	ы	86	20	7.04	0.352		
2	M	67	20	5.18	0.309		
3	3M	Sô	25	5.88	0.344		
1	M	89	20	6.28	0.314		
4	M	90	25	7.04	0.352		
3	8.4	91	20	5.96	0.348		
2	84	52	20	6.58	0.334		
1	M	93	30	6.52	0.326		
4	M	94	20	6.76	0.338		
1	M	38	20	6.80	0.346		
2	M	96	25	6.30	0.315		
3	M	97	20	6.82	0.341		
4	M	98	20	7.12	0.366		
2	M	193	20	6.52	0.331		
4	M	154	20	7.04	0.352		
3	14	105	19	6.76	0.358		
1	M	106	19	6.56	0.345		
4	M	1997	20	6.52	0.326		
2	М	1808	20	6.45	0.324		
3	M	109	26	7.36	0.368		
1	M	520	20	5.44	0.322		
2	M	131	23	5.04	0.318		
4	M	112	20	6.96	0.345		
3	M	113	20	7.04	0.352		
1	M	114	20	6.78	0.339		
2	M	115	20	6.48	0.324		
1	M	116	20	6.50	0.325		
4	M	117	20	6.75	2.338		
3	M	115	30	5.76	0.338		
2	M	123	20	6.80	0.340		
3	M	124	20	7.02	0.351		
4	M	125	20	7.38	0.369		
1	М	126	20	7.06	0.353		
1	M	127	20	6.78	0.339		
3	M	128	26	7.28	0.364		
2	M	129	钽	5.94	0.313		
4	M	130	19	8.88	0.351		
1	M	131	20	7.12	0.356		
4	3,0	132	Zi.	7.48	0.374		
2	M	133	30	5.25	0.313		
3	M	134	20	6.82	0.341		
2	M	135	19	6.45	0.340		
4	M	136	20	7,32	0.366		
1	M	137	89	6.12	0.322		
3	M	136	20	6,52	0.326		

BASF Enzymes LLC

Table 6. Weights and Performance of Cobb 500 Broilers Study Days 0-14 (63APR16) (b) (4) Project No. NV-13-2 BLDG 7

eriory Y				Number	of Beds		Day 14 Pen	Day a Pen	Pen Garri	Day 14 Berd	Day 0 Bed	Day 0 . 14 Bard	RM-A	Total Pen	Day 0 - 14 Fred	Doy 8 - 14 Av. Feed totake per	Feed Gam	Adjusted
realment	Ser	Pen No.					Weigist	Weekly	0.00	Average	Average	Average	Weight	Gavn	Consump	Bad		Feed-Gar
_	_	-	Starten	Removed	1	Andrew Company	Hegy	- INCO	/legty	- WC_(8(I)	W: (30)	Garring	(8.04	1 RM	4901	(9.9)	- BUR BURG	agred
4. 1	K	83	26		0	20	6 68	0.657	5.823	0.334	0.043	0.291	0.000	5 823	903	0.421	9 377	1 377
3	W	84	20	0	0	20	640	9 548	5.550	6.320	0.042	0.278	0.000	5 552	764	0.362	1 376	1 176
2	M	85	30	0	0	50	6.72	0.676	1,645	0.736	0.044	0.292	0.000	5.6A.7	8.45	0.423	1.445	1 446
4	TA.	86	26	.0	0	20	7.04	0.854	6 185	0.352	0.013	0.309	0.000	€ 185	B 20	0.410	1.326	1 326
2	M	87	20	0	0	20	616	0.961	5.319	0.309	0.043	0.256	0.000	5,319	794	0.397	1.493	1.493
3	M	88	20	0	0	20	68 6	0 852	6.026	0.344	2043	2 301	6 000	e 028	6.04	0.402	1-334	1 334
1	M	89	20	0	0	20	6.76	D-842	5.435	2332	0.642	0.273	0.000	5.436	7.58	0.370	1 364	1 394
4	M	90	20	0	0	20	7.04	17 970	6.170	0.352	0.044	6 309	n 000	6170	8.29	2414	1.342	1362
3.	M	91	30	.0	0	20	5.96	0 547	0.113	0.148	2642	0.300	0.000	8.03	5.48	0.424	1.367	1 307
2	1.5	.92	20	. 0	6	20	5 6è	0.963	5 818	9331	2 543	0.291	0.000	2.6/8	6.5a	0.427	1.450	3.416
1	14	93	200	0	0	20	542	D 556	5 634	0.336	0.644	0.292	0.000	5 534	7.75	C 367	1.324	1374
3	M	9.1	20	0	d'	20	676	0 034	5 106	C 338	0.647	0.296	0.000	5 926	8 42	0.421	1.421	1.424
1	366	95	30	0	0	20	5.50	2.541	5 959	0.340	0.042	0.296	0.000	5.959	664	0.432	1 450	1 450
2	M	96	30	0	0	70	6.30	0.820	5 480	0.315	0041	0.274	0.000	5 480	7.68	0.384	1 401	1.401
3	3.4	97	20	0	0	20	6.82	0.69.0	5.990	0.441	0.042	0.300	0.000	5 990	ase	C 428	1 429	3 479
1	14	9.8	20	0	0	20	7 12	0.831	0.269	0.156	0.047	0314	0 000	6.289	8.40	04.0	1 336	1 336
2	M.	103	30	0	0	70	5.62	0 964	5.755	2 331	0.043	6.358	0.000	5756	8.34	0.417	7.649	1 419
. 1	M.	104	30	0	0	20	7 64	5.840	6 300	0.352	0.642	0.310	0.000	6 300	8.26	0.013	1.332	7 332
3	M	105	20	0	1	19	£76	0.836	5 521	0.156	0.042	D 314	0.145	6 066	3 12	0.421	1.371	1.336
í	M	106	30	0	1	19	8.56	0.835	5 725	0.345	0.042	0.304	0.153	5 579	8.46	0.445	1.376	7 1139
1	M	107	30	0	0	20	6.00	0.851	5.669	0326	0043	0.262	0.000	5 569	800	0.400	1411	101
2	M	108	20	.0	0	20	648	0.828	5 652	0.324	0.041	0 283	0.000	5.652	8 16	0.408	1444	1 444
3	M	109	20	0	0	20	7.36	0.835	6 525	0.354	0013	0 126	0.000	6.525	678	0.439	1 346	1 346
2	M	110	20	0	0	20	644	0.657	5.583	0 302	0043	0 279	0.000	5.503	5.58	0439	1532	1 517
3	M	171	20	0	1	10	8.04	0 626	£214	03/4	0.041	0 277	0.063	5 296	5 14	0.428	1.561	1 537
á 1	M	112	20	0	a	20	100000		6.130	0.341	0.042				6.64	0.434	1 416	1 416
1	M	113				20	5.96	0.830		0.344	0.042	0.307	2 000	6 130			1 310	
3			20		0		7.04	3 909	6.231			0.312	0.000	5 231	6 16	0.406		1310
5 1	44	04	20	0	0	20	5.78	0.013	5.967	0736	0.041	0.296	0.000	5 967	N 08	0.454	1 354	1 154
2	M	115	30	.0	0	20	6.48	D 836	56A1	0.334	D (112	0.585	0.000	5644	E 44	5 422	1 455	11/19
1.0	M	116	30	0	2	20	6 50	0.840	5 660	0.325	0.042	0.283	0.000	5 660	7,66	0.363	1 353	1 353
1	M	117	20	0	0	20	5.76	0.634	5 926	0,336	0 042	0.296	0.000	5 926	6.02	DADS	1 353	1753
3	6.4	118	20	0	0	50	676	B 819	5,901	0.338	D 045	0.296	0.000	€ 921	6.68	0.434	1.456	1 466
2	M	123	20	.0	0	30	6 80	0.865	5 995	0.340	2 243	0.297	0.000	5 935	€ 24	0.412	1 388	1 166
3	7.8	124	20	0	0	20	7.02	3.665	\$ 155	0.351	0.043	0.306	0.000	6.155	0.90	0.440	1430	1 430
4	- M	129	50	0	0	30	7.36	9 970	551B	0.389	DOME	0.335	0.000	6510	0.02	0.451	1.366	1 386
1	14	126	30	.0	1	20	705	0.240	5.220	0.353	0.042	0.311	0.000	6.220	6.42	0.421	1354	1 354
J.	W	127	30	Q	6	50	576	0.844	5.936	0.339	0.043	G 297	0.000	5.038	618	6 429	1 X7 8	9 376
3	- M	128	20	0	0	20	7.75	0.857	6 423	0.364	D 043	0.321	0.000	6.423	B 18	0.439	1 367	1 367
2	TA	129	20	1	6	39	594	0 960	5 080	2.313	0.043	0.270	0 123	5 193	7.34	0 386	1.445	1413
4	M	130	20	0	1.	19	6.86	0.865	5.995	0.361	0.043	0318	0.042	6 038	784	0.415	1314	1 305
2	M	131	20	0	0	20	7.12	9.546	6.274	€ 156	0.042	0.314	0.000	6 274	6.92	0.441	1.406.	1 406
2	- M	132	20	0	0	20	7.45	0.855	6 625	0.374	0.043	0.331	0.000	6 875	5.52	0.431	1 331	1.301
2	14	133	30	-0	6	20	6.26	0.865	5.395	0313	0.043	0.277	0.000	5 395	608	0.404	1.436	£ 456
3	M	134	20	5	· c	20	6.82	0.836	5 964	0.341	6043	0.2%	0.000	5.964	8.52	E 431	1.435	1-145
3	- 66	135	20	1 1	0	19	ñ.45	0.646	5612	1340	B 042	0.298	0.200	5 612	E 44	6466	1.504	1 452

BASF Enzymes LLC

Table 8. Weights and Performance of Cobb 500 Broilers Study Days 0-14 (03APR16) (b) (4) Project No. NV-13-2

Treatment Sex	Sex	Pere No.	Mumber of Sinda			Pen Pen Weight	Cary 6 Pen Weight	Post Garn	Day 14 Bird Avelage	Eva Eva Average	Day 0 - 14: Bird Average	12 7400	Touti Pen Gain	Day 0 - 14 n feed Consump	Ony 0 - 14 Av. Ford attake per	Feed Gam	Adjusted Feed Gam	
		Slaried	Removed	Mortalny	Weighed	ekgt	(Hg)	(kg)	Wt. rkgs	Wit (Not	-Gaustings	(40)	RN	(len)	Swd (kp)	dabada	thro-menda	
3	M	136 137 138	20 20 20	0	1 0	20 19 20	7 32 6 12 6 52	0 843 0 843 0 857	5 459 5 277 5 663	0 366 0 322 0 325	0.043 0.042 0.043	0 323 0 290 0 283	6 000 6 007 6 000	6 459 5 374 1 663	878 768 788	0 436 0 404 0 394	1 359 1 455 1 391	1 359 1 429 1 391

Table 9. Weights and Performance of Cobb 500 Broilers by Treatment Study Days 0-14 (03APR15) (b) (4) Project No. NV-13-2

BLDG 7 Day 14 Day 0 , 14 Day 0 . 14 Av. Feed Number of Birds Pen Bitd Bird Feed Pen Gain Intake per Feed Gam Treatment Pen No Sex Weight Average Average Consumo Feed Gain Bird Gain (kg) WIL (KO) (kg/bird) 20 6.68 5.823 0.334 0.291 8.02 0.40 89 93 20 20 20 6.28 5.436 0.314 0.272 7.58 0.379 1 394 1 394 M 0 20 6 52 5.634 0.326 0.282 7.74 0.387 1 374 1 374 M 95 20 0 0 6.80 5.959 0.340 9.298 864 0 432 1 450 1 450 M 20 20 20 105 0 19 6 56 5.725 0.345 0.304 8.46 0.445 1 476 1 439 110 Ð 0 20 20 20 20 20 644 5.583 0.322 0.279 8.58 0.429 1.537 1 537 M 114 0 0 6.7B 5.967 0.339 0.298 808 0 404 1.354 1 354 116 20 0 0 6.50 5 660 0.325 0.263 7.66 0.383 1,353 1.353 M 20 126 0 0 7.06 6 220 0.353 0.311 842 0 421 1.354 1.354 127 20 0 D 5.78 5.936 0.339 0.297 8.18 0.409 1.376 1 376 M 131 20 712 6 274 0.356 0.314 882 0 441 1 406 1 406 137 20 6.12 0.322 5 277 0.280 7.68 0 404 1.455 1 429 6.637 0.294 4.44% Total/Averages Standard Deviations 0.292 8,155 0.411 1.404 0.2980.013 0.013 0.428 0.022 0.058 0.054 5.15% 4.58% 5.25% 5,45% 20 20 20 20 5.842 0.336 000 0.292 846 0.423 1.448 1 448 87 0 6 18 5 319 0.309 0.266 20 20 20 20 19 7.94 0 397 1.493 1 493 92 6 68 5 818 0 334 0.291 6.54 0 427 1 468 1 468 M 96 o 0 6.30 5.480 0.315 0.274 7.68 0 384 1.401 1 401 M 103 20 0 0 6.63 5 756 0.331 0.288 8.34 0 417 1.449 1 449 20 108 0 C 2 2 2 6 48 5 652 0.324 0.283 8.16 0 408 1 444 1 444 0 6 04 5 214 0.318 C 277 8.14 0 428 1.561 1 537 M 115 20 0 0 20 6.48 5.644 0.324 0.282 8 44 0 422 1 495 1 495 20 20 222 123 Ó 0 20 6 80 5.935 0.340 0.297 8.24 0 412 358 1 388 M 129 0 19 5 94 5.080 0.313 0.270 7.34 0 386 1 445 1413 133 20 0 0 20 6.26 5.395 0.313 0.270 80.6 0 404 1 498 1 498 135 20 19 646 0.340 8,44 0 444 1 504 1 452 Total/Averages 6.413 0.273 4.26% 5.562 0.325 0.282 8.150 0.355 4.36% 0.413 1.45 1.466 0.011 3.90% 0.018 0.044 0.048 5.553 7.64 0 382 1 376 20 20 20 88 20 20 20 20 20 20 20 20 20 20 20 20 0 000 6.88 6 028 0.344 0.301 8.04 0 402 1 334 1.334 91 0 6.96 6.113 0.348 0.306 8 48 0 424 1 387 1.387 0 6 82 5 990 0.341 0.300 8.56 0.428 1 429 1.429 3 M 105 19 676 0.356 0.314 8.12 0 427 1 371 1.339 20 M 109 0 ¢ 7.36 6.525 0.366 0 326 8.78 0.439 1,346 1 346 3 113 0 7.04 6 231 0.352 8.16 0.312 0.408 1310 1 310 MMM 3 118 0 0 676 5.921 20 20 20 20 20 20 0.338 0.296 8 68 0.434 1 466 1 465 124 0 7 02 8.155 0.351 0.308 8.80 0 440 1430 1 430 3 0 00 7 28 6.423 0.364 0.321 8.78 0.439 1 357 1 367 134 6 82 5 964 0 341 0.298 8.52 0 431 1 445 1 445 20 6.52 5.663 0.326 0 283 7.88 0.394 1.391 1 391 otal/Averages 6.885 6.041 0.346 0.304 8.376 1.385 standard Deviations 0.276 0.279 0.014 0.014 0.019 0.049 0.395 0.047 4.05% 0.309 8,20 0 410 1.326 1 326 90 20 20 20 20 20 MMMMMMM 20 0 7.04 6.170 0.352 0.309 8.28 0 414 1.342 1.342 20 20 20 94 0 6.76 5.926 0 338 0.296 8,42 0 421 1.421 1 421 98 0 7,12 0.356 6.289 0.314 8.40 0.420 1.336 1 336 104 0 6 200 7 04 0.352 0.310 8.26 0 413 1,332 1 332 107 20 20 20 20 0 C 20 6.52 5,669 0.326 0.283 8.00 0 400 1411 1 211 112 20 20 0 0 6.96 0 348 6.130 0.307 88.8 0 434 1.416 1 416 00 0 676 5 926 0.336 0.296 8 02 0 401 1.353 1 353 14 125 0 20 7.38 6.510 0.326 0.369 9.02 0.451 1.386 1.386 130 20 20 0 1 19 5 86 5.995 0 361 0.318 7.88 0415 1 314 1.305 O 20 7 48 6.625 0.374 0.331 262 0.431 1 301 1 301 20 7.32 6.459 0.366 0.323 8.78 0.439 1 359 6.174 8.380 7.023 71753 0.310 Standard Deviations 0.279 0.274 0.014 0.015 0.014 0.041 0.042 3.97%

Graph 1. Body Weights and Performance Study of Cobb 500 Broilers Study Days 0 - £4 [03APRL5]

(b) (4) Project No. NV-13-2

BLDG 7

Transmin Transmin	Average Rord WY Quin (kg)	Adjusted Feed Gain	Treatment Description
1	0.292	1.404	Postave Control (PC)
2	0.232	1.437	Negative Control (NC)
3	0.504	1 383	INC WON 250 U CISENZAN PHYTAVERSE" GIO DE NO DE
4	0 810	1.837	NC WEN 500 U CIBENZAS PHYTAVERCE" G10 per 10 den

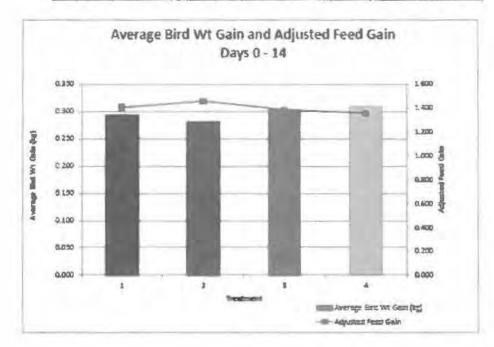


Table 10. Day 28 Pen Weights of Cobb 500 Broders (17APR15) (b) (4) Project No. NV-13-2 BLDG 7

Trestment	862	Pen No.	No. Eliza Weigzed	Day 28 Pen WL	Average Wt.
1	M	83	20	25.62	1.281
3	M	54	20	24.4E	1.224
2	M	85	19	21.16	1.114
4	M	86	20	25.58	1.329
2	М	87	12	18.42	1.023
3	М	8-8	20	25.06	1.303
1 4	M	89 90	20	24.10	1.205
3	M	91	20	25.26 25.80	1.313
2	M	92	19	20 34	1,290
1	M	93	20	24.22	1.211
4	м	94	26	25.34	1.317
1	M	95	20	25.16	1.255
2	M	96	EB	18.35	1.020
3	M	97	20	25.32	1.255
4	M	98	20	25.60	1.330
2	M	1833	19	19.85	1.045
3	M	104	20	26.68	1.334
1	M	105	19	25.02 24.56	1.317
4	M	167	20	25.80	1.293
2	M	108	17	18.86	1 109
3	M	109	20	25.98	1.299
1	M	110	20	25.08	1.254
2	M	111	13	19.12	1.052
4	M	112	25)	25.15	1.305
3	M	113	29	25.18	1.309
1 2	Ad	114	20	25.08	1.254
1	M	115	15	17.88	1.118
4	M	117	20	25.20 25.72	1.260
3	M	118	20	25.18	1 259
2	M	123	13	20.28	1 125
3	M	124	20	25.72	1.236
4	M	125	19	25.68	1.352
1	M	126	20	25.18	1.309
1	M	127	20	25.46	1.273
3	Ad	125	20	25.48	1.324
2	M	129	118	15.80	1.050
1	M	131	19 20	25.22	1,327
4	H	132	19	25.40	1.291
2	M	133	19	19.34	1.018
3	M	134	20	26.25	1.313
2	M	135	17	19.62	1.154
4	M	136	20	25.68	1.334
1	M	137	19	24.06	1.257
3	M	138	25	24.80	1.250

Table 11. Weights and Performance of Cobb 560 Brollers Study Days 0 - 28 (17 APR 15) BLDG 7

				Martin	or the co.		Day 24 Fen	Dey II		Day 20	Cary or Serii	Clery 0.28	RWA	food Pm	Day 0 Je Featl	Ar, Fred		Admire
				Tenan	THE CHANGE		Weight	Weight	Prer Garr	Ayriage	Average	Ayer age	Weight	Gan	Consultry	Intake per Bard	Ford Gam	Foeld Gala
reachem	501	Prest, No.	5Lorley	Parettovii (1	Monusky	is sweapons.	(hg)	(6.0)	(kg)	Wt-Jkgi	WL (kg)	Gains (h.p)	(8-0)	- RALA	(40)	(NO)	/legitiwith	Debid
1 1	W.	63	20	D	D	70	75.62	Q 857	24 763	1.201	8643	1.234	0.000	24 763	76.14	1.90/	1 459	1.450
2	M	8.5	20	- 6	0	20	24-45	C BAD	23 632	1 224	D-043	1 182	0.000	23 632	3422	1.726	1 451	1 161
7	M	85	30	1.	0.	10	21 10	0.616	20.263	5756	0044	1070	0.355	20 537	21.58	1 800	1.557	1.530
4	M	86	25	ō.	.3	70	36.56	0.854	25 726	1.329	0.049	1.266	0.000	25.726	33.30	1.965	1 450	1.450
2	M	87	30	7	0	18	18-42	0.861	17 55W	1.023	0.043	0.060	0.089	10 447	29.04	1.613	194	1574
3	M	88	20	0	10	20	26.06	0.653	25 208	1.363	0.043	1260	0.000	25 206	36.34	1517	1 642	1 442
1	1.4	89	20	6	0	70	24 1D	0 846	23 256	1 205	0.047	1 163	0.000	23.256	34.46	1.772	1.482	1-487
4	M	90	20	0	0	20	25 26	0.870	25,390	1.313	0.044	1,270	0.000	25 300	37.06	1 854	1'460	1.450
3	M.	91	20:	O.	0	20	35.80	0.847	24 953	1 250	0.042	1.245	0.000	24 953	36.78	1/230	1.474	1.474
2	M	83	20	0	1	10	20.34	0.662	19 478	+ DX+	0.043	1.027	0.478	19.958	30.56	1.631	1.591	1,552
1	.14	93	20	0	0	20	24.22	0.856	23.334	1.211	0.041	1 167	0.000	72 334	34.12	1.716	1.475	5.474
4	24	53	35		0	30	25:34	D 93-4	25.506	V 317	0.043	1,275	0000	25 506	17.34	1 36.	1 464	1.464
T	M	95	70	0	0	30	25.15	6.541	24 319	1.258	0.047	1.215	0.000	24.219	36.57	1 826	1 502	1 502
2	M	96	20	. 1	1 7	100	15 36	D 820	17:540	1030	0.04)	0.979	1063	18 607	29.40	1.581	1.623	1.530
3	M.	97	70	0	0	20	25.32	0.830	24.490	1.206	0.042	1.225	0.000	24 490	36.26	1813	1.481	1.401
4	M	98	20	0	0	20	26 60	0.831	25 769	1.330	0.047	1.288	0.000	35 P69	37.48	1-874	1:454	1.454
7.	M	103	20	0	1.3	10	19-86	0.864	18.996	1.045	0.047	1,007	0.54%	15 541	10.37	1.589	1 560	1.545
4	W.	104	30	0	0	20	26 88	0.540	25.640	1,334	0.047	1297	0.000	25 840	30.74	1 837	1.472	1 422
3	68.	195	39	0	3	19	25.62	0.539	24.151	1 377	0.047	1275	0.141	14 325	35.78	1 657	1.45/3	1 450
1	7.4	166	20	0	77	10	3456	0.935	21.725	1297	0.047	1.251	0 (5)	D 878	35.22	1.854	1.495	1.475
4	M.	t07	70	in in	0	30	25 80	0.864	21 949	f 290	0.043	1247	0.000	24 949	35-66	1.724	1.430	1 430
2	14	108	20	2	11	17	18.85	0.829	18 032	4.109	3 941	1068	7 164	20 216	30/0	1 794	1.69.1	1 509
2	M	100	20	Ď.	0	70	25.98	0.035	25.145	1.799	0.947	1.257	0.000	25 145	36.68	1.834	1.459	1.450
t	M	110	20	0	0	20	25.08	0.862	29 223	1254	0.045	1211	0.000	34 223	35.90	7 796	1 485	1.485
2	M	111	20		1	19.	19.12	0.826	16.294	1.062	0.041	1021	0.851	16.955	29 54	1501	1.615	1.558
Car I	M:	112	20	. 0	10	29	36.15	0.630	25-330	1 308	0.642	1.767	0.000	25 130	37.02	1 851	1 452	1.462
3	M	112	20	6	. 0	20	26.18	0.909	25.37 t	17306	0 040	1.266	0.000	25 371	36.36	1.810	1434	1.634
1	M.	110	20	0	0	20	75 08	0.913	24 267	1.254	0.041	1213	0.000	24 267	15, 25	1.756	E 804	1454
2	M	115	20	- 1	1	16	17 88	0.836	17.044	T116	0.042	1076	1751	16 755	29 10	7 82#	1712	1.550
+	M	176	20	C	0	20	25.20	0.840	24 360	1.260	0.042	1 218	0.000	34 300	35 48	1.774	1 456	1.456
6	M	117	20	0	0	30	25.72	0.834	24 886	1.280	0.042	1244	0.000	34 886	35 60	1 780	1.431	1431
3.	M	53E	20	0	D	20	25 18	0.830	34 341	1250	160	1217	0.000	24.341	36 18	1 509	1 456	1.496
2	M	123	20	2	0.	16	35.26	0.065	19.395	F 136	0.643	1 062	1.006	20 491	10 102	1.712	1 659	Y 504
2	M	124	20	ti	0	20	25.72	0.065	24 055	1.286	0.04)	1.743	0.090	24.856	37 06	1.553	1451	1 491
4	M	125	20	12	1 1	19	25 66	0 670	24 810	1752	0.04)	1,305	1 227	20 037	14 26	2016	1 345	1.460
1	NE	126	20	0	0	-20	26.18	0.840	25 340	1300	0.047	1.267	0.000	25 340	37 96	1.854	1.453	1.153
1.1	M	127	20	0	b	20	25.46	0.644	24 816	1273	Ø 042	1 231	0.000	24 616	36 18	1 809	1.470	1 470
3	14	128	20	0	3	20	26 48	0.867	25 623	1324	0.043	1.281	0.000	25 620	37 77	1 885	1472	1,422
2	ME	129	20	4	0	16	16.80	0.960	15 942	1.050	0.043	1.007	1.536	17.476	26.78	1674	1 680	1 532
4	M	1,30	35	0	10	15	25.22	E 865	24.355	1 327	0.541	1264	0.0A3	24 396	35 15	1847	1.441	1 436
1	W.	131	25	B	0	20	25.82	0.846	20 371	1 791	0.047	1,249	0.000	34 974	37.04	1.852	1 (4)3	Y AR3
4	11	137	50	D	1	3.6	26.40	IT 855	25.565	1 380	0.043	1.347	0.576	26 221	36 06	2 004	1.491	1 457
2	.34	133	20	3	. 0	19	1934	0.865	18 475	1018	0.043	0.975	0.346	18 521	29 22	1 538	1.582	3 553
1	M	134	20	0	10	20	25.25	0.056	25 404	1:313	0.041	1,270	0.000	25.404	37 34	1.867	1 470	1.470
2	M	135	30	2	1	17	19 62	-C RAS	18 772	1 154	0.042	9.112	0 999	19 771	30 50	1.794	1.625	1 543

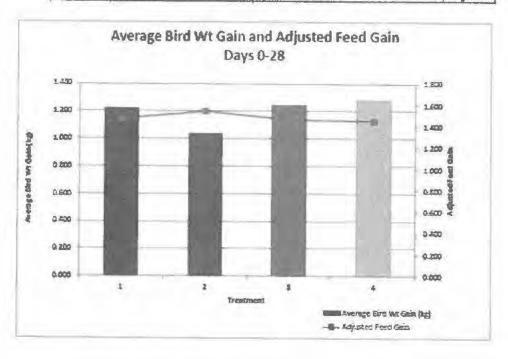
BASF Enzymes LLC

Table 11. Weights and Partormance of Cobb 500 Broilers Study Days 0 - 28 (17APR15)

(b) (ii) Project No. NV-13-2

BLDG 7

				Hamber	of Buris		Day 28 Dan Wesgint	Peri Wesgns	Pen Gue	Day 28 Built average	Day 0 Bad Average	Bed Average	RM A Vieight	Total Pen Gain	Day 0.28 Field Consump	Day 0 28 Av. Feet Intake per	Feed Gain	Adjusted Feed Ges
Contract	581	Pen No.	PERMIT	Removed	Most Louisi	Verghed	(kg)	Ikgn	(6.0)	Mr. (Ng)	WC (ka)	Gum (kg)	(kg)	- 6366	465.67	(kg)	river bends	(kathed)
1 3	M M	136 137 138	30	0	1 0	19	26.58 24.08 24.80	0 843 0 843 0 857	25 819 73 237 23 943	1.334 1.267 1.240	0.043 0.042 0.043	1.291 1.225 1.197	0 000 0 097 0 000	25 819 22 334 23 943	38 00 34 98 34 78	1900 1799 1730	1 472 1 471 1 453	1 472 3 465 1 453


Table 12. Weights and Performance of Cobb 500 Broilers by Treatment Study Days 0 - 26 (17APR15) (b) (4) Project No. NV-13-2 BLDG 7

						1	Day 28		Day 28	Day 0.28	Day 0-28	Day 0-28	T	
				Mumbe	er of Bards		Pen Weight	Pen Gam	Brd	Bird Average	Feed	Av. Feed Intake per	Feed Gam	Adjusted Feed Gar
Treatment	54%	Pen No	Started	Restrove	d Mortality	Weighad	(kg)	(kp)	WL (kg)	Gain (kg)	77	Bard	a sauce	
1	i M	83	20	0	0	20	25 62	24 763	1 281	1.238	36.14	(kg)	(kg/blid)	(kg/bkd
1	M	89	20	0	1 0	20	24 10	23.256	1 205	1.163	34.46	1 807	1 459	1.459
1	M	93	20	0	0	20	24 22	23 334	1211	1.167	34.32	1723	1 482	1 482
1	M	95	20	0	0	20	25.16	24 319	1 258	10.00		1.716	1 471	1.474
	M	106	20	0	1	19	24 56	23 725	1.91.7	1.216	36.52	1 826	1 502	1 502
1	M	110	20	ō.	0	20	25 08	24 223	1 293	1.251	35.22	1 854	1 485	1 475
i	M	114	20	0	0	20	25 08	24 267	1 254	1.211	35.96	1 799	1 485	1 485
1	M	116	20	0	0	20			1 254	1.213	35.26	1764	1.454	1 454
1	M	126	20	0	0	20	25.20	24 360	1 260	1 218	35 48	1 774	1.456	1,456
1	M	127	20	ō	0	20	26 18	25 340	1 309	1 267	37 08	1.854	1.463	1.463
4	M	131	20	0	0	20	25 45 25 82	24 616 24 974	1 273	1.231	36 18	1 809	1.470	1.470
1	M	137	20	0	1	19	24 08	23 237	1.291	1.249	37 04	1 852	1 483	1 463
otal/Avera		1 1407	240	0	2	238	25.047	The second second	1 267	1.225	34.18	1799	1.471	1.465
tunderd De			4.40		-	230	0.686	0,689	1.263	1.221	35.657	1.798	1.473	1,472
W.							2.74%	2.85%	2.44%	2,56%	2.81%	2.61%	0.014	0.014
			100	-	-39-		417.474	4.00	A.1777	61,0079	2,0174	2,0170	0,97%	0.95%
2	M	85	20	1	1 0	19	21 16	20.282	1 114	1.070	31.58	1 662	1,557	4.530
2	M	87	20	2	0	18	18 42	17.550	1.023	0.070	29.04	1 613	LAPES 11	1,530
2	M	92	20	0	1	19	20 34	19 478	1.071	1.027	30.98	100000000000000000000000000000000000000	1 654	1.574
2	M	96	20	1	1	1B	18 36	17.540	1 020	0,979	28 45	1 561	1 591	1.552
2	M	103	20	0	1	19	19.86	18 996	1 045	1 002	30 20	100	100000000000000000000000000000000000000	1.530
2	14	108	20	2	1	17	18 86	18 032	1 109	1.068	30 50	1 589	1.590	1 545
2 2 2 2 2	M	111	20	9	1	18	19.12	18 294	1 062	1.021	29.54	20 GW-2	1 691	1 509
2	M	115	20	3	1	16	17.88	17 044	1118	1 076	29 18	1.641	1 615	1.558
2	M	123	20	2	0	18	20.26	19.395	1 126		7.5.00	1.824	1712	1,553
2	M	129	20	4	0	16	16 80	15 940	1 050	1.082	30 82	1712	1.589	1.504
2	M	133	20	1	0	19	19.34	18 475	1 018	1.007	26.78	1.674	1 580	1 532
2	M	135	20	2	i	17	19.62	18.772	1,154	0.975	29 22	1.538	1.582	1.553
OLA! Averag		-	240	19	1	214	19.168	18,317	1.076	1.033	30 50 29.733	1794	1.625	1 543
candered Des			2-1	-4		***	1.199	1,191	0.047	0.047	1.313	0.092	1,626	1.540
Vs							6.26%	6.50%	1.34%	4.52%	4.42%	5.52%	3.00%	1.32%
														7100,75
3	M	84	20	0	0	20	24.48	23 632	1.224	1.162	34.52	1726	1.481	1.451
3	M	88	20	0	D	20	26 06	25 208	1.303	1.260	36.34	1 817	1 442	1 442
3	M	91	20	0	0	20	25.80	24.953	1 290	1 248	36.78	1 839	1 474	1 474
3	M	97	20	C	0	20	25.32	24.490	1.266	1.225	36.26	1813	1.481	1 481
3	14	105	20	0	1	19	25.02	24 181	1.317	1.275	35.28	1 857	1.459	1 450
3	NA.	109	20	0	0	20	25.98	25 145	1 299	1.257	36 68	1 834	1 459	1 459
3	M	113	20	0	0	20	26.18	25.371	1.309	1.269	36 38	1 819	1 434	1 434
3	M	118	20	0	0	20	25.18	24 341	1.259	1.217	36,18	1.809	1.486	1 486
3	M	124	20	0	0	20	25.72	24 855	1.296	1.243	37-06	1 853	1.491	1 491
3	M	126	20	0	0	20	26.48	25 623	1.324	1.281	37.72	1 986	1.472	1472
3	M	134	20	0	0	20	26.26	25 404	1.313	1.270	37.34	1 867	1.470	1,470
3	M	138	20	0	0	20	24.80	23.943	1 240	1 197	34.7B	1739	1 453	1 453
Mai/Averag			240	0	1	538	25.607	24.762	1.286	1,244	36.277	1.822	1.465	1.464
anderd Dev Vs.	MILIONS						0.635	0.636	0.032	0.032	0.981	0.048	0.017	0.918
7.8			_		-	-	2.48%	2.57%	2,48%	2.57%	2.70%	2.62%	1.18%	1.21%
4 1	M	T 86 T	20	0	T a i	20	70 ED T	76 77E T	£ 200 T	+ 300	22.00	d Water		
4	M	90	20	0	0	20	26 58	25.726	1 329	1 286	37.30	1.885	1.450	1 450
4	BA.	94	20	Q	G	20	26 26	25.390	1.313	1.270	37 08	1 854	1 460	1 460
4	M	98	20	0	0		26.34	25.506	1 317	1.275	37 34	1.867	1 464	1 464
4	(A)	104	20	0	0	20 20	26.60	25.769	1 330	1.288	37,48	1 874	1 454	1 454
A	1/4	107	20	D	0	441.5	26.68	25 640	1 334	1.292	36 74	1 837	1 422	1422
4	M	112	20	0	0	20	25.80	24 949	1.290	1.247	35 68	1 784	1.430	1 430
4	M	117	20	0		20	26 16	25.330	1.308	1.267	37 02	1 851	1.452	1 462
4	M	125	20	a	0	20	25.72	24.885	1.286	1.244	35.60	1780	1 431	1 431
4		130			1 1	10	25.68	24 810	1 352	1.308	38.26	2014	1.542	1.469
100	M		20	a	1 1	19	25.22	24 355	1 327	1.284	35.10	1.847	1.461	1 4 39
4	M	132	20	0	3	19	26.40	25 545	1.389	1,347	38.08	2 004	1 491	1 452
AM/Average	M	136	20	- 0	. 0	20	26.68	25 819	1.334	1.291	38 00	1.900	1472	1472
em/Average andord Devi			240	0	3	237	26.177	25.327	1.326	1.283	36.973	1.873	1.460	1,450
anoara Den Is	MINTE						1.80%	1.88%	2.07%	0,027	1.026	0.072	0.032	0.017
17							1 LOW 79	2,0075	CM 170	2.12%	2.77%	3.85%	2.22%	1.14%

Page 78 of 110

Graph 2. Body Weights and Performance Study of Cobb 500 Broilers Study Days 0-28 (17APRIS) III.09 Project No. NV-13-2
BLDG 7

Treatment	Average Bird W1 Gain (kg)	Adjusted Feed Gem	Trestment Description
1	1.221	1.472	Positive Cortital (PC)
2	1.033	1.340	Negative Control (NC)
3	1 2 44	1 464	NC with 250 U CISENZAG PHYTAVERSE" G16 per to die
4	1 288	1.430	HC and 500 U CEENZAS PHYTAVERSE" G10 per to del

fable 13. Weights and Performance of Cobb 500 Brollers Study Days 1A-28 (17APR+5) (b) (4) Project No. NV-13-2 BLDG 7

		- 10-					Day 15	Day 14		Day 28	Day 14	Day 14.26			Day 14-28	Day 14-76	r i	
reatment	Sex	Pen No		Aumbie	of Birds		Pen Weghi	Pari	Pen Gam	Barat Avaraga	Bard. Average	Berd Average	RM A Weight	Total Pen Gam	Feed	Ay, Feed Insake per	Fred Gam	Acquestion Food Gas
			Started	Hemoved	(Worlekt)	Weighed	Figs	THIDS	1kgi	Wit. (Ross)	Wr. (kg)	Gam (kg)	rices	+ RM	180)	Berd (kg)	(keylourd)	dentere
1 -	H	63	30	U.	0	70	25 62	6 08	18 546	1.281	D-334	0.947	0.000	18 940	28 12	1.406	1 405 1	1 485
3	H	84	. 20	12	0	20	24.48	6 40	18.08	1.224	0.320	0.904	0.000	16 080	26 88	7344	1 487	1 487
2	14	86	20	10	0	19	24.16	6.72	14.44	1114	0 336	0.778	0.355	14 795	33 12	1217	1.501	
3	44	86	29	0	0	20	26 58	7.04	19.54	1 329	0.352	0.977	0.000	19 540	39 10	7.455	1 489	1 563
2	(4)	67	30	7	0	18	18.43	6:8	12.24	1.023	0.309	0714	5.888	13 128				1489
3	14	88	20	0	0	20	25.06	5.86	19 18	1 309	0.344	0.956	0.000		21 10	1 172	1724	1 607
3	W	89	20	0	Ü	20	24 10	£ 28	17.52	1205	0.314	0 991	£ 000	19 180	29.30	1.415	1.475	1,475
A	M	90	20	0	e e	20	26.26	7.04	19-22	1313	0 352	0.981		17 820	26 88	1 384	1.508	1 508
3	1,4	91	20	0	1 0	20	35.80	6.96	18.84	1250	0.348	0.942	0.000	19 220	29 60	1 440	1.498	1.496
9	14	9.2	20	0	1	19	20 34	6.60	13.56	1 071	0.348		0000	18 840	39.30	1415	1 502	1 502
1	34	93	20	σ	0	29	24.27	552	17.70	1000		0.737	11 478	14 138	32.44	1.181	16/3	1.587
1	M	94	30	0	0	20				1211	£ 356	0.885	0.000	17.700	26.58	1 329	1 502	1 502
Y I	14	95	20	0	0	30	26 34 25 16	578	19 58	1317	D.338	0.979	0.000	19 580	26 92	1 446	1.477	1 677
2	No.	96	20	1	- 4	18		5, 80	15 36	1 256	0 340	0.918	0.000	18 360	27 88	1 394	1.519	1519
3	NA.	97	20	0	2		15.36	E 30	12 06	1 (020)	0.315	0.705	1 003	13 123	20.78	1.154	1723	1.583
î.	14	98	20		0	20	25.12	6.82	18 50	1 266	0.341	0.925	0.000	19 500	27 70	1 385	1 497	1 497
2	W	103	20	0	0	70	26 60	7 12	19 48	1.330	0 356	0.974	0000	15-480	29 06	1.454	1 493	1 493
4	2,8			0	3	19	FW 865	662	13.24	1045	0.331	0.714	0.545	13 785	21 86	1 151	1661	1.590
77		184	20	0	0	70	26 66	7.04	1964	1334	0.362	0.982	0.000	19 640	28 49	1 424	1 450	1450
3	2.6	105	19	0	0	12	25 02	6.76	18.26	1,337	0 356	0.981	0.000	18 260	27 46	1 429	1 487	1 457
1	14	106	19	0	D	19	24.56	6 56	18 00	1 293	0.345	0.947	8 000	18 000	26 76	1 408	1 487	1.487
4	M	107	30	0	0	70	25 BD	6.53	19.26	1.790	0.326	0.964	0.000	19 280	27 58	1 354	1436	1436
2	M	106	20	2	-35	17.7	18.86	6.48	12.38	1 109	0.324	0 785	2 (84	14 564	72 34	1314	1.805	1 534
3	6/6	109	50	0	.0	30	25 98	7 36	16.62	1 299	0.368	0 931	0.000	18 520	27.90	1 395	1.498	1 498
1	9,8	110	20	0	0	20	25 08	6.44	18.64	1 254	0.322	0.937	0.000	18 640	27.40	1370	1.470	1-470
2	SA.	111	19	5	0	18	1912	5.04	13.08	7 062	0.318	0.744	0.579	13.659	21.40	1 189	1 636	1.567
2	AA	112	50	0	0	30	26.16	6.96	1920	1 308	0.348	0.960	0.000	19 200	26 34	1-017	1 476	1 676
3	M	113.	50	0	0	70	35 18	7.04	19 14	1 309	0.352	0.957	0.000	19 140	28 22	7-811	5.474	1.674
1	M	714	20	0	0	.20	25 08	E 78	18 30	1.254	0.339	0.915	0.000	16 300	27.20	1.360	1 486	1 486
2	M	115	29	3	1	16	17 88	6.48	11.40	2.116	0 324	0.794	1 751	13 151	20.74	1.296	1.819	1 577
1	M	116	20	0	C	70	25 20	6.40	VB 70	1.360	0.325	0.535	0.000	18 700	27.82	1.391	1 486	1 #89
4	M	137	20	1	0	20	25 72	8.76	1895	1.266	0 338	0.948	0.000	16 960	27.58	1 379	1.455	1 455
3	M	138	20	20	0	.20	25 18	6.76	18.42	1.259	0.338	0.921	0:000	19 420	27 50	200.3		
2	M	123	20	2	0	16	20.26	6.80	13.46	1 126	0.340	0.786	1 096	14 556		1 375	1 493	1 493
3	M	124	20	0	0	30	25.72	7.02	1870	1.286	0.351	0 935	0.000	18 700	22.58	1.254	678	1.551
.E	74	125	20	0	10	19	25 58	7 38	18.30	1 352	0.309	0.963	1.227		28.26	1413	1541	1 511
1	No	126	20	0	0	20	26 18	7.06	19.12	1 309	-0.353	0 956		19 527	29 24	1.530	1 598	1.497
1	M	127	20	ć	D	20	25.45	6.78	18.68	1.773			0.000	19 120	28.56	1 433	1499	1 499
3	M	128	20	0	0	20	36 40	7.78	19 20		0 339	0.934	0.000	18 680	28.00	1 400	1 499	1 499
2	M	129	to .	3	0	16	100000	5 94		1.324	0.364	0.990	0.000	19.200	28 9M	1 447	1.567	1 507
d	2,8	130	19	g l	0	19	78 80		10.86	1.050	0.313	0.737	1.475	12 365	19.44	1 215	1 790	1.587
· ·	8,4	131	26	0	0		25.22	6 95	18.34	1 327	0.361	0.966	0.000	18 360	27.22	1 433	1483	1 453
4	M	132				20	25 (12	7.12	18.70	1 291	D 356	0.835	ú 000	18.700	28 22	1 成装件	1.500	7 509
7			20	0	1	19	26 40	7.48	18.97	1.269	0.374	1.015	0 676	19 506	29.46	1.551	1.567	1 503
7	141	133	20	1	D	19	19 34	6.26	13.08	1.015	0.313	0 705	0.345	13 426	21 14	1113	7.616	¥ 575
	·W	134	20	D	-0	20	26/26	6.82	19.44	1313	0.341	0 972	0.000	19:640	28.72	T 435	1 477	2 A 7.7

Table 13. Weights and Performance of Cobb 500 Broilers Study Days 1A-28 (17APR15)
(b) (4) Project No. NV-13-2

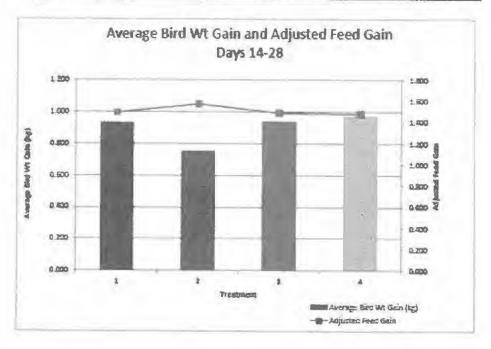

Treatment	Sex	Pen No		Munitime	of Berds	3	Pen Weight	Day 14 Peri Weigns	Pen Gan	Day 28 Birti Average	Day 16 Bard Average	Doy 14.28 Bird Average	FUNE A Wingfit	Folial Deep	Feed Consumo		Feed Geon	Adjusted Feed Gam
-	100		Sterious	Removed	MOFLEE	Weighed	P(0)	(kg)	(kg)	Wit-rives	Wr. (lug)	Geen (tig)	(kg)	+2.14	(kg)	Sard Fags	(kg/berd)	(kporsi
1	M M	136 137 137	19 20 19	0	0 0 0	17 20 19 20	19 62 26 68 24 08 24 80	6.46 7.32 6.12 6.52	13.16 19.36 17.56 19.28	1 154 1.334 1 267 1 240	0.340 0.360 0.322 0.336	0.814 0.966 0.945 0.914	0 799 0 000 0 000 0 000	13 959 19 360 17 960 18 290	22 66 29 27 26 50 26 90	1.256 1.481 1.395	1 676 1 509 1 476 1 472	1 500 1 509 1 476 1 472

Table 14. Weights and Performance of Cobb 500 Broilers by Treatment Study Days 14-28 (17APR15) (b) (4) Project No. NV-13-2 BLDG 7

	2-			Number	of Birds		Pent Weight	Pen Gam	Day 28 Bird Average	Day 14-28 Bard Average	Feed Consump	Av. Feed bitake per	Feed Gain	Adjusted Feed Gain
Treatment	Sex	Pen No	Started	Removed	Mortality	Weighed	(kg)	(Kg)	Mr. (yd)	Gam (kg)	(kg)	Bird	(kg/berd)	(kg/bird)
1 1	M	83	20	0	0	20	25.52	1894	1 281	0.947	28 12	1 406	1 485	1 485
1 1	M	89	20	0	0	20	24 10	17.82	1 205	0.891	26 88	1 344	1.508	1 508
1	M	93	20	0	0	20	24.22	17.70	1.211	0.885	26.58	1.329	1.502	1 502
1	M	95	20	0	0	20	25 16	19.36	1.258	0.918	27.88	1.394	1.519	1 519
1 1	M	106	19	0	0	19	24.56	18 00	1 293	0.947	26.75	1 406	1 487	1 487
1	M	110	20	0	0	20	25.08	18 64	1 254	0.932	27 40	1.370	1 470	1 470
V 1	M	114	20	0	0	20	25.08	16 30	1 254	0.915	27 20	1 360	1.486	1 486
	M	116	20	0	0	20	100000000000000000000000000000000000000	18.70		100000		16.75	1 488	1 468
							25 20	100	1.260	0.935	27 82	1.391		
1	M	126	20	0	0	20	26 18	19 12	1 309	0.956	28 66	1 4 3 3	1 499	1 499
- 1	M	127	50	0	U	20	25 46	18 68	1 273	0.934	28 00	1.400	1499	1 499
1 1	M	131	20	0	0	20	25 82	16,70	1 291	0.935	28 22	1.411	1.509	1 509
1	M	137	19	0	0	19	24.08	17.96	1.267	0.945	26.50	1.395	1 476	1 475
osal/Average			528	0	0	238	25.047	18.410	1.263	0.928	27,502	1,387	1.494	1.494
tandard Devi	REMOVES					- 1	0.686	0.459	0.031	0.022	0.715	0.030	6.014	0.014
Vs	_			_	_		274%	2.49%	2.44%	2.40%	2.60%	2.18%	0.97%	0.97%
2	М	85	20	1	0	19	21 16	14.44	1.114	0.778	23.12	1217	1 601	1.563
2	M	87	20	2	0	18	18 42	12.24	1.023	0.714	21.10	1 172	1 724	1.607
2	M	92	20	0	1	19	20.34	13.66	1 071	0.737	22.44	1 181	1.643	1 587
2	34	96	20	1	1	18	18 36	12.06	1 020	0.705	20.78	1 154	1723	1.583
2	M	103	20	0	1 4 1	19	19.86	13 24	1.045	0.714	21 86	1 151	1.651	1.596
2	M	108	20	2	1	17	18 86	12.36	1 109	0.785	22:34	1314	1 805	1.534
2	M	111	19	1	0	18	19 12	13.08	1.062	0.744	21 40	1 189	1.636	1 567
		100000	1000	100		100		1		1 100000			100,000	
2	M	115	20	3	1	16	17.88	11.40	1.118	0.794	20 74	1 296	1.819	1.577
2	M	123	20	2	D	18	20 20	13 46	1 126	0.766	22.58	1.254	1 678	1 551
2	M	129	19	-3	0	16	16.80	10.66	1.050	0.737	1944	1.215	1 790	1.582
2	M	133	20	3.	0	19	19.34	13.08	1.018	0.705	21 14	1 113	1.616	1.575
2 1	M	135	19	1	1	17	19.62	13.16	1.154	0.814	22 06	1.298	1.576	1,580
ptel/Average			237	17	6	514	19.168	12.755	1.076	0.751	21.583	1,213	1.697	1.574
tendard Devi	anons		1000				1.199	1.004	0,047	0.034	1.017	0.965	0.075	0.019
VI.	_	_	_		_		6.26%	7.87%	4.34%	5.12%	4.71%	537%	4,42%	1.20%
3 1	M	84	20	0	0	20	24 48	18.06	1 224	0.904	26.88	1 1344	1 487	1,487
3	M	88	20	0	0	20	26.06	19.18	1.303	0.969	28.30	1415	1 475	1.475
3	M	91	20	0	0	20	25,80	18.84	1 290	0.942	28.30	1415	1.502	1.502
3	M	97	20	0	0	20	25.32	18.50	1.266	0.925	27 70	1 385	1.497	1 497
3	M	105	19	0	0	19	25 02	18.26	1 317	0.951	27 15	1 429	1 487	1 487
3	M	109		0	100			10000	100000000000000000000000000000000000000	0.000		10000	C 49750 1	
			20			20	25.98	18 62	1 299	0 931	27.90	1 395	1.498	1 496
3	M	113	20	0	0	20	26.18	19.14	1.309	0 957	28.22	1 411	1 474	1.474
3	M	118	20	0	0	20	25 18	18.42	1 259	0.921	27.50	1.375	1.493	1493
3	M	124	20	0	0	20	25.72	1870	1 296	0.935	26 26	1 413	1.511	1511
3	M	128	20	0	0	20	26.48	19 20	1.324	0.960	28 94	1 447	1.507	1.507
3	M	134	20	0	0	20	26 26	1944	1313	0.972	29.72	1 436	1 477	1 477
3	M	138	20	0	0	20	24.80	18.28	1.240	0.914	26.90	1.345	1 472	1.472
CEM/Average	3		538	0	0	538	25.667	18.722	1.286	0.940	17,898	1.401	1.490	1.490
sandard Devis	etions						2.48%	2.34%	2.46%	2.31%	2.44%	2.37%	0.013	0.90%
					-		2,40%	E I I I I	8,740.4	4.41.14	B07778	Lorn	0.30 %	9,5014
4	M	86	20	0	0	20	26,58	19.54	1.329	0.977	29 10	1.455	1 489	1.489
4	M	90	20	0	0	20	26 26	19 22	1.313	0.961	28 80	1 440	1.496	1 498
4	M	94	20	0	0	20	26 34	1958	1 317	0 979	28 92	1 445	1 477	1 477
4	M	98	20	0	0	29	26.60	19 48	1 330	0 974	29.06	1.454	1 493	1493
4	M	104	20	0	0	20	26.68	19.64	1 334	0.982	28 48	1 424	1 450	1 450
4	M	107	20	0	0	20	25.80	19 28	1.290	0.964	27.68	1 384	1 436	1 436
4	M	112	20	0	0	20	26 16	1920	1.308	0.960	29.34	1417	1.476	1.476
	M		100		1							2000 000		
4		117	20	0	Ċ	20	25 72	18.96	1 286	0.948	27 58	1.379	1 455	1456
4	M	125	20	0	1	19	25 68	16.30	1.352	0.983	29.24	1.539	1.598	1 497
4	M	130	19	0	0	19	25 22	16.36	1 327	0.966	27 22	1 433	1.483	1 483
4	M	132	20	0	1	19	26 40	18 92	1 389	1.015	29 46	1.551	1 557	1 503
4	M	136	20	0	.0	20	26 58	19.36	1.334	0.968	29 22	1.461	1.509	1.509
ULM/AVELAGE			239	0	7	237	8.177	19,153	1,326	0.973	28.503	1.449	1.493	1.461
tonday of Chand	erions						0.471	0.445	0.027	0.017	0.740	0.052	0.045	0.023
tandard Devl Va	-						1.80%	2.33%	2.07%	1.73%	2,59%	3.59%	3.04%	1.55%

Greek 3. Body Weights and Performance Study of Cabb 500 Broilers Study Days 14-28 (17APR15) (b) (4) Project No. NV-13-2 BLDG 7

Trestment	Average Size We Gam [kg]	Adjustes fees Gen	Treatment Description
3.	0.928	1.494	Positive Control (PC)
2	9.731	1.374	Negative Control (94C)
3	0.943	1.490	MC with 250 U OBENZAS PHYTANERSE" GTG per to det
4.	0.973		NC WER 500 U CERENCIAS PHYTAVERSE" GIO DE RO COL

Appendix 8 - Tibia Analysis Data Summary

Table 15 Tibia Ash Weights of Cobb 500 Broilers (b) (4) Project No. MV-13-2 BLDG 7

Troutment	28%	Pen Na.	Sons No.	% Aen (600°C)	Dry boos Wt (105°C) (grame)	(Barrasa) (800,C) (30) Aut
1	M	83	2900	55.31	2.7031	1.4952
1	M	83	2801	53,85	2.7255	1.4578
1 1	M	83	2802	54.97	2.84-2	1.5534
1	64	83	2803	53.05	2.1170	1, 1231
1	141	83	2904	53.14	2.8886	1.5349
3	M	84	5791	48.95	2.5369	1.2159
3	M	84	6792	49.85	24174	1.2053
3	M	84	6793	48.57	2.3648	1.1509
3	M	84	6794	54.25	2.0342	1 1037
3	M	84	6795	49.72	2.4974	1.2418
2	M	85	2820	50.76	2.7269	1.3843
2	M	85	2821	47.58	2.1667	1.0330
2	M	85	2822	4127	2.0233	0.8350
2	M	85	2823	47.07	2 0609	0.9700
2	M	85	2825	44.53	2.2301	0.9962
4	М	86	6811	53.46	2.2779	1.2178
4	M	86	5812	58.09	2.5335	1,3968
4	M	36	6813	52.74	3.0109	1,5879
4	BAI	36	5814	52.88	2.7855	1.4730
4	М	SE	6815	54.07	3.0836	1.6673
2	84	87	2840	45.47	1.9931	0.9063
2	M	87	2841	46.77	1.6986	0.7944
2	86	87	2842	52.05	2.0838	1.0846
2	M	37	2843	44.66	1.9225	0.8590
2	М	87	2844	45.21	2.0052	0.9066
3	М	88	6831	38.72	3.9010	1.5105
3	14	88	6832	49.52	2.5555	1,1,4,1,5,2
3	M	88	6833	49.66	2.7142	1,2556
3	M	88	6834	50.60	2.8026	1.3478 1.4182
3	M	88	6835	52.90	2.0758	1.0379
1	M	89	2850	55.22	1.9841	1 0987
1	M	89	2861	50.92		
1	M	89	2862	54.32	2.4671	1_2563
1	NA.	89	2863		2.1947	1.1922
î l	M	88	2864	52.22 52.71	2.7223	1.4215
4	N	90	6851	54.39	2.5555	1.3470
2	M	96	6852	51.75	2,6543	1.5176
4	na na	90	6853		190 5 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.3736
4	ha ha	90	100.00	55.36	2.7086	1.4946
2	Del.	1	6854	52.55	2.4405	1.2825
3	M	90	6855	53.08	2.6300	1.3959
3		200	2880	52.77	2.3927	1.2525
3	M	91	2861	51.86	2.7104	1.4051
	M	91	2882	81.83	2.3555	1.2508
3	R/I	91	2883	52,50	2.2598	1.1363
3	M	91	2884	54.59	2.55.64	1.3945
2 2	M	92	6871	51.73	1.9374	1.0022
2	M	92	5872	43.32	1.9062	0.8257

Table 15. Tibia Ash Weights of Cobb 500 Broilers (b) (4) Project No. NV-13-2 BLDG 7

Treatment	Sex	Pen No.	Bone No.	% Ash (600°C)	Ory bone Wt (105°C) (grame)	(Grame)
2	M	92	6873	40.23	2.3142	0.9310
2	M	92	6874	45.22	1.8082	0.8176
2	M	92	6875	47.56	2.1572	1.0307
	M	93	2900	54.72	3.0426	1.5650
5	M	93	2901	53.51	2.0720	1.1109
1	M	93	2902	52.62	2.5027	1,3169
1	M	93	2963	52.98	2.3384	1.2706
9	M	93	2904	54.52	2.3139	1 2615
4	M	94	6891	52.74	2.6373	1 3909
4	M	94	6892	5191	2.5421	1.3197
4	M	94	6893	52.47	2,1056	1 1048
4	M	94	5894	50.97	2.8143	1 4345
4	M	94	5895	52.70	2.3393	1.2329
4	M	95	2920	53.13	2.8997	1.5405
3	M	95	2921	54 04	2.652€	1.4335
1	161	95	2922	56.52	2.4489	1.3842
1	M	95	2923	52.26	2.6701	1.3955
7	34	95	2924	50.18	2.2150	1.1114
2	M	96	6911	45.17	2.0661	0.9332
2	M	96	6912	47.23	1.5976	0.8962
2 2 2	M	96	6913	40.10	1.6675	0.6686
2	M	96	6914	48.40	1.3734	0.6647
2	M	96	6915	36,20	1.9247	0.7352
3	M	97	2940	51.40	2.6523	1.3633
3	M	97	2941	51.37	2.3575	1.2111
3	M	97	2942	53 63	2.9441	1.5789
3	M	97	2943	53.86	2.6184	1.4103
3	M	97	2944	46.39	1 9567	0.9077
4	M	96	6931	51.81	2.6858	1.3916
4	M	98	6932	52.22	2.3328	1.2182
4	M	98	6933	54.01	2.9548	1.6012
4	M	98	6934	51.79	3.2365	1.6762
4	M	38	6935	53.70	2.6372	1.4162
2	M	103	2960	38.83	2.4272	0.9424
	86	103	2961	45.26	1.8557	0.8388
2 2 2 2	M	103	2962	37.23	2.7694	1.0311
2	M	103	2963	40.45	1,7301	0.6998
2	M	103	2954	39.77	7453	0.6941
4	M	104	6951	52.56	2.8390	1.4922
4	M	104	6952	52.41	2.6857	
4	M	104	69 53	51.53		1.4076
4	M	104	6954	200000000000000000000000000000000000000	2.8827	1.4855
4	M	104	6955	51.25 52.92	2.0469	1 0491
3	M	105	2380	53.06	2,3989 2,5069	1.2594
	M	105	2981	12-2-66 (2)	Aug a grant	1.3301
3	M	105	2961	52.85	2.6124	1.4364
3	M	105	2983	52.62 51.99	2.2427	1.1802
	1977	1505	(247)	27 1 MPM	2 10000	12/15

Table 15. Tibia Ash Weights of Cobb 500 Broilers
(b) (4) Project No. NV-13-2
BLDG 7

Treatment	Sex	Pen No.	Bone No.	% Ash (900°C)	(105°C) (grame)	(GOO°C) (grams)
3	M	105	2984	54.07	2.5123	1.3583
1	M	10€	6971	53.25	2.4263	1.2920
1	M	106	6972	53.83	2.8475	1.5329
4	M	106	5973	53.97	2.638G	1.4237
3	M	106	6975	52.53	2.5865	1.3587
+	M	106	6976	55,4€	2.2796	1.2543
4	М	107	3000	53.21	2.3582	1.2601
4	M	107	3001	53.52	2.7344	1.4534
4	M	107	3002	54.81	2.7585	1.5120
4	М	107	3003	51.01	2.8361	1.4467
4	M	107	3064	53.86	2.5535	1.3752
2	М	108	6991	45.06	2.1518	0.9695
2	M	108	5992	51.97	2.4363	1.2661
2 2 2	M	108	6993	41.35	2.3412	0.9684
2	64	106	6995	47.94	2.1261	1.0193
	M	108	6997	43.19	1 9543	0.8440
3	M	109	7325	53,16	2.3036	1.2246
3	M	109	7326	52.90	2.6656	1.4100
3	M	109	7327	50,41	2.5636	1.2923
3	M	109	7328	52.00	2.7532	1.4369
3	M	109	7329	48.23	2.5129	1.2119
1	M	110	7011	55.14	2.4732	1.3638
1	64	110	7012	51.33	2.3824	1.2230
1	M	110	7013	53.25	2.5512	1.3586
1	84	110	7014	54.39	2.7910	1.5180
1	M	110	7015	53.80	2,6621	1.4321
2	M	111	7346	44 04	1.8710	0.8240
2	M	111	7347	44.31	1,9219	0.8515
2	ы	111	7348	43.32	2.4051	1.0420
2	M	111	7349	47.75	2.2203	1.0603
2	1.4	111	7350	40.41	1 9283	0.7792
4	M	112	7031	52.53	2.5180	1.3227
4	М	112	7032	53.58	2.6913	1.4419
4	M	112	7033	50,96	2 1788	1.1103
4	M	112	7034	53.57	2,6906	1.4361
4	M	112	7035	53.23	3.0142	1.5045
3	M	113	7365	53.29	2.3355	1.2447
3	M	113	7366	50.93	2.3880	1.2152
3	M	113	7367	54.56	2.3034	1.2558
3	M	113	7368	52.95	2.4369	1.2904
3	М	113	7369	51.38	2.475E	1.2720
1	M	114	1798	53.15	2.3633	1.2564
1	M	114	1799	54.29	2.6053	1.4195
1	M	114	1800	56 48	2.4787	1.4000
	M	114	1801	54.26	2.2127	
1	M	114	1302	53.77	200	1.2006
2	M	115	7385	50.82	2.5361 2.3155	1.3536

Table 15. Tibia Ash Weights of Cobb 500 Broders (b) (4)Project No. NV-13-2
BLDG 7

Treatment	Sex	Psn No.	Bone No.	% Ash (900°C)	(105°C) (grama)	(Soorc)
2	M	115	7356	45.56	2.0196	0.9420
2	M	115	7367	43.71	1.8281	0.7991
2	M	115	7388	47.01	2.1811	1.0253
2	M	115	7389	43.71	2.0795	0.9090
4	M	115	1818	\$5.15	2.6299	1.4503
1.	M	115	1819	54.19	2.5190	1.4193
1	M	116	1830	53.74	2.3550	1.2558
1	845	116	1821	53.83	2.5886	1.3934
4	165	115	1822	52.17	2.5331	1.3214
4	M	117	7406	52.83	2.2453	1.1561
2	M	117	7406	55.45	2.5279	1.4016
4	14	117	7497	51.16	2.4302	1.2532
4	14	117	7488	54.52	2.3562	1.2925
4	M	117	7409	50.57	2.7499	1.3906
3	M	118	1838	47.55	2.2941	1.0909
3	M	118	1839	52.76	2.1341	1.1260
3	3/4	118	1840	49.35	2.8582	1,4091
3	24	118	1841	52 92	2.7271	1.4431
3	24	118	1842	51 18	2.3260	1 1905
2	8.4	123	7425	41,33	1.8743	0.7747
2	345	123	7425	46.54	2.3251	1.0820
2	M	123	7427	49.35	2.8882	1.4254
2	М	123	7428	53.95	2.6073	1,4056
2	M	123	7429	39.55	1.6735	0.518
3	64	124	1858	52.A4	2.8520	1.4956
3	24	124	1889	49.57	2.3488	1,1542
3	0.0	124	1860	49.84	3,1403	1.5552
3	84	124	1861	\$0.51	2,7085	1,3708
3	M	124	1862	54.00	2.4691	1.3334
4	M	125	7445	54,11	2,4646	1.3335
4	Bd	125	7446	53.00	2.8532	1.5123
4	BA	125	7447	52.74	2.6858	1.5219
4	M	125	7448	53.15	2,4783	1.3171
4	BA	125	7449	50.78	3.0749	1.5615
1	M	126	1878	52.23	2.3777	1.2418
1	24	125	1879	50.89	2.6017	1.3241
1	M	126	1880	56.05	3,1047	1 7092
1	M	126	1881	53.71	2.3856	1.2913
1	8.4	126	1882	55.64	2.7734	1.5430
1	346	127	7465	53 18	2,4496	1.3027
1	84	127	7486	54.37	2 2373	1.2154
1	24	127	7457	54.12	2.7291	14771
1	24	127	7466	54.20	2.1345	1.1559
9	M	127	7459	53.44	3.0581	1,5342
3	6.6	128	1898	51.08	2.4974	1.2756
3	64	128	1899	50.56	2.4723	1.2525
3	M	128	1900	52.49	2.3981	1.2587

Table 15. Tibla Ash Weights of Cobb 500 Broilers (b) (4)Project No. NV-13-2 BLDG 7

Treatment	Sax	Pan No.	Done No.	% Ash (900°C)	(195°C) (195°C) (grams)	(soorc) (soorc)
3	M	128	1301	53.51	2.8552	1.5278
3	M	128	1902	53.84	2.5962	1.4516
2	М	129	7485	38.25	2.1580	0.8254
2	M	129	7486	43.55	2.1510	0.9390
2	M	129	7497	45.59	2.1378	0.9810
2	744	129	7488	44.88	2.0546	0.9221
2	Ad	129	7489	45.30	1.8881	0.6854
4	M	130	1918	52.86	2.6387	1.3948
4	M	130	1919	52.91	24180	1.2793
4	Pa/4	130	1920	53.51	3.1046	1.6643
4	M	130	1921	50.57	2.9318	1 4826
4	M	130	1922	50.39	2.4207	1.2198
1	M	131	7505	49.05	2.4196	1 1870
3.	M	131	7506	53.02	2.7621	1.4645
1	M	131	7507	53.26	2.5526	1.3580
1	M	131	7508	52.55	2.5094	1.3212
3	N	131	7509	52,58	2.5679	1 3607
4	M	132	1938	52.22	2 6915	1.4056
4	N/L	132	1939	52.58	2.5754	1.3567
4	М	132	1940	53.56	3.0904	1 6582
4	M	132	1941	53.04	3.2625	1.7304
4	.64	132	1942	53.25	2.5786	1.3730
2	M	133	7525	#1.72	2.3217	0.9685
2	M	133	7526	36.91	1.5878	0.5860
2	M	133	F527	50.72	2.3540	1.1940
2	M	133	7926	41.77	1 7222	0.7193
2	Pall	133	7529	41.38	1.9816	0.8200
3	W	134	1952	29.02	2.4551	1.2083
3	M	134	1958	58.89	2.6261	1 5454
3	M	134	1959	54,17	3.0058	1,6287
3	М	134	1960	48.95	2.4059	1 1298
3	M	134	1961	52.81	2.3210	1.2257
2	7-4	135	7545	51.82	2.4479	1.2584
2	M	135	7545	47 17	2,4230	1 1429
2	M	138	7547	43.08	1,8997	0.8181
2	M	135	7548	42.51	1.7654	0.7522
2	M	135	7551	43.64	2.4130	1.0530
4	M	136	1978	52 93	2,3127	1.2241
4	M	135	1979	54.89	2.4615	1.3511
4	M	136	1980	53.09	2.7504	1.4603
4	M	136	1981	54.83	2.5798	1.4693
4	M	138	1982	51.89	2.4517	1.2773
4	64	137	7562	51.35	2.7549	1.4198
1	M	137	7568	51.23	2.2010	1 1275
1	M	137	7566	54.00	2.4420	1.3187
1	M	137	7568	53.74	2.5153	1.3518
1	M	137	7569	53.99	2.2324	1.2053

Table 15. Tibia Ash Weights of Cobb 500 Broilers (b) (4) Project No. NV-13-2 BLDG 7

Treatment	3ex	Pen No.	Bone No.	% Ash (600°C)	(grace)	(GOONC) (GREEN)
3	M	138	1998	\$0.89	2.7911	1.4203
3	M	138	1999	47.12	2.2756	1.0722
3	M	138	2000	52.06	2.5565	1.3377
3	M	138	2001	52.78	2.2808	1 2036
3	M	138	2002	41.52	1.5987	0.7883

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4): Project No. NV-13-2 BLDG 7

Tradupord	Sex	Pen No.	Bone No.	% Ash (600°C)	(grans) (grans)	ésh Wi (soorc) (grama)
1	M	83	2800	55,31	2.7031	1.4952
1	M	83	2801	53.85	2.7256	1.4578
1	M	83	2902	54.97	2.8442	1.5534
1	M	83	2803	53.05	21170	1.1231
1	M	83	2804	53.14	2.8386	1,5349
Total/Anagas				54.00	2.6567	1,4309
Shoulard Deviati	inco.			1,64	0.31	0.13
C/s				1.83%	11.71%	12.47%
3	M	84	6791	48.05	2.5369	1,2189
3	8.4	84	6792	49.85	2.4174	1.2053
3	M	84	6793	48.57	2.3648	1.1509
3	M	84	6794	54.28	2 0342	1,1037
3	M	84	5795	49.72	2.4974	1.2418
bata / America	761	- Cont	01.20	25.11	1.6763	1.1841
Shandard Davisti	200			2.64	0.20	0.08
Chia				4.89%	8.42%	4,73%
	STATE OF THE PARTY				9170979	7000
2	M	85	2820	50.76	2,7269	1.3843
2	M	85	2921	83.74	2.1667	1.0330
2	944	85	2822	41.27	2.0233	0.5350
2	M	85	2823	47.57	2.0609	0.9700
2	M	85	2825	44.63	2.2304	0.9952
Com V Avenages				43.20	2.2418	1,0436
Describeral Conduction	100			3.55	0.28	B.20
Difa				7.53%	11.65%	特別執
4	M	86	6011	53.46	2.2779	1.2178
4	M	86	6812	55.09	2.5335	1.3958
4	M	86	6813	52.74	3.0109	1.5879
4	M	36	6814	52.88	2.7855	1.4730
4	M	86	6815	54.07	3.0836	1.6673
hetel/Assezges			230.80	63.85	2.7382	1.6234
Sundard Certain				0.00	0.34	9.17
76s				1.57%	12.24%	11.00%
2	M	87	2840	45.47	1.9931	0.9063
2	M	87	2841	46.77		
2	NA.	87	2842	7.800	1.6985	0.7944
47.5		100	-	52.05	2.0836	1.0845
2	M	87	2843	44.58	1.9225	0.8590
2	M	87	2844	45.21	2.0052	0.9066
lebil/Annages				ES.JM	1.8408	0.0102
Beerlard Devicts No	66			2.01	0.15	9.11
444				6.43%	7.67%	11.84%

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4) Project No. NV-13-2
BLDG 7

Treatment	Sax	Pen No.	Boos No.	% Ash (900°C)	(105°C) (105°C) (105°C)	(SDO*C) (SDO*C)
3	M	88	6831	36.72	3.9010	1.5105
3	М	88	6832	49.52	2.5555	1.2656
3	M	88	5333	49.66	2.7142	1.3478
3	64	88	6834	50.60	2.6026	1,4182
3	M	88	3535	52.90	2.675€	1.0979
York V Annuages				43.19	1,6088	1.8280
Standard Onder	in the same			6.61	0.67	6.10
Ch				11,42%	23.90%	91,83%
1 1	BA .	89	2850	55.22	19841	1.0957
1	M	89	2851	50.92	(Acres 6 75 to)	10000000
Y.	M	89	2862	(A)	2.4571	1.2563
1	164	89		54.32	2.1947	1 1922
	Total Tulk	89	2883	52.22 52.71	2.7223	1 4215
	PMF.	1 59	2004	-	2.5555	1,3470
total/Assumpsi Standard Desisti				53.63	2.23-67	1.2026
Cida Cida				1,71	12.86%	8.13 10.11%
	- 410	in.		0.23%	12,00%	19,11%
4	M	90	6651	54.39	2.7901	1.5176
4	М	90	5652	51.76	2.6543	1.3738
4	М	90	6853	55.36	2,7086	1.4995
4	M	90	6854	\$2.55	2.4406	1.3825
4	M	90	6856	53.08	2.6300	1.3959
Pero VALENCE				8.43	2.0447	1.4139
تعضمت كالمامعة	mile.			1.46	0.12	0.10
Chh				2,70%	4,80%	0.89%
3 1	M	91	2580	2277	2.3307	1.2626
3	AA	91	2681	51.88	2.7104	1.4061
3	BA	91	2882	51.83	2.3556	1.2208
3	М	91	2583	52.50	2.2598	1 1863
3	М	91	2884	54.50	2 5544	1,3945
Nata VA-service	deliner.	, A.	804-	827	1.6549	1,2940
Standard Conducts	Cortical I			1.12	0.35	0.10
Ch/a	7			2,13%	7.29%	7.79%
77-01-0	-					1,20,30
2	M	92	6871	\$1.73	1.9374	1 0022
2	164	92	6872	83.32	1.9062	0.8257
2	M	92	5673	49.23	2.3142	0.9310
2	84	92	5874	45.22	1,6082	0.8176
2	M	92	6875	47.56	2.1672	1.0307
ota / Asstrages		4	-	46.81	2.6299	0.8214
Considered Considera	Constant Constations				9.21	0.13
Otto			A.SS B.SSPA	10.29%	10.65%	

Page 91 of 110

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4) roject No. NV-13-2 BLDG 7

Treatmens	Sex	Pen No.	Bone No.	% Ash (600°C)	(105°C) (grams)	(grame)
1	PM	93	2900	54.72	3.0426	1.6650
1	5.5	93	2901	53.61	2.0720	1.1109
1	M	93	2902	52.62	2,5027	1,3169
1	M	93	2903	52.98	2.3984	1.2706
1	M	93	2904	54.52	2.3139	1.2515
Total/Amerages				63.68	2.4859	1,3350
Standard Dayleti	OVER 1			0.82	0.26	0.21
CVs				1.72%	14,58%	16.49%
4	М	1 94	6891	52.74	2.6373	1.3909
4	M	94	5892	51.91	2.5421	
4	M	94	5893	52.47	2.1056	1.3197
4	N.F	94	5894	50.97	2.8143	1.1048
4	M	94	5895	52.70	2.3393	33.00
Total/American	ret	34	5055	52.18	2.6877	1.2329
Standard Duvints	OFTER			0.74	0.27	0.12
CVs				1.42%	11.01%	10,15%
						TO. 152.76
1	M	95	2920	53.13	2.8997	1.5405
1	M	95	2921	54.04	2.6528	1.4335
-06	M	95	2922	56.52	2.4489	1.3842
1	M	95	2923	52.26	2.6701	1.3955
1	M	95	2924	50.18	2.2150	1.1114
Total / Amecages				63.23	2.6773	1.3730
Standard Societie	7133			2.33	0.26	0.18
CVs				4.35%	10.01%	11.66%
2	M	96	6911	45.17	2.0661	0.9332
2	M	96	6912	47.23	1.8976	0.8962
2	M	96	6913	40.10	1.6675	0.6686
2	M	96	6914	48.40	1.3734	0.6647
2	M	96	6915	38.20	1.9247	0.7352
ots (Avecages			2200	43.82	1.7868	0.7786
Candard Deviatio	HTMS.			4.47	0.27	0.18
:Va				10.20%	15.19%	10,31%
3	M	97	2940	51.40	A CEAR	4 5055
3	M	97	2941	51.20	2.6523	1.3633
3	M				2.3575	1.2111
	9.74	97	2942	53.63	2.9441	1.5789
3	M	97 97	2943 2944	53.86 46.39	2.6184 1.9567	1.4103 0.9077
ota V Avenuepas	100	31	2.344	61,33	2.6058	1,2843
Sundard Deviatio	rosi			8.00	0.37	0.26
	-			OLVE		

Table 16. Tibia Ash Weights of Cobb 500 Broders Summarized by Pen (b) (4) Project No. NV-13-2
BLDG 7

Treatment	Sex	Pen Hp.	Bons No.	% Ash (600°C)	(grams) (105°C) (grams)	ABIT WE (£00°C) (grams)
4	M	96	6931	51.81	2.6858	1.3916
4	M	96	6932	52.22	2.3329	1,2182
4	M	98	6933	54.01	2.9548	1.6012
4	M	98	6934	51.79	3.2366	1.5762
4	M	98	6935	53.70	2.6372	14152
Note VA serages				62.71	2,7734	1.6657
Standard Sedeti	ines.			1.07	0.24	0.13
Ch				2.02%	12,29%	12,42%
2	M	103	2950	38.83	2,4272	0.9424
2	44	163	2351	45.20	1.8537	0.8388
2	54	103	2962	37.23	2.7694	1.0311
2	M	163	2963	40.45	1,7301	0.6998
2	84	103	2964	39.77	1.7453	
Ects V Avenue	and .	1 160	4.00	40.20	2.1066	0.6941
Hondard Operat	TERMS.			3.00	0.47	0.8412
CVS				7,44%	22.54%	17.83%
				1	44.47%	84.1265.20
4	М	104	6951	52.56	2.8350	1,4922
4	M	104	6952	52.41	2.6857	1.4076
4	M	104	6953	51.53	2.8827	1.4855
4	M	104	6954	51.25	2.0459	1.0491
4	All	104	6966	52.92	2.3989	1.2694
Dota V Avenue's				62,98	2.6708	1.3423
Dandard Certifi	9500			0.71	0.85	0.15
Clifa				1.49%	13.67%	13.82%
3	M	108	2000	ESI DEL	2 6865	1,3361
3	M	105	2981	52 SE	2.8124	1.4364
3	M	105	2982	52.62	2.2427	1.1802
3	M	105	2983	51.99	2.7458	1.4278
3	84	105	2984	54.07	2.5123	1.3583
ata V Assessment				13.60	2.6640	1.3503
Conduct Deviatio	ivas			0.74	0.23	0.12
No.				1.47%	8.57%	8.54%
1	M	106	5971	53.25	2 4253	1000
1	M	106	6972	53.83	2.8475	1.2920
1	24	108	5973	53.23		1.5329
1		10.0		2 2 2 2 2	2.5380	1 4237
1	2d 3d	106	5975 6976	52.53	2.5855	1.3567
esta l/Assesagas	630)	100	4316	55.45	2.2795	1 2543
ana y responsor				SLUFS LCS	2.5280	1.9743
december of Companies. Ma					0.22	0.11
and a				F05.#	0.43%	7.05%

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4)Project No. NV-13-2
BLDG 7

Trestment	Sex	Pen No.	Sona No.	% Asn (600°C)	(105°C) (grams)	(grame)
4	M	107	3000	53.21	2.3682	1.2501
4	М	107	3301	53.52	2.7344	1.4534
4	M	107	3002	54.81	2,7585	1.5120
4	141	107	3003	51.01	2.8361	1.4457
4	М	107	3004	53.86	2 5535	1,3752
Total deserges		-	-	\$3.20	£8601	1,444
Mondard Devices	des			1.49	0.10	0.10
Chi				2.00%	7.12%	0.03%
2 1	М	108	6691	45.06	2.1518	0.666
2	247	108	6992	5197	2.4363	1.2661
2	M	108	6953	41.35	2.3412	0.9684
2	M	108	5995	17.94	2 1261	1.0193
2	Art.	108	8997	43.19	1.9543	0.8440
Total/Aureagua	(40)	1 100	0331	45.80	2,2019	1,0000
Congunitoria Renderé Devisti	nes.			4.17	6.19	0.16
Usi				8.00%	8,81%	16,03%
				-		1111111
3	Pat	109	7325	53.16	2:3036	1.2246
3	Ad.	109	7326	82.90	2.6686	1.4100
3	M	109	7327	50.41	2.5636	1.2923
3	M	109	7328	52.00	2.7632	1.4369
3	M	109	7329	48.23	2.5129	1.2119
Tetal@Amerages				61,04	2.401B	FAMALE
Standard Devises	and a			2.04	0.17	0.10
CAL		-		3.63%	6.77%	7,90%
1	M	115	7011	55.14	2,4730	1,3638
1	М	110	7012	51.33	2.3824	1.2230
1	М	110	7013	53.25	2.5512	1.3586
1	М	110	7014	54.39	2.7910	1.5180
1	341	110	7015	53.80	2.6621	1,4321
Tuto (Courages				61.60	2,6720	1,3791
Renderd Devices	THE R. LEWIS CO., LANSING			1.44	0.10	0.11
EV»				2.89%	6.22%	7,87%
2 1	М	111	7346	44.04	1.8710	0.8240
2	84	111	7347	44.31	1,9219	0.8515
2	Test	111	7346	43.32	2.4051	1.0420
2		100000	0.77	1.00	12.5	
2	M	111	7349 7380	40.41	2.2203 1.9283	0.7792
otall America	141	111	1000	43.87	2.0890	0.9114
Conduct Deviations				2.62	6.23	0.13
	A				11,24%	14,20%

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4) Project No NV-13-2 BLDG 7

Treatment	Sex	Pen No.	Bons No.	% Ash (600°C)	Dry bone Wt (105°C) (grams)	Ash W((600°C) (grams)
4	M	112	7031	52.53	2.5180	1.3227
4	M	112	7032	53.58	2.6913	1.4×19
4	M	112	7033	50.9€	2.1788	1.1103
4	M	112	7034	53.57	2.680€	1.4361
4	M	112	7035	53.23	3 0142	1.6045
Total/Averages		-	7	52.77	2.8166	1.3831
Standard Deviati	terra			1.10	0.30	0.18
CV3				2.09%	11.81%	13.20%
3 1	М	1 113	73£5	53.29	2.3355	1.2447
3	M	113	7356	50.93	2 3880	
3	AA.	113	7367	54.56		1.2162
3	M	75.00	100	350.75.5	2.3034	1.2558
3	M	113	7368	52,95	2.4369	1.2904
Tota V Avecages	IM	113	7369	51.38	2.4756	1.2720
Tota V Amerages Stendard Devecti				52.62	2.8879	1.2680
Scinesiro Oeyesta CVs	WHITE I			1.48 2.81%	0.67 2.86%	0.04
	_		_	20170	2.06%	2,28%
1	М	114	1798	53.16	2.3633	1.2564
1	M	114	1799	54.49	2.6053	1,4195
1	M	114	1880	56.48	24787	1.4000
3	M	114	1801	54.25	2.2127	1.2006
1	M	114	1802	53.77	2.5361	1.3636
Total/Amerages				64.49	2.4382	1.3280
Standard Developing	COVID			1.26	0.16	0.10
CV2	_		.,	2.30%	8.24%	7.18%
2	M	115	7385	50.82	2.3195	1.1787
2	м	115	7366	46.66	2.0190	0.9420
2	M	115	7387	43.71	1.8281	0.7991
2	M	115	7388	47.0	2.1811	1.0253
2	M	115	7389	4371	2.0795	0.9090
ots // Averages		1	1.246.0	48.38	2.0254	0.9090
Candard Davistic	202			2.93	0.18	0.14
TVs				0.32%	8.60%	14,83%
	17	100				
1	M	115	1818	55.15	2.6299	1.4503
1	M	116	1819	54,19	2.6190	1.4193
1	M	116	1820	53.74	2.3550	1.2655
1	M	116	1821	53,83	2.5886	1.3934
4	M	116	1522	52.17	2.5331	1.3214
iota (/Amezagas				63.81	2.5461	1.8700
Standard Deviatio	IYES.			1.02	0.11	0.03
.VA				2.00%	4.43%	8.60%

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4) Project No. NV-13-2 BLDG 7

Treatment	360	Pen No.	Bone Na	ar was land,cl	(grains)	(GLOPC) (GLOPC)
4	M	117	7405	52.83	2.2453	1 1861
4.	84	117	7406	55.45	2.5279	1.4015
d	M	117	7407	5115	2.4302	1.2432
4	8.8	117	7408	54.52	2.3562	1.2025
4	34	117	7409	50.57	2.7499	1,3906
Total/Austrages		-		62.62	2.4839	1.3028
Lity meland (Invested	SACIO			2.12	0.15	8,08
ÇVe				4.00%	7.71%	7,15%
3 7	M	1 118	1836	879 1	2.2941	1.0909
3	B4	118	1839	52.76		T WHAT HEAD
3	84	118	1840	49.35	2.1341	1 1250
3	M	118	1841	1.000000	2.8552	1.4091
3	JAS JAS	118	100 000	57.92	2.7271	1.4431
Total/Avenages	丰	1 116	1842	51,18	2.3260	1,1905
Total/Atracages Standard Danasci	-			2.20	2.4878	1.2579
CVs	cami			4,63%	12.47%	0.18
14196	-			1 1000	12.9/3	NALUETR
2	M	123	7425	41_33	1.5743	0.7747
2	M	123	7426	46.54	2.3251	1.0820
2	M	123	7427	49.35	2,5882	1.4254
2	M	123	7428	53.95	2.6073	1.4055
2	M	123	7429	39.95	1 6735	0.6518
ice VAvereges				40,94	8.2707	1,0701
No reds rel Creatests	100			5.87	0.50	0.35
CVa eV7				12.73%	22.11%	2.13%
3	M	124	1858	5244	2.8520	1.4956
3	M	124	1859	49.57	2.3485	1.1542
3	84	124	1860	49 B4	3.1403	1.5652
3	1941	124	1861	50.51	2.7085	1.3/35
3	8.6	124	1862	54.08	2.4691	1.3334
otn V Averague	-	1		6136	2.7937	1 884
Randard Devisa	NEE-			1.88	0.31	0.14
D/w				£67%	11.0194	11,53%
	900				11700134	1.50000 70
4	M	125	7445	54.11	2,4545	1.3335
4	346	125	7445	53.00	2.6532	1.5123
4	84	125	7447	52.74	2.6858	1.5219
4	34	125	7448	53.15	2.4783	1.3171
4	84	125	7449	50.76	3.0749	1.5515
ota V Assessa				52.76	2.7814	1.4433
Zandard Ownstic	ines.			1.22	0.27	0.11
Ma.				2.31%	8.78%	7.82%

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4) Project No. NV-13-2 BLDG 7

Treatment	Sex	Pen No.	Bone No.	% Ash (600°C)	(105°C) (grame)	Ash Wi (600°C) (grams)
1	M	126	1878	52.23	2.3777	1.2418
1	M	125	1879	50.89	2.6017	1.3241
1	M	126	1580	55.05	3,1047	1.7092
3	M	126	1861	53.71	2,3855	1.2813
1	M	126	1882	55,64	2.7734	1.5430
Total/Amerages				63.50	2.8489	1,4199
Standard Ornigti	lores			1.96	0.20	0.20
CVs				3.67%	11.48%	14.04%
1 1	M	127	7465	53.18	2.4495	1,3027
1	М	127	7456	54.37	2 2373	1.2154
4	M	127	7467	54.12	2.7291	1.477
1	M	127	7458	54.20	2.1345	1.1569
1	M	127	7459	53,44	3.0581	1.1569
Total/Auracispas	191	14.6	1465	53.28	2.6217	1.3575
Standard Devists	9133			0.62	0.38	0.20
CVa				0.86%	14.93%	14.05%
					1277	
3	M	128	1898	51.08	2.4974	1.2756
3	M	128	1899	50.66	2.4723	1.2525
3	M	128	1990	52.49	2.3981	1.2587
3	M	128	1901	53.51	2.8552	1.5278
3	M	128	1902	53.84	2.6962	1.4516
Total/Asserages				62.31	2.6838	1.3632
Standard Dovists	Children			1.42	0.10	0.13
CVb				2.71%	7.28%	8.44%
2	М	129	7485	38.25 T	2.1586	0.8254
2	М	129	7486	43 65	2.1516	0.9390
2	M	129	7487	45.89	2.1378	0.9810
2	64	129	7488	44.88	2.0546	0.9221
2	M	129	7489	45.30	1.8381	0.8554
lots // Anecrages			7.75	41.60	2.0779	0.9048
Standard Davistic	Section			3.10	0.11	96.0
CVa CVa				7.11%	6.48%	7.00%
-	6.5	450	10.10	PAGE Y		UTARIO
4	M	130	1918	52.86	2.6387	1.3948
4	M	130	1919	52.91	2.4150	1.2793
	M	130	1920	53.61	3.1046	1.5543
4	М	130	1921	50.57	29318	1.4826
	M	130	1922	50.39	2.4207	1.2198
otal/Amezagas				62.07	2.7028	1,4032
Randard Devocatio	NYES			1.45	0.34	0.18
Va .				2.84%	11,33%	12.47%

Table 16. Tibia Ash Weights of Cobb 500 Broders Summarized by Pen (b) (4) Project No. NV-13-2 BLDG 7

Treatment	Sax	Pen No.	Bons No.	% Asb (500°C)	(105°C) (grams)	(Grama)
1	PM	131	7505	49.06	2.4196	1,1870
*	M	131	7506	53.02	2.7621	1,4545
1	M	131	7507	\$3.20	2.8526	1,3680
1	B/I	131	7508	52.68	2.5094	1.3212
1	M	131	7509	52.58	2.5879	1,3807
Patal/Averages				6.6	1,5440	1444
Standard Devous: City	Ofte			1,72	0.10 4.92%	0.10 7,47%
4 [M	132	1 1938	1 52 22 T	2.6915	1 2038
4	64	132	1339	52.68	2.5754	1.3567
4	NA.	132	1940	53.65	3.0904	1 5582
4	M	132	1941	53.04	3.2625	1 7304
2	M	132	1941	53.25	2.5786	1.3730
Sats If Assistingto	3437	100	N-SPERIO	SUEZ	2.8327	1.5048
Streetland Ownersh	octa			0.55	0.22	0.12
Cibi				1.07%	11,10%	11.03%
	- 11	433				-
2	М	133	7525	21.72	2,3217	0.9685
-	M	133	7526	36.91	1.5878	0.5860
2	fv4	133	7527	50.72	2.3540	1.1940
2	М	133	7526	41.77	1.7222	0.7193
2	M	133	7529	41.38	1.9515	0.8200
Sotal/Averages				Q.B	1.8935	0.8674
Missiland Devladio Dis	36'SB			6.03	0.24	0.22
Diff		-	-	HARA	17.21%	27.20%
3	M	134	1952	49,02	2.4551	1.2083
3	M	134	1958	58.89	2 5251	1.5664
3	164	134	1959	54 17	3,0068	1.6287
3	M	134	1960	46.96	2.40.59	1.1298
3	M	13d	1951	52.81	2.3210	1.2257
ets/Averages	11786			0.07	2.6840	1,5478
Mendard Durtain	lette .			4.66	0.27	0.24
745				8.87%	10.67%	18.00%
2 1	М	(38)	7565	51.82	2.44%9	1284
2	NA NA	138	7545 7548	19, 5 - 19 - 19		21000000
2	M	2.22	100000000000000000000000000000000000000	47.17	2.4230	1 1429
	100	135	7547	43.05	1.8997	DB181
2 2	M	133	7548	£2.61	1 7684	0.7522
	M	133	7551	43.64	2.4130	1.0530
				45.20	2,1884	1.0089
Streethard Charolytic	HIGH			2.53	0.22	8,22
No.	-			LSPA	15.08%	21,02%

Table 16. Tibia Ash Weights of Cobb 500 Broilers Summarized by Pen (b) (4) Project No. MV-13-2 BLDG 7

Treatment	Sax	Pen seo.	Bone No.	% Asta (600°C)	(165°C) (grams)	Ash Wt (SOPC) (gramm)
4	М	136	1978	52.93	2.3127	1.2241
4	M	135	1979	54,89	2.4515	13511
4	M	136	1950	53.09	2.7504	1.4603
4	Pd	136	1961	54.83	2.6798	1.4693
4	M	136	1982	51.89	2.4517	1.2773
etalf Averages				63.63	2,5732	1,8604
Standard Council	565		1.20	0.18	0.11	
CA				2,42/6	7,0676	5.07%
11	М	137	7562	51,35	2.7549	1.4198
1	M	137	7565	51.23	2.2010	1.1276
4	M	137	7558	54.00	2.4420	1.3187
1	М	137	7558	53.74	2.5153	1.3518
1	M	137	7569	53.99	2.2324	1.2053
Total/Averages		-	-	62.14	2.4311	1.2048
Standard Dwydati				1.64	0.23	0.12
Co				2.72%	8.49%	9,12%
3	M	138	1998	50,89	27911	1.4003
3	M	138	1999	47.12	2.2756	1.0722
3	ы	138	2000	52.08	2.5685	1.3377
3	84	138	2001	52.78	2.2805	1.2036
3	М	138	20502	41.52	1.8357	0.7883
Spinglikensugen			-	49.43	2.2623	1.186
Resident Devices	200			4.60	0.24	22.0
CH6				0.63%	14.25%	21.30%

Table 17 Tibia Ash Weights of Cobb 500 Broilers Summarized by Treatment (b) (4) Project No. NV-13-2 BLDG 7

Trasiment	Sex	Pen No.	Bone No.	% Ash (800°C)	(105°C) (grame)	(GOO°C) (Grams)
	M	83	2500	55.31	27031	1 4952
1	M	83	2501	53.85	2.725E	1.4678
1	M	83	2882	54.97	2.8442	1.5534
1	B.E	83	2803	53.05	21170	1.1231
1	ě.d	83	2864	53.14	2.5886	1.5349
1	M	59	2060	55.22	1.9841	1.0957
1	Mi	59	2861	50.92	2.4571	1.2563
1	66	39	2862	54.32	2.1947	1.1922
1	M	89	2863	52.22	2.7223	1,4215
1	24	69	2864	52.71	2.5656	1.3470
1	M	93	2900	54.72	3.0425	1.5650
3	MI	93	2901	53.61	2.0720	1.1109
7	M	93	2902	52.62	2.5027	1,3169
1	84	93	2903	52.98	2.3984	1.2706
1	NS.	93	2904	54.52	2.3139	1 25 15
1	M	95	2920	53.13	2.8997	1.5405
1	M	95	2921	54.04	2.6528	1,4335
1	M	95	2922	56.52	2.4459	1.3842
4	M	95	2923	52.26	2,6701	1.3955
1	M	95	2924	50.18	2.2150	1.1114
1	14	106	6971	53.25	2,4263	1,2920
1	M	106	6972	53.83	2.8475	1.5329
1	84	106	6973	53.97	2,6380	1.4237
1	Rd.	106	6975	52.53	2.5868	1.3587
1	54	106	6976	55.46	2.2796	1.2543
1	54	110	7011	58.14	2.4732	1.3538
4	M	110	7012	51.33	2.3824	1.2230
1	M	110	7013	53.25	2.5512	1,3566
1	M	310	7014	54.39	2.7910	1.5180
1	24	110	7015	53.80	2,6621	1.4321
1	M	114	1798	53.16	2.3533	1.2564
1	BA .	114	1799	54,49	2.6053	1.4196
i	M	114	18G0	56.48	2.4787	1,4000
1	M	114	1801	54.26	2.2127	1.2006
1	AA .	114	1802	53.77	2.5361	1.3536
1	8.8	116	1815	55,15	2,6299	1.4503
1	M	116	1819	54.19	2.6190	1.4193
4	M	116	1820	53.74	2.3650	1 2555
1	M	115	1821	53.83	2.5886	1.3934
1	M	115	1822	52,17	2.5331	1.3214
1	М	125	1878	52.23	2.3777	1.2418
1	M	125	1879	50.89	2.5017	1.3241
i	M	126	1820	S5.05	3.1047	1 7092
1	8.6	126	2.000	4.4.4		
1	8.6	126	1881	53.71	2.3856	1.2513
1	ME NE	126	1882	55.64	2.7734	1.5430
1	A4	127	7465 7466	\$3.18 54.37	2.4496	1.2154

Table 17. Tibia Ash Weights of Cobb 500 Broders Summarized by Treatment (b) (4) Project No. NV-13-2

BLDG 7

Troshvani	Sex	Pen Mo.	Boos No.	% Asis (600°C)	Ory Sone Wit (105°C) (grams)	(Seams)
1	M	127	7467	54.12	2.7291	1.4771
1	M	127	7468	54.20	2.1346	1.1569
1	M	127	7469	53.44	3.0581	1.6342
1	M	131	7505	49.06	2.4196	1.1570
1	M	131	7506	53.02	2.7521	1.4545
4	М	131	7507	53.20	2.5525	1.3580
1	M	131	7508	52.65	2.5094	1.3212
1	M	131	7509	52.58	2.5879	1.3507
1	M	137	7582	51.36	2.7849	1.4198
1	BA	137	7565	51.23	2.2010	1.1276
4	M	137	7556	54.00	2.4620	
	full	1,000	100,000	10000000	and the same of th	1.3187
1	M	137	7568 7569	53.74 53.99	2.5153	1.3518
	na	1 191	1309	-	2.2324	1.2053
Sta V Averages Sundard Devision				63.50	9.25	1.86
Ma	-			2.69%	1,70%	10.17%
2	M	85	2820	50.76	2,7269	1.3343
2	84	85	2821	47.58	2.1567	1.0330
2	M	85	2822	41.27	2.0233	0.8350
2	ы	85	2823	\$7.07	2.0609	6.9700
2	756	85	2825	41.63	2.2301	0.9952
2	M	87	2640	45,47	1.9931	0.9063
2	M	ह्य	2841	45.77	1.6986	0.7944
2	M	67	2842	52.08	2.0838	1,0346
2	M	87	2843	44.58	1.9225	0.8590
2	M	87	3844	45.21	2.0052	0.9066
2	M	92	5871	51.73	1,9374	1,0022
2	M	92	5872	43.32	1.9062	0.8257
2	84	92	5873	40.23	2.3142	0.5010
2	M	90	5874	45.22	1,8082	0.8176
2	M	32	5875	47.56	2.1572	1.0307
2	M	96	6911	45.17	2.0551	0.9332
2	A.C.	96	5912	47.23	1.6976	0.8962
2	Ad.	96	6913	40.10	1,6575	0.6686
2	A4	96	5914	48.40	1,3734	200.00
2	M	96	6915	38.20	1.9247	0.7352
2	Bd	1003	2960	38.83	2.4272	0.9424
2	M	103	2961	45.20	1.8537	0.8388
2		100			2010 2010	02/02/07
2	Pel	103	2962	37.23	2.7594	1.9311
2	М	103	2963	40.45	1,7301	0.6996
	745	103	2964	39.77	1.7453	0.6941
2	М	toa	6991	45.06	2,1515	0.9595
2	14	108	6992	51,97	2.4363	1,2561
2	M	108	5993	41.36	2.3412	0.9684
2	М	801	6095	47,94	2.1261	1.0193
2	M	108	6997	43 19	1 06/13	D.BAAD

Table 17. Thia Ash Weights of Cobb 500 Broders Summarized by Treatment (b) (4) Project No. NV-13-2 BLDG 7

Frequiment	Sign	Pen No.	Bons No.	% Ash (500°C)	(105°C) (grazze)	(600°C) (grame)
2	Bel.	111	7346	44.04	1,8710	0.8240
2	M	111	7347	44.31	1.9219	0.8515
2	M	111	7348	43.32	2,4051	1.0420
2	M	111	7349	47.75	2.2203	1.0603
2	M	111	7350	40.41	1.9283	0.7792
2	Ad	115	7385	50.82	2.3195	1,1767
2	M	115	7386	46.66	2.0190	0.9420
2	M	115	7387	43.71	1,6281	0.7991
2	tel	115	7388	47.01	2.1811	1.0253
2	M	115	7389	43.71	2.0750	0.9090
2	M	123	7425	41.33	1.8743	0.7747
2	8.6	123	7425	46.54	2.3251	1,0829
2	ME	123	7427	49.35	2.8882	1 4254
2	84	123	7428	53.95	2.6073	1.4066
2	M	123	7429	39.5%	1.6735	0.6616
2	6d	129	7485	38.25	2.1580	0.8254
2	M	129	7486	43.68	2.15(0)	0.9390
2	M	129	7487	45.89	2.1378	0.9810
2	24	129	7488	44,83	2.0545	0.9221
2	M	129	7489	45.30	1.5361	0.8554
2	36	133	7525	41.72	2.3217	0.9685
2	M	133	7526	36.91	1.5878	0.5860
2	M	133	7527	50.72	2 3540	1.1940
2	34	133	7528	41.77	1.7222	0.7193
2	24	133	7529	41.38	1.9816	0.8200
2	24	135	7545	51.82	2.4579	1.2684
2	M	135	7546	47.17	2.4230	1.1429
2	M	135	7547	43.96	1.8997	0.8161
2	M	135	7548	42.51	1 7654	0.7522
2	M	135	7551	43.64	2.4130	1.0530
⇒V^				44.75	2.09	0.94
tendens Duries	970			6.03	0,30	0.18
n.				Logs	14.86%	19.61%
3	M	84	6791	48.05	2.5369	1.2159
3	M	84	6792	49,56	2.4174	1.2053
3	M	84	5793	48.57	2.3643	1.1509
3	髓	84	6794	54.25	2.0342	1 1037
3	M	84	6795	49.72	2.4974	1.2=18
3	M	88	6831	38.72	3.9010	1.5106
3	74	88	5832	49.52	2.5565	1.2555
3	245	38	6833	49.56	2.7142	1.3478
3	1d	88	5834	50.60	2,8025	1.4182
3	M	38	5835	52.90	2.0756	1.0979
3	24	91	2550	52.77	2.3927	1.2525
3	M	91	2581	51.88	2.7104	1.4061
3	M	91	3582	51.83	2,3555	1.22E

Table 17. Tibia Ash Weights of Cobb 500 Broilers Summarized by Treatment (b) (4) Project No. NV-13-2 BLDG 7

Freatment	Sex	Pen No.	Bone No.	% Ash (600°C)	(105°C) (grama)	(soo°C) (grams)
3	84	91	2583	52.50	2.2596	1_1863
3	74	91	2884	54.59	2.5544	1.3945
3	M	97	2940	51.46	2.6523	1.3633
3	8.4	97	2941	51.37	2.3575	1.2111
3	M	97	2942	53 63	2.9441	1.5789
3	M	97	2943	53.86	2.6184	1,4163
3	M	97	2944	46.39	1 9567	0.9077
3	M	105	2980	53.0€	2.5069	1.3301
3	M	105	2981	52.85	2.8124	1.4864
3	M	105	2982	52.62	2.2427	1.1802
3	M	105	2983	51.99	2.7458	1.4275
3	M	105	2984	54 07	2.5123	1.3583
3	M	109	7325	53 16	2.3036	1.2246
3	M	109	7326	52.90	2.6656	1.4100
3	M	109	7327	50.41	2.5636	1.2923
3	M	109	7328	52.00	2.7632	1.4369
3	M	109	7329	48.23	2.5129	1,2119
3	M	113	7365	53.29	2.3355	1.2447
3	M	113	7356	50.93	2.3885	1.2162
3	M	113	7367	54.56	2.3034	1.2558
3	15/1	113	7368	52.95	2.4369	1.2904
3	M	113	7369	51.38	2,4756	1.2720
3	M	118	1838	47.55	2.2941	1.0909
3	M	115	1839	52.76	2 1341	1,1260
3	M	118	1840	49.35	2.8552	1.4091
3	M	118	1841	52.92	2,7271	1.4431
3	M	118	1842	51.18	2.3266	1.1905
3	M	124	1858	52.44	2.8520	1,4356
3	M	124	1859	49.57	2.3485	1.1642
3	M	124	1850	49.84	3 1403	1.5652
3	M	124	1861	50.61	2,7085	1.3706
3	M	124	1862	54 00	2.4691	1.3334
3	M	128	1896	51.08	2.4974	1.2756
	M	128	1399	50.56	2.4723	1.2525
3	M	128	1900	52.49	2.3981	1.2587
3	M	128	1901	53.51	2.8552	1.5278
3	M	128	1902	53 84	2.6962	1.4516
3	M	134	1952	49.02	2.4651	1.2063
3	M	134	1958	58,89	2.6261	1.5464
3	M	134	1359	54.17	3.0068	1.6267
3	M	134	1960	46.96	2,4059	1.1298
3	M	134	1961	52.81	2.3210	1 2257
3	M	138	1998	50.89	2.7911	1 4203
3	М	138	1999	47.12	2.275€	1 0722
3	M	138	2000	52.08	2.5685	1 3377
3	M	138	2001	52.78	2.2806	1.2036
3	M	138	2002	41.52	1.8967	0.7883

Table 17. Tibia Ash Weights of Cobb 500 Broilers Summarized by Treatment (b) (4) Project No. NV-13-2 BLDG 7

Treatment	Sex	Pan No.	Bone No.	% Ash (600°C)	(105°C) (grams)	(600°C) (grama)
ota V Arenzegas Canderd Devilet Va	kons			51.24 2.07 6.69%	2.63 0.21 12.22%	1.28 0.16 12.28%
4	M	1 86	6811	53.46	2 2779	1.2178
4	M	3€	6812	55.09	2.5335	1,3958
4	M	86	6813	52.74	3.0109	1.5879
4	M	36	6814	52.88	2.7855	1.4730
4	M	86	5815	54.07	3.0836	1.6673
4	64	90	5851	54.39	2.7901	1.5176
4	64	90	6852	51.75	2.5543	1.3738
4	M	90	6853	55.36	2.7086	1.4995
4	M	90	6854	52.55	2.4406	1.2825
4	M	90	5855	53.08	2.6300	1.3959
4	M	94	5891	52.74	2.6373	1,3909
4	M	94	5892	51.91	2.5421	1.3197
4	M	94	5893	52.47	2.105€	1,1048
4	M	94	5894	50 97	2.8143	1.4345
4	M	94	5895	52.70	2.3393	1.2329
4	M	98	6931	51,81	2.6858	1.3916
4	M	98	5932	52.22	2,3326	1.2182
4	M	98	6933	54.01	2.9548	1.6012
4	M	98	6934	51.79	3.2365	1.6762
4	M	98	6935	53.70	2.6372	1.4152
4	PAR .	104	6951	52.56	2.8390	1.4922
4	M	104	5952	52.41	2.6857	1.4076
4	M	104	6953	51.53	2.8327	1.4855
4	M	104	6954	51.25	2.0469	1.0491
4	M	104	6955	52.92	2.3989	1.2594
4	M	107	3000	53.21	2.3582	1.2501
4	14	107	3001	53.52	2.7344	1,4534
4	M	107	3002	54.81	2.7585	1.5120
4	M	107	3003	51.01	2.8361	1.4467
4	M	107	3004	53.86	2.5535	1.3752
4	M	112	7031	52.53	2.5180	1.3227
4	M	112	7032	53.58	2.6913	1.4419
4	M	112	7033	50.96	2.1788	1.1103
4	M	112	7034	53.57	2.6306	1.4361
4	M	112	7035	53.23	3.0142	1.6045
4	M	117	7405	52.83	2.2453	1.1861
4	M	117	7406	55,45	2.5279	1,4016
4	M	117	7407	51.16	2.4302	1.2432
4	M	117	7408	54.62	2.3562	1 2325
4	M	117	7409	50.57	2.7499	1 3906
4	M	125	7445	54.11	2.4545	1 3335
4	M	125	7446	53.00	2.8532	1 5123
4	M	125	7447	52.74	2.8858	1.5219

(b) (4) Project No. NV-13-2

BLDG 7

Treatment	Sex	Pen No.	Bone No.	% Ash (600°C)	(105°C) (grams)	Ash Wt (600°C) (grame)
4	M	125	7448	53.15	2.4783	1.3171
4	M	125	7449	50.78	3.0749	1.5615
4	M	130	1918	52.86	2.6387	1.3948
4	M	136	1919	52.91	2.4150	1.2793
4	M	130	1920	53.61	3 1046	1.6643
4	M	130	1921	50.57	2.9318	1.4826
4	145	130	1922	50.39	2.4207	1.2198
4	14	132	1938	52.22	2.6916	1.4056
4	M	132	1939	52.58	2.5754	1.3557
4	M	132	1940	53.6E	3.0904	1.6582
4	M	132	1941	53.04	3.2525	1.7304
4 4	M	132	1942	53.25	2.5786	1.3730
1.20	M	136	1978	52.93	2.3127	1.2241
4	M	136	1979	54.89	2.4515	1.3511
4	M	136	1980	53.09	2.7504	1.4603
4	M	136	1981	54.83	2.6798	1.4593
4	M	136	1982	51.89	2.4517	1.2773
fotel/Annanges Wanderd Devästions CVa			52.88 1.24 2.34%	2.86 0.27 10.31%	0.16 10.67%	

Page 105 of 110

Graph 4. Tibis Ash Weights of Cobb 500 Broilers (b) (4) Project No. NV-13-2 BLDG 7

restorent (ema*C)		Transment Description			
1	53.30	Positive Control (PC)			
2	44.73	Negative Cortani (NC)			
3	51.24	NC WID 250 U CIBENZAN PHYTAVERSE" GIO per lag dies			
4	32.86	NC WEB 500 U CIBENZAS PHYTAVERSE* G 15 per 10 diet			

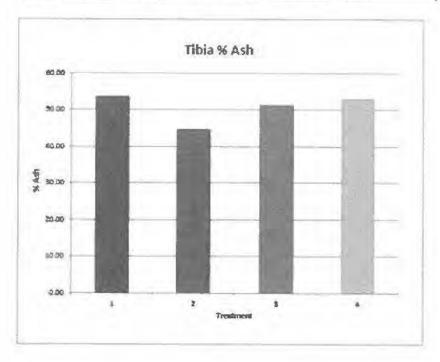


Table 18. Tibia Ash Calcium, Phosphorus, and Magnesius (b) (4) Project No. NV-13-2 BLOG 7

Trestment	Pen No.	Calchin VilVN	Prosphorus WW%	Magazinium WAVA
1	83	36.10	17.06	0.78
3	84	36.39	16.82	0.69
2	25	36.20	16.26	0.63
- 4	86	35.48	17.33	0.72
2	87	36.12	16.46	6.52
3 1	58	35.28	35.32	0.69
1	89	37.36	17.55	0.75
4	90	37.43	17.33	0.74
3	91	37.42	17 33	0.71
2	92	37.89	17.00	0.63
1	93	38.39	18,13	0.79
4	54	38.70	17.99	0.76
1	95	35.23	17.91	0.77
2	96	39.03	17.51	0.68
3	97	36.75	17 18	0.69
4	98	39.93	18.26	0.75
2	103	38.93	17.52	0.63
4	102	37.45	17.78	0.73
3	105	36.84	18.26	0.72
1	106	36.53	17.59	0.76
4	107	38.78	18.49	9.77
2	808	39.26	17.68	0.65
3	109	38.89	18.35	0.78
1	110	39.52	19.14	0.57
2	111	38.81	17 19	0.60
4	112	40.11	18.26	0.76
3	113	35.79	15.49	0.70
1	154	39.45	18.47	0.81
2	115	37,80	16.55	0.62
1	125	37.85	18.04	9.77
4	117	37.57	17.83	0.78
3	118	36.95	16.64	0.57
2	123	38.65	17.35	9.71
3	124	38.88	17.53	0.68
1	125	38.38	17 62	0.73
1	125	37.51	17.81	0.81
5	127	37 43	17.36	0.78
3	128	39.67	17 80	0.73
2	129	35.91	16.30	0.59
4	130	38.87	17.59	0.75
1	131	37.07	18.15	0.53
4	132	36.86	17.11	0.35
2	133	38.42	16.88	0.63
3	134	38.09	17.59	0.71
2	135	37.37	16.76	0.71
4	136	38.32	17.55	
1	137	30.19	1000000	0.73
3	139	37.71	17.81	0.79

Table 19. Tibia Ash Calcium, Phosphorus, and Magnesiu (b) (4) Project No. NV-13-2 BLDG 7

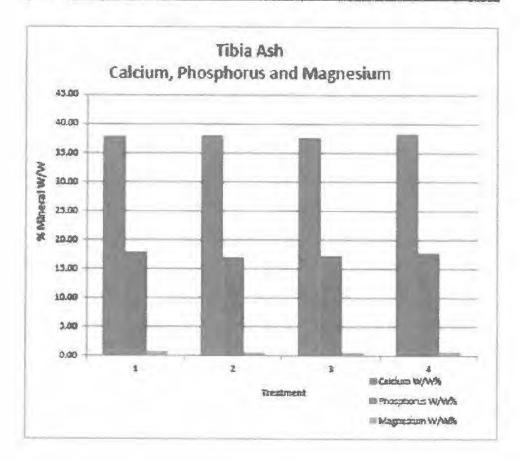

Treatment	Pen Ho.	California W/W/%	Phosphorus WWW.	Magnestian WWW
1	83	36.10	17.05	0.78
1	89	37.36	17.55	0.75
-1	93	38.39	15.13	5.79
1	95	38.25	17.91	0.77
1	156	36.53	17.59	0.76
1 1	110	39.52	19.14	0.67
4	114	39.45	18.47	0.61
1	115	37.85	18.04	0.77
1	125	37.51	17.81	0.81
1	127	37.43	17.36	0.78
1	131	37.00	18,15	0.82
1	137	38.19	17.81	0.79
lotal/Averages		37.40	17.82	0.79
Canadard Davids		1.04	0.64	9.02
Otto	1315	2.74%	3.02%	4.10%
				207.01
2	83	35.20	16.26	0.63
2	87	35,12	15.45	0.62
2	92	37.89	17.00	0.63
2	96	39.63	17.51	0.58
2	1933	38.93	17.52	0.63
Z	108	39.26	17.68	0.65
2	111	38.81	17.19	0.60
2	115	37 80	16.85	0.62
2	123	36.85	17.35	0.71
2	129	35.91	16.30	0.59
2	133	38.42	16.88	0.53
2	135	37.97	16.76	0.66
Mary Averages		37.53	10.00	0.00
Impderel Device	deen.	1.21	0.48	9.69
Nebs		3.20%	2.03%	6.23%
				**
3	84	35.39	16.82	0.69
3	88	35.28	15.32	0.59
3	91	37.42	17.33	0.71
3	97	35.70	17.18	0.69
3	105	38.84	16.25	0.72
3	109	38.89	16.35	0.78
3	113	35.79	16.49	0.70
3	118	36.95	15.84	0.57
3	124	38.68	17.53	0.55
3	128	39.67	17.60	0.73
3	134	38.09	17.59	0.71
3	138	37.71	17.39	6.70
otal/Amerypus		27.66	17,81	0.71
bendard Device	tores	1.00	0.03	0.00
379		0.00%	3,00%	4.07%

Table 19. Tibia Ash Calcium, Phosphorus, and Magnesiu (b) (4) Project No. MV-13-2 BLOG 7

Treatment	Pen No.	Celclum W/W%	Phosphores WWS	Magnachur. Wenth
A	8	36.48	17.33	5.72
4	90	37.49	17.33	0.74
4	94	38.70	17.99	0.75
4	98	39.93	15.25	0.75
4	104	37.45	17.78	0.73
4	107	38.78	18.49	0.77
4	112	40.11	16.25	0.78
4	117	37.57	17.53	0.78
4	125	38.38	17.62	0.73
4	130	38.87	17.59	0.75
4	132	36.86	17.11	0.75
4	136	38.32	17.55	0.73
Intal/Assessment		38.26	17.78	0.76
Standard Couls CVa	Cheese	1,12	0.AT 2.80%	0.02 2.70%

Greph 5. Tibre Ash Celgium, Phosphorus, and Magnesium Rezults (b) (4). Project No. NV-13-2 BLDG 7

Treatment	Cetrium W/W/S	Phosphores W/W/s	Magassium W/w/h	Treatment Description
1	37.20	17.92	0.79	Positive Control (PC)
2	37.93	16 98	0.64	Megative Control (NC)
3	37.33	17.31	0.71	ME MOUCEDIES ANTINCRE - GROWN
4	38.25	17.76	0.73	NO MED STOLL CHEDICAL PRYTANTINE TO SERVE AS

Appendix 27: Homogeneity of CIBENZA® PHYTAVERSE® in Broiler Starter Feed Report

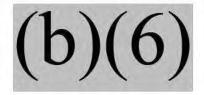
Please note we do not consider this appendix as confidential. This report was inadvertently marked as "Proprietary and Confidential".

BASF Enzymes LLC Page 1 of 7

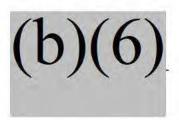
Homogeneity of CIBENZA® PHYTAVERSE® in Broiler Starter Feed Report

Gloria Ramírez

(b)(6)


April 13, 2017

Homogeneity of CIBENZA® PHYTAVERSE® in Broiler Starter Feed Report


SIGNATURE PAGE

Quality Control:

13 Apr 2017 Date

Quality Assurance:

13 Apr 2017 Date

$Homogeneity\ of\ CIBENZA^{\circledR}\ PHYTAVERSE^{\circledR}\ in\ Broiler\ Starter\ Feed\ Report$

Table of Contents

Purpose	l
Summary	1
Materials	
Phytase	1
Feed	1
Methods	2
Results	3
Conclusion	3

Homogeneity of CIBENZA® PHYTAVERSE® in Broiler Starter Feed Report

Purpose

The study Evaluation of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme Homogeneity in Broiler Starter Feed conducted at (b) (4) protocol (b) (4) evaluates the homogeneity of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in broiler starter feed manufactured for the U.S. utility trial.

Summary

The distribution of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in broiler starter feed diets used for the U.S. utility trial was analyzed by the measurement of phytase activity in 10 samples collected throughout manufacturing of the diets. CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was determined to be homogeneously distributed in the diets, manufactured to contain 250 U/kg and 500 U/kg of the enzyme, based upon the coefficient of variation (CV) of the measured phytase activity. The calculated CV was 10% for the 250 U/kg diet and 7% for the 500 U/kg diet. The positive and negative controls that do not contain CIBENZA® PHYTAVERSE® G10 Phytase Enzyme were tested for information only and were not used to determine the homogeneity of the dosed enzyme in the feed.

Materials

Phytase

CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, Lot P26641

Feed

Table 1: CIBENZA® PHYTAVERSE® G10 Phytase Enzyme Homogeneity Broiler Starter Feed Diets

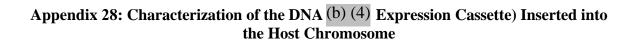
Treatment	Treatment Blinding Code	Diet	Enzyme
1	D	Positive Control	0
2	A	Negative Control	0
3	В	Negative Control	250 U CIBENZA® PHYTAVERSE® G10 /kg diet
4	С	Negative Control	500 U CIBENZA® PHYTAVERSE® G10 /kg diet

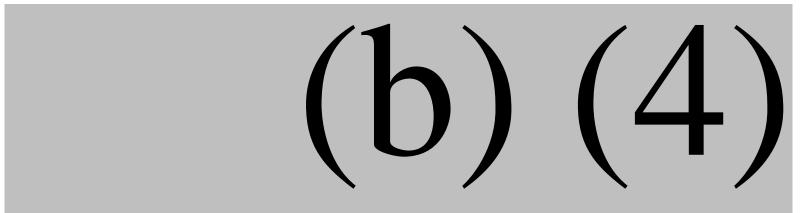
During the feed manufacturing, ten samples were collected after completion of mixing and during the transfer of the batch from the mixer to the packaging hopper. For each of the four treatment diets, approximately 500 grams of sample were collected at regular intervals from the first to the last of the transfer ensuring "across the batch" sampling. Each sample was individually packed and labeled with the study number, treatment blinding code, sample number in sequential order of collection, and the sampling date.

Methods

- - complex with a molybdate/vanadate reagent, which is measured using a fixed wavelength spectrophotometer at 415 nm. Activity is calculated as U/kg, where one unit is defined as the amount of enzyme that releases 1 μ mol of inorganic phosphate from phytate per minute under the standard assay conditions.
- 3. Homogeneity was determined using the CV of the phytase activity results for samples containing CIBENZA® PHYTAVERSE® G10 Phytase Enzyme. The positive and negative controls that do not contain CIBENZA® PHYTAVERSE® G10 Phytase Enzyme were tested for information only and were not used to determine the homogeneity of the dosed enzyme in the feed.

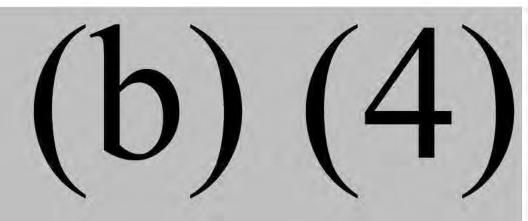
Results


Phytase activity was determined in 10 independent samples of mash broiler starter feed diets dosed with 250 U/kg and 500 U/kg of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme, see Table 2. The average phytase activity in the diet dosed with 250 U/kg of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was 271 U/kg with a CV of 10%. The average activity in the diet dosed with 500 U/kg of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was 509 U/kg with a CV of 7%.


Table 2: Homogeneity Analysis of CIBENZA® PHYTAVERSE® G10 Phytase Enzyme in Broiler Starter Feed

Treatment Blinding	Dose	Sample Number									Average	Standard	cv	
Code (Treatment)	(U/kg)	1	2	3	4	5	6	7	8	9	10	Average	Deviation	(%)
В (3)	250						<u></u>	h)	\	(/	1	271	28	10
C (4)	500						1	U_{j}	<i>)</i> \	(1	509	34	7

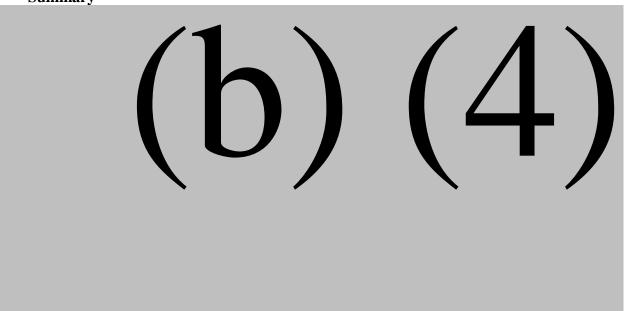
Conclusion


Homogeneity was evaluated in broiler starter feed diets containing CIBENZA® PHYTAVERSE® G10 Phytase Enzyme. Phytase activity was determined in 10 samples collected throughout the manufacturing of each broiler starter feed diet. The positive and negative controls that do not contain CIBENZA® PHYTAVERSE® G10 Phytase Enzyme were tested for information only and were not used to determine the homogeneity of the dosed enzyme in the feed. The starter feed diets were dosed correctly during manufacturing, as the average phytase activity value of 271 U/kg for the 250 U/kg dose represents a recovery of 108% and the average phytase activity value of 509 U/kg in the 500 U/kg dose represents a recovery of 102%. CIBENZA® PHYTAVERSE® G10 Phytase Enzyme was determined to be homogeneously distributed throughout the broiler starter feed diets with a CV of 10% in the 250 U/kg dose and 7% in the 500 U/kg dose.

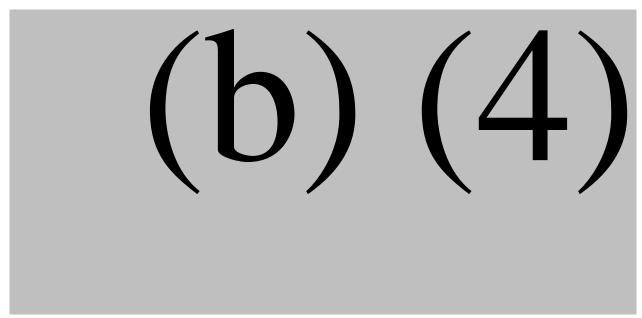
Characterization of the DNA Expression Cassette) Inserted into the Host Chromosome

February 21, 2013

SIGNATURE PAGE

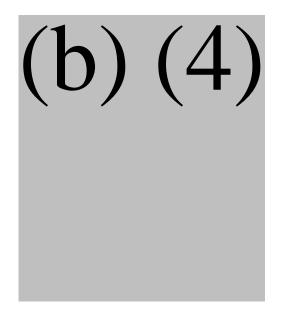

Characterization of the DNA (b) (4) Expression Cassette) Inserted into the Host Chromosome

Author:

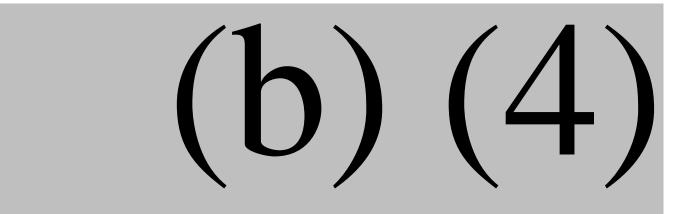

(b) (4), (b)(6)
$$\frac{2/24/2013}{Date}$$

Characterization of the DNA $^{(b)}$ (4) Expression Cassette) Inserted into the Host Chromosome

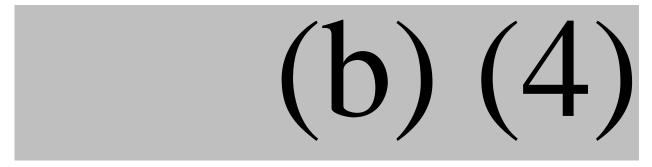
Summary

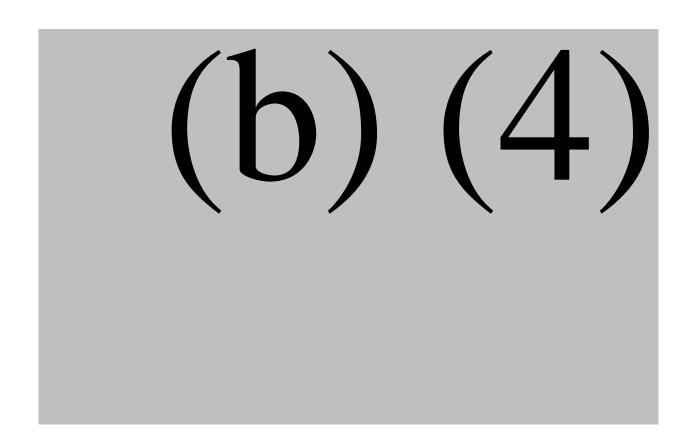


Detailed Information


(b) (4) Confidential Page 1 of 6

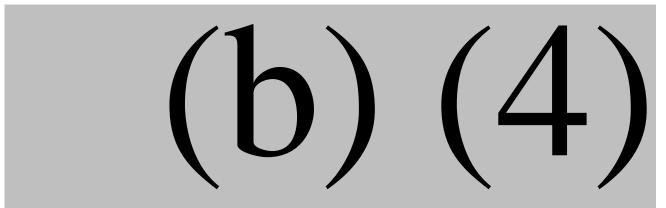
BASF Enzymes LLC Confidential Page 4 of 9

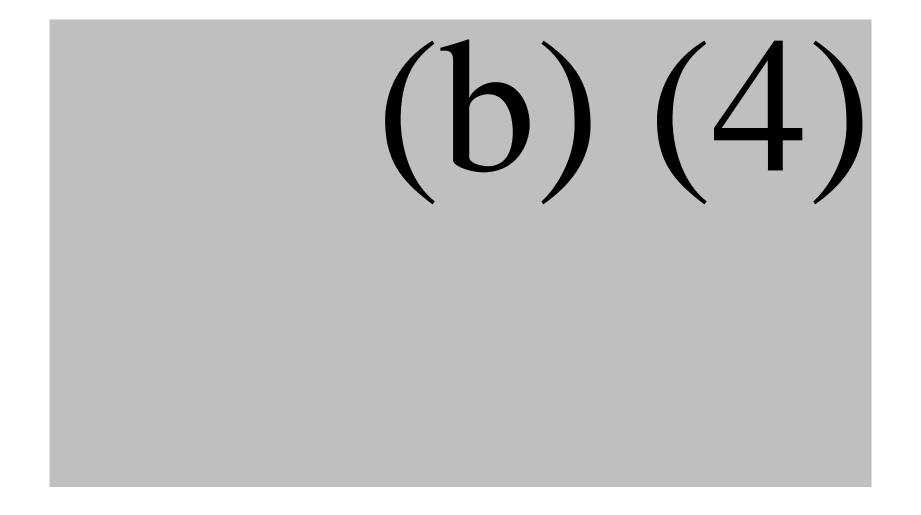



Construction of DC206 by inserting

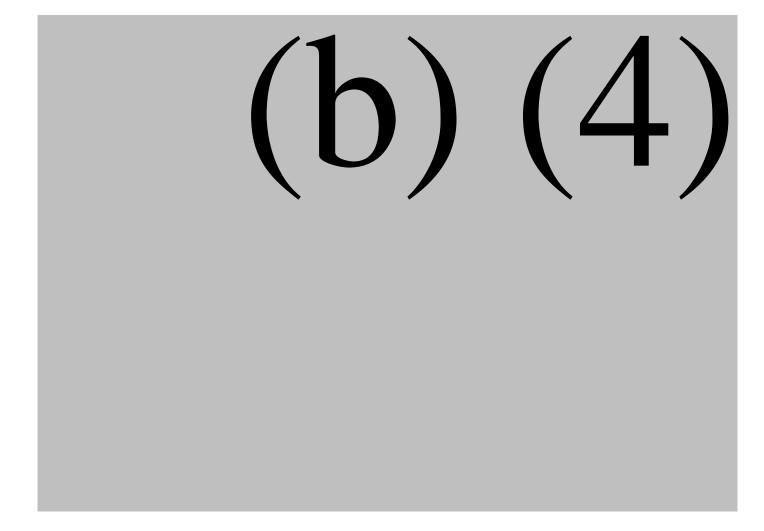
into DC36

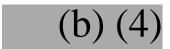

Sequencing and Bioinformatics Analysis




Confidential

Page 3 of 6




(b) (4)

(b) (4)

Confidential Page **5** of **6**

Confidential

Page **6** of **6**

Appendix 30: External Expert Opinion Letter from Dr. Michael Pariza

BASF Enzymes LLC Page 1 of 4

Michael W. Pariza Consulting LLC 7102 Valhalla Trail Madison, WI 53719 (608) 271-5169 mwpariza@gmail.com

Michael W. Pariza, Member

October 17, 2018

Roxanna Van Dorn Senior Regulatory Affairs Specialist BASF Enzymes LLC 3550 John Hopkins Court San Diego, CA 92121

RE: GRAS opinion on the intended uses of BASF Enzyme's Phytase 50104 enzyme preparation from *Escherichia coli* that is expressed in a non-pathogenic, non-toxigenic strain of *Pseudomonas fluorescens*

Dear Mrs. Van Dorn,

I have reviewed the information you provided on BASF Enzyme's Phytase 50104 enzyme preparation from *Escherichia coli* K-12 that is expressed in a non-pathogenic, non-toxigenic strain of *Pseudomonas fluorescens* (*P. fluorescens* BD50104), intended to increase the digestibility of phytin-bound phosphorous in poultry and swine diets. BASF Enzyme's Phytase 50104 enzyme preparation will be marketed in two forms under the names CIBENZA® PHYTAVERSE® L10 phytase enzyme and CIBENZA® PHYTAVERSE® G10 phytase enzyme.

In evaluating Phytase 50104, I considered the biology of *P. fluorescens* and *E. coli* K-12 and their history of safe use in food-grade enzyme manufacture; the history of safe use in animal foods of phytase enzyme preparations from other microbial species; information that you provided in the published document entitled, "Use of Phytase 50104 Enzyme Preparation to Increase the Digestibility of Phytin-Bound Phosphorous in Poultry and Swine Diets," which includes the safe lineage of the production strain *P. fluorescens* BD50104; the cloning methodology which included removal of antibiotic resistance markers; safety evaluation studies on the Phytase 50104 enzyme preparation; manufacturing methods and materials; product specifications; and other information that is publicly available in the peer-reviewed scientific literature.

BASF Enzymes LLC Page 2 of 4

By way of background, *P. fluorescens* has not been associated with food poisoning or illness in humans or animals, other than occasional reports of opportunistic pathogenicity in immunocompromised individuals. The species is commonly isolated from plant surfaces, decaying vegetation, soil, and water, indicating that *P. fluorescens* is widely consumed by humans and domesticated herbivores. Strains derived from *P. fluorescens* MB101, the parental strain of *P. fluorescens* BD50104, have a history of safe use as production organisms for food grade enzymes. Safety studies have been conducted on numerous different enzyme preparations produced by strains within the safe lineage of *P.* fluorescens MB101. The results of these studies indicate the test materials did not contain toxic or genotoxic substances. An example is GRN 126, for which FDA issued a 'no questions' letter.

Escherichia coli K-12 has a long history of safe use in both food and pharmaceutical applications, both as a production organism and gene donor. The phytase gene (50104) that is expressed by *P. fluorescens* BD50104 is a derivative of the native *Escherichia coli* K-12 *appA* gene, which has been cloned and sequenced. To produce the phytase 50104 gene, the native *appA* gene from *E. coli* K-12 strain MG1655 was modified for thermotolerance to withstand the high temperatures encountered during the production of pelleted feeds. The phytase 50104 protein product was sequenced and studied for potential safety issues, specifically amino acid sequences that might elicit allergenicity or toxicity concerns. No such sequences were found.

The phytase 50104 enzyme preparation was evaluated for safety using a battery of genotoxicity assays and toxicological studies in experimental animals, which included an acute oral toxicity test in rats, a 14-day dose range-finding oral toxicity study in rats, a 90 day oral toxicity study in rats, an acute inhalation test in rats, a primary eye irritation study in rabbits, a primary dermal irritation study in rabbits, and a delayed contact hypersensitivity test in guinea pigs. Based on the findings of the 90-day oral toxicity study in rats, the No Observed Adverse Effect Level (NOAEL) was determined to be the highest dose tested, 2000 mg/kg. Using this value and the estimated phytase 50104 consumption levels for the target animal species poultry and swine, respectively, the margins of safety were determined to be 6233 and 7169, respectively.

The *P. fluorescens* BD50104 production strain and its product phytase 50104 were formally evaluated using the Pariza-Johnson decision tree as adapted for animal feed by Pariza and Cook (Regulatory Toxicol. Pharmacol. 56: 332-342, 2010). The conclusion of this analysis was that the production strain and enzyme preparation were accepted.

The cloning techniques and methodologies employed to construct *P. fluorescens* BD50104 are appropriate for use in the genetic modification of production strains for food ingredient manufacture. The manufacturing process, including the ingredients used for fermentation, extraction and concentration, and the specifications for the phytase 50104 enzyme preparation, are appropriate for a food ingredient.

Based on the foregoing, I concur with the evaluation made by BASF Enzymes LLC that its *P. fluorescens* BD50104 production strain is safe and appropriate to use for the manufacture of food-grade phytase. I further concur with the conclusion of BASF Enzymes LLC that the phytase

BASF Enzymes LLC Page 3 of 4

50104 enzyme preparation, manufactured in a manner that is consistent with current Good Manufacturing Practice (cGMP) and meeting appropriate food-grade specifications, is *GRAS* (Generally Recognized As Safe) based on scientific procedures for use in poultry and swine feed to increase the digestibility of phytin-bound phosphorous.

It is my professional opinion that other qualified experts would also concur with these conclusions.

Sincerely,

Michael W. Pariza, Ph. D.

Michael W. Pariza

Member, Michael W. Pariza Consulting, LLC

Professor Emeritus, Food Science

Director Emeritus, Food Research Institute

University of Wisconsin-Madison

BASF Enzymes LLC Page 4 of 4