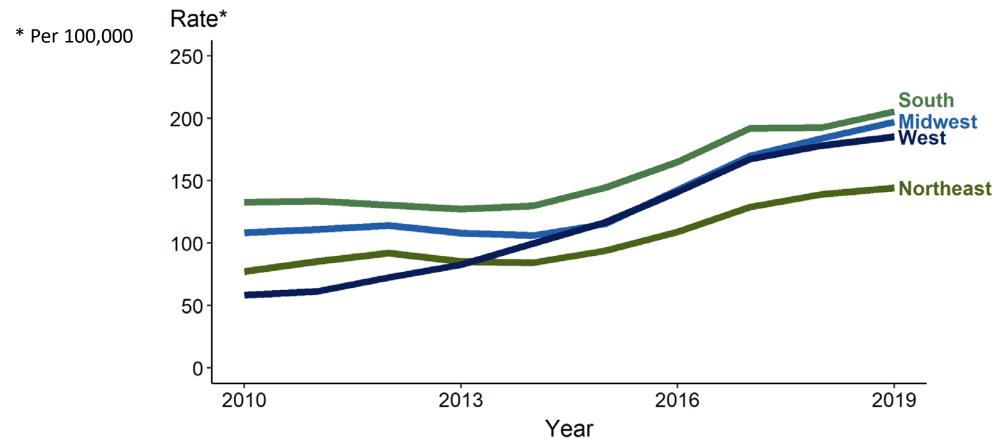
National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention Division of STD Prevention

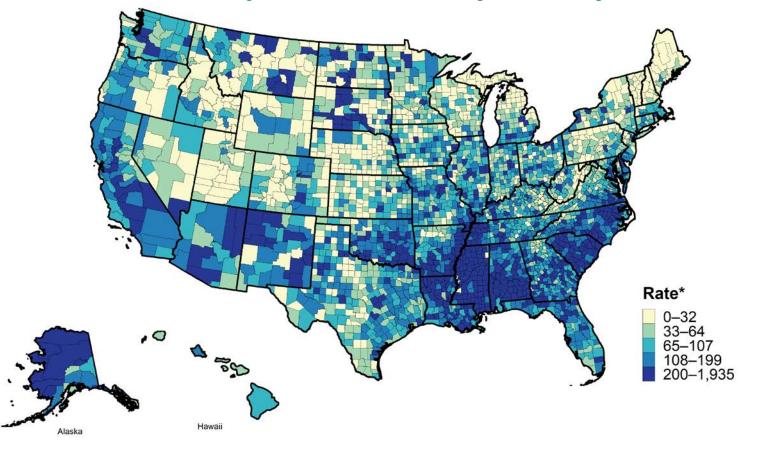
Treatment of Gonorrhea: Current State and Future Considerations

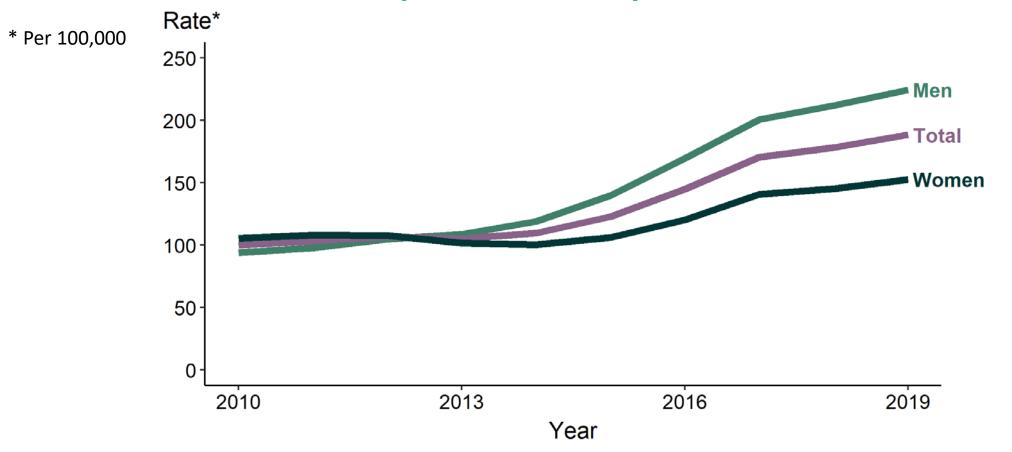

Laura Hinkle Bachmann MD, MPH Chief Medical Officer Acting Deputy Division Director Division of STD Prevention Centers for Disease Control and Prevention

Development Considerations of Antimicrobial Drugs for the Treatment of Gonorrhea FDA/NIAID/CDC Workshop Virtual Meeting April 23, 2021

Outline

- Gonorrhea surveillance in the U.S.
 - Case trends
 - Monitoring susceptibility
- Antimicrobial stewardship
- Collateral impact and co-occurring pathogens
- Pharmacokinetic and pharmacodynamic considerations
- Updated gonorrhea treatment guidelines


Gonorrhea — Rates of Reported Cases by Region, United States, 2010–2019


Gonorrhea — Rates of Reported Cases by County, United States, 2019

* Per 100,000

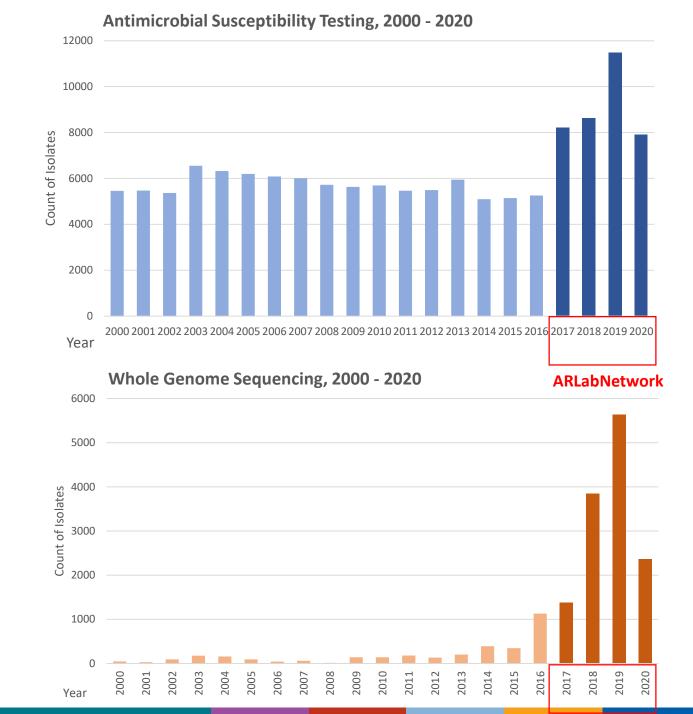


Gonorrhea — Rates of Reported Cases by Sex, United States, 2010–2019

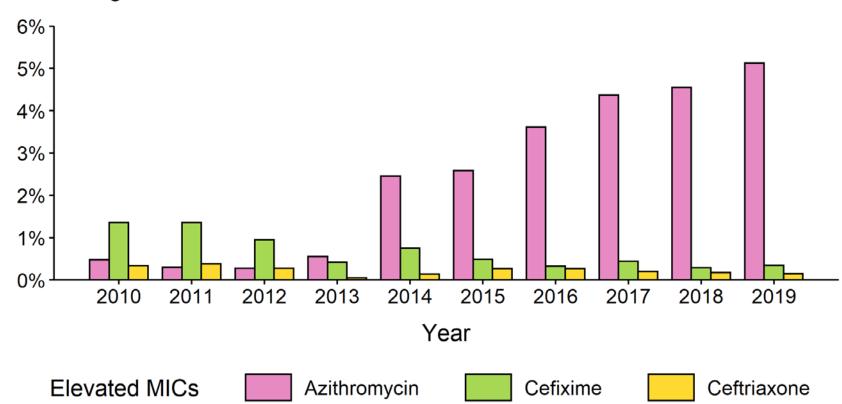
AR Lab Network*	SURRG ⁺	SSuN [¥] Sites	GISP ^c Sentinel Site	s		eGISP [#]
• Maryland • Tennessee • Utah • Washington	 Denver Guilford County (NC) Honolulu Indianapolis Milwaukee New York City San Francisco Seattle 	 Baltimore California Columbus Florida Indiana Multnomah County (OR) New York City Philadelphia San Francisco Utah Washington 	 Albuquerque Anchorage Baltimore Birmingham Buffalo Camden/Paterson Chicago Columbus Dallas Denver Greensboro 	 Honolulu Indianapolis Jackson Kansas City Las Yegas Los Angeles Miami Milwaukee Minneapolis New Orleans New York City 	 Orange County (CA) Philadelphia Phoenix Pontiac Portland San Diego San Francisco Seattle Tripler Army Medical Center (HI) Washington, DC 	 Chicago Columbus Las Vegas New Orleans Orange County (CA) Philadelphia Phoenix Pontiac San Diego

*AR Lab Network- AR Lab Network for Gonorrhea *SURRG-Strengthening the U.S. Response to Resistant Gonorrhea *SSUN-STD Surveillance Network *GISP-Gonococcal Isolate Surveillance Project *GISP-Enhanced Gonococcal Isolate Surveillance Project

GISP		
1986		ARLN
Core national		2016
sentinel surveillance system of ARGC		Nationwide laboratory infrastructure for antibiotic resistant organisms
~ 25-30 clinical sites		7 regional laboratories (4 GC labs)
Male only		All isolates
Urethral isolates		GISP, eGISP, SURRG
only		susceptibility testing (agar dilution)
	SURRG	eGISP
	2016	2017
	Rapid detection and response of ARGC	Surveillance system of expanded populations, infection sites and <i>Neisseria</i> species
	9 jurisdictions	12 clinical sites
	Male and Female	Male and Female
	Genital and extragenital isolates	Genital and extragenital isolates


Increased capacity of AST and WGS

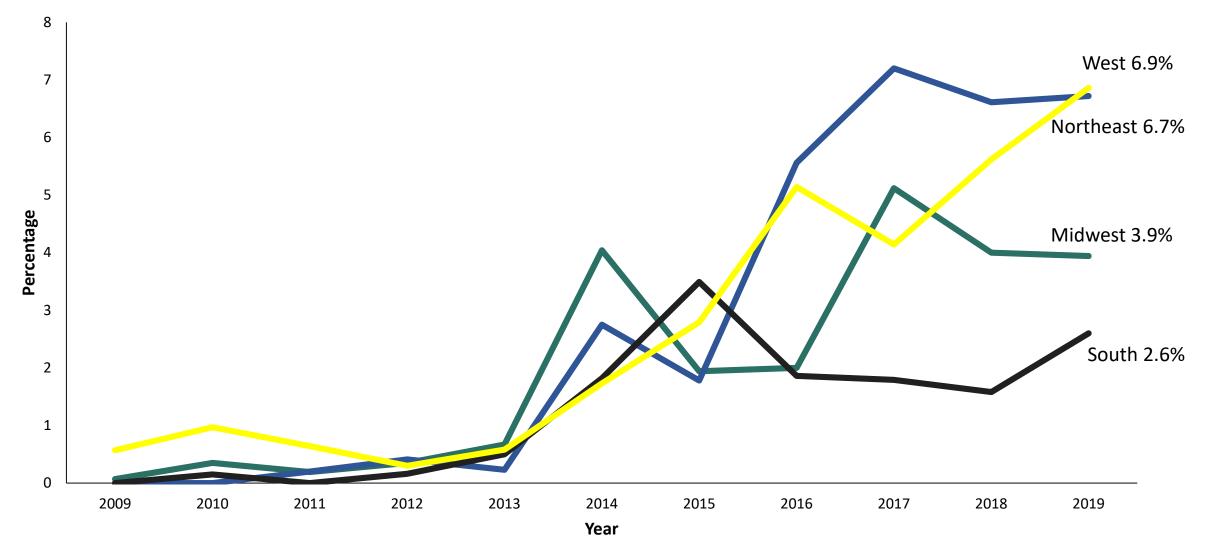
Count of AST performed annually, Prior 2016 ~5700 Post 2017 8500 - 12000


Count of WGS completed annually, Prior 2016 10 – 200

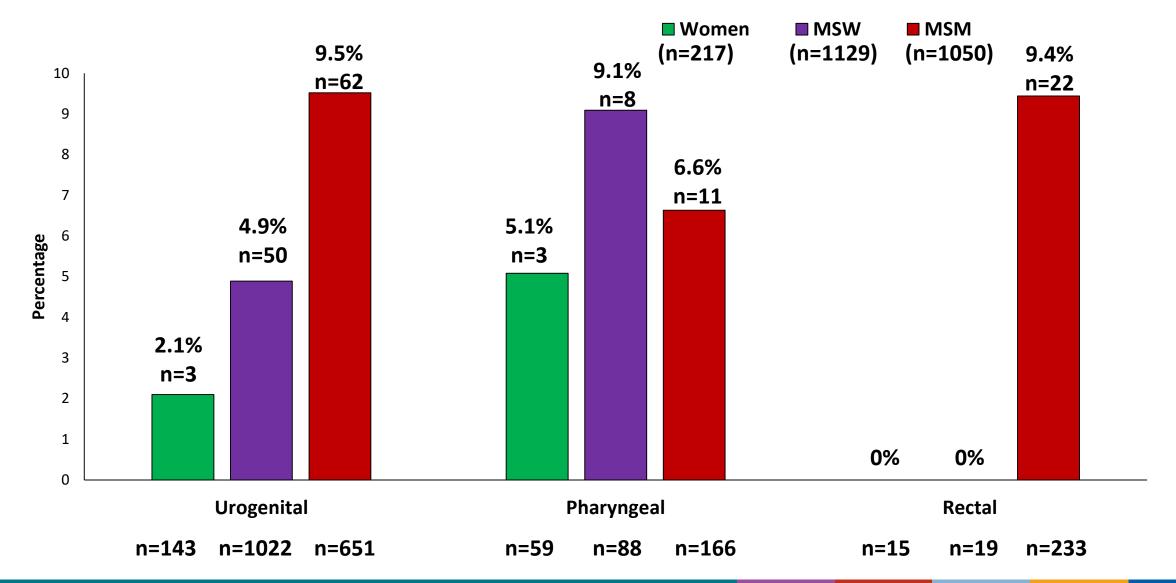
Post 2017 3500 - 5500

By 2020, over 9200 NG sequences submitted to public archive, NCBI SRA.

Neisseria gonorrhoeae — Percentage of Isolates with Elevated Minimum Inhibitory Concentrations (MICs) to Azithromycin, Cefixime, and Ceftriaxone, Gonococcal Isolate Surveillance Project (GISP), 2010–2019



Percentage

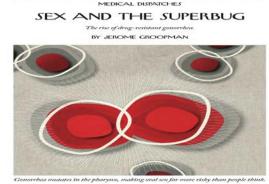


NOTE: Elevated MIC = Azithromycin: $\geq 2.0 \ \mu g/mL$; Cefixime: $\geq 0.25 \ \mu g/mL$; Ceftriaxone: $\geq 0.125 \ \mu g/mL$

Prevalence of Isolates with Elevated Minimum Inhibitory Concentrations (MICs) to Azithromycin(MIC \geq 2.00 µg/ml) by Region, GISP, 2009-2019

Percentage of Isolates with Elevated Minimum Inhibitory Concentrations (MICs) to Azithromycin by Anatomic Site and by Gender and Gender of Sex Partners, eGISP, 2018

In summary:


- Surveillance methods for gonorrhea resistance in the U.S. continue to expand
- Reduced susceptibility to cephalosporins among gonorrhea isolates in the U.S. remains low
- The percentage of isolates with elevated MICs to azithromycin detected through U.S. surveillance systems continues to increase

Antimicrobial Stewardship and Collateral Damage

Role of Extra-genital sites

- Well-documented that screening for GC and CT in asymptomatic MSM yield more infection than traditional genitourinary screening
- Understanding of the interaction between organisms and environment still poorly understood
 - GC more difficult to eradicate in the pharynx
 - The pharynx may be a special place for the development of drug resistance (influence of resident flora that may exchange genetic material)
 - The asymptomatic nature of extra-genital infections may select for resistance at these sites
 - Concerns about rectal chlamydia and treatment response; ?autoinoculation of vagina/cervix
 - Understanding of drug penetration in these orifices limited

The New Yorker, October 2012

Macrolide and Nonmacrolide Resistance with Mass Azithromycin Distribution

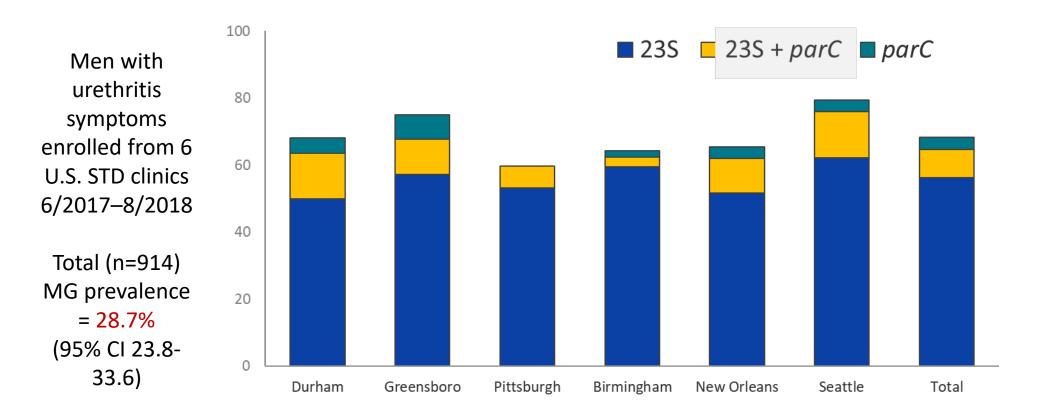

	36 Months		48 Months	
Macrolides	_ -	7.36 (4.02–16.73)	_	7.46 (3.76–23.14
Aminocoumarins	•	— 3.70 (1.03-NR)	•	— 3.61 (0.96-NR)
Aminoglycosides	_ _	2.32 (1.33-4.57)	•	1.63 (0.85-4.29)
Bacitracin	• 	3.21 (1.42-12.10)		1.55 (0.61-8.75)
Beta-lactams	—• —	2.13 (1.33-4.02)	—• —	1.98 (1.10-4.57)
Cationic peptides	_ _	2.37 (1.33-4.88)	÷	1.66 (0.85-4.88)
Elfamycins	——	2.00 (1.10-7.20)	• • • • • • • • • • • • • • • • • • •	1.72 (0.90-4.29)
Fluoroquinolones		2.09 (1.17-5.21)	÷	1.77 (0.85-6.33)
Metronidazole	•	2.32 (0.90-5.93)	•	3.59 (1.73-8.20)
Multidrug resistance	_ _	2.10 (1.25-4.57)		1.72 (0.85-4.88)
Rifampin	•	3.06 (1.03-19.05)	•	2.14 (0.85-14.70
Sulfonamides		2.75 (0.85-13.78)		2.09 (0.79–15.68
Tetracyclines		1.68 (1.10-3.31)	—• —	1.75 (1.03-4.02)
Trimethoprim	0.5 1.0 2.0 4.0 8.0 16.0	2.22 (1.25-5.21)	0.5 1.0 2.0 4.0 8.0 16.0	1.61 (0.85-4.29)
		Factor Difference		

Figure 4. Antibiotic-Resistance Determinants in the Gut of Children at the 36-Month and 48-Month Samples.

The difference in antibiotic-resistance determinants in the azithromycin-treated group as compared with the group that received placebo is shown, with associated 95% confidence intervals. The 36-month samples were obtained 6 months after the sixth distribution, and the 48-month samples were obtained 6 months after the eighth distribution. NR denotes not reached.

MAGNUM

Prevalence of 23S rRNA macrolide resistance mutations and *parC* fluoroquinolone resistance mutations by study site

National Institutes of Health [HHSN2722013000121, HHSN272000010, DIMD16-0039]

Bachmann LH, Kirkcaldy RD, et al. CID 2020

Clinical Infectious Diseases

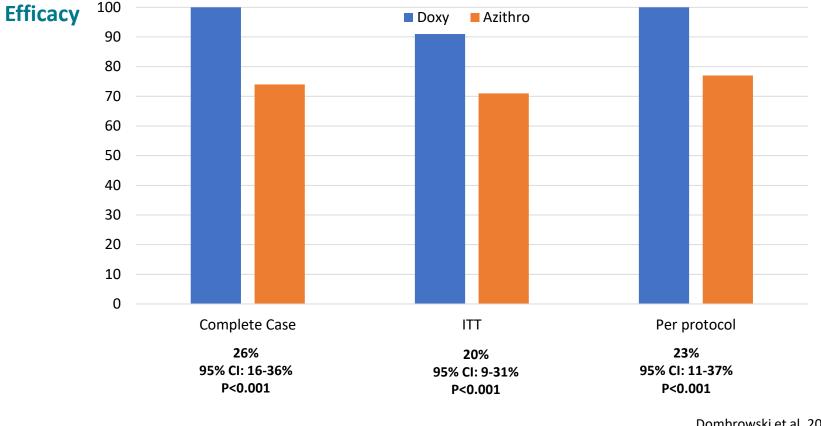
MAJOR ARTICLE

International Spread of Multidrug-Resistant *Campylobacter coli* in Men Who Have Sex With Men in Washington State and Québec, 2015–2018

Alexander L. Greninger,^{1,a} Amin Addetia,^{1,a} Kimberly Starr,¹ Robert J. Cybulski,² Mary K. Stewart,¹ Stephen J. Salipante,¹ Andrew B. Bryan,¹ Brad Cookson,¹ Christiane Gaudreau,^{3,4} Sadjia Bekal,^{4,5} and Ferric C. Fand¹

MECHANISMS OF RESISTANCE

Genetic Mechanisms behind the Spread of Reduced Susceptibility to Azithromycin in *Shigella* Strains Isolated from Men Who Have Sex with Men in Québec, Canada


Khadidja Yousfi,^a Christiane Gaudreau,^{b,c} Pierre A. Pilon,^{a,e} Brigitte Lefebvre,^a Matthew Walker,^d Éric Fournier,^a Florence Doualla Bell,^a Christine Martineau,^{a,b} Jean Longtin,^a Sadjia Bekal^{a,b}

Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study

Kate S Baker, Timothy J Dal man, Philip M Ashton, Martin Day, Gwenda Hughes, Paul D Crook, Victoria L Gilbart, Sandra Zitter mann, Vanessa G Allen, Benjamin P Howden, Takehiro Tomita, Mary Valcanis, Simon R Harris, Thomas R Connor, Vitali Sintchenko, Peter Howard, Jeremy D Brown, Nicola K Petty, Malika Gouali, Duy Pham Thanh, Karen H Keddy, Anthony M Smith, Kaisar A Talukder, Shah M Faruque, Julian Parkhill, Stephen Baker, François-Xavier Weill, Q aire Jenkins, Nicholas R Thomson

Randomized Controlled Trial of Doxycycline vs Azithromycin for Rectal CT Infection in MSM

Microbiologic Cure at Four Weeks by Treatment Group

Dombrowski et al. 2020 STD Prevention Conference

Rectal CT in Women

- Rectal infection not uncommon in women with CT
 - Rectum positive in 68.5% 89%
- History of anal sex not predictive of infection
 - Auto-inoculation of the rectal site from an infected genital site
- Can the rectal site serve as a reservoir for persistent chlamydial infection and a source of auto-inoculation from the GI to the GU tract?

Van Liere GAFS STI 2014; Workowski KA JAMA 1993; Ding A Int J STD AIDS 2014; van Liere GA BMC Infect Dis 2014; Gratrix J CID 2014

In Summary

- Evidence of:
 - Microbiome impact from (relatively little) azithromycin
 - Increasing azithromycin resistance in potentially co-occurring pathogens
 - M. genitalium
 - Shigella sp.
 - Campylobacter sp.
 - Superior efficacy of doxycycline, most markedly for rectal CT
 - Despite concerns for difference in adherence
 - Increased concern related to (often undetected) rectal infections in women

Pharmacokinetic and Pharmacodynamic Considerations

Summary of Pharmacokinetic/Pharmacodynamic Parameters

PARAMETER	Ceftriaxone	Azithromycin	
Activity	Bactericidal	Bacteriostatic	
Bioavailability	100% IM/IV	37% (PO)	
Tmax	2-3 hours	2-3 hours	
Half-life	~8 hours	68 hours	
Volume of Distribution	0.19	31.1	
% Protein Binding	~95%	Concentration dependent: 51% at 0.02 mcg/mL to 7% at 2 mcg/mL	
Saliva:plasma Ratio	<0.004	6	
Excretion	Urine (active drug) & bile (byproduct)	Bile/feces	
PK/PD Predictor	fT>MIC	AUC/MIC	
Minimal Time or Ratio to predict Cure 20 - 24 hours		>40	

Slide credit: Lindley Barbee, MD

Calculated ceftriaxone doses for various human weights extrapolated from the Murine Model

Weight	3 mg/kg	5 mg/kg^	10 mg/kg	15 mg/kg	30 mg/kg	120 mg/kg
50 kg	150 mg	250 mg	500 mg	750 mg	1500 mg	6000 mg
<u>80 kg*</u>	240 mg	400 mg	800 mg	1200 mg	2400 mg	9600 mg
100 kg	300 mg	500 mg	1000mg	1500 mg	3000 mg	12,000 mg
150 kg	450 mg	750 mg	1500mg	2250 mg	4500 mg	18,000 mg

*Average U.S. Adult is 80kg (176lb)

^ Connolly et al murine model required 5 mg/kg for MIC of 0.008 (GISP MIC50)

Slide credit: Dr. Lindley Barbee & Dr. Sancta St. Cyr

Calculated ceftriaxone doses for various human weights extrapolated from the Murine Model

Weight	3 mg/kg	5 mg/kg^	10 mg/kg	15 mg/kg	30 mg/kg	120 mg/kg
50 kg	150 mg	250 mg	500 mg	750 mg	1500 mg	6000 mg
<u>80 kg*</u>	240 mg	400 mg	800 mg	1200 mg	2400 mg	9600 mg
100 kg	300 mg	500 mg	1000mg	1500 mg	3000 mg	12,000 mg
150 kg	450 mg	750 mg	1500mg	2250 mg	4500 mg	18,000 mg

*Average U.S. Adult is 80kg (176lb)

^ Connolly et al murine model required 5 mg/kg for MIC of 0.008 (GISP MIC50)

Slide credit: Dr. Lindley Barbee & Dr. Sancta St. Cyr

Calculated ceftriaxone doses for various human weights extrapolated from the Murine Model

Weight	3 mg/kg	5 mg/kg^	10 mg/kg	15 mg/kg	30 mg/kg	120 mg/kg
50 kg	150 mg	250 mg	500 mg	750 mg	1500 mg	6000 mg
<u>80 kg*</u>	240 mg	400 mg	800 mg	1200 mg	2400 mg	9600 mg
100 kg	300 mg	500 mg	1000mg	1500 mg	3000 mg	12,000 mg
150 kg	450 mg	750 mg	1500mg	2250 mg	4500 mg	18,000 mg

*Average U.S. Adult is 80kg (176lb)

^ Connolly et al murine model required 5 mg/kg for MIC of 0.008 (GISP MIC50)

Slide credit: Dr. Lindley Barbee & Dr. Sancta St. Cyr

In summary:

- Pharmacokinetic properties of ceftriaxone and azithromycin are very different
 - Unclear if PK/PD for pharynx is the same as anogenital
 - Differences in antimicrobial properties by anatomic site may contribute to potential for resistance selection
 - Long tail for azithromycin; Enhance selection for resistance?
- Ceftriaxone with highly variable individual pharmacokinetics
- Calculated doses based on weight suggest need to increase dose to achieve requisite time that serum free (unbound) drug concentration remains higher than the organism's MIC

Treatment Recommendations

"A gonorrhea begins and God alone knows when it will end" Phillipe Ricord, French venereologist

2015 CDC STD Treatment Guidelines

Ceftriaxone 250mg IM x 1 Plus Azithromycin 1gm orally x 1* (even if chlamydia ruled out)

*Azithromycin used as a strategy to protect ceftriaxone

Morbidity and Mortality Weekly Report

Update to CDC's Treatment Guidelines for Gonococcal Infection, 2020

Sancta St. Cyr, MD¹; Lindley Barbee, MD^{1,2}; Kimberly A. Workowski, MD^{1,3}; Laura H. Bachmann, MD¹; Cau Pham, PhD¹; Karen Schlanger, PhD¹; Elizabeth Torrone, PhD¹; Hillard Weinstock, MD¹; Ellen N. Kersh, PhD¹; Phoebe Thorpe, MD¹

Uncomplicated Gonococcal Infections of the Cervix, Urethra, or Rectum

Recommended Regimen for Persons Weighing < 150 kg

Ceftriaxone 500* mg IM in a single dose

*For persons weighing \geq 150 kg, 1 gm ceftriaxone should be administered.

If chlamydial infection has not been excluded, treat for chlamydia with Doxycycline 100 mg orally 2 times/day for 7 days.

Test of cure for pharyngeal infection 7-14 days after treatment

In Summary:

Gonorrhea Treatment Continues to Evolve

- Emerging antimicrobial resistance and the importance of antimicrobial stewardship affected gonorrhea treatment recommendations
- Azithromycin resistance continues to increase with impacts across multiple organisms
- New data on azithromycin efficacy for chlamydia (particularly rectal infection) factored into decision-making process in addition to the science of pharmacokinetics/pharmacology
- Monitoring for the emergence of ceftriaxone resistance through surveillance and health care providers' reporting of treatment failures will be essential
- New gonorrhea preventive and therapeutic agents are needed

Acknowledgements

- Sancta St. Cyr, MD, MPH
- Lindley Barbee, MD, MPH
- Kim Workowski, MD
- Cau Pham, PhD
- Karen Schlanger, PhD
- Lizzi Torrone PhD
- Hillard Weinstock, MD
- Ellen Kersh, PhD
- Phoebe Thorpe, MD, MPH
- Gail Bolan, MD
- Kim Gernert, PhD
- Kristen Kreisel, PhD