
Page 1

FDA PUBLIC WORKSHOP
DEVELOPING ANTIFUNGAL DRUGS FOR THE TREATMENT OF COCCIDIOIDOMYCOSIS (VALLEY FEVER) INFECTION

DATE: Wednesday, August 5, 2020
TIME: 5:30 p.m.
LOCATION: Virtual Silver Springs, MD 20903
REPORTED BY: Janel Folsom, Notary Public

APPEARANCES:
JOHN FARLEY
DAVID STEVENS
ERIN ZEITUNI
LISA SHUBITZ
ROB PURDIE
KLAUS ROMERO
GRAY HEPPNER
ELIZABETH O'SHAUGHNESSY
JOHN GALGIANI
ANTONINO CATANZARO
Job No. CS3856656

Meeting	
1 ROYCE JOHNSON 2 JOHN REX 3 ED GARVEY 4 DAVID ANGULO 5 GARETH LEWIS 6 DAVID LARWOOD 7 NEIL AMPEL 8 SUMATI NAMBIAR 9 10	1 we ask all of our speakers and discussants to speak as 2 clearly as you can, and also stick to the time so that 3 we can stay on agenda. 4 For the speakers and panelists, you 5 will a phone icon in the upper bar on the left. It's 6 green. You'll see that before your session or panel 7 discussion, and at that point you can click on the 8 phone icon and have the meeting call you and you'll be 9 able to speak and be heard. Note that -- and particularly for the 11 audience -- when people are unmuting their phone to 12 speak, there's a bit of a delay in the system so it 13 takes a few seconds longer than you expect. If you're not a speaker or panelist for 15 this particular session, you'll be in listening mode 16 like the audience, using your computer speaker and you 17 can control that using the speaker icon. If anyone happens to get cut off due to 19 an internet issue, just close Adobe and then use the 20 link to go ahead and rejoin the meeting and that 21 should go well. 22 I note that speaker slides, transcripts
PROCEEDINGS JOHN FARLEY: -- from the Office of 3 Infectious Diseases at the FDA. I just want to do a 4 quick sound check and make sure that my audio is okay. 5 Judy, could you confirm audio? 6 JUDY: It's fine, John. We can hear 7 you. Thank you. 8 JOHN FARLEY: Excellent, excellent. 9 Good morning, everyone, and welcome to our workshop 10 this morning. This is our -- I want to thank everyone, particularly the speakers and panelists who've worked hard to prepare presentations to facilitate an excellent discussion today. 14 This is our second virtual workshop. 15 We had our first one yesterday. It was in the middle 16 of a tropical storm hitting Washington and actually went rather well. There's been lots of preparation to see that this workshop goes smoothly. We're using a platform that some of you 20 may not be familiar with, so I just want to open with 21 just a few tips for the day and things that I learned 22 the hard way yesterday. So, first of all, of course,	1 and recordings will be available on the meeting 2 webpage in the next few days. So, the purpose of our workshop today 4 is to hold scientific discussions to better understand 5 the current state of coccidioidomycosis and focus on 6 potential strategies to facilitate the development of 7 drugs that can safely and effectively be used to treat 8 cocci. Now, cocci presents both challenges and 10 opportunities due to the spectrum of disease and the 11 need for products to address patient needs throughout 12 this spectrum. For antifungal drugs we all recognize 13 that there are both scientific and financial 14 challenges, but we will make progress when we work 15 together -- government scientists, academic 16 researchers, healthcare providers, patients and drug 17 developers. Let's frankly discuss those challenges 18 and get ideas on the table for moving forward. 19 So, I'm looking forward to a really 20 good discussion today. And it's my pleasure to 21 introduce our co-chairs for Session 1, Susan Hoover 22 from Stanford Health, and Lanling Zou from NIH. I'll
)

Page 6	Page
1 turn the microphone over to them at this point for our	1 this microbe can be found, but it's the predominant
2 first session.	2
3 SUSAN HOOVER: Good morning. I'm Susan	3 And this gets into the epidemiology of
4 Hoover, as John said, at Stanford Health. And my co	4 this organism. The prisons in California -- state
5 moderator Lanling Zou is in the Bacterial and Mycology	5 prisons have been built in a chain along the central
6 Branch of DMID at NIH. This first slide depicts	6 valley. There's a number of reasons for that and one
7 the speaker	7 is the cost of land. But as a consequence of
8	8 prisons in these places where cocci is found in the
9	9
10 Dr. Stevens is Professor of Medicine at Stanfor	10 guards to the point where a federal judg
11 University	11 made a ruling about who can be put into
12 California I	12 depending
13 and PI of its Infectious Disease Research Laboratory.	13 So, as far as we understa
14 DR. DAVID STEVENS: Okay, these are the	14 there are two species, immitis and posadasii, and as
15 topics I was asked to cover. I hope everybody	15 far as we know, the clinical disease caused by
16 hear me.	16 different sp
17 This microbe has a very interes	17 This slide talks about the
18	18 epidemiology. It's a fairly recent take. It takes
19	19 you up to 2018, and I think it's obvious that cocci i
20	20 on the rise. And there's a number of reasons for that
21	21
22 right half of this slide. And the left half is what	22 in the endemic areas, and another relates to the
Page 7	Page 9
1	1 annual rainfall cycles that occur.
2 know from this slide is that i	2 So, we estimate that there are about 20
3	3 million people who are at risk of this infectio
4 because it is arthroconidia grow	4 This would include residents, people who spend their
5 soil that releases the spores that infect	5 winter escaping northern climates, other touris
6 This slide shows the distribution	6
7 the disease. It's a new world disease. And since	7 the endemic areas. And the best guess we have about
8	8 the number of infections per year is 200,000 per ye
9 discovered in Brazil, Guatemala and Colombia,	9 And this is a very underreported disease. And w
10 notably in the U.S., sites of endemicity have b	10 estimate that illness, frank illness occurs in about a
11 discovered in both Oregon and Washington. And	11 third of people who are exposed, which would amou
12 global warming, the rang	12
13 expected to increas	13 And we'll talk a little bit more about th
14 This is a more close up	14 distribution.
15 area in the U.S. and Mexico. In the Lower Son	15 So, this is how -- a principal way the
16 Life Zone is what the blue describes here. This is	16 organism is spread in large numbers of people being
17 dry region with hot summers and mild winners an	17 infected at the same time, and this is a dust stor
18 alkaline soil, sparse floras	18 which is fairly typical in some of the endemic
19 altitude	19 regions. Phoenix, for example, or Kern County
20 So, this is a typical picture of wher	20 California. And the dust storm, which kicks up clouds
21 y	21 of dust, also kicks up clouds of arthro
22 Zone. This is not the exclusive life zone in which	22 they're about to descend on the homes of these people

1 who have moved into the endemic area and never had an
2 experience before with cocci.
3 Another way that the disease can spread
4 is through cataclysmic climate events. This picture
5 was taken during the earthquake in Northridge,
6 California, and you can see how much dust was kicked
7 up during this episode. And as a consequence there
8 were large numbers of cases in the area of the
9 earthquake -- cases of cocci, secondary to people
10 breathing in the dust that had been disturbed.
11 One of the things we might look forward
12 to in the future is a plan -- actually, construction
13 has started -- for a high-speed bullet train in
14 California to connect up the San Francisco and Los
15 Angeles areas going through the Central Valley. And
16 you can imagine the consequences for the workers who
17 will be working on this bullet train.
18 The picture at the left is not actually
19 workers on the bullet train; these are archaeology
20 students and they tend to dig in Indian middens, and
21 when they do, a lot of dust is thrown up into the air
22 and there have been many outbreaks of archaeology
Page 11
1 students following one of these digs where they were 2 perturbing the dust.
3 The right side is also not related to
4 the bullet train. That's a picture taken on
5 Interstate 5, which runs down the central valley. You
6 can see a dust storm approaching, and you can imagine
7 what the consequences would be for the people driving
8 on I5 at that time, especially if they have their
9 windows down.
10 Another way that the disease can spread
11 is by fomites traveling from non-endemic -- traveling
12 to non-endemic regions from endemic regions. This
13 shows three of the culprits that have been implicated
14 in that kind of spreading. And another source of
15 infection is laboratory accidents. A typical story
16 would be something occurring in a non-endemic region
17 where a clinical microbiology lab person would open a
18 plate because there's an interesting looking fungus on
19 the petri dish, and in the course of that, manage to
20 infect not only themselves but everybody else in the
21 laboratory.
22
And this picture I put in to remind me

1 that the consequences of coccidioidal infection not
2 only to man but also to his domestic animals. This is
3 a patient I consulted on. This is Belle, and Belle
4 has disseminated cocci. And this adds to the economic
5 consequences of this infection. And Lisa can talk
6 more about this.
7 So, in the humans who have the
8 symptomatic infections that we talked about, the
9 impact is like this: The average number of days that
10 patients feel ill is over 200, and the average number
11 of days that they miss work or school is longer than a
12 month. And this Congressperson has estimated that the
13 costs to California over a decade amount to about \$2
14 billion.
15
Another problem with the epidemiology
16 is that doctors in the endemic areas are undereducated
17 about cocci. And various studies have indicated a
18 range but slightly more than 50 percent of doctors
19 test community-acquired pneumonia in the endemic areas
20 for cocci. And in Arizona, about a third of the
21 community-acquired pneumonia is cocci. And about more
22 than half the patients with cocci have received
Page 13
1 antibacterials for their condition prior to diagnosis.
2 Antibacterials, obviously, wouldn't help. And they've
3 had three visits to the doctors before the diagnosis
4 is successfully made.
5 So, the picture, as we understand it --
6 we talked about estimated 200,000 infections a year,
7 so multiple everything on the slide by about 200 . But
8 about -- for every thousand infections, we estimate
9 that 600 of them are asymptomatic. These people would
10 experience a skin test conversion but not necessarily
11 any symptoms. And 400 of them will be symptomatic.
12 We'll talk about that in just a moment.
13 And from these cases, there will be 50
14 pulmonary residuals, which means that there will be
15 radiographic abnormalities that people will walk
16 around with for the rest of their life as a souvenir
17 of the coccidioidal experience.
18 And then, lastly, from the symptomatic
19 cases, there are five disseminated cases and it's
20 really these five cases, where the disease spreads
21 outside the chest, that occupy the major efforts and
22 attention of the medical professionals dealing with

Page 14	Page 16
1 these five per thousand who have disseminated disease.	1 disease, and what happens is there are successive
2 This shows two of the pulmonary	2 waves of cavities, modules, fibrosis and progressive
3 residuals that are seen. On the left is a stabl	3 destruction and loss of function lung tissue as the
4 cavity, and on the right a nodule. And i	4 disease progresses.
5 radiograph probably 100 people at rand	5 The other bad way things can go is to
6 Bakersfield, you would find a number of them walking	6 disseminate from the chest. And we recognize that
7 around with th	7 there are certain risk factors that predispose to
8 time causing	8 this. It more commonly happens in males than females,
9 And the 40 percent of the patients wh	9 it happens at a very high degree in people who are
10 have the respiratory illness can range from anythin	10 immune compromised -- and we're going to talk about
11 that appears to be like flu up to community-acquire	11 that in some detail -- patients with congenital
12 pneumonia, and then there's a range within community-	12 immunodeficiencies are at risk of disseminating once
13 acquired pneumoni	13 they have a primary infection.
14 pneumonia all the way to an acute respiratory distres	14 The combination of pregnancy,
15 syndrome.	15 particularly in the second and third trimesters, seems
16 accompany this respiratory illness and the onset	16 to be a bad combination with cocci with an increased
17 generally $1-3$ weeks after they inhale arthroconidi	17 risk of dissemination and a bad course once it
18 And the big question at this time is	18 disseminates. And there's a certain racial
19 whether treatment would affect these primary	19 predisposition to risk of dissemination. People of
20 infections; either make the symptoms less or short	20 Filipino ancestry are at the highest risk, then
21 the duration, m	21 African Americans, native Americans, Hispanics, other
22 That's an unknown -- an important unknown quest	22 Asians. All of those appear to be at greater risk
Page 15	Page 17
1 this time.	1 than do whites of disseminating the disease.
2 This is a radiograph of a primary	2 And what happens when it disseminates,
3 pulmonary infection due to cocci. There is nothing	3 it's caused by hematogenous spread from the lung, and
4 specific about this in the differential diagnosi	4 a few months after the primary infection it will
5 other causes of community-acquired pneumonia. An	5 either be manifest in the skin, it can go to bone or
6 this is two of the types of skin rashes that may occur	6 joints or other sites. And the worst possibility is
7 during the primary infection. What these patien	7 the meningeal form of the disease. And, furthermore,
8 experience -	8 in all these sites there's a tendency
9 sputum production, all these symptoms, again, are not	9 either after a successful resolution of a focal site,
10 specific for primary cocci infection but can be	10 it will come back, or even after successful therapy
11 in other kinds of community-acquired pneumonia, an	1 the natural history of this disease involves cycles of
12 there's a differential diagnosis issue because of the	12 relapse, recrudescence, and then, hopefully, remission
13 non-specificity of these signs and symp	13 again once they are retreated.
14 So, once -- if the infection doesn	14 This shows examples of the cutaneous
15 resolve with the durations I talked about earlier	15 form of the disease. The patient on the right has
16 there's one of two bad ways that things can go: One	16 multiple granulomas of the skin, the patient on the
17 is the infectio	17 left has a soft tissue abscess with an ulcer draining
18	18 puss. And this unfortunate gentleman is showing you
19 And the oth	19 in his bone scan that he has multiple sites of
20 the lung	20 skeletal involvement. You can see he's got multiple
	21
22 the patients develop a chronic pulmonary form of the	22 there's some sites in his vertebrae, in the pelvis, in

Page 18	Page 20
1 his -- one of his ankles. And all of these are	1 2020? With a massive increase in transplantation as a
2 destructive lesions due to cocci	2 treatment modality for a number of conditions and
3 Another bad place that dissemination	3 massive use of immunosuppressives for a number of
4 can go to is the eye. And particularly if the retinal	ditions, this has become a huge problem in endemic
5 involvemen	5 areas. And Janis could speak to this in more detail
6 vision, which may be permanent. And the lymphat	6 Another group
7 system is another site of dissemination of diseas	7 having a bad course of cocci are the HIV-infected
8 (Oops, I've	8 persons. And the disease in the HIV infected is about
9 As I mentioned, meningitis is the worst	920 times more common in endemic areas than non-
10	10 compromised persons. And a low CD4 risk factor
11500 new cases of meningitis a year. This disease	11 appears to be the major risk factor for the
12	12 development of progressive disease. And the cases
13 available, we understood that the disease was fatal	13 appear to be mixtures of new infections or
14	14 reactivation of old disease.
15 prognosis than untreated lung cancer. And even with	15 I'm not going to really talk about
16 the onset of treatment, there are many stroke events	16 treatment. I understood John was going to talk about
17	17 this some more but I think that's changed a little bit
18 hydrocephalus can occur and compression of the spinal	18
19	19 want to mention one approach to treatment because I
20 Another manifestation of centra	20 need to have it understood what I'm going to talk
21 nervous sy	21 about next, which is trying to come to evaluations of
22 the brain and this is in the differential diagnosis of	22 the course using trial endpoints.
Page 19	Page 21
1 brain abscess. And this patient is showing a	1 Our approach has been to treat
2 cerebellar brain abscess due to cocci.	2 disseminated patients -- I'm not talking about
3 We appreciated early on that there was	3 meningeal patients who require special treatment
4 a special course that occurred in immunocompromise	4 but treat patients with oral azoles for a minimum of a
5 patients, and in th	5 year or six months after the disease becomes
6 the patients had disseminated disease. And you	6 whichever of those two is longer. And use
7 remember, I talked about in healthy persons	7 amphotericin preparations if the lesions are in
8 dissemination rate of 5 in 1,000. So, this is 100	8 critical locations or if the patient is worsening
9 times the rate in non-compromised persons. And the	9 rapidly because amphotericin is more rapidly acting
10 risk of react	10 than azoles. And the surgeons have a role to play in
11 were receiving immunosuppression for some medic	11 some of the manifestations of the disease,
12 condition or experien	12 particularly in bone and in soft tissue.
13 was immunosuppressive, such as, for example, Hodgkin's	13 So, scoring systems have been developed
14 Disease.	14 for therapeutic trials and have proven useful, and
15 And it also teaches you that viabl	15 there's experience that goes along with them. The
16 cocci organisms must be living in you after an initial	16 patients were initially scored according to their
17 infection.	17 culture-confirmed sites of disease, their serologic
18 your own or needed treatment and the treatment was	18 titer, and the extent of lesions. And the sum of the
19 successful, the bug is with you -- and won't	19 points pretreatment was their baseline score. A
20 you, but if something immunosuppressive happens to	20
21 you, you are at risk once agai	21 baseline score by 50 percent or more within a set
22 So, what's the consequence of that in	22 period of time.

$\text { Page } 22$	4
And because cocci tends to improve	1 to thank the organizers for giving me the opportunity
2 relatively slowly, scoring was done at three-month	2 to tell you a bit about NIH's development efforts and
3 intervals. And far from id	3 support mechanisms for valley fever. Some of this
4 does allow physicians to estimate a total body burden	4 t
5 of disease and follow that index in the cour	5 yesterday's workshop, but here I'll be diving more
6 treatment.	6 deeply into NIH's support for the single indication.
7 that's been	7 Throughout the talk I'll be encouraging folks to reach
8 symptoms,	8 out to us. So, upfront I just want to let you know
9	9 that my email is my first name, dot, my last name
10 And	10 @ NIH.go
11 address, to	11
12 collaboration in clinical trials with Latin Americ	12 the National Institute of Allergy and Infectious
13	3 Diseases, or NIAID, is to lead research to understand,
14	14 treat and prevent infectious, immunologic and allergic
15	15
16	16 W
17 Latina Ame	17 Microbiology and Infectious Diseases, or DMID, has
18	18 broad mandate supporting research for over 300
19	19 pathogens, including the coccidioidi species, which,
20 the direct individual connections between people that	20 as Dr. Stevens just demonstrated to us, are the
21	
22 And as far as potential collaborating	22 To give an idea of the scope of NIAID's
Page 23	Page 25
1	1 funding for valley fever, in 2019, $\$ 10$ million of
2 Mexico, ba	2 NIAID's budget went to support for coccidioidomycosis
3 there, the p	3 research and development. Those funds were spread
4	4 across the product development area that is shown on
5 M	to
6 the existing	6
7 And Rafael and Luis can address this	7 Toda
8 extent	8 fever specific portfolios of the various mechanisms
9 So, with that, I'll conclude	9 that NIAID leverages to support and de-risk product
10 be happy to take any questions	10 development for valley fever. Taking a look at the
11 your attention	11 blue arrows at the bottom of the screen, folks in the
12 SUSAN HOOVER: Thank you, Dr. Steven	12 audience will be most familiar with NIAID's grants and
13 And thanks ag	13 contracts mechanism, which are the main drivers
14	14
15 Our next speaker discussi	15 However, we do recognize that the path to product
16 developme	16 approval is long and can be difficult. And so DMID
17 has been a P	17 has developed free services and resources for the
18 Bacteriology and Mycology Branch at NIAID since 2016	18 research and development communities to access. Those
19 DR. ERIN ZEITUNI: Thank you, Susan	19 include the Preclinical Services Program and the
20 Can I do a q	20 clinical trial units, both of which I will highlight
21	21 today.
22 DR. ERIN ZEITUNI: Perfect. I'd like	22 In the interest of time, I have

Page 26	Page 28
1 restricted this talk to a discussion of product	1 Dr. Galgiani's live attenuated vaccine
2 development efforts, so I feel it's important to	2 uses a strain rendered avirulent by the deletion of
3 mention that there is also a small but mighty	3 the CPS1 gene, an essential gene for serial
4 portfolio of basic researchers tackling the task	4 propagation in C. posadasii. Dr. Galgiani is working
5 improving our knowledge of the basic biology	5 with an industrial partner, Anivive Lifesciences, to
6 coccidioides, its response	6 develop the vaccine further. The recombinant chimeric
7 response to infection.	7 polypeptide antigen vaccine developed by Dr. Wang
8 this challengin	8 contains the most immunogenic fragments of four
9 continue bringing their exciting	9 previously identified coccidioides antigens as well as
10 grant applicati	10 multiple human T-cell epitopes, and it's formulated
11 Shown on this slide, DMID supports a	11 with a glucan-chitin particle as an undulant delivery
12 robust grant portfolio of drugs and diagnostic	12 vehicle. This vaccine is in the proof of concept
13 targeting valley	13 stage
14 highlighted here have received a mixture of gr	14 To help us better understand the
15 funding and preclinical services over the y	15 challenges and gaps that are facing the endemic
16 help support their antifungal development programs for	16 vaccine research community, NIAID organized a workshop
17 valley feve	17 in 20
18 Some utilize grants, such as Amply	18 discussion of vaccine strategies for endemic fungal
19 Pharmaceuticals' Fosmanogepix Program, while ot	19 pathogens. Over the course of one and a half days,
20	20 over 100 people dove into the science of the latest
21	21
22 Solutions' Nikkomycin Program. And still others	22 actionable steps to advance fungal vaccines.
Page 27	Page 29
1 utilize preclinical services alone such as F2G	1 Exciting outcomes of the workshop
2 olorofim program. We'll be hearin	2 included expanding the field of investigators and
3 representatives from several of these companies later	3 initiated new collaborations. Additionally, the
4 during the workshop	4 workshop confirmed the scientific gaps and challenges
5 NIAID program staff can also release	5 that needed attention, so as identifying new antigens,
6 program announcements or SBIR contract topics	6 understanding correlates of protection and meaningful
7 encourage applications in research areas of specia	7 biomarkers, strengthening preclinical and clinical
8 interest. We continue to emphasize valley fever	8 testing, and overcoming manufacturing hurdles
9 research and development in recent initiatives.	9 including (inaudible) optimization as well as
10 Through these mechanisms, this year NIAID funded	10 regulatory challenges.
11	11 Our program staff was poised to move
12 contracts supporting diagnostic programs targeting	12 forward incorporating what we had learned in the
13 endemic fungal pathogens, including the coccidioides	13 workshop, and program officers were able to leverage
14	14 the positive outcomes of the workshop to develop a
15 Coccidioidomycosis vaccine development	15 targeted FY22 initiative that was recently approved by
16 efforts have a long history of NIAID grant support	16 DMID's counsel, moving it forward as a potential
17 over the years, however, this field remains quit	17 funding opportunity.
18 challenging. Two NIAID-funded vaccine prog	18 The coccidioidomycosis collaborative
19 note are the live attenuated vaccine out of the	19 research centers will aim to establish highly
20 University of Arizona and the recombinant chimeric	20 collaborative multidisciplinary research teams to
21 polypeptide antigen vaccine out of the University of	21 conduct translational and clinical research for
22 Texas, San Antonio.	22 improved diagnosis, treatment and prevention of valley

Page 30	Page 3
1 fever. The goal is for these multidisciplinary	1 here
2 centers to leverage unique resources and patien	2 Through preclinical services, we offer
3 populations from endemic regions to advance the field.	3 both a central nervous system infection model and
4 We are looking forward to seeing the valley fev	4 pulmonary infection model for valley fever. In the
5 research community continue	5 CNS model, the infecting inoculum is delivered
6	6 intracranially to ICR mice who are then treated two
$7 \quad$ Switching gears away from	7 days later for durations of either seven days to
8 i	8 assess the impact of treatment on the fungal burde
9 to introduce you all to NIAID's Preclinical Service	9 select tissues, or treated for 14 days followed by a
10	1014 or 28-d
11 anti-infectiv	11
12	12 The pulmonary model has several key
13	13 differences. The infecting inoculum is delivered to
14 development	14 the lungs of ICR mice and treatment is started five
15 Our mission is to keep products movin	15 days later. The fungal burden assessment runs larg
16	16 the same
17	17 arm of the study has a shorter treatment duration than
18 these free services are available to innovators from	18 the CNS model but with a similar off-therapy
19 academia,	19 monitoring period. A drug's characteristics will help
20 government, both domestic and foreign institutions m	20 determine
21 apply, and a	21 In addition to efficacy assessment
22 Because this support mechanism is	22 NIAID's preclinical services also offer a suite of
Page 31	Page 33
1	1 preclinical studies to support antifungal drug and
2 development	2 vaccine programs at multiple stages of development.
3 there's a simplified request process allow	3 These services include chemistry and manufacturing,
4 year-round	4 including GMP manufacturing, toxicolog
5 Focusing on valley fever, I manage	5 pharmacokinetics, rapid ADMET and pharmacokinetics
6 s	6 screening, product development planning and assistance
7 services that provide supportive data to antifung	7 with IND documentation, vaccine testing, and vaccine
8 drug development programs, including those targe	8 and biologic manufactur
9 coccidioidomycosis. Because coccidioides require BSL3	9 So, if we're thinking back to the in
10	10 vivo efficacy models for valley fever that I mentioned
11	11
12 not on the radar	12 preparing to test their products in this rather tough
13 developing broad spectrum antifungals. We offer thes	13 model under BSL3 conditions, they need to have access
14 services to	14 to a robust preliminary data package to support that
15 pass (inaudible) to assess	15 study. This includes sufficient compound for key
16 To give a flavor of our scale of	16 study arms with 7-14 days of dosing, MIC testing
17 services since 2015, our contractors at the University	17 against the strains used in the models, and
18 of Texas Health Science Center in San Antonio have	18 understanding of the pharmacokinetics and distribution
19 performed MIC testing against coccidioides for 25	19 of their drugs in the blood, brain and/or lungs to
20	20 help them select their doses, and the knowledge that
21 evaluated in vivo ef	21 their drugs is tolerated in ICR mice for the plan
22 two valley fever infection models that are illustrated	22 dosing schedule and duratio

$1 \quad$ So, for those of you in the audience
2 who are already making this checklist in your head,
3 please know that although our preclinical services are
4 intended to be gap filling, we do understand that
5 there can be more than one gap in a program. I
6 encourage you to reach out to us and tell us about
7
your antifungal programs and your gap. And I'd like
8
to state that once again for emphasis. Please do
9
reach out to us.
10
11
describe our interactions has an illustrative example
12

Page 35
1 posadasii at our contracting site at the University of
2 Texas Health Sciences Center in San Antonio.
3 With that confirmation, we embarked on 4 the in vivo assessment of Olorofim in the CNS
5 infection model where significant protection and
6 fungal burden reduction was observed in that model
7 compared to untreated controls. Results of the
8 efficacy model were published and as we will hear
9 later today, F2G is exploring clinical use of Olorofim
10 for coccidioidomycosis. This is a powerful example of
11 the potential impact of a simple conversation. If you
12 have a promising antifungal agent, please do contact
13 us and we will be happy to hear from you.
14 Additional free services include our
15 clinical trial units, such as our Phase 1 units.
16 These contracts provide Phase 1 trials at no cost to
17 the requester. NIAID sponsors the trial and holds the
18 IND. Mycovia's VT-1598 is a novel antifungal compound
19 with activity against coccidioides species. Through
20 our Phase 1 clinical trial units, VT-1598's single
21 ascending dose is examining the safety of its
22 administration to 48 healthy adults aged 18-45 years.

2 are to determine the safety of single ascending oral
doses of VT-1598 in healthy adult subjects in a fasted
state and to determine the safety of a single oral
dose of VT-1598 in healthy adult subjects in a fed
6 state.
In addition to the Phase 1 clinical
8 trial units, NIAID's Infectious Disease Clinical
Research Consortium, previously the Vaccine Treatments
and Evaluation Unit, have also been leveraged to
support clinical studies in valley fever. An
observational study of up to a thousand individuals
aged greater than or equal to 14 years has the
objective of assessing the prevalence of primary
pulmonary coccidioidomycosis or PPC in subjects with
community-acquired pneumonia or CAP in
coccidioidomycosis endemic areas.
Step one of the study is to examine the
prevalence of PPC among individuals presenting with
CAP within 28 days of symptom onset. Step two of the
study is to follow individuals diagnosed with PPC for
up to 24 months to establish the clinical course,
Page 37
identify predictors of the clinical course and
2 evaluate the response to prescribed antifungal therapy
versus no antifungal therapy. This observational
4 study is enrolling and we're looking forward to
5 producing perfective data on the prevalence of PPC in
6 CAP and the management of early PPC at the earliest
point of treatment.
8 I hope that this presentation has
helped provide a clear picture of the various
0 mechanisms that NIAID is leveraging to support product
development targeting valley fever. Management of the
portfolios and mechanisms described in this
presentation are a team effort and I'd like to
acknowledge the members of the Bacterioloogy and
Mycology branch who helped with the valley fever
effort. They are all listed here on the slide. My
email is provided at the top of the slide. Please
reach out to me if you have any questions. I hope to hear from you. Thank you.

SUSAN HOOVER: Thank you, Dr. Zeituni.
Our last talk before our morning break is Dr. Lisa
Shubitz talking about animal models of

1 coccidioidomycosis. Dr. Shubitz is a research
2 scientist at the Valley Fever Center for Excellence, 3 has been working on cocci since 1996.
4 DR. LISA SHUBITZ: Good morning. And
5 was asked -- first of all, I'm very honored to be a
6 part of this workshop today and asked to -- have been
7 asked to speak to you. And this is going to be a bit
8 redundant with the last talk, unfortunately. This is
9 what I was asked to talk about, but it's not going to
10 be extensively -- it's not going to go extensively
11 past what Erin already gave you.
12 So, I'm going to talk a little bit
13 about animal models of coccidioidomycosis -- as soon 13
14 as I figure out how to move the slides. All right.
15 So, it's already been spoken about that cocci is a
16 biosafety level 3 pathogen, in that in order to do
17 animal work with coccidioids you have to have anima
18 biosafety level 3 facilities. And in addition, you
19 either need to have support of a biosafety level 3
20 micology laboratory also that can produce your
21 organisms or you need to have a relationship with
22 someone who can ship them to you.
Page 39
1 So, the pathogen is a significant
2 aerosol risk to personnel, which is why you have to be
3 working with this animal bio safety level 3. It's not
4 really transmissible from one animal to another but
5 you could give it to yourself or the other workers in
6 your laboratory while you're infecting your animals.
7 Consequently, this requires that all of your personnel
8 be properly trained at biosafety level 3 and at
9 handling animals at biosafety level 3 , and it requires
10 that you have at least a class II biosafety cabinet
11 with some extra PPE such as $\mathrm{N}-95$ for protection from
12 aerosols, or you could have a class III biosafety
13 cabinet for intranasal infections. And intranasal
14 infections carry the greatest risk of infecting
15 workers, but there are small aerosols that can be
16 created even just squirting things out of needles.
17 The guidelines for setting up an animal
18 biosafety level 3 laboratory are published in the
19 Biosafety in Microbiological and Biomedical
20 Laboratories, which is a CDC publication. And they
21 used to mail it to you but now it's actually just
22 available on their website as a PDF and you can go
look at it.
2
And in the lower right-hand corner is a
photograph of a class III biosafety cabinet. We've
one in place at our institution since
1998 and it has two workstations in it which makes the
6 work more efficient for packing cages and animal
7 transport. But this is -- I don't think everyone has
8 a class III cabinet in order to be able to do this
work, and it can be done other ways, but it's a nice 10 safety feature.

11
12 constitute the vast majority of the animals that are used in research and preclinical efficacy studies of

14 antifungal drug candidates for coccidioides. The
15 advantages of mice is that there are very well-
16 established cocci infection models in mice that have
117 been used for over 70 years -- the literature goes
18 back into the 1950s.
19 They're small and easy to handle in
20 statistically significant number at animal biosafety
21 level 3, and that is indeed a factor. It's very easy
22 to put a small cage of mice into a class III biosafety

Page 41
1 cabinet or a class II biosafety cabinet. It becomes a
little bit more challenging when you're using larger
3 animals. You can also involve statistically
4 significant numbers of the animals because they're 5 little.
$6 \quad$ There are a wide variety of strains for
7 drug studies. Outbred mice or the ITR mouse, which is
8 an inbred swift that Erin was talking about, are
9 relatively inexpensive and they're used very commonly
10 for drug studies. But if you're interested in effects
11 of drug in the face of infections that may be more
12 challenging due to underlying conditions in a human
being, there are a lot of genetically engineered mice
14 available now that mimic metabolic or immunologic
15 system defects in mice that you can purchase to use.
16 The drawbacks of mice are that the
17 pharmacokinetics of the drugs in mice may differ
18 significantly from what's seen in humans, and that
19 means that you actually need to perform -- or you may
20 need to perform some PK in mice to understand how to
21 use them as a model.
22
The other drawback is that coccidioides
1 progresses pretty rapidly in mice, whereas even an
2 immuno-deficient human, you know, may have the disease
3 for two or three weeks before they even show up in
4 your office because they're sick. In two or three
5 weeks, the laboratory infected mouse is typically
6 dead.
7
8 about routes of administration, which Erin described
9 some of already. But the pulmonary route of
10 administration is the most common. This is the way
11 the infection gets into the human host naturally, and
12 it makes sense to put it into the lungs. This also
13 carries the greatest aerosol risk.
14
15 by insufflation of a saline suspension -- with the
16
opportunity in a saline suspension using a pipette,
17

1 airways. Much of it may be tracked in the upper
2 airways, the nasal passages, the upper bronchi. But
3 some of it definitely gets delivered to the lower
4 airways where it sets up infection. And this is an
5 affective and common way to infect mice.
6 So, you can give it intratracheally.
7 There are methods of doing this. I think they're a
8 little bit more challenging, at least in a class III
9 cabinet, which is what I have, where you anesthetize
10 the animals or you could deliver this with a pipette
11 to the trachea and bypass the nasal passages. It can
12 be done surgically, but I don't think anyone's doing
13 that in mice.
14 They could be exposed by aerosol in
15 chambers, but this carries very high risk of aerosol
16 infection and I don't actually know anyone who's doing
17 it. But if you're more interested in nebulized spores
18 with well-distributed infections that go deep into the
19 lungs, this might be something to consider. For a
20 model for a drug, I'm not sure this is really worth
21 pursuing.
22 Other methods are intravenous

1 infection, which provides a rapid widespread model of
2 dissemination very early on that doesn't go through
the lungs to get to a disseminated state, and it's a
4 little bit technically challenging. Intraperitoneal
gives you dissemination but Lung Fungal Burden is a
6 common readout because it typically goes to the lungs
7 really easily. There is an intrathecal model for CNS
8 infection in mice. It is technically challenging, but
it is published. And then intracerebral infection
0 with (inaudible) also produces a CNS infection.
So, here's a picture of the mouse
being infected. So, 50-100 spores of a common
13 virulent laboratory strain in 30-50 microliters of
4 isotonic saline is being administered to this
15 anesthetized animal. This is in the class III
16 cabinet. Just using a pipette and applying this drop
17 (inaudible) to the nares and waiting for the animal to
18 inhale the suspension until the suspension's been
completely administered. We did this under Ketamine-
20 Xylazine anesthesia, which produces a nice smooth
anesthesia that lasts long enough to perform this in
22 the equipment that I have. I think other people do
Page 45
Page 44

1 this with some kind of inhaled anesthetic, but I find
that the Ketamine-Xylazine works pretty well because
3 it lasts a little bit longer.
And in talking about this pulmonary
5 model, it takes four days, four to five days to reach
6 the first generation of spread of this infection, from
the time they inhale arthroconidia until the first
8 round of endospores are released to form new
spherules, which increase your infection by,
approximately one-hundredfold, requires 96 hours.
So, if you look in the literature, some
studies utilizing mice, treatment had begun at 48
hours after pulmonary infection, which gets your drug
onboard by the time this first round of spherules
rupture. But we typically start to treat this
infection at 120 hours, which is day five, and this
17 gives time for the infection to become established.
18 And while we can't really mimic what happens in the
19 real world using a mouse model, which is that people
20 do not show up for treatment until they're ill, it is
21 more similar to a human seeking medical care because
22 you're not treating just this developing first round
1 of spherules and endospores -- you've actually got Page 46
2 establishment of the infection in the animal.
$3 \quad$ In untreated mice, in 2-3 weeks,
4 they're moribund. So, between 14 and usually $23-25$
5 days, your mice have died if they're not being
6 treated. And it's important to know your model to
7 prevent cage deaths. And mice with cocci -- I guess
8 sick mice, in general, are kind of generically this
9 way -- but they get thin and they can lose weight very
10 quickly. They develop a hunched posture and ruffled
11 fur, though how ruffled it looks is dependent upon the
12 mouse strain that you're using. They become
13 tachypneic if you observe them just sitting in the
14 cage with their little noses down in the shavings.
15 And they get weak. If you pick them up, they feel
16 weak. They don't feel like a normal mouse. And
17 they're dehydrated based on skin turgor. If you pinch
18 the skin on the back of their neck, it doesn't return
19 to its normal position.
20
21

Page 47
1 main thing we assess in these animals is fungal
2 burdens, and I prefer not to have to just pick up dead
3 mice out of the cage and cut the lungs out of them.
4
With intravenous infections, these are
5 something that I have not performed, so this is based
6 on literature. But doses of, approximately, 50 spores
7 intravenously produces deaths after day 12 , according
8 to Clemons. And in published studies using
9 intravenous infections, treatment is indeed usually
10 instituted within 48 hours post infection. If there's
11 more updated information on that, I don't actually
12 have it.
13 Intraperitoneal infection is something
14 that carries a little bit less aerosol risk than an
15 intranasal infection. It usually requires more
16 arthroconidia to initiate the infection by this route
17 but it's very reliable. It is technically easy to
18 perform at biosafety level 3 compared to an intranasal
19 infection. The animals do not have to be
20 anesthetized. And this can be easily accomplished in
21 a class II cabinet without probably a lot of other
22 protective -- other protective gear.

2 is similar to the intranasal and intravenous, and what
you see in these is granulomas of the cranial
mesentery, spleen and liver with dissemination to the
lungs. It's very prominent in a miliary pattern.
The intracerebral and intrathecal
administration routes produce meningitis models. And
8 the intrathecal is put into the mouse in the
(inaudible) thoracic upper lumbar area. The
intracerebral goes directly into the brain but both
models actually produce meningitis and a
meningomyeltis, so it goes up and down the spinal
cord. You find the organisms in the cord and in the
brain regardless of which method that you use.
Clinical signs occur in these mice in
6-8 days post infection and your deaths usually start
by day eight. The clinical signs are paresis,
paralysis, ataxia, circling, head tilt, seizures and
obtundation. And within my experience, these animals
need to be evaluated twice a day for animal welfare
purposes. Because once the clinical signs begin, the
animals may progress very rapidly and they'll be dead
Page 49
in 24 hours.

3 treatment within 48 hours because of how rapidly this
4 progresses. And the assessment is either fungal
burden or survival. And I recommend assessing lungs
6 and spleens, not just your brain and spinal cord
because this very easily goes to both of those places.
8 So, in terms of assessing mouse models
after treatment, survival is one thing that can be
assessed. You treat them for a given period of time
and then stop your treatment and see if they die.
Organ fungal burdens at a specified
time after stopping treatment are probably the more
common assessment, and organ fungal burdens may be
your primary measure. There is the question of
eradication versus reduction in colony-forming units.
Many of the antifungal candidates we have do not
eradicate the infection, so often you're looking for
excellent reduction in fungal burden compared to your controls.

We quantitate colony-forming units or
CFU by tenfold serial dilutions of homogenized

1 tissues, which are usually limited to the lung and
2 spleen. If you're doing CNS models, you're maybe

1 nebulization model that produced very good infection.
2 It seems that most drugs at this stage
3 would probably be implemented in some kind of a human
trial and not ever go through a nonhuman primate. But
5 if you have a product that you really think you'd like
5 organs on plates, which is a reasonable approach if
6 to put into a primate, there could be some
7 gave an intranasal infection and you expect control,
8 and you're not that interested in whether there are
9 three organisms in the spleen or ten, but you just
10 want to know if it's there at all. Body weight is a
11 really good measure and indicator of progression of
12 infection, even before your other clinical signs
13 become visible.
14 The rabbit can be a very reliable model
15 of coccidioidal meningitis and arteritis that is more
16 similar to the disease in humans than what we can
17 produce in mice. The infection is performed
18 cisternally and the size of the animal allows some
19 serial cisternal sampling of CSF, so you can get some
20 intermediate measures in a rabbit that you cannot in
21 mice.
22 The post-mortem analysis would include

Page 51

1 histopathology, you can do fungal burden of the spinal 1 And unlike nonhuman primates, they usually do not
cord and the brain, you can evaluate cerebral spinal
3 fluid, and this has been reported to be a good model 4 for humans.
5 Some of the drawbacks of this is you
6 need to understand the PK of your drug in this
7 species, which may not be a routine part of what 8 you're producing. And there's an increased cost of
9 animals, the labor to handle them and take care of
10 them, and the cost of housing them. So, you end up
11 with fewer animals and you might end up with less
12 robust statistics. Your facilities need to be able to
13 manage the larger animal models at animal biosafety
14 level 3.
15
I include this slide on nonhuman
16 primates because they're possible, though I don't see
17 that most people would be interested in using them.
18 But they could be used experimentally but it would be
19 extremely expensive, and there are other reasons not
20 to. I would recommend an intratracheal infection with
21 arthroconidial suspension that's been administered
22 using a nebulizer after having worked out this dog

7 opportunities to treat naturally infected nonhuman
8 primates that are in primate centers within endemic
9 areas.
10 From some small amount of personal 11 experience, there can be some challenges with
12 administering drugs daily to nonhuman primates and
13 also monitoring because the animals require anesthesia
14 in most cases.
15 I'm going to talk only briefly about
16 naturally infected dogs because I think they're a
17 rather interesting preclinical assessment model for
18 drug efficacy. In southern Arizona, where I work, we
19 have a very high caseload and it's actually really not
20 difficult to enroll cases. And we worked with a
21 company with one of the VT drugs in doing a clinical
22 assessment of their drug in naturally infected dogs.

2 require anesthesia to monitor.
3 And it is possible to assess
4 improvement in pulmonary disease within 30-60 days of
5 treatment using radiography, serology and serum
6 chemistries and CBCs. These are really easy to
7 collect on client-owned dogs. And the owners are
8 actually extremely grateful for the opportunity to get
9 a potential treatment for their animal, and they're
10 really dedicated. We get very low dropout rates in
11 dog studies -- just dog studies, in general.
12 The drawbacks to this, of course, are
13 cost, the time it takes to perform this because you do
14 have to enroll animals and it's, you know, similar to
15 enrolling in human clinical trials -- they come in
16 spurts and fits. And you may not end up with
17 statistically significant numbers that would help
18 drive your development, and you could end up with
19 primarily descriptive data from such a study, but
maybe it would be valuable to you.
21 The potential advantages of this model
are that it does involve naturally occurring disease

Page 54	Page 56
1 in a model that's already sick, in a species that has	1 Administration for hosing this workshop and allowing
2 a rate and range of disease that's pretty similar to	2 me to be a part of it. It's a privilege to be able to
3 humans. And the dog is a common PK and toxicology	3 speak on behalf of the Valley Fever patient community.
4 species, so you may know exactly what you need to give	4 Let me get my slides going. There it goes.
5 them in terms of dose. And oral administration to	5 So, I will be sharing some of my
6 dogs is actually pretty	6 personal experience as a patient, as well as knowledge
7 So, in summary, the mouse model is the	7 I have gained through countless interactions with
8 workhorse of the preclinical testing of antifung	8 other patients to provide a perspective on the
9 drug candidates because they're small, the models are	9 difficulty many patients face in fighting valley
10 really well-developed and these studies are very cost	10 fever. I will also share some of the work being done
11 effective	11 at the Valley Fever Institute to support patients
12 If you need a more advance	12 using a 360-degree care model, and the opportunity and
13 meningitis/arteritis model, the rabbit can be a	13 importance of patients in efforts to develop, test and
14 option for you. The drawbacks being that you need	14 validate new drugs.
15 some technical expertise, it will cost more, and you	15 So, I could easily spend 15 minutes
16 may have to	16 just sharing my valley fever journey, and for the sake
17 then there ar	17 of time, I'll share the aspects that are relevant to
18 naturally infected and laboratory-induced that exist	18 today's topic. My story is very similar to the
19 that you would need to weigh the benefits of doing	19 experience many patients have with disseminated cocci.
20 that for your	20 My valley fever story began with a headache on January
21 Thank you very much for yo	21 1st of 2012. I was diagnosed with a sinus infection,
22 really appreciated the opportunity to speak to you.	22 and after two trips to the urgent care and two
Page 55	Page 57
1 LANLING ZOU: Hello? Everybody can	1 unnecessary rounds of antibiotics, I saw an ENT
2 hear me?	2 specialist who confirmed I did not have a sinus
3 SUSAN HOOVER: Yes.	3 infection.
4 LANLING ZOU: Oh, okay. Hi. This is	4 My next diagnosis was cluster
5 Lanling Zou. I'm the co-moderator. I just want	5 headaches, and eventually I developed other symptoms
6 thank everybody, all the speakers this morning	6 including double vision, which brought me to the
7 their excellent presentations. They'	7 Emergency Department at Kern Medical in Bakersfield,
8 comprehensive and informative. I think it's time f	8 which is now home to the Valley Fever Institute, and I
9 a short break. Please rejoin us at 12:20 for the next	9 was admitted to the hospital on February 5th, where
10 talk. All rig	10 the doctors told me I had cocci meningitis. The
11 (Break)	11 nearly six weeks it took to be diagnosed with cocci
12 LANLING ZOU: Welcome back. It is my	12 seemed like a long time, and for many illnesses that
13 pleasure to introduce our next sp	13 would be a long time, but I've talked to countless
14 Purdie. He's currently the Patient and Progra	14 patients who spent months seeking a diagnosis for
15 Development Coordinator at the Valley Fever Institute.	15 their valley fever, so I feel I was extremely lucky to
16 He's going to speak about patient oriented clinica	16 be diagnosed in six weeks.
17 trial design. Bob, please take it away	17 For most people, valley fever is an
18 ROB PURDIE: Thank you. Can everybody	18 inconvenient lingering flu-like illness with extreme
19 hear me okay?	19 fatigue. Disseminated coccidioidomycosis is a
20 SUSAN HOOVER: Yeah.	20 devastating life sentence. And if you're lucky,
21 ROB PURDIE: Oh, great. Thank you.	21 you're able to have a functional life. One of my
22 Good morning. I'd like to thank the Food \& Drug	22 personal goals as part of public education efforts is

Page 58	$\text { Page } 60$
to better communicate the difference in disease	1 with those precautions I was diagnosed with squamous
2 severity and	2 cell carcin
3 I was started on 1000 milligrams	3 After my second diagnosis, I
4	4 Voriconazole due to the skin cancer, and I
5	5 on Posaconazole. Even though I'm no longer on the
6	6 Voriconazole, I still have to limit my time outdoors.
7	7 Summers at the beach or spending the day by the pool
8	8 are all very popular activities in Bakersfield but I'm
9	
10 headache	
11	11 dermatologist and I've had four more squamous cell
12	12 carcinomas
13	13
14	14 The side effects I experienced with
15	15 Posaconazole, while not as medically concerning,
16	16 have an impact on my life. I experience freque
17 In October of 2012, I was readmitted	17 nosebleeds but they're usually very minor, and profus
18	18 sweating, which makes me self-conscious and has caus
20	20
21 of use, even though my drug levels were in th	21 the impact of the medications are just beneath the
22 therapeutic range. I was discharged three days later	
Page 59	61
1	1
	2 side effects c
3 Janua	3 treatment.
4 of Voriconazo	4 experience severe side effects may discontinu
5 failed Voriconazole as monotherapy and IT Amphotericin	5 treatment, and patients with severe disease may no
6	6
7 began my IT Ampho treatments on December 3rd of 2013.	7 intelligence
8	8 just because the side effects had a greater impact on
9	9 their qualit
10 and my Ampho treatments continued twice a week until	10 The azoles used to treat valley
11	11 are used off label and at higher doses than they were
12 treatment,	12 approved for. Because of this, patients experienced
13	13 more extreme side effects. When a patient goes to
14	14 Google to find out information about how they
15	15 feeling, many of the side effects that they say
16 at the lower d	16 they're experiencing are listed as reasons to stop
17	17 taking the dr
18	18 Patients and their families need more
19	19 than awareness information about valley fever
	20 Knowing the likely side effects of the drugs and the
21	21
22 precautions to protect my skin from the sun but even	22 a patient fo

$\text { Page } 62$	Page 64
1 Before a patient is treated with	1 begin to address the so
2 Amphotericin, they ar	2 W
3 to control the side effects of the drug. When I'm	3
4 given IT Ampho, I become almost instantly nauseated	4 degree care model for our patients. We're adding
5 and I can actually feel my body react as the drug	5 social and support services in additio
6 spreads and I become violently ill. Luckily, I have	
7 one bad day every ten weeks. Some patients need the	7 We are a teaching, treatment and
8 drug two or more times a week. For those patients,	8 research facility and our mission is to improve
9 there are no good day	9 patient care, promote education and awareness, and
10 treatments due to the side effects of the drug and	10 conduct research to benefit our community, and our
11 many of these patients experience other difficulties	11 research team is growing. It includes six physicians,
12 due to the severity of their d	12 a clinical pharmacist, a research nurse, many research
13 The burden of valley fever can be	13 assistants, and we're adding an infectious diseas
14 broken down into direct and indirect costs. The	14 fellow in 2
15 direct cost of the disease can be calculated pretty	15 At the Valley Fever Institute we have
16 easily and estimating some indirect cost such as lo	16 the largest population of valley fever patients and
17 earnings are a little bit more difficult. But how do	17 many have consented to contact for future research.
18 you calculate the emotional cost of deteriorating	18 In addition to providing
19 relationships with your family and friends, or the	19 patients have provided our doctors with experience in
20 result of the isolation and depression which are	20 treating severe cocci that they're able to share
21 unfortunately, too common. Eight years later, I'm	
22 still battling with these things.	22 addition, our experts share their experience with
Page 63	Page 65
1 The impact of cocci on quality of lif	1 unique and difficult cases ther
2 is just as important to patients as the CF titer is to	2 studies in academic journals and infectious disease
3 most physicians. For many of these patients, th	3 conferences.
4 quality of their lives have been reduced to a poin	4 The patient program coordinator role,
5 where they're unable to survive independently, and	5 which I occupy, was established to address th
6 many are dependent on government assistance of some	6 difficulties faced by our patient population, provide
7 type. There have been multiple times over the course	7 education and awareness of valley fever to the public
8 of my illness that my family	8 as well as provide information and resources to
9 programs, and my family is still recovering from th	9 patients.
10 finance destruc	10 Cocci is a disease that has
11 So, the Valley Fever Institute at Ker	11 disproportionate impact on the poor and marginalized
12 medical was established in 2015, and part of our	12 members of our community. As a patient, I have a
13 mission is to share the knowledge accumulated by our	13 unique understanding of our other patients, which
14 doctors in diagnosing and treating valley fever. More	14 enhances the institute's ability to understand the
15 than 1,500 patients are treated by the Valley	15 patient persp
16 Institute each year, many of us with severe forms of	16 I still vividly remember my first
17 the disease.	17 appointment at a cocci clinic. Speaking with other
18 Our coffee clinic sees over 200	18 valley fever patients in the waiting room, I realized
19 patients a month, administers approximately 90 IV	19 that in spite of everything my family had been through
20 infusions of Amphotericin and 40 intrathec	20 and we were still facing, we were very luck
21 inspections. Importantly, the Valley Fever Institute	21 Speaking to patients, especially ones recently
22 is moving beyond clinical treatment of patients to	22 diagnosed with disseminated disease, being able to

Page 66	Page 68
1 offer hope and encouragement is the most rewarding	1 For patients newly diagnosed with
2 thing I've ever done	2 cocci, treatment will be different from any illness
3 Working with the valley fever community	3 they have ever had before. Patients who are used to a
4 and those fighting valley fever has given	4 course of antibiotics or some over-the-counter
5 purpose and energy and I've had a new opportunity to	5 medications for common infections are surprised to
6 work with the doctors at the Valley Fever Institute	6 learn that even for uncomplicated disease, 3-6 months
7 who I credit w	7 of medication or more is required.
$8 \quad$ Patients are concerned first about how	8 The expectation that recovering from
9 they feel, and a distant second about how the disease	9 cocci will be like recovering from flu is quickly
10 is improving. If you ask a patient how they feel,	10 destroyed. However, we have the same treatment goals
11 don't know any one of them that's going to tell you	11 and expectations for cocci as any other illness. We
12 that their CF titer hurt too bad to go	12 want medications to resolve the disease and remove any
13 they missed class today because their white blood	13 impact of it from our lives. Patients are very
14 count was elevated. The impact of the diseas	14 concerned about the cost of medication. The out-of-
15 treatment on the lives of patients cannot be full	15 pocket cost is the only cost that matters to us
16 assessed by calculating hospitaliza	16 because that's what determines if we can afford it.
17 reviewing pa	17 For some drugs we must get special approval from our
18 The use of patient-repo	18 insurance companies, which is not always easy or
19 measures provides an opportunity to record and	19 approved.
20 evaluate the patient's self-assessed health or quality	20 Patients may also require the use of
21 of life. The lo	21 patient assistant programs to get the medication they
22 substantial for patients who suffer from the most	22 need, and the more complicated and restrictive these
Page 67	
1 severe cases. There's been a disconnect betwee	1 programs are, the less likely that the patients who
2 clinical aspects of treating valley fever and the	2 are the most at risk are going to be able to qualify
3 quality of life experience by patients that'	3 without a support network -- either family, friends,
4 beginning to narrow	4 advocates or navigators. And in order to benefit from
5 As a valley fever patient, I'	5 new drugs, they must be available through insurance or
6 able to communicate with patients in a different way	6 other programs. So, documenting improved patient
7 than a researcher or clinician would. My interactio	7 outcomes benefits patients, doctors and drug
8 with our patients as well as valley fever patient	8 developers.
9 nationwide provide insights that benefit the patients	9 Manageable and minimal side effects are
10 as well as our doctors and provides a foundation for	10 an important part of ensuring a good treatment
11 improved treatment and research.	11 outcome. The limited drugs available to treat cocci
12 The patient population at the Valley	12 can have side effects that are as bad as the symptoms
13 Fever institute is a resource that can be used for	13 of the disease. Patients want to resume our normal
14 research into health-related quality of life. Current	14 lives. We want to go back to work or school and we
15 research at the Valley Fever Institute utilize	15 want to spend time with our family and friends again.
16 several different scoring systems to evaluate patient-	16 Many validated patient-reported outcome
17 reported outcomes for our research. And I'm very	17 surveys are available for evaluating the impact of
18 excited to say that along with our Psychiatr	18 cocci. When evaluating which survey will be best for
19 Department, our doctors are conducting research into	19 your research project, there are some important
20 correlations between cocci and depression, and we're	20 considerations. First, patients want to be heard and
21 hoping to expand on these efforts in future research	21 many are eager to participate in our research. I've
22 projects.	22 had patients from Northern California ask about

Page 71
1 and the survival of the patient.
2 Thank you for your time, and I'm happy
3 to share more information about my journey and
4 experience as well as the experience and stories from
5 some of our other patients that we have begun
6 collecting. Again, thank you for your time.
7 SUSAN HOOVER: Thank you, Rob. We now 8 have a period for formal public comments. There have
9 been two requests received to give comments. This is
10 a 15-minute interval, so these speakers will have
11 about seven minutes each. Our first speaker is Klaus
12 Romero of the Critical Path Institute. Dr. Romero is
13 the chief scientific officer at the Critical Path
14 Institute.
15 DR. KLAUS ROMERO: Thanks, everybody. 16 Just a quick sound check that you can hear me?
17 SUSAN HOOVER: Yes.
18 DR. KLAUS ROMERO: That's fine. So,
19 yeah, thanks for the opportunity. I'm actually very
20 honored to follow Rob in his presentation to talk
21 about real world data in how we can use and leverage
22 real world data to optimize the design of clinical

1 trials for drug candidates, both new drug candidates
2 but also candidates for repurposing to treat valley
3 fever.
4 So, I'm going to start by giving quite
5 a bit of credit to both the agency and NCATS from NIH
6 for the development of the CURE ID smartphone
application. If you have not downloaded it, I
8 strongly suggest that you do. It's a great
application that allows clinicians to report their
10 real-world experience with using both on-label and 11 off-label drugs to treat infectious diseases. And, of
12 course, valley fever, we posit that to definitely
13 benefit from the clinicians from the trenches treating
14 the patients, reporting their experience in a way that
15 is not intrusive, in a matter that is easy to comply
16 with, and without concerns for protected health
17 information being disclosed through the application.
18 The specific application that we
19 foresee for valley fever through the CURE ID program
20 and the CURE ID app is to be able to capture that real
21 world data of the experience of the clinicians
22 treating the patients with their results for the

1 different drugs that are used and the different
2 experiences that are unique to each patient, as Rob
3 indicated his very informative presentation.
4 And the intention is to be able to
5 catalogue that real-world data to be able to then
6 generate actionable hypotheses and identify signals
7 that can be used to optimize the design of clinical
8 trials for valley fever drug candidates.
$9 \quad$ But in addition, things don't just stop
10 with leveraging the real world data to inform clinical
11 trial design -- the intention is to also be able to
have that information readily available for
13 researchers to also facilitate the advancement of the
14 real world evidence generation based on those real
15 world data that are captured through the application.
16 So, around the CURE ID app, the
17 Critical Path Institute has launched, funded by the
18 FDA, the CURE Drug Repurposing Collaboratory or CDRC.
And Marco Schito, who's on the phone with us today,
20 acts as the Executive Director for this effort. The
21 mission of the CURE ID -- of the CURE Drug Repurposing
Collaboratory revolving around the CURE ID app is to

Page 74	Page 76
1 essentially become that central global hub for real	1 participating in the collaboratory. And at a minimum,
2 world data to be integrated and to leverage the real	2 give CURE ID a check because it's really worthwhile as
3 world data to generate real world evidence than can	3 a resource for clinicians in the trenches. So, yeah,
4 then leveraged to inform and optimize the design of	4 with that, I'll stop. Thank you so much
5 clinical trials to test different drug	5 SUSAN HOOVER: Thank you, Dr. Romero.
6 against a myriad of disease,	6 And our final public commenter is Dr. Gray Heppner.
7 minute, but of course we definitely see -- and the	7 Dr. Heppner is the Chief Medical Officer of Crozet
8 Critical Path Institute being based in Arizona,	8 BioPharma, and I'm hoping he will correct my
9 recognize	9 pronunciation.
10 definitely recognize the opportunities that are ahead	10 DR. GRAY HEPPNER: Thank you. Can you
11 with the collab	11 hear me?
12 valley fever	12 SUSAN HOOVER: Yes.
13 So, this is a snapshot of how the	13 DR. GRAY HEPPNER: Good. First of all,
14 collaborator is structured. So, we have the advisory	14 thank you so much for allowing me to touch on the
15 committee made up of C-Path, FDA and NIH or NCATS	15 related topic of vaccine development for
16 representativ	16 coccidioidomycosis. A vaccine is needed, it's
17 working groups that are focused on infectious diseases	17 feasible and it's cost-effective -- but where is it?
18 on one hand	18 There is a strong imperative for a stronger public-
19 other hand.	19 private vaccine partnership to bring forth a much
20 pilot project with the disease of the hour, COVID-19,	20 needed public health measure.
21	21 Who needs a vaccine? I think we've
22 formalizing the working group for valley fever. And	22 heard today from the very moving patient testimony,
Page 75	Page 77
1 being in Tucson, of course, we're in the stages of	1 from epidemiology reports and from clinicians that a
2 setting up the collaboration with the U of A, Joh	2 vaccine is needed. This disease is devastating, i
3 Galgiani and colleagu	3 unavoidable and it's difficult to treat. And like so
4 And then we have the other wor	4 many problems in life, prevention is worth more than a
5 groups that are going to be dealing with the data	5 cure.
6 analytics. That's more the world of the Quantitative	6 Who needs it? It's people who live
7 Medicine Program at C-Path. And then, of course,	7 across the Americas, North America, Central America,
8 regulatory science workgroup that is going to interac	8 South America. It affects the most disadvantaged
9 with the regulators to, again, organize the real-world	9 people among us as well as people who don't think of
10 data into real world evidence that becomes actionable	10 themselves as disadvantaged. But a vaccine is clearly
11 to optimize a whole process for medical product	11 needed for these high-risk groups, older adults, very
12 development against valley	12 young, military personnel on training maneuver
13 And another important aspect	13 immunocompromised, working transplant patients,
14 not captioned on the slide but an aspect that we	14 certain ethnic groups -- African-Americans, prisoners
15 incorporate in every single one of our collaborative	15 and people whose occupations do not allow them to
16 efforts at C	16 escape the exposure to this essentially unpreventable
17 Rob, we would love to follow up with you after today	17 exposure and disease.
18 to discuss options for collaboration.	18 I think it's worth bearing in mind some
19 And so, with that, I'll stop and -- I	19 very simple observations about coccidioidomycosis.
20 did it pretty much on time, so, yeah, that was that	20 First of all, a valley fever vaccine is feasible. And
21	21 why do we say that? Well, firstly, human infection is
22 to hearing from you if you are interested in	22 protective against subsequent infection of disease,

1	demonstrating that almost all people's immune systems 78
2	are able to mount an effective immune response after
3	exposure.
4	A live attenuated spore-based vaccine
5	has been developed. We heard about this earlier as a
6	collaboration between Anivive, the University of
7	Arizona, and other parties. The vaccine has already
8	been proven safe and protective in mice and dogs
9	against the human pathogen, and it's encouraging that
10	a public-private venture is underway.
11	I would be remiss not to note the
12	importance of public sector support, particularly DMID
13	NIH support, which we heard about earlier, to
14	facilitate the important basic science, immunology,
15	proof of concept in preclinical models and toxicology.
16	It's my point of contention that the same vaccine is
17	likely to be safe and effective for humans that will
18	require substantial additional work. This is a
19	clinical grade manufacturing known as GMP, and careful
20	clinical development to demonstrate actual efficacy.
21	So, like so many infectious disease
22	problems that affect mankind, we know that vaccines

Page 79
1 are feasible, they've often times been demonstrated in preclinical models against human pathogens and yet
3 they don't exist. The late Adel Mahmoud at Princeton 4 as well as Stanley Plotkin and other advanced leaders
5 in vaccinology made the observation that there are
6 numerous infectious diseases that regularly claim
7 untold numbers of lives around the world; that there
8 are few vaccine candidates for combatting these
9 ailments. The reasons are not new. The
10 pharmaceutical industry may deem the markets not
11 sufficiently profitable to recover investments, and
12 government has not provided sufficient incentives.
13 So, what I'm referring to now is what
14 we in vaccine development called the valley of death
15 - the developmental valley of death, which is almost
16 as foreboding as the valley fever itself. Looking
17 from left to right, I think this is a well-circulated
18 diagram outlining the basic fundamentals of vaccine
19 development. It's important to both academics, and
20 NIH funds the basic research, but after this, the
21 translation into clinical development and eventual
22 life insurance so that the countermeasures can be
utilized are sadly lacking.
2 Incentives are needed for industry to
invest in a vaccine to protect people at risk of these
and other unpreventable diseases. People may ask why
does cocci lag behind? Well, it doesn't seem to
6 affect enough people to merit financial interest form
pharma. CEPI, the Coalition for Epidemic Preparedness
8 \& Innovation, has addressed these gaps for diseases
which affect larger groups of people. But here, we
today are gathered to talk about why and what needs to
be done to solve the valley fever problem. It does
disproportionately affect poor and marginalized
populations. The potential direct market has not
catalyzed commercial vaccine efforts.
15
16 awareness today the Priority Review Voucher. This
17 device, which is authorized by the FDA, would enable
18 vaccine developers to develop vaccines because it
would incentivize the development. It would provide a
pull mechanism to reduce risk for vaccine developers
who are on the margins or on the fences about
investing the initial effort to bring something

1
2
3 4 with support from certain Congressmen have asked the
5 FDA to approve a Priority Review Voucher to
incentivize the vaccine development for valley fever.
This was not accepted and an appeal is underway. But
I bring it to your attention today, and I thank you
for this time, as a needed incentive to help develop a
vaccine which would be of great benefit to people
across the Americas. Thank you again for this opportunity to speak today.

SUSAN HOOVER: Thank you, Dr. Heppner.
-14 There will be a lunch period now, and please be back
15 by $1: 35$ p.m., that's Eastern Time, for the start of 16 session two.
(Lunch Break)
COURT REPORTER: It's 1:35 p.m.
DR. JOHN GALGIANI: Great. Hi. This
20 is John Galgiani. I'm one of the session moderators
for Session 2. Janis Blair is the co-moderator.
Unfortunately, Janis is called away to cross-cover

1 challenges involved. The general principles for
2 antifungal drug development are similar in many
3 aspects to those for antibacterial drug development,
4 however, there are particular challenges with
5 antifungal trials. For example, patient recruitment
6 and, of course, financial challenges. So, this talk
7 will include an overview of the regulatory approval
8 pathways, available incentives, the general content of
9 an NDA package, and clinical trial design
10 considerations.
11 So, as you all know, there are two FDA-
12 approved drugs for the treatment of cocci,
13 Ketoconazole and Amphotericin B deoxycholate. And the
14 current standard of care includes Fluconazole,
15 itraconazole, or Amphotericin B in more disease. And
16 other treatment options include azoles such as
17 voriconazole or posaconazole.
18 So, at this time, we have no approved
19 new drug application for cocci for decades but there
20 is hope. Examples of investigational drugs studied in
21 phase 1 human studies and in animal models of cocci,
22 include VT-1598, Nikkomycin Z, Olorofim, and

Foxmanogepix. And property available information on
2 these drugs is available in the reference slide.

4 include traditional approval, which is generally based
5 on a clinical endpoint measuring how a patient feels,
6 functions, or survives. An accelerated approval is
based on surrogate endpoint that is reasonably likely
8 to predict clinical benefits or on a clinical endpoint
that can be measured earlier than irreversible
0 morbidity or mortality.
So, the limited population pathway or
12 LPAD is for drugs that are intended to treat a serious
13 or life-threatening infection in a limited population
14 of patients with unmet medical needs. Examples of
recent approvals in this LPAD pathway include
Pretomanid as part of a regimen for the treatment of
extensively drug-resistant tuberculosis or intolerant
18 or nonresponsive multidrug-resistant tuberculosis; and
then Arikayce for the treatment of pulmonary
nontuberculous microbacterial infection.
Just to go into a little bit more
detail about accelerated approval -- accelerated
Page 83

So, regulatory pathways for approval

15

17 extensively drug-resistant tuberculosis or intolerant

22

1 approval is appropriate for drugs and candidate to
treat serious condition and generally provides a
3 meaningful advantage over available therapies and
4 demonstrates an effect ton a surrogate endpoint or an
5 intermediate clinical endpoint that is reasonably
6 likely to predict clinical benefit. It is important
to note that the trials meet the same statutory
8 standards for safety and effectiveness as traditional
approval.
And this pathway has been primarily
10
11 used in settings where the disease course is long, and
12
13 measure the intended clinical benefit of the drug.
So, it has less of a role in acute infectious
diseases. And for drugs granted accelerated approval, 6 post-market confirmatory trials have been required to
verify the anticipated clinical benefit.
Now I'm going to switch to available
incentives. And many of you are familiar with the
20 Qualified Infectious Disease Product designation.
21 Drugs being developed for treatment of cocci may be
22 eligible for QIDP designation and it can be requested
Page 86

1 at any time before submission of an NDA. QIDP
2 provides for an additional five years of marketing
3 exclusivity for certain drugs and for a priority
4 review for the first application for QIDP. And the
5 priority review timeline is six months, as compared to
6 ten months for standard review. And drugs that have
7 QIDP designation are also eligible for fast track
8 designation. And many of the drugs that currently
9 have QIDP also have fast track.
10 So, fast track designation can be
11 requested if the drug is intended, whether alone or in
12 combination, for the treatment of a serious or life-
13 threatening disease and it demonstrates the potential
14 to address unmet medical needs for such a disease or
15 condition.
16 And the information available to
17 support designation will depend on the stage of the
18 drug development. So, the supportive evidence could 18
19 include activity in a nonclinical model, a mechanistic
20 rationale, pharmacologic data, or available clinical
21 data.
22 So, just some key points on fast track
Page 87
1 designation -- it allows for frequent interactions
2 between the review team, including pre-IND meetings,
3 end-of-phase 1 meetings, end-of-phase 2 meetings, etc.
4 It also allows for submission and review of portions
5 of the application known as a rolling review. And
6 just to note that the designation may be rescinded if
7 it no longer meets the qualifying criteria.
8 Then, finally, we have the breakthrough
9 designation. For breakthrough therapy designation,
10 the clinical evidence must show that the drug may
11 demonstrate substantial improvement over available
12 therapy on one or more clinically significant
13 endpoints. There is intensive guidance from the FDA
14 on the drug development program beginning as early as
15 phase 1 . It could be eligible for priority review if
16 supported by the clinical data at the time of the NDA
17 submission, and the drug receives all the benefits of
18 fast-track designation.
19 The remainder of the presentation will
20 focus on the content of a new NDA application data
21 package and on aspects of clinical trial design. So,
22 when seeking an indication for cocci, at least one
adequately controlled clinical trial is required with
2 supportive evidence from nonclinical and in vitro
3 studies are an indication. And for those with orphan
4 designation, the statutory standard first needs to be
met, which is effectiveness demonstrated in an
adequate and well-controlled investigation.
So, supportive evidence from
nonclinical studies include information on the
activity of the drug, antifungal drug in vitro and in
10 animal models of disease. And we just heard a very
informative talk on the various animal models of cocci
12 from Dr. Shubitz. Some considerations for the design
of animal model studies are listed below. For
example, information like the route of drug
administration, the timing of the initiation of treatment and outcome measures such as survival and changes in fungal burden and target orients.

As we know, PK-PD assessments in animal
models provide valuable information for design of
clinical trials. The division does not have a
preferred animal model of cocci to assess antifungal
activity or for PK-PD assessments. Considerations
Page 89
should be given to the target infection sites when
selecting an animal infection model. And PK-PD
3 assessments from an animal infection model have the
potential to aid in selecting a dosing regimen for
clinical trials, characterize and compare the drug's
6 activity from clinically relevant exposure at the
7 target infection site, and provide supportive evidence
8 for the drug's activity.
These are some high-level points on
clinical trial designs. For non-inferiority trial
designs, one must be able to provide a data-driven justification for the non-inferiority margin. A drug
or regimen recognized as a current standard of care is
acceptable as an active comparator and recent trials
for invasive fungal disease have used the NI trial design.

A superiority trial design could
include a placebo where it's feasible and ethical, an
active control or an external control for single-arm
studies, for example, with contemporaneous matched controls.

Moving on to clinical endpoints. So

1 that we're all on the same page -- so, a clinical
2 endpoint directly measures a therapeutic effect of a
3 drug, an effect on how the patient feels, functions,
4 or survives. Clinical endpoints for cocci will depend
5 on the spectrum of clinical presentation or on
6 patterns of disease, localized versus disseminated
7 disease, for example, and characteristics of the
8 patient population.
9 A cocci scoring system has been used in
10 published cocci trials. One could consider a patient
11 reported outcome measure, as mentioned in an earlier
12 talk. And if a biomarker of disease is proposed, for
13 example, a serological marker or cocci DNA, it should 14 be reasonably likely to predict clinical benefit.
15 To define a PRO, a PRO is a measurement 16 based on a report that comes directly form the patient
17 about the status of the patient's health condition
18 without interpretation of the patient's response by a
19 clinician or anyone else. And PROs can be useful for
20 clinical outcome assessments for chronic infections.
21 And we look forward (inaudible) to the discussion anc
22 appropriate endpoints for cocci trials. This is a
Page 91
1 very important aspect.
2 What's the role of diagnostics? It's
3 important that the diagnostic test adequately detects
4 the disease of interest. This is especially important
5 in non-inferiority trials to ensure that the
6 population studied has the disease of interest. For
7 example, we've used the Galactomannan test in
8 invasive-aspergillosis trials for patient
9 identification and definition of patient populations.
10 And, in general, diagnostic tests do
11 not have to be FDA-cleared or FDA-approved for use in
12 a clinical trial if being used for enrichment
13 purposes. If the diagnostic test is not FDA-cleared,
14 the information supporting the intended context of use
15 should be provided. And qualification of a diagnostic
16 as an endpoint is not a prerequisite for use in
17 clinical trials. And as you know, the CDER Biomarker
18 Qualification Program helps develop biomarkers as drug
19 development tools.
20 So, the final word on safety --
21 obviously, safety of study participants is paramount.
22 So, based on safety signals from nonclinical studies,

1 appropriate safeguards need to be included in clinical trials. A safety database at the proposed dose and duration is likely to be small in cocci trials; therefore, additional safety data may be needed if there is a significant safety signal. Additional 6 safety data may be requested through a post-market study or enhanced pharmacovigilance post-approval.

In summary, the presentation provided a
high-level review of some key considerations for drug
10 development for cocci, which include regulatory
pathways and incentives relevant to antifungal drug
development. And I just covered at a high level some
trial design aspects, endpoints, diagnostics and 4 safety considerations.

As always, we encourage sponsors to engage in early discussion and continue dialogue with 17 the Division of Anti-Infectives, and particularly when 18 planning novel approaches to clinical trial design. There are some references, and just before I finish, I'd like to acknowledge the contribution of Dr. Joe Shane, clinical pharmacology, and Dr. Bala in microbiology for their input, and thank you all for Page 93
your attention. Thank you.
DR. JOHN GALGIANI: Okay, thank you,
Dr. O'Shaughnessy, for the first presentation. I am
the second presenter today. I'm, as I said, John
Galgiani. I've been at the University of Arizona
6 faculty since 1978, and for pretty much all of that
7 time I've been interested in studying
coccidioidomycosis, and in 1996 founded the Valley
Fever Center for Excellence at the University of Arizona.

11
12 chairman of the board and a significant stockholder of
Valley Fever Solutions, which we'll touch on in terms of the development of Nikkomycin Z, or the attempts to
develop Nikkomycin Z. It was the spinoff that we created for that purpose to help move this drug along.

So, the points that Dave Stevens and
others made this morning about the impact of valley
fever I think are very, very relevant. I'm not going
to try to reiterate any of those. But I would like to
make a comparison, which I find especially useful,
between the impact of valley fever compared to the

Page 94	Page 96
1 impact of polio in terms of rates per 100,000 people.	11990 the experience of using Nikkomycin
2 And you can see that the average number of reported	2 therapeutically in mice. And in his study he had
3 cases prior to their being a vaccine for polio was	3 eight mice that received no drug and eight mice who
4 about the same per 100,000 people for polio as it	4 received Nikkomycin. And the eight animals, very
5 for coccidioides. And a parallel with polio occurre	5 similar to what Lisa Shubitz was showing -- they had
6 at about the same frequency as disseminated disease.	6 fungal growth with 2 times 10 to 6 (inaudible) units
7 There's a small problem or differenc	7 per lung in the mice that got placebo, but in the
8 between these two diseases in that polio is worldwide	8 Nikkomycin, seven had sterile lungs and one had a
9 and cocci is down to a very constrained part of the	9 single colony grown. So, there was a very dramatic
10 world in those highly endemic regions	10 difference with the therapeutic effect of Nikkomycin Z
11 So, like polio, I think of coccidioide	11 that Richard found.
12 as a biohazard, albeit for a small endemic population	12 And if this were to hold up in human
13 and the people who live there and the visitors.	13 trials, this would completely reverse the strategy.
14 in the same way it is a biohazard for Americans and	14 And later, we'll be talking about therapeutic
15 for others in the Western Hemisphere.	rategies. But basically the strategy is to wait
16 endemic,	16 until people develop complications and then
17 illness is anything	17 aggressively treat them. If we had a cure for this
18 overall economic impact that I am starting to use	18 disease, we would reverse that and try to diagnose as
19 about $\$ 1.5$ billion annually, and that's based in pa	19 early as possible all infections and cure it before
20 on Leslie Wilson's publication for costs of cocci	20 the complications developed.
21 California, and we replicated that model for Ariz	21 So, the timeline as I said, this drug's
22 and the two combined us just under	22 been around for quite a while. It was discovered by
Page 95	Page 9
17, ours was 2019 for	1 Bayer in the 1970s. Rich Hector, the data that I
2 reference years. And I think the public heal	2 showed you was done in the 1980s. In the 1990s,
3 benefit clearly justifies the idea of trying	3 Shaman Pharmaceuticals initiated the development
4 develop better therapies and, in fact, vaccine	4 program for Nikkomycin Z, but then went out of
5 However -- and this is the point that	ally slowed down progress, when
6 I'll -- the lesson that I will try to emphasize in my	6 the company goes out of business. And it sat for five
7 presentation -- the business model for developi	7 years until the information and actually part of the
8 valley fever drugs and vaccines compete very poorl	8 GMP-made drug that Shaman had done was transferred to
9 against other investment opportunities. And that	9 the University of Arizona, and we at the university
10 the theme that I'm going to try to develop	10 started to try to move this drug forward and we made
11 So, Nikkomycin Z has been around for	11 significant progress.
12 long time. These cartoons show you the resemblance of	12 In 2006, we got orphan drug
13 the drug, Nikkomy	13 designation, which, as you heard, gives you seven
14 synthase and, in fact, Nikkomycin Z is a competitiv	14 years of exclusivity. We also initiated, because th
15 inhibitor of titin synthases	15 IND had been inactivated, we reactivated it and formed
16 Here are a large list of fungi and	16 Valley Fever Solutions to help us with development.
17 their MICs,	17 In 2014, we obtained a QIDP designation which adds an
18 on the top, which is -- sorry about that -- whi	18 additional five years to exclusivity, which for this
19 should be looped around coccidioides, which is by far	19 drug, being as old as it is, creates much of what we
20 the lowest, . 0625 , compared to the other MICs in	20 depend on for protection for developmen
21 vitro.	21 And in 2015, we conducted a Phase
22 Rich Hector in the 1980s published in	22 two-week multidose study in 32 subjects and in 2019,

1 we had a pre-Phase 2 Type C meeting with the FDA. It
2 was to be face-to-face in Washington, but there was a
3 snowstorm, so from our hotel room we did it by
4 telephone, but it was a very productive meeting, as
5 those are.
6 And then we are continuing to improve
7 manufacturing processes and David Larwood has been
8 spearheading that, one of the speakers later in the
9 afternoon. So this is some data just to show you the
10 relationship, what we know about pharmacokinetics,
11 shown here is the human data from 250 q .12 up to 750
12 q. 8 in oral dosing. This is a couple of data points
13 for mice on milligrams per kilogram on the X axis and
14 dotted throughout here are dog levels that Lisa
15 Shubitz did in a Phase 2 trial in therapeutics in 16 client-owned dogs.

17
And shown here as the ED 50 and ED 80,
18 are the effective AUCs in mice, and you can see that
19 clearly the absorption is sufficiently good that you
20 have good reason to think that if you went to a
21 clinical trial with any of these doses, it would be
22 done well and it would be certainly within the range
Page 99
1 you might expect to see therapeutic results.
2 Here is, over the last 15 years, the
3 support we've gotten to do what I just summarized for
4 you, and you can see numerous funding items from the
5 NIH over the last 15 years. We've also had orphan
6 drug grant money from the FDA and we've had
7 philanthropic support from the JT Tai and Company
8 Foundation and also the Valley Fever of the Americas
9 Foundation, a foundation in Bakersfield.
10 Noticeably absent from this list is any
11 private investment, and that's kind of the point that
12 I'm going to try to make. This slide is not well
13 formatted for you, but shows you the Phase 1, which
14 goes up and Phase 2 that continues to go up and on the
15 right hand, in log scale, is cost of drug development
16 and as I think you know, even without this being
17 appropriately formatted, that the costs just continue 18 to go up.
19 Here we are at the beginning and this
20 timeframe going through Phase 2 and on to, hopefully,
21 approval at the FDA is where the real money is needed
22 for the final push. And so just to summarize, then,

Page 100
my comments, therapy is clearly an unmet need. I use
$\$ 1.5$ billion, but it's certainly, without quibbling,
that kind of a public health problem. The drug has a
novel mechanism of action. Its pharmacologic profile
is excellent and at this point, we see no evidence as
6 yet of any untoward reactions to the drug.
The experimental data in the mice
8 suggest it might be curative and the real issue is
that development is simply limited by finances. And I
10 think the take-home message is that the business
models for new Valley Fever therapies compete very
poorly against other investment opportunities. Future
paths forward likely will require a government
14 response to the public health need. I mean, this is a
15 public health problem and it is easy for me to see how
6 you might think that the -- it would be appropriate
17 for a federal support to help with this.
18
19 Well, the FDA, we've heard some of the options they
20 have. I'm going to focus on the Tropical Medicine
21 Priority Review Voucher Program which just recently,
they decided at -- to determine that the request for
Page 101
coccidioidomycosis to be a part of this program should
be declined because it is -- has a potential
significant market for a vaccine.
I was quite surprised at that
determination and without going into that in any
detail here, I think we are hoping and others may be
hoping to put together a response to explain why we
think they should reconsider that. Also, we've seen
from the presentation from NIH now the SAnds is being
supported by NIH in the past and I think Neil Ampel
will likely touch on the Mycosis Study Group, maybe
Tony Catanzaro as well, about clinical trials we've
done in the past with NIH Contract Support.
That could certainly be resurrected,
but I think it would take a lot and I think we would
get a lot of benefit, in fact, from that kind of
support. And then finally, I think since I see this
as a biohazard that BARDA could easily be thought of
as appropriate to consider support for this. Even
though it's not a worldwide problem, it does impact
greatly Americans who live in or travel to these endemic regions.

Page 102	Page 104
1 So those are generally the comments I	1 of translating it from delayed type hypersensitivity,
2 had. I think that was my last slide and I thank you	2 cell mediated immunity and demonstrated a lot of T
3 very much for your attention and I see we're doing	3 cell dysfunction, both in lymphocyte transformation
4 very well on time and so I think with that, let me	4 and migration inhibition factor and other in vitro
5 introduce our third speaker, my good friend, Tony	5 studies of cell mediated immunity, and recognized the
6 Catanzaro.	6 similarly to the model that is shown here that Ward
7 Dr. Catanzaro is a professor of	7 Bullock presented for leprosy where delayed type
8 medicine at University of California San Diego who's	8 hypersensitivity was inversely coordinated with the
9 been working in the field of chronic pulmonary	9 clinical disease, so when the disease was localized
10 infections including cocci, focusing on therapeutic	10 with leprosy, there's a good delayed type
11 and diagnostic	11 hypersensitivity response, went it disseminates and
12 DR. ANTONINO CATANZARO:	12 these become more severe, delayed hypersensitivity is
13 much, John,	13 markedly
14 inviting me. Can you hear me okay? Is sound comin	14 And that's very much the situation that
15 through okay?	15 we saw with cocci and it's kind of made me think I wa
16 DR. JOHN GALGIANI: Yes	16 aware of some studies that Sherwood Lawrence had done
17 DR. ANTONINO CATANZARO: Okay, good.	17 in 1955 with transfer factor, which is a set of
18 So yeah, thank you very much again for this invitation	18 proteins, soluble proteins derived from peripheral
19 and to provide a kind of -- almost a 50-year overview	19 blood that have the capacity to transfer delayed type
20	20 hypersensitivity as well as cell mediated immunity
21 colleag	21 from people who didn't have to people who had it --
22 point out, John, with the cocci study group when I was	22 people who had cell mediated immunity to people who
Page 103	Page 105
1 kind of lost at a California Thoracic Society meetin	1 didn't have it.
2 with nowhere to go and Hans Einstein invited me to go	2 And I wondered if this could help the
3 to the cocci study group meeting, which was an ongoing	3 response in patients with coccidioidomycosis, and so
4 organization at that time and over the years,	4 initiated with a whole bunch of colleagues, and I
5 developed quite nicely from a casual kind of sharing	5 think this is an important point to emphasize that
6 of common interests into a very organized, scientifi	6 each study on coccidioidomycosis require a
7 organization for the presentation of data and for the	7 collaborative group. There's no one center that
8 support of, at least emotional and scientific suppor	8 really sees enough patients to do a meaningful study
9 for studies of various kinds	9 and you've got to bring people together.
10 And I'm happy to say that the cocci	10 At that time, amphotericin was the drug
11 study group had a big part in my development and Neil	11 of choice, in fact, that only drug available and so
12 is going to go on and talk about future development	12 patients were having a tough time and so we decided to
13 as was pointed out	13 continue the amphotericin but simply add transfer
14 But one of the things that I learne	14 factor. And we thought we had a really nice response
15 very early on is that the immune response to cocci was	15 with 30 patients out of 49 having a favorable
16	16 response, but obviously without any controls, it was
17 recognized that if you had -- if you didn't respond by	17 hard to know what that really meant.
18 a skin test 1 to 10 coccidioidin, your chances	18 And so we put together a plan to do a
19 having a very poor outcome and actually dying were	19 double blind study, but NIH declined to fund it and so
20 quite substantial.	20 we established the Cocci Cooperative Treatment Group,
21 And based on that, I undertook a number	21 a small group of unfunded trials, and we used the same
22 of studies of the cell mediated immune response, kind	22 model where patients were treated with amphotericin

Page 107
1 chronic disease, they went on for literally years and
2 just having a clinical response or, say, serologic
3 response was simply not enough.
$4 \quad$ You can see here that the responses
5 were not that good for pulmonary disease and were a
6 little better for disseminated disease, particularly
7 for synovitis, and for abscesses, but when you get to
8 osteo and abscesses, fistula, the persistence of
9 lesions was a really major problem with ketoconazole.
10 So at that point, we started to look
11 around and saw the mycosis study group had a scoring
12 system and we thought that would really be a good idea
13 to try to put that into effect and David Stevens
14 started to talk about that and we had a clinical score
15 based on clinical criteria, on radiographic criteria -
16 - obviously, this was focused more on pulmonary
17 disease -- and the serologic response.
18 And with that kind of a tool, we're
19 able to see for infiltrative disease we see right at
20 the beginning of disease, showing the scores across
21 that most patients had rather high scores, and then at
22 the end of treatment, they had low scores.

Page 108
1 So it really worked well in
2 infiltrative pulmonary disease and in soft tissue
disease, but we started to see weakness appear with
disseminated disease and with cavitary disease that
the responses were significantly less good when we
6 broadened the look from just the presence or absence
of cocci in the sputum to a broader mycosis study
group analysis.
9 We moved on to fluconazole, and
10 initially started with low doses of 50 to 100
milligrams in 14 patients and found that they were
definitely responsive, but relapses happened very,
very quickly and in very high numbers, so 50 to 100
milligrams is clearly not enough fluconazole.
This was backed up by in vitro studies
16 with serum concentrations of fluconazole at 50 and 100
milligram dosages and then with the good news that it
went on into CSF and so that opened up the possibility
of looking at meningeal disease and so we had a one-
armed study looking at 50 cases of cocci meningitis
treated with fluconazole and we had very nice
responses.
Page 109
And I might say that there were no
withdrawals due to side effects, and at that time, we
thought that fluconazole had little or no side
effects, to this was pointed out by the patient
centered group, the side effects really were
6 significant, they just did some -- were overlooked in
those initial studies, and also were really relatively
8 low doses of 400 milligrams.
Moving on, we started a very nice study
with the mycosis study group involving chronic
pulmonary and non-meningeal disease and we had --
where patients were started at 200 milligrams and non-
responders were moved up to 400 milligrams, and we see
here the slope down very nicely over a period of time
and then with the double blind study, which everybody
talked about, where we looked at fluconazole 400
milligrams versus itraconazole 200 milligrams in
patients in patients who had progressive, non-
pulmonary -- excuse me, nonmeningeal cocci.
We used the mycosis study group scoring
system at four, eight, and 12 months and we saw that
2 at eight months, 63 percent responded to fluconazole;

Page 110	Page 112
163 percent responded to itraconazole, so they were	1 and the impact on the quality of life, both the
2 pretty equivalent. For skeletal disease, there was	2 disease and the treatment are very significant and
3 quite a difference with 57 percent responding to	3 were not at all recognized in these early studies but
4 fluconazole and 76 percent responding to itra, but	4 has really come to bear fruit in recent analysis as
5 P value wasn't really high enough and the big bad news	5 was pointed out very nicely by the patient centered
6 was that relapse rates were significant with 28	6 presentation we heard earlier.
7 percent following fluconazole and 18 percent following	$7 \quad$ So we evaluate a series of increasingly
8 itraconazole.	8 effective antifungals and maybe we're going to get to
9 So this is the good, the bad, and the	9 fungicidal drugs, but starting with the fungistatic
10 ugly of fluconazole treatment that response rates were	10 drugs, there's often relapses following initial
11 pretty good, but relapse rates were rather significan	11 treatment.
12 when drug w	12 So I want to acknowledge the pioneers
13 We went on to look at nonmeninge	13 who participated in the cocci study group when I first
14 disease with posaconazole which was the first drug	14 started up, and the continued activity of the cocci
15 that gave us any indica	15 study group, its evolution from sharing tales to a
16 fungicidal drug.	16 really scientific group which is embarking on a new
17 fungistatic, but posaconazole had in vitro evidence	17 frontier and I want to acknowledge the many, many
18 suggest it was fungicidal, so we launched a study an	18 people who have shared my interest and enthusiasm and
19 enrolled 20	19 point out that all the publications that I referred to
20 Unfortunately, the study was stopped	20 have been with collaborated -- hasn't been a single
21173 days before the pharmaceutical company observed	21 pub that I've done with single authorship, not one.
22 toxicity in animals that they felt was simply	22 And I want to thank the sponsors, both
Page 111	Page 113
1 unacceptable with the development of tumors in animals	1 NIH and CDC and pharmaceutical houses. A lot of the
2 and so they stopped the study, but we looked at the	2 studies that were presented were funded in part by NIH
3 results and we found that four had cultures at th	3 and in part by pharmaceutical houses and I obviously
4 onset -- at the end of treatment, four had converted	4 have to point out the patients who've been incredibly
5 to negative. Nine had a satisfactory response an	5 tolerant in looking for new diseases, new treatments,
6 side effects were quite limited, so posaconazo	6 despite the fact that both the disease and
7 looked really nice in this very brief study of only	7 treatment have great side effects. Thank you very
8 six months of treatment	8 much for your attention.
9 So in summary, cocci is a very	9 DR. JOHN GALGIANI: Tony, thank you
10 complicated infection where simply eradicating the	10 very much for your presentation. Our next speaker is
11 fungus is just the beginning of the response	11 Dr. Royce Johnson. Dr. Johnson is an infectious
12 treatment. There's a lot of tissue damage	12 disease specialist with many years of experience in
13 particularly in the lungs with chronic pulmona	13 multicentered, large and small clinical trials and
14 disease and that tissue damage opens the way	14 serves as medical director of Valley Fever Institute
15 secondary infections so that patients can get rid	15 at Kern Medical Center. Royce.
16 cocci and still be highly symptomatic and be quite	16 DR. ROYCE JOHNSON: Thank you, John,
17 sick; and conversely, patients can be quit	17 and thank you to the organizers. It's my pleasure to
18 asymptomatic, even with positive cultures, so it was	18 be able to share some thoughts that come on the tail
19 really complicate and requires an assessment to be	19 of many of the things that have been said today. Wait
20 multidimensional	20 a minute. This is -- I'm having trouble advancing the
21 And again, that multidimensional aspect	21 slide. It's not working. Let me try the computer.
22 we need to look at side effects in a very detailed way	22 No. Where's the arrow? Okay.

Page 114	Page 1
1 DR. JOHN GALGIANI: Royce --	1 from there.
2 DR. ROYCE JOHNSON: So this is my only	2 DR. ROYCE JOHNSON: Go
3 disclosure. I'm having trouble still with slide	3 me just see where I was. Yeah, next slide, please.
4 advance.	4 I'll just do that because I'm having trouble getting
5 DR. JOHN GALGIANI: Royce, below th	5 it to advan
6 slide there's	6
7 DR. ROYCE JOHNSON: I saw those and I	7 complicated host-parasite relationship and Tony
8 was clicking on it, but it didn't want to move. Okay	8 touched on that with his early transfer factor studies
9 So we skipped a slide. Can we go back? Yes. So I	9 and studying the immunology of this disease and its
10 want to -- there's been several mentions about the MSG	10 immunogenetics is a key, I think, to going forward
11	11 with disease understanding, but not our subject for
12	12 today. Severe disease is failure of host defense, in
13 has been very important in the history of coccidioidal	13 my mind. Most of the time, I think that being more
14	14 significant than differences in coccidioides
15 Dismukes. I had the honor of knowing him and all f	15 pathogenesis or virulence. So the solution to this is
16	16 newer and better antifungals, the main talk today,
17	17 also immunomodulators and, of course, the holy g
18 and that's Dave Stevens, but also Jack Bennett was one	18 being a vaccine that's effective. Next slide, please.
19 of the authors along with Dick Graybill and Stat Jack	19 The original MSG score was aimed at all
20 Remington. Those five, I knew them all. Some more,	20 fungal infections, not specific for cocci; although,
21 some less	
22 This, my data comes on the tail of	22 chronicity and difficulty. It was generic. Since
Page 115	Page 117
1 David and John's and I actually -- the 150,000 numb	1
2 I have up	2 disease, perhaps not as much as I would have hoped,
3 do have some sources that think that the number of	3 and the original MSG did not deal with the variety
4 actual infectio	4 nonmeningeal sites that occur. So I'll come back to
5350,000	5 this a bit later in the talk. Next slide, pleas
6 matter is, I don't think we know, but I'm guessing	6 So we looked at all the studies wher
7 that most of the estimates are actually	7 the MSG score had been used in cocci, many of whic
8 side.	8 have been shown to us by Dr. Catanzaro. We also
9 We all agreed based on C.E. Smith	9 looked specifically at the search engines. We looked
1060 percent of the infections are asymptomatic, 40	10 at the data from the FDA in their 2017 draft
11 percent are	11 publication about multiple endpoints in clinical
12 diagnosed and these are largely pulmonary and slightly	12 trials, which I'll come back to. In fact, first we're
13 different number than David; 1 percent dissemi	13 going to talk about clinical trials and the things we
14 which at the low end would be 1,500 infections a year.	14 need to accomplish and second, we'll talk abo
15 About half of	15 revisions we've made to the MSG 2020 score that we
16 not meningitis, meaning any other place in the human	16 think would make it a better tool for conducting
17 body can be infecte	17 trials. Next slide, please
18 There's some problem with advancing the	18 So in getting a drug approval, you have
19	19 to show two things. In the olden days, it was only
20 WOMAN 1: If you say next slide, we can	20 number one, safety. But then came along the idea th
21 advance for you on our end. Just let me know if this	21 you actually had to show drugs worked before you could
22 is the correct slide you should be on and we'll go	22 sell them, and the concept is substantial efficacy.

Page 118	Page 120
1 Next slide, please.	1 of the population.
2 So I'm not going to spend any time on	2 The SAnds-PCC study is really the only
3 this, but the FDA, I think in particular wants to be	3 major large study that is now ongoing and many of us
4 sure that you conduct a trial that is not a chance	4 are participating in that has tried to look at primary
5 win, meaning that the odds that the result occurred	5 disease. Then also at the beginning of the trial, not
6 has to be something like less than 1 in 40 . Then you	6 later, you have to have an analytic program. Next
7 have to have clinical importance, as in preventing	7 slide, please.
8 death, but preventing mortality and other benefits are	8 And that -- to show treatment effect,
9 more difficult to prove but equally worthy. Nex	9 you have to have a point time estimate. Obviously,
10	10 you have to have a P value, and to determine the
11 I'm not going to go into this. Again,	11 significance, you have to have a confidence interval.
12 all of us are aware of this, that have ever done any	12 Next slide.
13 kind of science, so the statistics of showing	13 So cocci, as has been discussed at
14 efficacy. Next	14 least somewhat, is a very complicated illness, in the
15 So endpoints have to be designated	15 sense that it's actually not an illness. It is a
16 prospectively. Although I would -- of interest, I	16 whole series of illnesses that are caused by the same
17 looked at remdesivir study recently and after the	17 fungus. It is going to be very difficult to not have
18 trial had started -- of course there was something	18 multiple different outcomes in a cocci trial because
19 an urgency, wasn't it -- they actually changed some of 19 of the nature of the disease.	
20 their points during the course of the trial, but thi	20 But the FDA in its wisdom has actually
21 is considered to be tacky unless you're dealing w	21 guidance in that document that I referenced earlier
22 an emergency. I'm not making any particular negative 22 for having composite endpoints and you can have more	
Page 119	Page 121
1 comment about that trial, but at any	1 than one clinical outcome, but all the outcomes need
2 endpoints need to be of three types: primary, whic	2 to be affected by the treatment and they need to be
3 should be single or few; secondary; and exploratory	3 reasonably similar clinical importance. That last
4 Next slide, pleas	4 part is a bit of a stretch, but I think we can make
5 So we have to control prospectively	5 those. Next slide, please.
6 most of the time at least, endpo	6 So multicomponent endpoints, within
7 specific point in time and Ithink this could be	7 patient, two or more components. Observation of the
8 bone of contention in terms of cocci studies in	8 specific components in that patient. You have to come
9 particular. You'll notice that the MSG 2020 study	9 up with a single overall rating determined by specific
10 the MSG 20 study that was ITRA versus FLU that had a	10
11 significant relapse rate was a one-year study. That's	11 ordered categorical or continuous numeric scales are
12 actually one of the longest studies that's been done	12 deemed appropriate. I think this means that you can
13 in cocci.	13 use ordinal or numeric data, either one. Next slide,
14 So the time to success in this fungu	14 please.
15 is longer and picking that time is, I thin	15 So the MSG done in 1980 was about
16 to showing efficacy, albeit, if we had new fungicida	16 improving clinical relevance. Some parameters that
17 drugs, conceivably that	17 are used in that score system are actually not easy to
18 back. Exploratory studies would have to be done,	18 reproduce. I think many of us have had the experience
19 think, to try and demonstrate that. You have to also	19 of having our forehead temperature checked as we come
20 define the population that you want to stud	20 in to work and found out that on a cold day, our
21 the most part, our interest has been in studying	21 temperature could be 93.5 .
22 people with disseminated disease, that very small part	22 So despite the fact that Santorius was

1 measuring clinical temperatures in 1592 , and this
2 became a common measurement in the 19th century, we've
3 eliminated it from the score system. I know this is
4 anathema to infectious disease doctors who basically
5 view themselves as general practitioners for people
6 that have a fever, but we removed it.
7 Headache, again there were scores in
8 the meningitis sections of the MSG score for severity
9 of headache. We have great trouble thinking that we
10 would get reproducible data from a variety of patients
11 in a variety of sites on monitors like that. So we
12 have made significant changes to the score system.
13 Next slide, please.
14 So we looked for relevant clinical
15 manifestations of disease and variables that were
16 easily reproducible, especially across centers. Next
17 slide, please.
18 So we retained pulmonary and
19 nonmeningeal as one score system, although I would
20 point out that, in fact, unlike the original MSG which
21 concentrated on chronic pulmonary disease, we didn't
22 include it. I think chronic pulmonary disease and
Page 123
1 drug studies don't mix nicely, so we're really talking
2 about acute or really severe pulmonary disease and the
3 score system as reconceived by our group.
4 Meningeal disease remains a separate
5 score system, although conceivably, they could be
6 combined if a study called for that. Severity is
7 based on clinical parameters, laboratory and
8 radiologic data. Next slide, please.
$9 \quad$ So this is one of several slides that
10 I'm not going to go through, in fact, which is the MSG
112020 score system. NMD means nonmeningeal disease, so
12 it's divided into meningeal and nonmeningeal, so this
13 first set of slides is the nonmeningeal piece of the
14 score system as revised. So we have general things on
15 this slide -- next slide, please -- including the skin
16 test, you might notice.
17 The pulmonary section was revised a lot
18 because we decided to look at severe pulmonary disease
19 rather than chronic pulmonary disease, so we've
20 divided it into people with modest respiratory
21 failure, the next line being people that have the
22 minimal requirement for ARDS. The next series of

1 sections involve specific organ systems that are 2 involved in the disease. The first one is skin, which 3 is by and large the mildest disease. Next slide, 4 please.

5 And then we went on to subcutaneous, 6 joint, and bone, all common site. Next slide.

7 Intraabdominal, not a very common site,
8 but we do see it. Lymph node disease, as was
9 demonstrated in a slide of one of the previous
10 speakers. Then we left another slot for other sites
11 of dissemination, so that included the retina, which
12 we had a nice picture of earlier, or the epididymis --
13 both begin with I -- E, I mean. Next slide, please.
14 Then we retained the complement
15 fixation titers. We endeavored to shrink it. Some of
16 my colleagues balked at the -- how much we shrank it.
17 There is a question about this creating too much
18 weight on the complement fixation titer, but unsaid by
19 anybody at this meeting, the complement fixation titer
20 is both diagnostic and prognostic if it's performed in
21 the right laboratories, and for diagnosis and 2 prognosis in studies, there has to be tight control of

Page 125
1 where the laboratories are done, otherwise these are
2 of no benefit for diagnosis or prognosis, either one.
We also gave scores for diagnostic
4 criteria, but we decreased the weight on these as
5 they're not easily available for all patients. Next
6 slide, please.
So to -- we also changed the
8 categorization of scores in terms of percent
9 reduction. As was pointed out earlier in the original
10 score system for nonmeningeal disease, you had to have
a 50 percent score reduction to be called a success.
We adopted this terminology from the oncology
literature and so we have responders, partial
responders, non-responders, and progressors. This may
be contentious, but this is what we're thinking that
we might so. Next slide, please.
This is the meningitis section. We
reordered the wording for level of consciousness to
modern Plum and Posner definitions. We also include a
section which we have liberally borrowed from our
21 cryptococcal colleagues on intracranial pressure, an
22 absolutely key thing to take care of in cocci

1 meningitis. We have some advances in neuroradiology
2 that I won't go into. Next slide, please.
3 We retained spinal fluid, as I call it,
4 the currency of cocci meningitis because you clearly
5 can have patients that feel wonderful on treatment but
6 have a spinal fluid that still looks terrible.
7 Actually, this has been a bone of contention between
8 John and myself for the last, how long, John? Twenty-
9 five years? Next slide, please.
10 So we retained the greater than 40
11 percent requirement to be called a success in
12 meningitis, but we did again add this oncology looking
13 partial responder, non-responder, and progressor idea
14 to the score system analysis. Next slide, please.
15 One second. I lost my picture. Rob of
16 our group gave a very nice talk about patient
17 suffering with this disease, which I noted when --
18 every early in my career in cocci going back a lot of
19 years of people that suffered personal, financial, and
20 of course mortal results from the disease.
21 So at the suggestion of Jack Bennett
22 we think that we should add to any analysis in any
Page 127
1 study we do an analysis of patients' perception of
2 their illness and the results of their treatment and
3 so the vehicles for that, the SF 12 version 2 is being
4 used along with the PROMIS and the SAnds-PCC, so we
5 have some familiarity with that.
6 Jack actually suggested the SF-36 which
7 some of my patients have objected to that when we've
8 tried it because of its length, and then in talking
9 with John Rex, the EQ-5D-5L he thinks is a beneficial
10 way to gauge outcome in trials. Perhaps on its own
11 merits only. I think it don't quite agree with him
12 yet, but who knows. Next slide, please.
13 So in conclusion, we've endeavored to
14 develop a more complete and objective system of
15 evaluations and parameters that are clinically
16 available and reproducible and hopefully could meet
17 FDA guidance in an appropriate endpoint -- composite
18 endpoint. Next slide, please.
19 And from Bill Dismukes and his co-
20 authors, two of whom I think are present, "We hope the
21 spirit of these remarks will spark lively discussions
22 as well as constructive criticism, challenge, and
controversy... if indeed such healthy discussion,
argument, and dialog ensues, then we will have
satisfactorily accomplished our goal."
And again, I want to thank my
collaborators at the Valley Fever Institute, Jack
6 Bennett for looking at some of our thoughts before
this talk, and John Rex, as well. And thank all of
you for your attention.
DR. JOHN GALGIANI: Thank you very much
Royce. That's very good and I'm delighted to say
we've done wonderfully on our time. We're now here
for a break and I think we'll just reconvene at the
time schedule which is $2: 55$, so we'll have a little
more than 15 minutes to get started. I think we
should stay at time so the people that were planning
to be on this agenda by the announced schedule will
find us there at the time we're supposed to be after the break. So 2:55.
(Break)
DR. JOHN GALGIANI: John, are you with
us?
DR. JOHN REX: I am.
Page 129

1

6 thanks to the organizers. It's actually been a very
interesting conversation. It's good to get the
8 community together.

10 have loosely coordinated, but it's really mainly so
that we would each come up with somewhat different
topics. There'll be some repetition and -- but our
theme was pick something out of what we have learned
and try to tell that story. And so here's the story
from F2G's perspective.
So understand the point I want to make,
you need to know a little bit about the compound we
have in Phase 2. It's called olorofim. It's a novel
mechanism antifungal that inhibits pyrimidine
biosynthesis. Its broad activity against the
ascomycete mold fungi, so aspergillosis, Lomentospora,
Scedosporium, all those things, but also histo,

1 blastospora, cocci, all the endemics.
2 And it has a very potent activity. It
3 appears to be fungicidal. It does not, however, work
4 for candida, crypto or (inaudible) because the inside
5 target is completely different, just is never going to
6 work.
7 Dosed as a 30-milligram tablet, it has
8 FDA Breakthrough Therapy Designation based on its
9 preliminary clinical data and its now in the middle of
10 a Phage 2 open level study, patient with mold invasive
11 fungal disease where the patients have limited
12 treatment options. Now, the point that I want to make
13 is that because of some data I'm going to show you on
14 the next couple of slides, we got interested in the
15 question of how could you design a randomized trial in
16 cocci, and this led us to the theme with endpoints.
17 We've already had some discussion about
18 that today and I think we'll discuss it more during
19 the Q\&A. The endpoints that I'm most familiar with
20 for antifungals are, they'll some out of the classic
21 invasive molds trials. So 42-day all-cause mortality
22 is a reasonable endpoint for acute pulmonary invasive
Page 131
1 aspergillosis.
$2 \quad$ It does get entangled with underlying
3 disease a little bit, because patients who get this
4 infection also are -- have underlying syndromes that
5 put them at risk for dying for other reasons, and it
6 doesn't work at all for infections that progress
7 inexorably but slowly and that's going to be the case 8 with cocci.
9 EORTC-MSG built over time to an overall
10 clinical response endpoint that was described in 2008
11 and it is built from clinical, radiological, and
12 mycological responses and overall success logically
13 requires improvement on all three of these sub-
14 elements; whereas failure is likewise obvious, but the
15 category of stable, sort of an in between state, is --
16 exists and is categorized as a failure.
17 And you can be a failure, for example,
18 by feeling better, but your radiology hasn't yet
19 improved. Same radiology but you feel better. That
20 can lead you to being a stable failure. And you know
21 like the 423-day all-cause mortality, this system
22 works okay for the relative acute pulmonary invasive
fungal disease, especially IA. But it -- this turns
2 out not to work very well for cocci and the theme I'm
going to bring up here is that we need something else
because symptoms improve way before radiology and
mycology and the idea of a PRO is definitely going to 6 come up.

7
8 dataset. IN this study, as of about 10 days ago, we
9 had enrolled seven patients with symptomatic cocci.
They fall into David Stevens' category earlier of
active, progressive disease: lung, brain, bones,
skin. They had all had significant prior therapy,
months, in some cases years, with existing agents but
they all, at the time they were enrolled, had active
disease. They had problems that were not being solved
by what they were receiving. At this point, they have
been on the study for -- add about 10 to these
numbers, but basically a few weeks to over a year.
All of them have noted clinical
improvement within one to four weeks of initiating
olorofim. Major improvements in activities of daily
living and functional mobility. However, their
Page 133
1 radiology and their mycology changes at a snail's pace
2 and a case is instructive.
3 So this is a patient that we presented
4 or tried to present at ECCMID this year. You can find
5 the abstract in the ECCMID abstract book. A 45-year-
6 old male with diabetes who had mild CN -- clearly
7 pulmonary and CNS disease. The CNS disease wasn't a
8 big deal. It was his lung disease that was really
problematic. Progressive dyspnea, weakness, fatigue, fevers.

He even had needed supplemental oxygen.
He was staying home using a walker and really
suffering and he got a little bit of everything over
time. You can see this list of drugs. It was not
making him better. He kept coming back to the ER
because he couldn't breathe.
We enrolled him on the study in May of 8 last year.

DR. JOHN GALGIANI: John, are you still
there? I don't hear Dr. Rex.
DR. JOHN REX: I'm back. The call got
dropped. Sorry. Can you hear me?

Page 134	Page 136
1 DR. JOHN GALGIANI: Good, and John,	1 WOMAN 1: I'm sorry. Let's just take a
2 unless you have some other arrangement with th	2 two-minute break. They should be loaded and --
3 others, you're going to need to wrap this up in the	3 DR. ED GARVEY: I could do this without
4 next minute or	he slides. I could do it very quickly. It's a very
5 DR. JOHN REX: Okay. Well, I am about	5 simple presentation, if that helps.
6 to be done. So this guy steadily improved but at day	6 DR. JOHN GALGIANI: What say you, AV?
785 he was -- clinically he was better, but	7 WOMAN 1: Are you there?
8 an overall response, he	8 DR. ED GARVEY: Hello?
9 tell you he's gone on. He would actually now be a	9 WOMAN 1: Yes, go ahead and please
10 EORTC partial response based on improvement	10 proceed. I apologize
11 radiolo	11 DR. ED GARVEY: No problem, no problem.
12 If not EORTC-MSG, then what? I would	12 So thanks to the FDA for organizing this and for
13 just say that we've explored the idea of EQ-5D-5L	13 inviting Mycovia. Quickly, who is Mycovia? Mycovia
14 which uses	14 is really the continuation of Viamet Pharmaceuticals
15 dimensions of how do I feel and you code	15 and we have focused on developing the next generation
16 numerically and we'll still need to say that he did	16 fungal CYP51 inhibitors by rationally designing an
17 not fill this out prospectivel	17 increase in p
18 enough at the time to have this in place. We have	18 By definition, maximizing the
19 in place now, but qualitatively, what he did with his	19 therapeutic index to be able to achieve greater
20 improvement is similar to what we see in the other	20 clinical efficacy with little or no side effects. We
21 patients, to	21
22 So in summary, we have a clinical	22 our lead compound that is now in three Phage 3 studies
Page 135	Page 137
1 response app	1 to be finished this year.
2 actually too sl	2 The subject of this talk will be 1598,
3 gets way out ahead of radiology and serology and th	3 and the -- really, there's two messages I want to
4 actually leads to stable disease for a long, long tim	4 give. One is our experience to date with developing
5 that gets ca	51598 , and that is the fact that we've done it by and
6 Further, disseminated cocci is quite	6 large through external funding. So that's the message
7 diverse. It's -- there's no real one set of symptom	7 I want to give and it's similar to what John gave
8 that's going to matc	8 earlier that there are a number of different avenues
9 discussed, and so a suggestion from our date is the	9 that you can explore and we've taken advantage of
10 something really simple like EQ-5D-5L and mayb	10 these, a lot of them through NIAID and we've had
11 NIH PROMIS score could be used is not clear cocc	11 R21/R33 grant through NIAID. We've had numerous
12 specific eleme	12 contract services through NIAID and we also had a
13 because of the varied disease syndromes. Thank your	13 large DOD grant that really covered a lot of our GLP
14 DR. JOHN GALGIANI: Thank you, John	14 safety studies, so by and large, we were able to get
15 Glad to have	151598 through the IND with external funding.
16 Garvey. Dr. Garvey is a consultant for Mycovia	16 We hope to also do a lot of the
17 Pharmaceuticals. Ed. No, that's not Ed's	17 clinical development. As Erin mentioned earlier, 1598
18 presentation. That's half an hour from now. Ed, do	18 is poised to start its SAD study through DMID. They
19 you have any slides?	19 are actually performing -- conducting that study and
20 DR. ED GARVEY: I do. I do, John	20 we've proactively looked at a number of opportunities
21 DR. JOHN GALGIANI: Okay. AV, we need	21 to do the MAD study and to do Phase 2 and 3, again,
22 -- to have slides for Dr. Garvey?	22 through external funding. We've taken a large

$\text { Page } 138$	Page 140
1 advantage of all the incentives that are available	1 like I just described.
2 through the FDA and we've, of course, used external	2 So those are the key messages I want to
3 KOLs in terms of shaping our clinical design. So	3 basically repeat that have been said over the last
4 that's the path	4 couple days and I'll turn it back to John.
5 The message I want to give as far a	5 DR. JOHN GALGIANI: Thanks so much, Ed,
6 the future, is that we are continuing to use extern	6 for your presentation. Our next speaker is D
7 funding to progress 1598 and as John mentioned	7 Angulo. Dr. Angulo is chief medical officer at
8 talk, you're	8 Scynexis. Dr. Angulo, are you with us?
9 lack of support that is seen eithe	9 DR. DAVID ANGULO: Thank you. Thank
10 pharma in terms of partnering or in terms of funding	10 you very much, John, for the introduction and thank
11 opportunities throug	11 you for the invitation to participate in this
12 So and the other part of the puzz	12 workshop. So I see that aren't really my
13 that we're grappling with is not only funding	13 presentation, which is -- should also be there, but
14 to actually	14 let me just briefly introduce you why we're interested
15 all the points that have been raised both yester	15 about -- why we have an interest about this topic.
16 and also today in terms of endpoints and disea	16 We are developing ibrexafungerp. This
17 definition and numbers of patien	17 is an oral glucan synthase inhibitor. It's
18 cetera	18 structurally distinct from the other glucan synthase
19 So therefore, our current development	19 inhibitors that are right now out there like the
20 path for 1598 is to focus on crypto -- cryptococc	20 echinocandins and as such, it has oral bioavailability
21	21
22 external funding agencies that could provide funding	22 synthase inhibitors for candida, aspergillus,
Page 139	Page 141
1 f	1 pneumocystis, and also for coccidioides and the other
2 so huge it's hard	2 endemic microbes as well.
3 the importance of having very robust networks th	3 Interesting, we have some very high
4 have been built by folks like Tom Harrison and Jeremy	4 tissue distribution, so typically the concentrations
5 Day make that a doable ap	5 that we achieve in the tissues are very, very high --
6 parallel to that, we hope to possibly explore cocci b	6 higher than they will normally see, let's say, with
7 a grant, possibly a U01 grant opportunity and to use	7 the other glucan synthase inhibitors, and we are
8 design that has been talked quite a bit about	8 conducting -- we have conducted a series and we
9 Phase 2 type POC study	9 conducting a series of different clinical trials in
10 The only other thing I want to mentio	10 different indications. We have completed our Phase 3
11 is a couple	11 programming in vulvovaginal candidiasis. We are
12 yesterday to increase the enrollment numbers would one	12 ongoing with our studies in recurrent VVC, invasive
13 consider ex	13 aspergillosis, and Candida auris infections. And for
14 or would that complicate matters too much, and I think	14 the interest of this particular talk, we do have a new
15 the consensus yesterday was that it wouldn't, that the	15 study that is ongoing for refractory invasive fungal
16 increased enrollment would outweigh thos	16 disease. That is for a serious -- several infectious
17 disadvantage	17 diseases, fungal infectious disease that are included
18 And then the other idea is to reall	18 in this program, in this protocol and
19 focus on crypto as our additional robust clinic	19 coccidioidomycosis is one of them.
20 trial design and approval in establishing a robu	20 So interestingly here, when looking
21 safety database and then possibly is there an avenue	21 the guidelines regarding what's right now recommended
22 to get approval for cocci through a smaller study,	22 for treatments, it's interesting to see that only one

1 of the products and actually -- well, not any longer
2 because amphotericin B deoxycholate is not recommended
3 -- that amphotericin B is the only one that actually
4 has something in their label that really8 speaks about
5 the indications of coccidioidomycosis.
6 Fluconazole, itraconazole, and all the
7 products that we had been hearing about often used for
8 this particular -- for this particular disease as the
9 standard of care, they simply don't have the
10 indication in the label and we wonder what may be the
11 reason for that.
12 And there is also interesting statement
13 in the idea saying 2016 guidelines for the treatment
14 of cocci that no clinical studies exist to guide the
15 optimal dose or duration of fluconazole or other
16 antifungal therapies for persons with primary
17 pulmonary coccidioidomycosis.
18 So that is definitely a gap there in
19 the research in this particular condition and let's
20 see what the -- why the gap may be. I think that we
21 have heard what are the challenges, but trying to
22 really focus on some of the areas that we consider may
Page 143
1 be responsible for this gap and what could be
2 opportunities to fill those.
3 So the studies in coccidioidomycosis
4 will be already -- are complex and the reality, they
5 don't happen quite often. And the number of cases
6 that we do have for this disease we need -- let's say
7 here, I'm just using CDC numbers, around 150,000 cases
8 a year. I can go, as we heard in previous
9 presentations, it could be substantially
10 underreported.
11 And they reported about 15,000 cases in
12 2018. So those are the cases that are likely to get
13 treated, the ones that get diagnosis and likely to get
14 treated. And so I think that the most recent study
15 that I saw in clinical trial that got treatment study
16 for cocci was this one that was attempted by NIAID.
17 It lasted from 2015 to 2018. They were trying to
18 enroll patients with pulmonary -- with pneumonia,
19 community acquired pneumonia and tried to see if early
20 treatment with fluconazole could have a benefit in
21 dose, particular endemic area.
22
The number of sites was quite good,
nine sites in Arizona and California. If you look at
2 the sites, very reputable sites, however the study was
3 terminated because of lack of feasibility. So message
4 here is conducting clinical trials in cocci are not
5 that simple. It's complex.
Then treatment duration is long and
what that means, one of the implications of a long
8 treatment duration, at the bottom of the slide you see
an example here of a study that was fully presented
10 previously, the itraconazole versus fluconazole study,
11 to really the assessment of efficacy, the most
2 relevant assessment of efficacy occurred after eight
months and 12 months of therapy. So these are long
14 studies and what that requires is that you need to
have the numbers to do the study's long-term
6 toxicology. You need to have multiple efficacy
7 assessments and long-term treatment relations, which
18 really increases the drop-off rates and the overall
cost of the study and requires significant amount of
clinical trial supplies, just to get there.
And there are also market implications.
So let's say that about 12,000 to 15,000 people is
Page 145
treated in a year. So what do we think that is going
to be the percentage of that market share for the new
agent? It probably depends on the difference in
attributes with these particular new agent may have,
5 it have -- I don't know, I have the percent cure rate
6 and certainly within three months of therapy probably
7 can take a very substantial amount of market share.
However, if you could rest on that,
it's very likely that currently available treatment
0 options that are genetic would likely to continue to
11 be used in a substantial proportion of these patients.
So really, the market share that you're going to get
out of these 12,000 cases a year is going to be a
smaller than the whole and then after you're able to
get approval, what is the market access that you're
going to get and what market access means.
It's actually the use of your product
18 because it is actually being reimbursed. So all these
19 institutions that are responsible for determining what
20 is get -- what gets reimbursed and what doesn't get
21 reimbursed, they really want you to show that either
you're superior to the current standard of care that

1 is very inexpensive, fluconazole generic, in order to
2 be able to allow for reimbursement of your drug, or
3 they will put your product on as second line therapy
4 that a patient needs to fail first the inexpensive
5 standard of care options before getting into the
6 treatment of this particular patient being approved.
7 So that even reduces ever more what is
8 your opportunities to really sell the product once it
9 is out in the market.
10 So I don't think that it's a mystery
11 here why there are so few runners in this race. So
12 clinical trials are complex, long, and not so easy to
13 enroll. There are not too many people. The cost and
14 time of development for traditional Phase 2 and Phase
153 randomized controlled trials versus the standard of
16 care is significant. The market opportunity is
17 limited and it's unlikely to grow significantly in the 18 upcoming years, let's say.

19 Difficult to predict what the market
20 access is going to be before having your Phase 3 data
21 So how the -- one's to decide if this is going to be
22 reimbursed or not are going to -- how the decisions
Page 147
1 are going to be made before having the Phase 3 data is 2 very difficult to figure out.
3 The return on investment will likely
4 take a long time and so these are clear conclusions.
5 These are difficult to fund development programs via
6 traditional investors. I think that's the key reason
7 why there are few runners in this race. What helps --
8 DR. JOHN GALGIANI: Dr. Angulo, we do
9 need to sort of wrap it up pretty quickly here.
10 DR. DAVID ANGULO: This is the last
11 slide.
12 DR. JOHN GALGIANI: Okay.
13 DR. DAVID ANGULO: Non-dilutive funding
14 to support Phase 2 and Phase 3 and then active
15 coccidioidomycosis clinical trial networks in order to
16 facilitate the (inaudible) start of these trials,
17 reevaluation of the endpoints which is happening in
18 please to hear in the past presentations. And a
19 streamlined regulatory path. The idea of yesterday of
20 really combining several conditions to really try to
21 get a study much more robustly and easy to enroll.
22
And for sure, we need to ensure

1 commercial sustainability of a product once it is in
2 the market. Thank you. Thanks for the opportunity.
3 DR. JOHN GALGIANI: And thank you very
4 much. Our next speaker is Gareth Lewis. Dr. Lewis is
5 vice president of specialty brands at Mayne Pharma,
6 which includes responsibility for their antifungal
7 commercial on-market performance and development
8 pipeline. Dr. Lewis. Are you there, Dr. Lewis?
DR. GARETH LEWIS: Yes, thanks, John.
10 I was just coming off mute there. Yeah, thanks very
11 much. Appreciate the opportunity to participate and
speak, so I think -- if you could move to the next
slide. I'm going to actually have very similar
thoughts to those that David outlined a second ago, so we're very much of the same mind in terms of the challenges ahead.

17 Before that, let me just put into
perspective, Mayne's interest in participation in this
area. We have reformulated itraconazole oral products
which was -- obtained FDA approval about a year-and-a-
half ago, so yes, as with the other itraconazole
labels we're not indicated for cocci, but certainly
Page 149
see an opportunity for its utility in this population.
So in recent times, we've been working
closely with the MSG ERC to conduct an endemic mycoses
4 clinical trial which is now close to completing
5 enrollment, so that's given us some direct experience
6 of enrolling and conducting a clinical study in this
patient population at the moment and it's a study
that's ongoing. It was targeted in a cohort for
approximately 20 proxy patients between California and
Arizona and other participating sites and this has
created some challenges, really, just because of the
analyses of infections and also year to year variation
in patient numbers.
So it is difficult to enroll and apart
from the number of infections which are -- we talked
about all day as being quite low, we often find that
patients will -- just will be triaged and assessed by
community physicians and won't always get referred on
to academic centers for evaluation and so yes, while
there might be patient numbers out there in the
community, those presenting and coming to trial sites
where many of the audience here today are leading

Page 150	Page 152
1 research at these hospitals, they don't always com	1 So it's essential that we can generate
2 through and therefore by the time they get to these	2 clinical data that really show an advantage and a
3 hospitals, they're not always valuable for including	3 strong place and position for the new products that
4 in the tri	4 are coming through and obtaining FDA approval so that
5 Our inclusion criteria were acute naï	5 we can then have the strongest possible position to
6 infections, so not disseminated to these or n	6 take to the insurers to enable affordable patient
7 chronic, ongoing, challenging disease, so certainly	7 access.
8 you are seeking a trial where you are studying related	8 So all in all, yeah, we see the same
9 disease patients there's going to be even fewer	9 challenges as my colleagues before me in terms of the
10	10 investment considerations. There is a small revenue
11 So yeah, certainly we are seeing that	11 potential here, given the patient population and
12 it's very challenging to enroll and recruitment here	12 market pricing. The cost barrier to develop is large
13 is -- can be years instead of months. A second point	13 with long, complex trials and then there's the
14 is -- I'll be fai	14 significant execution risk with long trials, difficult
15 lot of expert discussion on this already today	15 enrollment, the many other external factors that needs
16 Certainly the considerations of what constitute	16 to be taken to account before you can get to approval.
17 clinical benef	17 So all in all, yeah, to many
18 Yes, there are hard clinical endpoints,	18 pharmaceutical companies that just really can't make
19 but then as the speakers before me just now	9 this investment consideration stack up to the
20 talking about, PROs, quality of life, symptom	20 challenge because here we clearly see this as a
21 management, disease burden, all these points	21 disease state that has many unmet medical needs and is
22 really important to consider, especially as we then	22 worthy of solid investment.
Page 151	Page 153
1 t	$1 \quad$ Those are my points. Thanks for your
2 impact of disease and then as we have new therapie	2 attention and I'll pass the baton.
3 that can benefit this disease	3 DR. JOHN GALGIANI: Thank you, Gareth,
4 can demonstrate the improvement on such outcomes as we	4 very much. And our last speaker for this segment is
5 can then get to a cost-benefit analysis of new drugs	5 David Larwood. Mr. Larwood is CEO and president of
6 as well as the clinical end	6 Valley Fever Solution. David, the floor is yours.
7 So really, that then takes us to the	7 DAVID LARWOOD: Thank you, John. Thank
8 commercial barrier	8 you everybody. Thank you to the NIH for this support
9 as David ran through, something -- we agree entirely	9 and to the FDA for sponsoring this excellent meeting.
10 There are very few patient numbers. There are very	10 Dr. Galgiani spoke earlier about the history of
11	11 nikkomycin Z and some of its attributes. A word about
12 existing low-cost alternative treatments, albeit of	12 -- first a couple of slides. This is the hyphae form
13 label out there, the likelihood of product uptake	13 of the disease. This is a serial form of the disease
14 fairly low	14 which many of you are familiar with.
15 So whilst this is an orphan diseas	15 I became a peripheral observer of the
16 indication, the dynamics are very removed from some of	16 cocci community as an infant when my father, Tom, did
17 the rare oncology indications where drugs have	17 a residency in Bakersfield under Chief Hans Einstein
18 significant premium or high value per patient. That's	18 after a bout of paralytic polio for my father and
19 not going to be the case here. So an	19 myself, the family returned to Bakersfield as Dr.
20 challenge of insurance coverage and patient acces	20 Einstein was instrumentally involved in the
21 restrictions as were mentioned a minute ago are very	21 amphotericin trials for cocci, they became clinical
22 relevant.	22 partners for decades.

Page 154	ge 156
1 Cocci, of course, expresses in these	1 screen's doing funny things to me. Anyway, so --
2 horrible lesions so that's not -- oh these aren't	2 sorry. The protective element of the azoles wears off
3 presenting well at all. Oh, heck. Those are nasty	3 as soon as therapy stops; whereas in cocci
4 picture of horrible diseases,	4 persistent, so it's been judged to be fungistatic for
5 the next s	ally, the pointer goes away.
6 The structure of the molecule resemble	6 We'll make that go away.
7 a substrate	7 Talking about this slide, just -- I'll
8 his slides. The novel mechanism is fungicidal in many 8 touch more of my background. In my medicinal	
9 instances, and i	9 chemistry PhD program at UCSF, I co-invented my secon
10	10 commercial drug pegylated liposomes. About a year
11	11 later, members of our small group invented the first
12	12 amphotericin B liposomes. Continuing with the story,
13	13 trial strateg
14 mice and we have some interesting and recent results	14 This has been discussed really a lot.
15	15 I don't have a lot to add. All the consideration
16	16 that people have talked about are very important fo
17 Richard Hector which john mentioned, was the studiesi7 it to be working in these things. One of the	
18 in -- I don't see, do I have a pointer	18 important characteristics for any drug that's being
19	19 developed is supply limitations. Can you manufactu
20 So pulmonary infection, relatively low	20 the quantities that you're going to need? There are
22 meningococcal	22 In preparing for an article I did
Page 155	Page 1
1 challenge 50 milligrams per kilogram gave a moderate	1 recent -- looked at recent reviews and I thought this
2 protection, but not really enoug	2 chart from Rauseo and there was another interesting
3 have been very	3 one from (inaudible) at Davis that listed a chart
4 a couple upcoming publications which we're excited	4 drugs in development against a variety of fungi and
5 s	5 you'll see nikkomycin is listed in the column. They
6 Looking	6 didn't pick up the fact that in Canada, there's been a
7 mentioned a couple of studies in natural (inaud	7 lot of work done in Canada, but that's okay.
8	$8 \quad$ You'll see the VT applied the VT series
9 promising and although the population was very smal	9 and the olorofim series. Others that have been
10	10 discussed are also in this chart, but the point here
11 a two-month study. Dr. Johnson mentioned that it would	11 is that if you're looking for a rare disease like the
12	12 endemic fungi, only what, roughly half of these
13	13 candidates even are expected to touch the endemic
omy	14 fungi, so this just illustrates that it's difficult
15	15 to do development in this area and that's going to be
16	16 hard for people who are -- the business evaluation.
17	17 Several of the components that we look
18	18 at, nikkomycin is active against chitin which is very
	19 involved with cell walls. So depending on wh
20	20 organism you're looking at, the cell wall structures
21 it doing now? O	21 could be quite different, and that has some relation
22 Sorry. The slide's doing -- my	22 to which drugs are effective against which fungi and

Page 158	Page 160
1 why they're not effective against all of them.	1 These are all plus factors for the business
2 This illustrated how chitin is one of	2 considerations.
3 the core layers protecting the membrane and interfaced	3 We talked about development costs.
4 as it's tightly interlinked with the various beta	4 This chart was interesting. When I looked at it
5 glucans, so some of the most effective therapies	5 originally, I noticed that the anti-infectives list
6 Nikkomycin is very effective as a monotherapy against	6 for Phase 3 trials is running about \$25 million.
7 endemic fungi, but it's effective against other fung	7 Yesterday, we heard stories where they could easily
8 including aspergillosis when mixed	8 cost $\$ 300$ million or certainly well over \$100 million.
9 with the chitin in the beta glucan inhibitors, the	9 So th
10 echinocandins	10 DR. JOHN GALGIANI: David --
11 You see quite a number of organ -- of	11 DAVID LARWOOD: -- average --
12 drugs here bein	12 DR. JOHN GALGIANI: You're going to
13 structure. So this is considerations. I live for	13 need to sort of wrap it up in the next minute or so.
14 silicon -- I spent a decade as a VP at two startups	14 DAVID LARWOOD: Okay. Well, that would
15 Silicon Valley including five years there as gener	15 be good. So, with averages and such, the trials are
16 counsel of a p	16 expensive. This also can impact the drug business
17 companies which informs my discussion a bit late	17 prices. So looking at a decision tree, the invest --
18 I became a full-fledged member of th	18 the money invested now is uncertain until you get all
19 cocci community in 2007 when I joined John at Valley	19 the way through this thing, so I just extracted this
20 Fever Solutions. For good measure, I finished	20 from a bio -- no, this was from ERC -- I think I got
21 double MBA in 2009. Dr. Galgiani has submitt	21 this from the NIH, the pages. The point is that if
22 business models for cocci drugs compete poorly in the	22 you get to success, it's wonderful but if you fall
Page 159	Page 161
1 business world. We've talked much of the challeng	1 even a little bit short of success, it's very costly.
2 of trials, choosing endpoints and much more. For many	2 So that's another risk factor that business people are
3 investors, even the life sciences, there	3 going to look carefully
4 alternative investments that simply seem mor	4 Projections show that the systemic
5 attractive. Our last two speakers, Dr. Lewis and Dr.	5 antifungals that are used for Valley Fever about two-
6 Angulo point out the commercial difficulties and Dr.	6 thirds, about $\$ 1.8$ billion of sales. If you look at
7 Rex is very well aware of the challenges of bring any	7 specific drugs, it's interesting to note, these are
8 drug forward	8 just projections that I took from a model about a year
9 So the team. Who's involved in thi	9 ago so they were projected at the time. One thing you
10 thing? The technology. What's the answer, the	10 notice here is there are very long tails. Ampicillin
11 solution, the target? Who interesting is the market?	11 is being reformulated. It's still selling
12 You could have a fabulous drug for a fabulous	12 significant numbers. Fluconazole, which is decades
13 associated disease, that just isn't -- that	13 old, is still selling and making money, so this is
14 going to sell much product and competition by other	14 another factor in the business considerations. And I
15 and the time to when you can get there are important	15 thank you for your time.
16 considerations	16 DR. JOHN GALGIANI: David, thank you so
17 Fortunately for us in this space, th	17 much and you all have been really responsive to being
18 anti-infectives tend to do fairly well in trials, go	18 in this tight timeframe. We have Janis Blair, my co-
19 from Phase 1 to Phase 2 to Phase 3 and through the NDA	19 moderator with us, right, Janis? Are you with us?
20 we scored generally high in the success rate, so	20 DR. JANIS BLAIR: Yes. Can you hear
21 that's helpful. Rare diseases tend to do a little	21 me ?
22 better than average drugs, so that's also helpful.	22 DR. JOHN GALGIANI: Why don't you take

2 DR. JANIS BLAIR: Okay. So the last
3 speaker of this session will be Dr. Neil Ampel. Dr.
4 Ampel is professor emeritus of medicine at the
5 University of Arizona College of Medicine and my
6 colleague as a supplemental consultant at Mayo Clinic 7 in Arizona.

8 DR. NEIL AMPEL: Can you all hear me,
9 first of all? And this isn't my --

10	DR. JOHN GALGIANI: Yes, Neil.
11	DR. NEIL AMPEL: -- slide. Yeah, so I

12 have to get my slides up, Janis and John. Have to go
13 to the beginning. We'll wait on that. This is
14 somewhere, not in the beginning at all. See if we can
15 go -- there we go. I'll get -- okay.
16 So I want to thank the organizers for
17 asking me to talk. This is, I think, based on a
18 discussion we had in the pre-meeting about how to move
19 treatment studies for coccidioidomycosis further and
20 so what I thought I'd do is talk -- use the past, tell
21 us where we are, and make a suggestion for the future.
22 So what was the past? Well, the past
Page 163
1 modern age of therapeutics was the Mycoses Study
2 Group. This was started in 1978 as a contract through
3 NIAID. It was awarded to the University of Alabama at
4 Birmingham under William Dismukes as it's PI and its
5 goal was to perform multicenter collaborative clinical
6 trials for the prevention and treatment of invasive
7 fungal infections.
8 In 2005, the contract was terminated
9 and that was effective in April 2007. And I think
10 it's worth paying at least a little homage to Bill
11 Dismukes who was a mentor to many of us on this call
12 and the purpose here is not just to pay that homage,
13 but to realize he was the brain child of the MSG and
14 it was extremely productive in the years that it was 15 funded.

16 And this is the structure. I've lost
17 some of the brackets here, but it'll still make sense.
18 So the way this worked was NIAID funded MSG at
19 University of Alabama Birmingham to design and
20 implement studies on fungal diseases and as part of
21 that was the coccidioidomycosis subgroup, of which
22 John Galgiani was the subgroup leader and you see the
other major members: David Stevens, Tony Catanzaro,
Royce Johnson -- who are all on this call -- Dick
Graybill is not.
And the way it worked was there was
industry funding that came into the particular study,
6 but MSG provided administrative design and statistical
support and I want to give a little shoutout to
8 Gretchen Cloud because this was one of the ways MSG
was so important. Gretchen was a statistician at UAB
Cancer Center and she was just primary to both design
11 of studies, implementation of studies, analysis of studies.

Without her, many of these studies
would not have worked, so that's what MSG added to the
coccidioidomycosis subgroup, and I think it was 6 critical.

And this is just a short list of
18 publications. These were ones that actually have
NIAID Mycoses Study Group in the title. There are
more. I think I left some David Stevens papers out,
but if you just look at this short group, what you'll
see is the iconic papers of antifungal therapy for
Page 165
coccidioidomycosis, including treatment of meningitis
with fluconazole and including the only comparative
trial of two antifungals for cocci, which I'll go over 4 in a bit.

6 now? Well, as I said, since 2007, and actually well
7 before that, there have been no controlled trials for
8 coccidioidomycosis and the only comparative placebo
controlled trial ever done was published in 2000 and
10 that was the one that John was the lead author
comparing itraconazole to fluconazole. We've had no other controlled trials.

Since that time, we have case reports
and case series and there's a huge problem with that.
Case series are, by definition, inherently biased and
I certainly published them and I'm very aware of those
biases and we have to work around them because that's
8 the only trials we have right now. But they're
extremely problematic.
First of all, they result in reduced
strength of recommendations and we see that in the
current guidelines where many things are not based on

Page 166	Page 168
1 randomized controlled trials. They are, in fact,	1 specific studies, and that's the place we've been in
2 based on expert opinion which is problematic. For	2 now for the last 15 to 20 yea
3 example, I worked with John for 25 years. I now work	3 We've already said the cocci market is
4 with Janis. We are all considered experts.	4 small. So it's not an attractive target to develop
5 each treat coccidioidomycosis a little	5 new antifungals and we really need something beyond
6 differently	6 industry support alone to do good clinical trials.
7 So if you ask John or Janis and me, you	7 So what is the future? Well, first of
8 might get a very different answer about how to manage	8 all, what are some of the present unanswered
9 a case, because it's based on our experience	9 questions? We've heard a couple of times about the
10 better example that I use because	10 SAnds study, which I call the formerly known as FLEET
11 anything topical, I used some many years ago in HIV,	11 which is an attempt to understand how we manage
12 the use of cort	12 primary pulmonary disease and this is one of the
13 randomized controlled trials, there were many	13 problems. There are two papers, one I authored with
14 reports.	14 John, another that Janis did, which suggest that
15 pneumocystosis. Others said, use it. Other	15 patients who don't get treated may do as well as
16 it before	16 patients who do get treated and that treatment may not
17 When we had two randomized placebo	17 prevent dissemination.
18 controlled trials	18 But again, those were case control
19 starting corticosteroids at the time of antimicrobi	19 studies and so they are inherently biased and so there
20 therapy for pneumocystis, led to marked reduction in	20 have been these attempts which we've heard today to
21 mortality,	21
22 practice, literally, the day those two papers came out	22 question because this FLEET SAnds study was not well
Page 167	Page 169
1 in the New England Journal, so that's the strength of	1 designed.
2 doing controlled trials and not depending on cas	2 What's the best antifungal for
3 series, which	3 nonmeningeal disease? As you saw, we keep using
4 Now, you've heard over and over, ove	4 fluconazole. Is that really the best drug or are
5 the last few hours, why the present model that relies	5 there others? What about pulmonary versus
6 on industry support is not adequate for therapeutic	6 disseminated? Even more important, management of
7 trials in coccidioidomycosis. We've already heard	7 coccidioidal meningitis. What's the best antifungal
8 pharmaceutical companies currently operate under	8 there? Again, we are often trapped to use fluconazole
9 much stricter profit margin than they ever have in the	9 and only use other agents after the patients fail. So
10 past. Cost of developing new drugs is prohibitive	10 what's the best triazole? What about newer
11 there must be a large market to support new drug	11 antifungals like olorofim?
12 development	12 What are -- what should we do there?
13 We've heard this all before. This	13 And therapy ever be stopped? What's the role in
14 just my take. You've heard others. I just looked at	14 intrathecal amphotericin B, another area where experts
15 invasive molds. There are about 180,00	15 disagree? And what's the role of intravenous
16 hospitalizations for invasive molds over a 10-yea	16 amphotericin B? So there are many questions. And
17 period. For cocci, it's about a fi	17 finally, we need more answers on the patients on
18 least five times lower. Moreover,	18 biologics and transplants.
19 preventive therapy for invasive mold disease is huge,	19 So what should be the future? Well,
20 but it's small for cocci. So what does this lead to?	20 many people have proposed, well what about the
21 Developing antifungals for the large	21 Coccidioidomycosis Study Group? And some people
22 using them beca	rrent president -- well,

1 you guys do studies, and so I want to explore that for
2 a bit. This is the definition of the cocci study
3 group that is on the University of Arizona Valley
4 Fever Center for Excellence website, and I think it's
5 very accurate except for one area and that's research
6 studies.
7 So I'll come back to that. But I want
8 to take a more granular view of the cocci study group
9 because I think a lot of people who aren't involved
10 with it think it's a little more than it may be.
11 First of all, it's a non-affiliated organization whose
12 primary goal is to host an annual meeting dedicated to
13 presenting new information and research on cocci. And 14 it does that very well.

15 I would say in the last decade the
16 presentations there rival any at any national or
17 international meeting. They're very good. Moreover,
18 we've been able to get NIAID and the mycology branch
19 of CDC to come and interact with our members and that
20 has been very helpful and we'd encourage FDA at our 21 next meeting.

22
It currently has a board and bylaws,
Page 171
1 but that's a relatively recent development. It is not
2 legally or financially organized. In fact, its money
3 is held by (inaudible) which is the 501(c)(3) at Kern
4 County Medical Center, so we don't hold our own money
5 and we're not organized in any legal manner. And we
6 have never as an entity overseen a research study.
$7 \quad$ So why should be involved in this?
8 Because its members and its prominent members have all
9 been involved in designing and doing studies, many of
10 whom have been involved in the original MSG studies.
11 So we have a tremendous amount of expertise.
12 So what's the proposal I'm going to
13 make today? Well, G.R. Thompson, one of our members
14 and I think who's on the call proposed to me about a
15 year or two ago, how could be use the cocci study
16 group to design some studies. And I talked to G.R.
17 and in fact said -- went over these issues that we're
18 really not an entity. We really have no funding, but
19 what we had was expertise.
20 And the concept we came up with is
21 perhaps we could use our membership to build a
22 consortium and also help design the study. And G.R.

1 went ahead and did that and working with Mayne, and
2 you heard Gareth, on Suba-itraconazole and UC Davis
3 and University of Arizona Tucson were already working
4 on this.
5 We put together a consortium: UC
6 Davis, Kern Medical Center, Mayo Clinic in Arizona,
7 and University of Arizona Tucson, which are all
8 entities that are extremely -- have a long history of
9 interest in coccidioidomycosis and are essentially all
10 referral centers for cocci. And so this served as
11 sort of a model. Could we do this?
So that may increase the number of
studies we can do with this model, but it doesn't
4 answer all the concerns that we have about moving the
5 field forward, getting good clinical data on
6 therapeutics. For example, doesn't provide
independent design and statistical support. It's
probably not going to look at best management
practices, save for primary pulmonary disease.
It may not be a good mechanism to look
21 at newer drugs or targets, so the idea that G.R. and I
22 are interested in and I've talked to Pete Pappas at
Page 173
1 MSGERG, is could we go back to the older model where
2 MSG not has a new coccidioidomycosis subgroup, so MSG
3 provides us, again, with that statistical and design
4 support and administrative support that allows us to
5 do studies that are beyond what industry would give
6 us.
$7 \quad$ So that's all I have to say and I'll 8 end right there.

DR. JANIS BLAIR: Thank you very much,
10 Neil. We will -- we have scheduled right now a break
and we'll be back at 4 p.m. to start the moderate panel discussion.
(Break)
DR. JANIS BLAIR: Never really can tell
15 if everyone is back or not, but I will thank everyone 16 in advance for their participation. We actually have
a generous amount of time for this next session and 18 there are three questions that have been posed for our consideration. I will say that for panel members who want to make a comment, it's probably going to be easiest for me to see if you show a raised hand icon and then we will call on you to speak. You can,

Page 174
1 instead, type something in the Q\&A box and we'll try
2 to keep that monitored as well.
3 So the first question that has been
4 given for our consideration is, what are some
5 considerations for drug development with regard to
6 specific populations? For example, but probably not
7 limited to, a varying array of immunocompromised
8 patients, pregnancy, pediatric and other patient
9 groups.
10 DR. JOHN GALGIANI: Janis, I see Tony
11 has his hand up. You want to recognize him?
DR. ANTONINO CATANZARO: Yes --
13 DR. JANIS BLAIR: Yes. Let's start
14 with Dr. Catanzaro, though -- oh, yes. Okay. Yes, I
15 see him. Thank you.
16 DR. ANTONINO CATANZARO: Thank you very16
17 much. I want to take the privilege of being an older
18 member to bypass the three questions you've posed and
19 follow up to Neil's presentation which I think was
20 excellent, and that is that we need a mechanism. When
21 we look back, the Mycoses Study Group with a strong
22 core that builds, disputes, and Gretchen Cloud had
Page 175
1 within the investigators supporting a group of
2 knowledgeable investigators, but the point I want to
3 make is that none of the studies they did were without
4 the contribution of industry support.
5 So we have the combination of a strong 6 core, knowledgeable investigators, and industry all
7 working together under one goal. And I think that
8 that model worked very well for MSG and really needs
9 to be reinitiated in this critical time when we have
10 not only vulnerable populations but also a number of
11 drugs that need to be studied.
12 DR. JANIS BLAIR: Thank you, Tony.
13 Does anyone want to follow up on Dr. Catanzaro's
14 statement? George Thompson.
15 DR. GEORGE THOMPSON: Yeah, can you 16 hear me okay?
17 DR. JANIS BLAIR: Yeah.
18 DR. GEORGE THOMPSON: Yeah, I would
19 echo that. I mean the Mycoses Study Group in
20 conjunction with the cocci study group was very
21 successful and Tony gave a really nice overview of
22 those studies, and then we, honestly, sort of coasted

Page 176
on those for over a decade. There's a number of new
2 compounds in development, which we heard from today,
some of which are, of course, fungicidal, a lot of
promise with that with olorofim, you know, its
upcoming Phase 3 trials for that compound and I think
6 the others we heard from as well.
There's really promise and indication
8 for those. And, you know, we've really built a nice
infrastructure that Neil gave a nice overview of.
0 Used to -- and since that, it's even expanded further
for some other studies that are planned, UC San Diego
is involved in that. UCLA, an enormous medical center
will be involved in that as will UCSF, so I -- and we
have done some nice collaborative work already which most of you have been authors on.

So I completely agree. I think that it
would -- we had a successful model for a long time and
that really just needs to be sort of set back up in the same fashion it was, the Mycoses Study Group. You
know, Bill Dismukes did a fantastic job. Pete Pappas
has done also, you know, enviable job as well and
Jerry McGlynn has been their statistician there now
Page 177
for a number of hears with numerous Mycoses Study
Group studies, so I think that the existing
infrastructure just seems to be leveraged to move this forward in rapid fashion.

DR. JANIS BLAIR: Thank you, G.R. I
6 think I see Dr. Johnson, Royce Johnson.
DR. ROYCE JOHNSON: Yeah. To go back,
8 I certainly agree with what Tony and G.R. said, but to
go back to the question about doing studies in immune
incompetent populations if I, for formulate it,
meaning pregnant individuals maybe that are on immune
modulators, so forth. I think -- but Janis, you might
be better to answer this question than I, that the
numbers of those patients is too small to construct a
meaningful study for therapy. It's conceivable that
there could be prophylaxis studies.
DR. JANIS BLAIR: Yeah, I'm not sure.
I think you're right on some of the populations being
very, very small, probably too small to do any kind of
efficacy, but I think we actually have some fairly
substantial groups within immunocompromise patients in
that there's a fair amount of solid organ transplant.

1 Again, treatment is a thing, but also I think
2 prophylaxis, prevention studies would also be very 3 helpful as well.
4 DR. JOHN REX: Yeah. So pick up on the 5 theme of those populations. They will be -- you won't 6 get terribly many of them in any given -- actually,

7 clinical trial disease, but you can do a lot with
8 developing data to show that your PK is constant
9 across those groups, show that you -- however you're
10 dosing, you want to show that it works in the various 11 populations.
12 You need to be ready for DDI issues.
13 That's very standard work today on Phase 1 healthy
14 volunteer stuff and silico modeling, you can know and 15 be ready to study your DDI issues and actually have
16 them well established and do your special pops work,
17 your hepatic and renal failures well.
18 A lot of this just boils down to
19 reasonably standard, preclinical safety work and just
20 standard Phase 1 studies. And while I'm on the theme
21 of the preclinical studies, one of the hard things in
22 this space for everybody to be aware of is cocci will
Page 179
1 be treated for a long time. That means that you've
2 actually got to do extended duration safety tox
3 studies and those take a long time and you can't just
4 set off a study, be a nine-month safety tox because
5 you don't really know enough to know how to set that 6 up.
$7 \quad$ So there is a real stumbling block for 8 getting compounds going to achieve the, I guess, to
9 achieve flight here. You've actually got -- there's a
10 whole bunch of background work that is generally
11 invisible that has to be done. Over.
12 DR. JANIS BLAIR: Okay, we'll call on
13 Dr. Ampel next.
14 DR. NEIL AMPEL: Yeah, thank you,
15 Janis. I'm actually going to take on question three
16 because I think it has some relevance. This is
17 something we discussed in the very excellent vaccine
18 meeting we had, I think March a year ago in Rockville,
19 and we do have serology as a biomarker, but we know
20 it's imperfect and there's been a lot of interest in
21 measuring cellular immunity but as I pointed out in
22 that meeting, is it's really an unknown unknown.

1 We have presumed that expression of 2 cellular immunity, thereby skin test or cytokine 3 release, tells us something we -- someone's protected,
4 but we actually don't know that and again, that would 5 be another area of study that, again, industry,
6 pharmaceutical isn't maybe so interested in but as a
7 general area, what are the biomarkers of protection
8 because we actually don't have as much data on that to 9 be confident.

DR. JANIS BLAIR: Thank you for your
comment. I see a raised hand with Dr. Bennett.
DR. JOHN BENNETT: I'd like to turn to
the subject of outcome, and we've already heard how
difficult it is to measure outcomes in a disease that has different manifestations. But one of the things that all of them have in common is that we want our drugs to make people feel better and function better, and although Royce Johnson and John Rex have already raised this, I want to raise the possibility that we could do this with an iPhone -- a cellphone app. That is, we could send people an email 2 and over the long course that we're treating them, we Page 181
1 could ask them to respond. Now, the challenges are if 2 you're sick, you don't want to do anything that's

3 longwinded and we don't want it to be complex. It
4 needs to be in language that's appropriate, but we
5 need that kind of outcome data and I -- there's a
6 model for this and that is in multiple sclerosis, they
7 developed an app that they set up by email to see how
8 people are functioning.
9 Now, they don't ask them how they're
10 feeling, but I think that's important, too, because
11 they want to know if the person's multiple sclerosis
functioning is better and I think with that kind of a
13 model in mind, it's a challenge, but it might be a way
14 of getting long-term outcome that is meaningful to the
15 patients. That's the end of my comments, Janis.
Thank you.
DR. JANIS BLAIR: Thank you, Dr.
Bennett. Calling on Dr. Galgiani.
DR. JOHN GALGIANI: Yeah, let me make a
20 couple of comments regarding the discussion about
21 immunocompromised and other small groups and also John
Rex's concern, a valid concern, about the length of

1 these courses of treatment. We have in the past just
2 decided to allow immunocompromised patients and 3 pregnant patients enroll in the studies -- I could be
4 wrong about some of them, but I think in general that 5 was the case -- and let the investigator or the
6 practicing clinician make the decision about that, and 7 in addition, in early studies, and I'd really be
8 interested to know if the FDA wants to make some 9 comments about this.

10 We -- when Dave Stevens and I were
11 doing things like intravenous miconazole, we would
12 start treatment with, you know, not months and months
13 of toxicology in support of that, but rather maybe a
14 month, and then as we got to the end of that, we would
15 report back to the FDA that things were going
16 favorably. We -- the patient was not having untoward
17 reactions of if they were, what they were, and ask
18 permission to continue on and sort of bootstrap as we
19 go for long-term toxicity studies.
20 And I'm very interested to know if, for
21 instance, pediatrician -- or pediatrics could be
22 enrolled under that risk-benefit, even though
Page 183
1 pediatric safety had not yet been established if, in
2 the judgment of all involved though that that was in
3 the patients' best interest or not, or whether or not
4 you'd really have to have the Phase 1 done for these
5 groups before you could get them enrolled.
6 DR. JANIS BLAIR: Do we have anybody on
7 the panel that can address that?
8 DR. ANTONINO CATANZARO: This is Tony
9 again. Can I make a comment?
10 DR. JANIS BLAIR: Yes, you may.
11 DR. ANTONINO CATANZARO: So I want to
12 go back to question number one and while I agree with
13 you that any one of those groups that are listed are
14 tiny and not subject to -- could not really support a
15 controlled trial, the group that we have a substantial
16 of, as everyone knows, fluconazole at 1,000 milligrams
17 per day is like the community standard, even though
18 it's never been studied. But there are some people 19 who fail that.

20 And what to do with the failures is a
21 complete mess. So we could study that group, that
22 sizeable group of people who fail fluconazole, we
define what that means, and then subject those
2 failures to one of the drugs that we've been talking
about. I think that would be a good model to at least talk about.

5
DR. JANIS BLAIR: Okay, I'm seeing only
6 raise hands of people who have recently spoken, so I'm
not sure if you have another point to make or if you
8 forgot to un-raise your hand, so we'll circle back to
9 Neil.
10 DR. NEIL AMPEL: No, I was un-raising 11 my hand, Janis. Sorry.
12 DR. JANIS BLAIR: Un-raise your hand 13 then, okay? What about Dr. Bennett?
14 DR. JOHN BENNETT: Well, I've been
15 hearing what people are saying about the difficulty in
16 studying this disease and one of the problems that I
17 see is that these people come into the trials at
18 different points in their treatment and that's almost
19 an unsolvable, so haven't heard people address that
20 except for the thought of having people that are after
21 they failed 1,000 milligrams of fluconazole, but I'm
22 concerned they're bringing people in at different
Page 185
1 phases in the trial is -- gives you very heterogenous
2 patient population, so I don't know how to solve that
3 problem, I'm just worrying about it. That's the end
4 of my comment, Janis.
5 DR. JANIS BLAIR: I agree with that.
6 It makes it very difficult to understand a result.
7 John, have you got a follow-up comment -- Dr.
8 Galgiani?
9 DR. JOHN GALGIANI: Well, I'm --
10 Sumathi, you're on the call. Is there somebody at the
11 FDA that could give us some thoughts about the Phase 1
12 package that's needed to address small groups? Or
13 people going to take longer than the Phase 1 data
14 really supports?
15
DR. JANIS BLAIR: Yeah, I'll defer to -
16 - oh, go ahead.
DR. SUMATHI NAMBIAR: I can take the
18 call. Hi, Dr. Galgiani. My name is --
DR. JANIS BLAIR: Hi.
DR. SUMATHI NAMBIAR: --- division of
anti-infectives. So in terms of the pre --
22 nonclinical data package that is required to support

1 the studies, I think takes into consideration many
2 factors and what types of toxicities we've seen in the
3 nonclinical studies, what might be the duration of the
4 Phase 1 studies. You know, we can have single-dose
5 studies or we can have multiple-dose study, so the
6 duration of the non-clinical studies that are needed
7 to support each of these studies generally follow what
8 is in the ICH accounting and then there is also
9 additional requirement in terms of marketing
10 applications, for example, for longer treatment
11 durations of 13 weeks, for purpose of the clinical
12 trial, the 13 -week nonclinical study might suffice,
13 but for marketing application, there might be need for
14 six- or nine-month studies.
15 So I think a lot really depends on the
16 compound. It depends on what we know about the class
17 of the drug, what kinds of toxicities we've seen, were
18 they monitorable toxicities, whether they could be
19 mitigated with measures in the protocol, et cetera.
20 In terms of pediatric, again, a lot
21 really depends on the molecule. Sometimes, we do
22 require studies in juvenile animals before going to
Page 187
1 clinical trials in children, but that's not always the 2 case.
3 It should be based on all the
4 information we have with the nonclinical studies and
5 the findings in adult, and then we make an overall
6 benefit-risk assessment and decide how to proceed, so
7 unfortunately, I cannot give you a particular -- a
8 specific answer to your question, but yes, there is
9 some degree of flexibility but we have to take into
10 consideration all the factors and all the evidence
11 before we decide whether it's a go or no go. So I
12 hope that helps.
13 DR. JOHN GALGIANI: Thank you very
14 much. Janis said she's having a little trouble seeing
15 names, so maybe I'll -- Royce, are you asking another
16 question or making another comment?
17 DR. ROYCE JOHNSON: Yeah, I am. As
18 regards the heterogeneity issue, I think that can be
19 dealt with. All of us that are seeing patients in a
20 tertiary sense, which is most of the people that are
21 talking, see people that have been on previous
22 treatment and failed. In fact, that's one of the main
ways we recruit new patients is somebody that wasn't
doing well.
3 And again, I'm -- despite John Rex and
4 Jack Bennett, both of whom I much admire, I think that
having a score system that tells you how sick a person
6 is and whether they improve or don't improve that
score solves the problem of heterogeneity to some
8 substantial extent. So you could set a certain score
9 and we had, actually, I didn't talk about it today,
10 thought that the minimum requirement to be enrolled in
11 a trial with the MSG 2020 would be something like a
12 score of 6 so that a 50 percent reduction means you
13 had to drop 3 points.
14 And whether the person's been on
15 therapy and failed fluconazole and has a score of 12
16 and we drop it to 6 or whether they've never been on
17 treatment and they have a score of 12 and we drop it
18 to 6 , both of those are a success and it's a way of
19 dealing with a heterogenous population.
20 DR. ANTONINO CATANZARO: This is Tony.
21 Can I make a comment?
22
DR. JOHN GALGIANI: Go ahead, please,
Page 189
1 Tony.
2
DR. ANTONINO CATANZARO: Well, I agree
3 with Royce. I think by far the most common patient
4 that is seen by the members of the cocci community of
5 -- I don't know exactly what to call them, specialists
6 or whatever, by far the most common referral is people
7 who failed on fluconazole. So I agree with Jack,
8 they're going to be heterogenous. But I think that if
9 we shoot for the population that's never seen drugs,
10 we'll have the same problem that we had with the FLEET
11 study. We're going to be -- we're not going to enroll
12 many patients. The majority of the patients that we
13 see are people who failed 1,000 milligrams of
14 fluconazole and we can "standardize" them, as it were,
15 by doing a grade -- score, a Mycoses Study Group
16 score, expanded score to pick up these other factors
17 and then look for reduction. That was the rationale
18 for the original study that Mycoses Study Group did
19 which seemed to work very well.
20
21 could do multiple therapeutic regimens. We could take
22 one at a time and compare continuing 1,000 milligrams

1 with itra, with vori, with one of the new drugs, or we
2 could compare it with an azole versus a new drug,
3 which is what I would like to say -- what I would like
4 to recommend, but the point is that the patient
5 population which is problematic, which needs to be
6 solved, which we have plenty of, people who failed
7 1,000 milligrams.
8 DR. JOHN GALGIANI: Thanks, Tony.
9 Neil, is your hand up?
10 DR. NEIL AMPEL: Yeah, it is, John. I
11 wanted to swing it back to the concept of bringing the
12 MSG in and I know Donna Love is on and I thought I saw
13 Dennis Dixon and Pete Pappas, and I wondered if NIAID
14 or even FDA wants to make some comments about giving
15 government support to cocci studies in addition to
16 industry support, and if Pete's still on, what he
17 thinks of that idea. I'm done.
18 DR. DENNIS DIXON: Well, Dennis is
19 here, while we're waiting for Pete to hear his
20 proposal. And so MSG was really, I think, a model.
21 Was on an island committee for public-private
22 partnerships and how well they worked from 1978
Page 191
1 forward addressing many of the questions people needed
2 to use available drugs effectively.
3 And, as has been said, even the cocci
4 studies, I counted 12 of them, and the ITRA versus FLU
5 was the largest and it was the only one that was a
6 randomized prospective controlled trial and even with
7 that and nearly 200 patients, it did not reach a
8 statistical significance for the primary endpoint, so
9 they're all hard, but beyond that, as we moved farther
10 into the '80s and into the '90s and crossed over into
11 the next century, the model began to collapse because
12 of the disproportionate investment of the government
13 versus pharma and because of the changing landscape
14 for the conduct of clinical trials, the expectations,
15 the rigor, and so forth, and the reluctance of
16 industry to contribute the same amount of money when
17 they could go off on their own and fund it with a
18 design that they preferred.
19 So the last iteration, the last five
20 years of the MSG which was then relabeled the
21 Bacteriology Mycoses Study Group, was the top
22 priority, invasive aspergillosis and people worked

Page 192
exceedingly hard trying to find the company support
and a design of the protocol that everybody liked.
And I think we had three different names associated
4 with one company with purchases, takeovers, and
5 changes of protocol and the five years ran out before
6 we got to the study.
So I think we began to look at the
8 return on the investment and recognizing that
diagnosis was such an issue there, shifted and
0 invested and tried to have a better diagnostic for
invasive aspergillosis and created a contract to
12 address that.
And as we collected the samples, it can
essentially be a one-stopping for the clearance of a
company for an FDA use for invasive aspergillosis, we
could not entice big companies to want to touch that
and it's sort of what John Rex described yesterday --
18 he may want to follow up on this again since not
everybody was on yesterday's call -- about the huge
challenge, not just getting the Phase 3 done, but
having that drug get licenses and sustain its return
on investment over the next five-year period and how
Page 193
the last five drug companies that tried that for antibacterials have now gone bankrupt.

So we're very concerned about that and
about the time we shifted with the MSG to another way
5 to do business, we made big shifts in the entire
6 division for making Phase 1 the point of handoff to
7 corporate sponsors. And so that way, we could do more
8 things for more microbes and we are doing it in a way
that may not be familiar to the cocci community of
0 old, and they're the things that Erin Zeituni talked
about this morning where we have compartmentalized it
into significant support, probably more than we gave
to the MSG, in terms of all the preclinical services,
to bring as many new compounds forward as possible and
Phase 1 to do first in human hoping that that could be
moved along for corporate investment, which is
ultimately going to be essential to get the drugs
licensed.
And then, there are the opportunities
for the community to come in with investigator
initiated clinical trials, to propose their own in
partnership with the community. And we're approaching

Page 196
1 the in-depth study of the cocci population through the
2 initiative that Donna just sent the community notice
3 of, and that is those consortiums to study cocci
4 patients in clinical perspective and invasive
5 perspective to try and get out some of the very things
6 this group is discussing.
7 So I think I'll call your attention
8 back to the link for that initiative for groups to
9 work together collaboratively to study in depth cocci
10 patients and look at how you can leverage that
11 information to move forward to a clinical trial.
12 John, do you want to add anything, John Rex, to nature
13 of the problem in antimicrobial development in general
14 today?
15 DR. JOHN REX: Yeah, sure, Dennis.
16 Thanks. The broad problem is that antibacterials,
17 much more so than antifungals -- antifungals pick it 18 up a little bit as well -- suffer from a real market

19 failure problem. It's the antibacterials, antifungals
20 are space where you invent a new drug, everyone's very
21 proud of you and pleased and tells you it's an
22 important thing to do. As a matter of fact, it's so
Page 195
1 important that we're not going to use it and -- unless
2 we really, really, really have to.
3 That doesn't work well for the over --
4 for keeping a product on the market and the -- an
5 insight that's kind of glaringly obvious in
6 retrospect, just like lots of things, is that initial
7 approval of a new drug is really only about 40 or 50
8 percent of the way into the lifetime of the drug, and
9 you need several hundred million dollars beyond the
10 point of approval to simply stay in business, keep the
11 lights on, and stay -- break even on a cash flow
12 basis.
13 A vivid demonstration of this is that
14 of the last 15 drugs approved by the FDA in
15 antibacterial spaces, about 2009 , five of them are now
16 -- their company is in bankruptcy and the -- or the
17 equivalent thereof, and the availability of the drug
18 is uncertain. Indeed, it seems not likely that you
19 can get it right now.
$20 \quad$ So it is a -- this need to deal with
21 the backend problem of sustaining new products in the
22 market is a bigger problem than might appear from just
the antifungal universe and has been the subject of a
lot of work, and I don't mean to be self-serving, but
if you want to learn about it, one way to do it would
4 be to go to my website, AMR.Solutions. there's a
newsletter that I put out.
$6 \quad$ I spend 20,25 percent of my time
dealing with this problem, sort of on a very broad
8 global scale and there's been a lot of work. There --
legislative activities, there's some stuff going on in
10 the U.K. where we have laid out the framework for what
11 needs to be done to cause drugs to come onto the
2 market and stay on the market. The story of cocci is
just, in many ways, is a microcosm of the larger
problem, antibacterial.
15 So thanks, Dennis, for calling that out
16 and I think it's -- the reason it's important for the
17 community to know about it, you can leverage it, you
18 know. To the extent you can connect the story here to
19 the kinds of solutions being used, it actually helps
20 all of us because our political leadership has been
21 being updated, but they've begun to learn these ideas
and if you learn to speak to them using the language
Page 197
1 that we have developed over time about antimicrobials
2 as being the fire extinguishers of medicine,
3 antimicrobials as preparedness, COVID gives us a great
4 lesson here.
5 You know, a year ago, no one would've
6 paid anything for an anti-SARS, coronavirus drug, but
7 now people would pay trillions of dollars. So there's
8 a lot of really good lessons here for the community to
9 pick up on. Over.
10 DR. DENNIS DIXON: A lot of the --
DR. JOHN GALGIANI: Hold on --
DR. DENNIS DIXON: I'm sorry, is that

DR. JOHN GALGIANI: Was that Pete that
wanted to make a comment? Don't hear him. I would
like to maybe think about the biology here. I think
there's some good news about the dimorphics in cocci
8 in particular that probably, if we found a better drug
for cocci, it would not be put on the shelves. We
would be using it because -- for a couple reasons.
One is, we need it. And the other is because I don't
think that you acquire resistance to drugs in the

1 dimorphics like you do in transplant units where
1 you on each of those points, including the submission
2 you're doing a lot of prophylaxis or ICUs where you're 2 of trials.
3 selecting new colonizing organisms.
4 I think cocci is a point source
5 infection and you're left with that infection until
6 you control it and so it's hard for that fungus to
7 develop resistance in a closed space, and so I think
8 there would be lots of reasons to encourage use of
9 better therapies if they were developed for cocci.
10 But the point that Dennis was making in 11 terms of getting buy-in from industry, I would like to
12 see -- and I think that's for prophylaxis studies or
13 empiric trials has its own special set of issues, but
14 in terms of industry being willing to work with the
15 investigators and allowing the design to emerge
16 through an honest broker like MSG, with the analysis
17 being done by the statistical support of the central
18 group for cocci, would that be actually an easier
19 problem than to try to figure out how to model or
20 posture a indication for the immunosuppressed patient20 21 populations?
22 Anyone have some thoughts about that?
3 And visit our resources in our webpage
4 for opportunities in the area.
5
DR. JOHN GALGIANI: But Dennis, the
6 wonderfully exciting idea for cocci centers coming
7 forward, I am so looking forward to that process play
8 out, but can I ask you, that you have been -- when you
9 roll things back to Phase 1, why not reexamine that,
10 whether or not you want to allow for some diseases -
11 and I would like to think we'd be talking about cocci
12 -- that it wouldn't stop at Phase 1, that you could --
13 I could imagine some really interesting Phase 2 trials
14 with adaptive designs that would be cutting edge that
15 would be, you know, we move the field forward in
16 design as well as getting some results.
$17 \quad$ What about that as being either -- the 18 cocci centers, as I understand it -- I haven't seen an

19 RSA yet, but I believe it's going to not support
20 clinical trials. It may collaborate with others doing
21 clinical trials, but you're not going to be -- funding
22 budget for the clinicals within the centers

Page 199
1 Neil.
2 DR. NEIL AMPEL: Well, John, I don't
3 have thoughts, but I want to throw it back to Dennis.
4 So, Dennis, I heard what all the problems were but
5 following up on John, so what is our solution, because 6 we don't have, at this time, really well-designed,
7 well-controlled trials and I think everyone has spoken
8 today how difficult that would be simply with industry
9 support.
10 So what mechanism, if not
11 reinvigorating MSG to assist in that, what mechanism
12 might you use? Over.
13 DR. DENNIS DIXON: Okay, I have the
14 name of that group, so I would start with the
15 Coccidioidomycosis Collaborative Research Centers
16 which are listed on concepts cleared web page with
17 NIAID as a simple couple sentence explanation about
18 them, the whole thing won't be public until we are
19 finalized, posted for advertisement, and I would
20 suggest you call in to me, to Erin Zeituni, to Baoying 20
21 Liu or any of the others associated with this meeting
22 to tell you what opportunities we have to work with

1 themselves.
2 DR. DENNIS DIXON: The norm is now
3 Phase 2s. There are exceptions. I think with
4 something like the collaborative research centers, the
5 intent is to have people dig down to solve some of
6 these problems where there could maybe be something
7 too good to leave sitting at the curb.
DR. JOHN BENNETT: Will there be strong
9 active input into that decision-making process?
10 DR. DENNIS DIXON: Could you repeat 11 your question?

12 DR. JOHN BENNETT: That concept sounds
13 really good from a governmental point of view. I just
14 wonder if we're kind of thinking about the benefit of
15 the Mycoses Study Group, one of the strong benefits
16 was the intimate relationship that included clinicians
17 and academics in the decision making process. And I'm
18 wondering if that's going to be part of the program 19 you're planning.

DR. DENNIS DIXON: We really can't
21 comment on what it's going to be other than what's
been posted on the web, and then when the solicitation

1 is published, it will say exactly what it's about.
2 DR. JOHN BENNETT: Well, I'm just
3 thinking about the FLEET project and how it
4 originated. And Dennis was intimately involved in
5 that and it was a wonderful "gift" to the community of
$6 \$ 10$ million, but the decision making process in
7 bringing that study from the $\$ 10$ million to actually
8 doing it, did not -- it had academic input, but it
9 didn't -- it was not effective input. And I think
10 that the result of that was not successful.
11 DR. DENNIS DIXON: Well, thanks for
12 that opinion.
13 DR. JOHN GALGIANI: But Dennis, what I
14 hear, if I understand you correctly, you're saying
15 that if somebody had an idea for a Phase 2, that the
16 policy is not so rigid within DMID that it couldn't be
17 discussed, with the possibility it might actually be 18 explored.

19 DR. DENNIS DIXON: I think that's a
20 safe statement. That's what we mean by case-by-case
21 decision making and certainly, look where COVID went.
22 Nothing is exactly like COVID, thank goodness.
Page 203
1 DR. NEIL AMPEL: So Dennis, this is
2 Neil. Just to come back, the problem I have with the
3 cocci collaborative groups doing broad pharmaceutical
4 studies, let's just say the RFA comes out to
5 University of Arizona has one and UC Davis has one.
6 To me, that's not solving the problem, because those
7 are going to -- that's siloing the problem where we
8 really want all those medical centers involved, so if
9 we're going to do therapeutic trials, we want every
10 center that sees cocci patients and particularly those
11 that are very involved, and I guess that's why I'm
12 having trouble. I don't see that as the solution to
13 the problem.
14 DR. DENNIS DIXON: There's nothing more
15 I can give you at this point because the policy of the
16 division is what it is and we'll work with you any way
17 we can to move things forward iteratively.
18 DR. JOHN GALGIANI: I'm noticing that
19 there's a lot of people on this panel, many of whom
20 haven't said much yet. Tom Patterson, are you there?
21 Maybe not.
22
DR. TOM PATTERSON: Hello.

1 DR. JOHN GALGIANI: Tom? Good. You've
2 been intimately involved, as we heard, with doing the 3 animal studies on various antifungals for development
4 for NIAID. Do you want to make any comments about how
5 successful that process has been and do you think it
6 could be done differently or are you happy with the
7 way it's set up?
8 DR. TOM PATTERSON: It has been a very
9 successful partnership. I think it's really helped
10 spur drug development and I think you heard from our
11 industry partners in those earlier talks that those
12 studies were able to give pretty critical data that
13 would otherwise be maybe outside their range at this
14 point in time with their development, so cocci
15 would've kind of gotten kicked to the curb. And
16 instead, they really got a real boost when they were
17 able to show activity in those models. And so I think
18 it was an example of where the preclinical investment
19 by the NIH was able to really spur drug development
20 And I think the same things can
21 continue with even smaller companies moving forward,
you know, and so we'll have to see how much support
Page 205
1 that continues. It's important for the community to
reach out to the government and let them know that
3 they find it useful, but I think it is an important
4 process to do and has really been helpful so far in
5 getting drugs moved ahead, and even in the regulatory
6 paths, you can -- you heard from, this morning, how
7 those could be useful in helping lead to approvals.
8 DR. JOHN GALGIANI: Good. I see Dr.
9 Hope is logged in. Dr. Hope, are you there? Maybe
10 not. I happened to --
11 DR. WILLIAM HOPE: Yes, I'm here. 12 DR. JOHN GALGIANI: Yes, I see your 3 name. You recently were having to grapple with a patient with Valley Fever. Was this workshop helpful to you in terms of seeing where we could go better?

DR. WILLIAM HOPE: Well, I'm listening
from a place that, of course, doesn't see this disease except for the one that I mentioned this morning,
John. I guess the only comment that I have, sort of listening to a disease that I don't look after
previously and I don't study, although I have worked with Laura Kovanda and David Stevens recently on the

1 model, but the preclinical models have obviously been
2 truly difficult and characterized by pretty
3 significant variability, but something that I haven't
4 heard all day is that triazoles are the mainstay of
5 treatment of this disease and we know that there's
6 extraordinary variability (inaudible) sort of curious
7 that people haven't been more interested in sort of
8 understanding from a pharmacological perspective why
9 fluconazole fails, why you say it's fungistatic, where
10 the space are that emergence of resistance. I asked
11 them to break out compliance (inaudible) about 12 penetration of these drugs into complex tissue base.

13 So there's sems to be a lot of basic
14 science here that could help unravel some of the
15 issues. There's been quite a clinical discussion all
16 afternoon. So that's, I guess, my only perspective
17 from somebody very much from the outside.
18 DR. JOHN GALGIANI: Thank you. I see
19 John Rex has got his hand up.
20 DR. JOHN REX: Hi. I'm coming off
21 mute. Dennis, coming back to you for a second. I

22 want to think out loud and actually I think that
Page 207
1 Elektra Papadopoulos is on who is somebody I know has
2 thought a lot about PROs, and I'd like to point -- ask
3 the question of whether or not this community could
4 get interested in developing a PRO, focus on how
5 people feel. Maybe it's arm on the phone Jack, that's
6 be fun, but the idea that an endpoint that we all
7 agree is reasonably useful across the range of cocci
8 syndromes would be a tool that everybody would get
9 advantage of it.
10 And Royce, I do really appreciate what
11 the MSG did, what you guys did with the points scoring
12 system. The -- my general understanding in this area
13 is that things like cocci Comp. Fix titer or CSF white
14 count would be new to this category of biomarkers and
15 while you and I as docs pay a lot of attention to
16 them, if we want to use them as endpoints in a trial
17 that enables regulatory action, we'd have to go to a
18 lot of trouble to prove how they connect to the
19 outcome of the disease and like with HIV, where we
20 know what it means to have a certain quantitative
21 viral load.
22
We'd have to do the equivalent that
here and I think that's probably a much heavier lift
than any of us can envision; whereas, I'm actually
struck by the idea that there might be a way to
measure things that patients really care about with
tools -- there's been a lot of work on these general
6 purpose PROs in the past 10 years.
7 I'm not an expert on it, but I am
8 really quite surprised that -- and it puzzled me how
9 much stuff is out there. So that's a call for maybe a
10 group action. That can be something that would be a
11 big community benefit. Over.
12 DR. JOHN GALGIANI: Yeah, the QID which
13 we heard about earlier today which was -- has been
14 involved, I think, within the FDA and NIH, that is
15 more -- correct me if I'm wrong, those who know more
16 about this -- is more for professionals talking to
17 each other about their experiences. I guess what
18 John's talking about is to get the patient feedback
19 and what FDA -- are they working on that, also or
20 would it need to be a new opportunity rather than the
21 QID.
22
ELEKTRA PAPADOPOULOS: Are you able to
Page 209
hear me?

2

3

4 Okay. Yeah, I did hear my name so I thought I could
5 just chime in a bit from a regulatory standpoint on
6 the patient reports outcome questions and I think
we've heard expressed multiple times that our goals
8 with our endpoints is really to assess the clinical
9 benefit on how patients feel, function, and survive
10 and so we know that there's a need for outcomes that
11 are reliable, valid, and responsive and that we need
12 to take into account what really matters to the
13 patients.
14
15 patients and how do they discuss their condition, the
16 treatment, what are the therapeutic gaps, and what
17 really matters to the patient, what are things that a
18 drug can treat that would impact their disease and
19 also help them to feel better or function better, what
20 would it be that they would most like to see improved,
21 and then really factoring these explicitly into the
22 endpoints.

Page 210	Page 212
And I've heard -- there's been a lot of	1 DR. TOM WALSH: Oh, no. Okay. Joh
2 discussion about the challenges of heterogeneity and I	2 are you able to hear me?
3 think that there is a potential possibly to find	DR. JOHN GALGIANI: I am.
4 certain symptoms that cross individuals that could be	4 DR. TOM WALSH: Okay, very good. John,
5 relevant across a broad variety of individuals and	5 I wanted to comment with regard to preclinical and
6 that patients could self-report so we would have a way	6 then also a strategy that might be helpful for
7 of hearing the patient voice and how they're feeling	7 support. Number one is, in terms of compounds that
8 and functioning and to take, really, and say adults	8 seem to be (OVERLAPPING VOICES OBSCURES) at a
9 and adolescents, those who are able to provide self-	9 preclinical level.
10 report.	10 One of the features that seems to stand
11 And I think, you know, we've also heard	11 out is, one, the potential microbicidal or fungicidal
12 about the length of the trial, the need to be	12 activity certainly posaconazole seemed to have that,
13 parsimonious in the measures. I think minimizing	13 the large volume of distribution, if we look at the
14 missing data is also going to be very important, so	14 data, certainly that's been presented with olorofim,
15 having something that's feasible, that the patient is	15 for example. It seems to be also -- it seems also to
16 indeed compliant with is going to be important.	16 have similar properties. One would also imagine that
17 And then we've also heard about the	17 ibrexafungerp, large volume of distribution, 5 liters
18 need for different language translations for that	18 a program, and also apparently fungicidal.
19 target population. So it's a lot, I think. I thi	19 Those agents certainly may rise to the
20 having some good clinical outcome assessments that	20 level preclinically with appropriate dosing strategies
21 could be used to support approval would be a	21 to taking on the most serious patients. And if you
22 to drug development.	22 look at -- if we look at the most serious patients,
Page 211	Page 213
Very often, if there are good outcome	1 which is really where people are devastatingly
2 assessments and there's regulatory agreement, then	2 compromised, the posaconazole trial actually for the
3 that's an incentives for drug development, and so the	3 salvage study, had 73 percent response rate where
4 agency, of course, we will always provide advice to	4 patients were just utterly not responding and Ithink
5 individual companies in the context of their drug	5 as I recall, about 6 of the 17 had widespread -- had
6 development programs and	6 disseminated disease as well.
7 regulatory pathway for looking at clinical outcome	7 So if one has to decide, well, what
8 assessments and other drug development tools which is	8 might be logical extensions, translationary from the
9 the qualification pathway and so that may be another	9 preclinical data because you only have X number of
10 very good avenue to have a tool that could be reviewed	10 compounds, the Y number of patients, at least those
11 by the agency where we could provide advice and that	11 properties seem to stand out in contrast more to a
12 could be usable across drug development programs and	12 flu, which -- fluconazole which may not have those
13 made publicly available and it wouldn't need to be	13 properties, but the other consideration, then, is
14 necessarily de novo drug -- a de novo PRO or COA	14 well, who might be interested in supporting when
15 development.	15 industry obviously as has been wisely stated some
16 There could be existing tools that	16 degree of reluctance about further support, but there
17 could be brought to bear and so I think it would be a	17 may be some considerable interest in military.
18 good conversation to have, and I just -- yeah, so I	18 With all the maneuvers, there is --
19 think that concludes my brief remark.	19 Demosthenes Pappagianis' paper came out. He estimated
20 DR. JOHN GALGIANI: Thank you. I see	20 that there may be as much as 4 or 5 percent serologic
21 Tom Walsh has his hand up. Tom? Are you on mute, Dr.	21 conversion. Frequency of serious infection was low,
22 Walsh?	22 but nonetheless there are cases I'm aware of that came

1 out of the -- especially in the armored command --
2 that came out of training. So I would raise the
3 question, would the military, given its exposure, also
4 maybe CDMRP, the Congressionally Directed Military
5 Research Program, which does offer grants for -- in
6 further support might be interested in clinical trial
7 development.
8 DR. JOHN GALGIANI: Thank you, Tom.
9 Tony Catanzaro and Dave Stevens, I think both of your
10 have had some experience trying to engage with
11 military. Do either of you want to weigh in on that?
12 DR. ANTONINO CATANZARO: I actually
13 have a DoD grant right now but it -- they're very
14 particular. They tell you what they're interested in
15 and then you apply for it and I have a TB grant, but
16 I've never seen anything about cocci. I work closely
17 with the Navy Balboa Center and they had a lot of TB
18 patients and they're interested, but they don't have
19 any funding that I'm aware of.
20
DR. JOHN GALGIANI: Well, we in the
21 formalin-killed serial vaccine, there was a lot of
22 attempts to get military involvement and indeed, the
Page 215
1 Lemoore Naval Hospital was one of the study sites fo
2 that vaccine trial in humans. But in general, my
3 experience with the military is that if you don't have
4 -- and this actually is reflecting comments I got from
5 David Danley who was a career military person at Ft .
6 Dietrich that said if the -- if a treatment for Valley
7 Fever or a prevention of Valley Fever is not a written
8 in the requirement in the user's manual for the
9 military, that is if you don't have a requirement to
10 have such a vaccine, in order to have a military, then
11 you're just not going to get any priority.
12 We've had sympathetic interests at
13 regional military bases for periods of time, but then
14 they rotate every two or three years and you start all
15 over again. So I think I could imagine how we could
16 do that with the military, but I haven't seen the push
17 to get it as a military requirement. Dennis. Dennis
18 Dixon, are you there? You had your hand up.
19 DR. DENNIS DIXON: It looks like my
20 line is muted.
21 DR. JOHN GALGIANI: Dennis, are you --
22
DR. DENNIS DIXON: I was muted by
somebody else, but now I'm unmuted. So I wanted to
2 return to how we're looking at the problem and I think
when the MSG ended, people wanting MSG back and so the
4 MSG isn't back. There are no plans to bring it back.
5 What is there and is available can do some of the
6 things that group did but not through an
7 infrastructure support basis.
8 So for example, Tony or others who
9 would like to leverage the CSG for particular kind of
10 study, for particular problem, it could be looking at
11 the 1,000 milligram fluconazole failures and putting
12 them into some sort of study that you could do at an
13 early stage clinical investigation. There are new
14 ways to do that; that's why I encourage reaching out
15 to the bacteriology and mycology group team and either
16 have the ways to reach us and so you could write or a
17 group could write a clinical trial planning grant and
18 there's a certain amount of money, up to, I think it's
19 \$150,000 to develop a protocol.
20 So that could be the part where the
21 experts get together, some up with the idea, map out
22 the basics of a protocol. That's competitively

Page 217
reviewed and funded against all the other people who
don't have infrastructures who are trying to do that, 3 and they do get funded and they're successful.

After that, if you've got the protocol and it looks like there was traction, there's the 6 option to apply for an investigator initiated clinical
7 trial grant that can conduct probably the kinds of 8 study you're looking at to do, so there are ways to 9 get there if you can work with the system to try them. MAN 1: That's very encouraging.
DR. DENNIS DIXON: -- extra layer -they do work through that extra layer of peer review.
It's time consuming and peer review is generally more 14 frustrating than it is gratifying, but it is a way to 15 get there, just like other contract and grant support 16 throughout the NIH.
17 To take a look at the resources that 18 are there. Understand them better and see how they 19 might be used to advance and leverage your interests. 20
21 then you work through that, because that's quite
22 stilted in the interactive potential. It's very

Page 218	Page 220
1 difficult to work through the standard review process	1 approved would be primarily for cocci and if that were
2 through (inaudible) who have worked with the reviewer.	2 to occur, then that would open up some post-marketing
3 I think that they rotate, so if you use that system or	3 trials, Phase 4s, to look at outcomes for other
4 do you use a different sys	4 diseases. There's also activity assessment in blasto,
5 DR. DENNIS DIXON: A number of these	5 but I think those are modest markets given the size of
6 grants have been funded to other groups, bacteriology	6 the markets and other therapie
7 I can't remember if we had any recent ones. I think	$7 \quad$ But I think the idea of synergy with
8 we've had some in mycology, too. Baoying would know	8 the azoles -- sorry, with echinocandins, for example,
9 that, who spoke this morning	9 would be an exciting possibility for other diseases
10 through it. It's not like having	10 besides cocci. But that doesn't -- it's hard to put
11 dollar contract aware that	11 that into a development plan to get it to its first
12 decision on yourself moving forward; it is a way	12 indication.
13 go, and it has worked for some people. And it could	13 DR. JOHN BENNETT: So maybe if a drug
14	14 like olorofim got an indication for treatment or
15 DR. JOHN GALGIANI: Dr. Bennett, I see	15 prevention or both of aspergillosis and had a good
16 your hand's	16 enough market size, yet its use for cocci could be an
17 DR. JOHN BENNETT: It seems to be	17 important side effect, if you will, but it's not what
18 can you hear	18 makes the drug economically viable. It's another
19 DR. JOHN GALGIANI: I can. Thank you,	19 indication, but we could still use it for cocci if we
20 John.	20 could figure out a good way how to study that or som
21	21
22 me the best hope for a cocci drug is to have a drug	22 DR. JOHN GALGIANI: Dr. Ampel, II see
Page 219	Page 221
1	1 your hand's up.
2 support of that drug has to be based upon othe	2 DR. NEIL AMPEL: John, can you hear me?
3 indications, but with a well-done cocci study, the	3 DR. JOHN GALGIANI: Yeah.
4 drug will also be used for cocc	DR. NEIL AMPEL: So the question, the
5 Approval for cocci, I wo	5 two issues. Dennis, the mechanism you proposed would
6 about that, but the d	6 be drug by drug and that really doesn't solve the
7 posaconazole's not approved for cocci, yet you'r	7 issue. There might be multiple. We need, really, a
8 using it. So the question is, can we have a drug th	8 mechanism where we can study a lot of drug and if we
9 has broader usage and then we can design a study for	9 had to submit for funding drug by drug, I'm not sure
10 cocci that gets people with the knowledge they can usel0 that's the solution.	
11 it and here's how to use it for cocc	11 The other point I want to make as a
12 But I'm a little concerned about dru	12 clinician, so we all think -- and I talk about this at
13 nikkomycin. If its major use is only for cocci, you	13 ID week -- fluconazole is probably not the best drug
14 need to say that. but if its major use for cocci,	14 to use in Valley Fever and the new triazoles seem to
15 don't know how industry would be able to support that15 be better and we all try every day when we see cocci	
16 drug. So tell	16 patients to get them moved over, and the problem is,
17 DR. JOHN GALGIANI: I'm not sure you	17 it's very difficult.
18 are wrong. I wish I could tell you you're wrong. But	18 For example, TR posaconazole costs on
19 there is evidence suggests that it would	19 the order of, I think, \$7,500 a month and s
20 synergistic with other drugs against such things as	20 frequently requires prior approval, which is
21 aspergillus. So the concept that we have sort of	21 frequently denied by insurance companies, so without
22 entertained primarily is the path to get the drug	22 studies that get us to FDA approval, this was pointed

$\text { Page } 222$	Page 224
1 out before I spoke, it really impacts clinical care	1 small studies particularly for refractory patients
2 and it's particularly a problem if we think that	2 where the challenges are especially great or those
3 fluconazole may not be the best drug to use	3 refractory or intolerant, where there's clearly
4 It was just the first drug -- the first	4 tangible benefit, for those patients to be studied in
5 triazole, anyway, that we used. And so how do we move	5 a systematic way would not necessarily even have to be
6 that? We need a mechanism, even for drugs, as Jack	6 randomized.
7 was saying, that are already available. They're stil	$7 \quad$ We talked extensively yesterday about
8 very difficult to use because of our current insurance	8 refractory historical controls or contemporaneous
9 system.	9 control, so it may be difficult given the wide
10 DR. JOHN GALGIANI: Laura Kovanda, I	10 variability, but rather than having extremely --
11 see your hand	11 relatively large study such as the flu and itra, one
12 LAURA KOVANDA: Yes	12 may be able to understand and use compounds in a much
13 DR. JOHN GALGIANI: Hi	13 more focused way, smaller populations, difficult to
14 LAURA KOVANDA: Thank you. I was just	14 treat with patients being their own control and
15 going to add that it seems like a perfect opportunity	15 response much like the posaconazole study where
16 with multiple	16 potentially in a relatively short span of time, you
17 studies would a master protocol be an opportunity for,	17 can have potentially great candidates from olorofim to
18 say, the Cocc	18 ibrexafungerp to other candidates, study in a short
19 including some ideas like John Rex has with the PRO	19 span of time or a novel study design.
20 type outcomes and a way that could maybe help	20 DR. JOHN GALGIANI: Thank you, Tom.
21	21 Pete Pappa
22 DR. JOHN GALGIANI: I don't know if	22 DR. PETER PAPPAS: -- hear me?
Page 223	Page 225
1 Dennis or Jack, do you still have questions or you	1 DR. JOHN GALGIANI: I can now.
2 just didn't put your hand down.	2 DR. PETER PAPPAS: Okay, good, good.
3 DR. DENNIS DIXON: -- figure out how to	3 I've just been listening to the comments. I'm in
4 do that. My arm's getting tired anyway.	4 Montana so it's been kind of in and out.
5 DR. JOHN GALGIANI: Well, we're a	5 DR. JOHN GALGIANI: A little louder,
6 little close -- we're about 10 minutes away from the	6 Pete?
7 allotted time. We have certainly time for additional	7 DR. PETER PAPPAS: Oh, I'm sorry,
8 comments. Is that Thomas Walsh?	8 excuse me. I said I am out state and I'm kind of in a
9 DR. TOM WALSH: Yes. Are you able to	9 remote area, but if you can hear me okay, let me know.
10 hear me?	10 DR. JOHN GALGIANI: You're kind of
11 DR. JOHN GALGIANI: Yes.	11 weak.
12 DR. TOM WALSH: Sorry, John, it's	12 DR. PETER PAPPAS: Yeah --
13 difficult to ascertain as to whether the phone	13 DR. JOHN GALGIANI: -- tell you that
14 activated. Just in reflection on the refractory study	14 before.
15 -- the refractory cases of posaconazole where large	15 DR. PETER PAPPAS: Okay --
16 challenges, although it may, as was noted, never	16 DR. JOHN GALGIANI: That's better.
17 really lead to an indication, but may inform the usage	17 DR. PETER PAPPAS: People have said
18 and expand the comfort or especially of bolstered by	18 that before. Is that better? Is that better?
19 adequate prec	19 DR. JOHN GALGIANI: Yeah, that is
20 One might envision if one did have a	20 better.
21 study group that would be, as Laura suggested, a	21 DR. PETER PAPPAS: Okay, good. Just a
22 universal templated protocol that then could evolve	22 couple of reflections on this, you know, the comments

1 that were directed to Dennis and all -- and so forth.
2 For - at the risk of being self-serving, obviously, I
3 think that not only cocci but the rest of the fungal
4 pathogens constitute a public health issue and I do
5 believe that one way of getting these addressed is
6 through a uniform group that brings to the table
7 statistical integrity, being -- protocols being really
8 ferreted out in a fashion that we used to do, and I do
9 think, following Jack Bennett's lead and others, this
10 is really a great way to do studies.
11 That said, much has changed in the last
12 decade or so and that is that these -- while we have
13 now lots of compounds, those compounds are oftentimes
14 brought to research through smaller groups, smaller --
15 venture capitalist groups. They really can't tolerate
16 the delay that is inherent in our traditional way of
17 developing protocols and going through the NIAID and
18 so forth, and so on the one hand, I love the idea of a
19 centrally organized, especially for biostatistical and
20 trial design purpose.
21 On the other hand, I don't know that
the tolerance is from industry as to whether they can
Page 227
tolerate very long delays where things have to go
through a series of subcommittees and committees at
3 the federal level, beyond the FDA. So we need to 4 remember that as well.

5 I do think this is a big enough public
6 health issue, not just cocci, but the whole area of
7 mycology in general, that we should be able to justify
8 putting together a study group that at least provides
9 infrastructure in biostatistical support and integrity
10 so that we can help all of these compounds and these
11 entities develop sound studies that really address
12 needs.
13 All of this has been addressed, many of
14 you throughout the day, Neil and others have
15 underscored this but I just wanted to kind of put my
16 two cents' worth in because it's important to remembe
17 how we also caused a lot of heartburn on the part of 18 our corporate colleagues who just couldn't wait for us
19 to move forward and we just weren't moving forward
20 fast enough. That's all I wanted to say.
21 DR. JOHN GALGIANI: Thank you, Pete.
22 Well, we're close to the allotted time. This would be

1 the time, if anyone else had some additional comments
2 to make, to make them. Are there any shows of hands?
3 I see none. Dr. Stevens. David, are you on mute?
DR. DAVID STEVENS: Okay, can you hear
5 me now?
DR. JOHN GALGIANI: Really can, loud
and clear.
8 DR. DAVID STEVENS: Okay, great. No, I
9 just had a little comment and I thought the discussion
10 about continuing collaborative clinical studies was
11 really most important and I didn't want to in any way
2 divert or interrupt that, but I did have a couple
comments about nikkomycin Z. first, we studied nikZ
against blastomycosis and published our results and
the -- it's a very impressive drug against
blastomycosis in the laboratory.
And in the course of those studies, we
gave huge doses to mice because it was a dose ranging
study, and never actually found any toxicity that we
0 could see and I think we were up to, if I can
remember, the range of 1,000 milligrams per kilogram.
But David Larwood was very modest because currently in
Page 229
1 our laboratory, we've been studying disseminated cocci
2 which had never been studied before in models with
nikZ and David's been very involved in those studies.
And it is very active against
disseminated cocci as well and although that, unlike
6 the blasto studies, that hasn't been published but it
7 has been presented in part and as an abstract it's
8 available from the cocci study group from the meeting
9 of this year and we've gone on to do some of the kinds
10 of studies that Richard Hector did with CNS cocci and
11 also find it to be very active against central nervous
system cocci, and the thing that's different -- I'm
13 sure David would've liked to have mentioned this more
4 -- but maybe he was kind in terms of not trying to let
the cat out of the bag, but the dosing has been by not
lavaging which is what we did in our published blasto
studies, but leaving in the water for -- that the mice
8 are drinking and we monitored how much they were
drinking and we could calculate what their dose was
based on that and that has been very effective both
against disseminated cocci and against CNS cocci and I
think where that leads is the possibility of maybe

1 developing a delayed release form which would make it
2 very convenient, get around problems about the half --
3 any problems that there are about the half-life.
4 So I just wanted to interject that when 5 we were talking about nikZ and hope that's useful 6 information.

7 DR. JOHN GALGIANI: Thank you, David.
8 David Larwood, did you want to add something to that?
9 Unmute?
10 DAVID LARWOOD: Unmute. Hello.
11 Better?
12 DR. JOHN GALGIANI: Much better. 13 DAVID LARWOOD: Sorry about that.

14 Yeah, I actually wasn't going to talk about it because
15 we have some publications that we're developing, but
16 since we're talking about it, Richard Hector did some
17 studies in the last '90s where he used -- infused a
18 rate -- IV infusion of nikkomycin against injected
19 Candida albicans and showed very good results.
20 And so I looked at that and I said, how
21 can we do this in humans. Extended release
22 formulations are very expensive and time consuming to

1 develop and since I'm a chemist working on the
2 molecule, I looked at the properties. I said, I think
3 we can do this dosing in water that David just talked
4 about and it worked. The first experiment worked
5 fabulously well and we're doing some more of these,
6 and like he says, the upper tox limit seems to be
7 unreachable.
$8 \quad$ But the model that I was looking at and
9 it seems to be proving out nicely, is this is a
10 simulation of an extended release formulation, so
11 we're saving a million dollars in a year to just do
12 some screening studies so it's working out quite well.
13 We're anxious to try it in more model diseases.
14 DR. JOHN GALGIANI: Great. And so
15 we're down to the last two minutes. Tom Walsh, do you
16 have any final thoughts you want --
17 DR. TOM WALSH: Are you able to hear 18 me, John?

19 DR. JOHN GALGIANI: Yes.
20 DR. TOM WALSH: Okay, thank you. I
21 think in listening to all of the outstanding
22 presentations in this vast body of expertise and
experts that are here, I think the time is right and
well poised to bring everyone together, new compounds,
great expertise, and the concepts for following Dennis
Dixon's path, especially building on the foundation of
the exciting idea of the Coccidioidomycosis Centers of 6 Excellence.

It would be just a wonderful, logical
8 extension going with the R34s, clinical trial R01s,
and with novel study design whether it's in the
refractory patients, disseminated CNS, or in advanced
pulmonary disease, I think we're on the threshold of a
major advance in clinical research in
coccidioidomycosis
DR. JOHN GALGIANI: Thank you, Tom.
Appreciate those words. And I think we are out of
time, so I thank everybody for their comments and the
wrap-up will be done by Sumathi Nambiar. Dr. Nambiar
8 is currently the director, Division of Anti-Infectives
at the FDA. Sumathi.
DR. SUMATHI NAMBIAR: so, thank you,
Dr. Galgiani. You can hear me okay?
DR. JOHN GALGIANI: Yes, I can.
Page 231
1
2 I just want to thank all the presenters and panelists.
3 We had a very interesting day discussing different
aspects, so coccidioidomycosis. I do have the
difficult task of trying to summarize the discussions
that took place today.
I want to apologize up front if I've
8 missed any of the important points. Meeting materials
with recording and transcripts will be available
10 online after the meeting and you should have access to
11 all the details.
12
13 followed by a very interesting panel discussion. At
14 the first session, we discussed epidemiology, clinical
manifestations, and development resources. I think
the main points there were about the changing
epidemiology of the disease, the risk factors, and
disease manifestation and I though it was also noted
that there is an opportunity to here to collaborate
with sites outside the U.S. in Central and South
America and trial relationships with some of these
sites worked well.

1 We had a discussion around animal
2 models. One studied murine models and I think also
3 discussion around rabbit (inaudible). Was also
4 mentioned of the natural pulmonary infection in dogs
5 and I thought that was very interesting, the
6 discussion with enrollment of pets.
7 We had Dr. Zeituni presented the
8 support that NIAID can provide and a lot of this came
9 up a lot of this came up again during the panel
10 discussion. Dr. Zeituni described the established
11 mechanisms available to support the development of
12 promising products and also mentioned the initiated
13 with Coccidioidomycosis Collaborative Research Centers
14 which was discussed by Dr. (inaudible) during the
15 panel discussion and Dr. Zeituni also provided
16 instructive examples of engagement with pharmaceutical
17 sponsors helping to advance drug development.
18 A sincere thanks to Mr. Purdie for
19 having joined us for this workshop and represented the
20 patient. It was a very important discussion and Mr.
21 Purdie highlighted the importance of including the
22 patient's voice and use the patient centered endpoint

1 to capture how a patient feels, functions, and
2 survives, a theme that came up again during our panel
3 discussion and also the importance of measuring a
4 quality of life. A point he made that I thought was
5 interesting was the potential opportunity to harness
6 the rich database of patients they have access to that
7 we could use to advance endpoint development.
$8 \quad$ In Session 2, clinical trial
9 considerations for the treatment of
10 coccidioidomycosis, we heard about regulatory
11 considerations into the trial development endpoint and
12 available incentives for the treatment of
13 coccidioidomycosis.
14 We heard about trials that have been
15 conducted over the years by the Cocci Study Group and
16 also the lessons learned from the nikkomycin Z
17 development program.
18 For future trials, the discussion
19 around the use of patient reported outcomes and maybe
20 scoring systems at end points. Dr. Johnson discussed
21 the MSG 2020 scoring system with one each for
22 meningeal and nonmeningeal disease. We heard from
colleagues from industry and collectively their
2 perspective raised some concerns such as difficulties
in actually conducting these trials with regard to
identifying and enrolling patients, the need for the
5 long duration of follow-up, et cetera.
It was mentioned potential use of the
PROs with an endpoint. David raised the concern about
8 financial constraints including the small market base
and then there was also a call for potentially
0 streamlining clinical development programs.
Dr. Ampel discussed the cocci study
group consortium which could potentially help the
cocci related treatment study, but said he cannot
address all aspects of cocci drug development and
presented a proposal for future collaboration to
design and implement treatment trials for cocci.
The panel discussion was, again, very
interesting. We had three questions, but needless to
say, the discussions went way beyond those three
questions, which is fine, because I think all the points raised were very valid.

If I can at really high level

22

Page 235
1 categorize, really, to topics, the discussion around
pros and cons of having the Mycoses Study Group model.
3 I think there were differing opinions on that with --
4 opinion that had served us well and is a good model to
move forward, understanding that over time the needs
6 have changed and there might be a need to revisit and
make some adjustments to that approach.
With regard to special population,
there's a recognition that immune compromised patients
0 are certainly very small numbers for each of these
special populations, immunocompromised patients
particularly solid organ transplant patients might be
a larger group such that they could be enrolled in the
4 trial but a point was made that it might also provide
an opportunity to assess pharmacokinetics in these
patients, address drug-drug interaction issues, how
one can dose the drug in hepatic, renal impairment, et cetera.

It was emphasized that we need good
nonclinical date to support these studies including
extended duration studies. There was discussion
around biomarkers and imperfections of serologic

1 endpoint and a call for maybe additional work to look
2 into the aspects of cellular immunity, a topic for 3 more research.

4 There was some discussion around 5 endpoints and I think outcomes. A lot of focusing,

6 again, on patient reported outcomes. I think one key
7 point we heard that this a heterogenous disease.
$8 \quad$ There will be varied manifestations by
9 there should be a common thread across the different
10 clinical entities which is about making the patient
11 feel better and whether or not one can use some of the 12 existing tools to capture that outcome and I think a

13 point was also made about potentially using technology
14 to capture data with an example multiple sclerosis
15 having been used -- where such technology was used.
16 I think all of those are very good
17 positions. There was certainly a discussion around
18 the importance of nonclinical work and how that has
19 certainly helped streamline programs and identify some
20 of the new molecules that might have a role in the
21 treatment of cocci.
22 And I'm sure I've missed some points,
Page 239
1 but I think at a very high level, those were the main
2 points I heard, and I think in terms of next steps, I
3 think there's a lot of work for all of us to do as a
4 community to be able to advance the drug development
5 for patients with coccidioidomycosis. I think we
6 heard that there are certain mobile techniques to be
7 done on developing endpoints.
8 Elektra from the FDA provided some
9 thoughts on the kinds of things we need to look for
10 those who are interested in developing patient
11 reported outcome measures.
12 I think a further discussion is needed
13 on potentially a network of trial sites and how best
14 we can collaborate to make drug development feasible
15 and also to potentially include sites and experts
16 outside the United States and I think for us at the
17 agency, we have to consider options to streamline
18 clinical trial programs both with regard to trial
19 population, release times, duration of follow-up, et
20 cetera, so I think with that, I hope I've covered the
21 key discussion points that took place over the course
22 of the day and again, apologize if I missed any point

1 that any one of you made, but they'll all be captured
2 in the transcripts and the recording.
So with that, again, I want to thank
every one of you for participating and maybe turn it
over to John for a little concluding remarks. John,
6 are you on? Okay, pardon me. John is -- had to step
away. All right, on behalf of everybody at the agency
8 I want to express my sincere thanks to each one of
you, panelists, presenters, for having shared your
10 thoughts. I think these discussions were extremely 11 helpful.

As I said, we've all got our work to do 13 and we do hope that we can continue these
14 conversations and find a path forward for drug
15 development for patients who need these treatments.
16 With that, thank you vey much and everybody have a
17 good evening and we'll be in touch. Take care.

19 John. Let me just add my thanks. I was involuntarily
20 unmuted and muted again, but thanks everyone for a
21 great day. We've really gotten a lot of ideas from
22 everyone. Thank you very much.

1 I, Janel Folsom, the officer before whom the
foregoing proceedings were taken, do hereby certify
that any witness(es) in the foregoing proceedings,
prior to testifying, were duly sworn; that the
proceedings were recorded by me and thereafter reduced
to typewriting by a qualified transcriptionist; that
said digital audio recording of said proceedings are a
8 true and accurate record to the best of my knowledge,
skills, and ability; that I am neither counsel for,
10 related to, nor employed by any of the parties to the
11 action in which this was taken; and, further, that I
am not a relative or employee of any counsel or
attorney employed by the parties hereto, nor
financially or otherwise interested in the outcome of this action.

Page 241 y

\&	120 45:16	2	$202164: 14$
\& 55:22 80:8	12151 242:14	$2 \text { 12:13 81:2,21 }$	20903 1:8
0	50:9 186:11,12	87:3 96:6 98:1,15	$\begin{array}{ll} \mathbf{2 3 - 2 5} & 46: 4 \\ \mathbf{2 4} & 36: 22 \end{array} \mathbf{4 6 : 2}^{24}$
0625 95:20	14 32:9,10 36:13	$129: 18 \text { 130:10 }$	$49: 1$
1	46:4 108:11	137:21 139:9	25 31:19 160:6
1 5:21 6:8 35:15	14644 241:16	146:14 147:14	166:3 196:6
35:16,20 36:7	$15 \quad 56: 1571: 10$	159:19 200:13	$250 \quad 98: 11$
81:2 83:21 87:3	99:2,5 128:14	202:15 235:8	28 32:10 36:20
87:15 97:21 99:13	$168: 2195: 14$ $\mathbf{1 5 , 0 0 0}$ $143: 11$	2-3 46:3 48:1	
$\begin{aligned} & 103: 18 ~ 115: 13,20 \\ & 118: 6134: 14 \end{aligned}$	$\begin{aligned} & \mathbf{1 5 , 0 0 0} 143: 11 \\ & 144: 22 \end{aligned}$	$\begin{array}{\|cc} 20 \quad 9: 2 & 20: 9 \\ 110: 19 & 119: 10 \end{array}$	$\begin{array}{ll} \mathbf{2 : 5 5} & 128: 13,18 \\ \mathbf{2 s} & 201: 3 \end{array}$
136:1,7,9 159:19	150,000 115	149:9 168:2 196:6	3
178:13,20 183:4	1592 122.1	200 12:10 13:7	3 38:16,18,19 39:3
185:11,13 186:4	1592 122:1	18:10 63:18	39:8,9,18 40:21
193:6,15 200:9,12	1598 26:21 35:18	109:12,17 191:7	47:18 51:14 81:2
217:10	36:3,5 83:22	200,000 9:8 13:6	136:22 137:21
$\mathbf{1 , 0 0 0} 19: 8183: 16$	137:2,5,15,17	115:5	138:14 141:10
184:21 189:13,22	138:4,7,20	2000 165:9	146:15,20 147:1
190:7 216:11	1598's 35:20	2005 163:8	147:14 159:19
228:21	15th 59:3	2006 97:12	160:6 171:3 176:5
1,500 63:15	$\begin{array}{ll}17 & 213: 5\end{array}$	2007 158:19 163:9	188:13 192:20
115:14	$\begin{array}{ll}173 & 110: 21 \\ 18 & 31: 20\end{array}$	165:6	3-6 68:6
1-3 $14: 17$	18 31:20 110:7	2008 131:10	30 105:15 130:7
1.5 94:19,22 100:2	18-45 35:22	2009 158:21	30-50 44:13
1.8 161:6	180,000 167:15	195:15	30-60 53:4
10 25:1 96:6	$\text { 18th } 58: 559: 11$	2012 56:21 58:5	$300 \quad 24: 18$ 160:8
103:18 115:11	19 74:20 1950s $40 \cdot 18$	58:17	32 97:22
132:8,17 167:16	1950s 40:18	2013 59:3,4,7	350,000 115:5
202:6,7 208:6	1955 104:17	2014 59:11,11	36 127:6
223:6	1970s 97:1	97:17	360 56:12 64:3
$100 \quad 14: 519: 8$	1978 93:6 163:2	2015 31:17 63:12	3rd 59:7
28:20 42:17	$\begin{aligned} & \text { 190:22 } \\ & \text { 1980 } \quad 117 \cdot 1 \quad 121 \cdot 15 \end{aligned}$	97:21 143:17	4
108:10,13,16	$\begin{array}{ll} 1980 & 117: 1 \\ 121: 15 \\ \text { 1980s } & 95: 22 \\ 97: 2 \end{array}$	2016 23:18 142:13	
160:8	1980s 95:22 97:2 1990 96:1	2017 95:1 117:10	$40 \quad 14: 963: 20$
100,000 94:1,4	$\begin{array}{lc} 1990 & 96: 1 \\ \text { 1990s } & 97: 2 \end{array}$	2018 8:19 143:12	106:11 115:10
1000 58:3	1990s 97:2	143:17	$118 \cdot 6126 \cdot 10$
1161 136:21	$\begin{array}{ll} 1996 & 38: 3 \\ 1998 & 40: 5 \end{array}$	2019 25:1 28:17	$\begin{aligned} & \text { 118:6 126:10 } \\ & 195: 7 \end{aligned}$
12 47:7 109:21	$\begin{aligned} & 1998 \quad 40: 5 \\ & \text { 19th } 58: 6 \text { 122:2 } \end{aligned}$	95:1 97:22	$400 \quad 13: 11 \quad 109: 8$
$127: 3144: 13$ $188 \cdot 15,17191: 4$	$\begin{array}{ll} \text { 19th } & 58: 6122: 2 \\ \mathbf{1 : 3 5} & 81: 15,18 \end{array}$	2020 1:6 20:1	$109: 13,16$
188:15,17 191:4 $\mathbf{1 2 , 0 0 0} 144: 22$	$\text { 1st } 56: 21$	117:15 119:9	$42 \quad 130: 21$
$\begin{aligned} & \text { 12,000 } 144: 22 \\ & 145: 13 \end{aligned}$	1st 56:21	$\begin{aligned} & 123: 11 ~ 188: 11 \\ & 235: 21 \end{aligned}$	$423 \quad 131: 21$

45 133:5	8	academics 79:19	active 89:14,19
450 59:3	80 98:17	81:3 201:17	132:11,14 147:14
48 35:22 45:12	$\text { 80s } \quad 191: 10$	accelerated 84:6	157:18 201:9
47:10 49:3	$85134: 7$	84:22,22 85:15	229:4,11
49 105:15	95	acceptable 89:14	activities 60:8
4s 220:3	9	accepted 81:7	132:21 196:9
5	$90 \quad 63: 19$	access 25:18 30:17	activity 31:15
5		31:3 33:13 145:15	34:20 35:19 86:19
	93.5. 121:21	145:16 146:20	88:9,22 89:6,8
	95 39:11	151:20 152:7	112:14 129:20
	96 45:10	233:10 235:6	130:2 140:21
$21: 2147: 69$	a	accessing 31:10	204:17 212:12
102:19 108:10,13	ability 65:14	accidents 11:15	220:4
$108: 16,20125: 11$	241:9 242:7	accompany 14:16	acts 73:20
$155: 1 \quad 188: 12$	able 4:9 29:13	accomplish	actual 78:20 115:4
195:7	40:8 51:12 56:2	117:14	acute 14:14 85:14
50-100 44:12	57:21 60:9 64:3	accomplished	123:2 130:22
500 18:11	64:20 65:22 67:6	47:20 128:3	131:22 150:5
501 171:3	69:2 72:20 73:4,5	account 152:16	adaptive 200:14
57 110:3	73:11 78:2 89:11	209:12	add 105:13 126:12
5:30 1:7	107:19 113:18	accounted 70:6	126:22 132:17
5d 127:9 13	136:19 137:14	accounting 186:8	156:15 194:12
135:10	145:14 146:2	accumulated	222:15 230:8
51 127:9 134:13	170:18 204:12,17	63:13	240:19
135:10	204:19 208:22	accurate 70:18	added 59:6 106:1
5th 57:9 58:8	210:9 212:2	170:5 241:8 242:5	164:14
6	219:15 223:9	achieve 136:19	adding 64:4,13
6 96:6 188:12,16	224:12 227:7	41:5	addition $22: 16$ 32.2136 .738 .18
188:18 213:5		37:14 92:20	64:5,18,22 73:9
6-8 48:16	13:15 14:7	112:12,17	139:2 182:7
60 115:10	abscess 17:17 19	acquire 197:22	190:15
600 13:9 59:1	$19: 2$	acquired 12:19,21	additional 35:14
63 109:22 110:1	abscesses 107:7,8	14:11,13 15:5,11	78:18 86:2 92:4,5
67,000 9:12	absence 108:6	36:16 143:19	97:18 139:19
7	absent 99:10	acting 21:9	186:9 223:7 228:1
7,500 221:19	absolutely 125:22	action 100:4	238:1
7-14 33:16	absorption 98:19	154:11 207:17	additionally 29:3
70 40:17 58:9	abstract 133:5,5	208:10 241:11,15	address 5:11
72 103:16	229:7	242:8,12	22:11,18 23:7
73 213:3	academia 30:19	actionable 28:22	64:1 65:5 86:14
750 98:11	academic 5:15	73:6 75:10	183:7 184:19
$76 \quad 110: 4$	65:2 149:19 202:8	activated 223:14	185:12 192:12
76110.4			227:11 236:14

$237: 16$	advancement	$\begin{aligned} & \text { 171:15 179:18 } \\ & 197: 5 \end{aligned}$	$\begin{array}{cc} \hline \text { americans } 16: 21 \\ 16: 2177: 1494: 14 \end{array}$
ddressed 80:8	73:	197:5	16:21 77:14 94:14
226:5 227:13	26	agree 127:1	01:21
addressing 191:1	advancing 113:20	1:9 176:16	americas 77:7
adds 12:4 97:17	115:18	177:8 183:12	81:11 99:8
del 79:3	advantage 85:3	185:5 189:2,	amount 9:11
adequate 88:6	137:9 138:1 152:2	207:7	12:13 52:10
223:19	20	ag	144:19 145:7
adequately 8	advantages 40:15	agreement	171:11 173:17
91.3	53:21	ahead 4:20 74:10	177:22 191:16
- 61:6	advertis	35:3 136:9	216:18
adherence 61:2	99:19	48:16 172:	ampel $2: 710$
adjustments 237	ad	185:16 188:2	162:3,4,8,11
admet 33:5	advisory 74:14	205:5	79:13,14 18
administered	ad		90:10 199:2
:14 44:14,1	aerosol 39:2 42:13	ailments 7	203:1 220:22
. 21	43:14,15 47:14	(aim 29:19	221:2,4 236:11
administering	aerosols 39:12,15	aimed 116	ampho 59:7,10
52:12	affect 14:19 61:21	air 10:21	62:4
dministers 63:19	8:22 80:6,9,12	ai	amphotericin 21:7
dministration	affectiv	alabama 163:3,19	21:9 59:5 62:2
:22 42:8,10	affiliated 170:11	albeit 94:12	63:20 83:13,15
48:7 54:5 56:1	afford 68:16	119:16 151	105:10,13,22
$8: 15$	affordable	albicans 230	142:2,3 153:21
dministrative	african 16:21	alkaline	156:12 169:14,16
4:6 173:4	77:14	allergic	ampicillin 161:1
dmire 188:4	afternoon	allergy 24:1	amplyx 26:18
dmitted 57	98:9 206:	allotted 223:7	amr.solutions.
be 4:19	age 163:	227.22	96:4
adolescents 210:9	aged 35:22 36:13	allow 22:4	analyses 149:12
opted 125:120	agencies 138:22	46:2 182:2	analysis 50:22
lult 36:3,5 187:5	agency 72:5 211	200:10	108:8 112:4
adults 35:22 77:11	211:11 239:17	allowing 31:3 56:1	126:14,22 127:1
10:8	240:7	76:14 198:15	51:5 164:11
advance 28:22	agenda 4:3 128:16	allows 50:18 72:9	198:16
30:3,5,13 64:3	agent 34:20 35:12	7:1,4 173:	analytic 120:6
114:4 115:21	145:3,4	alternative 151:12	analytics 75:6
116:5 173:16	agents 24:2	159:4	anathema 122:4
17:19 232:12	132:13 169:9	altit	ancestry 16:20
234:17 235:7	212:19	america 70:10	anesthesia 44:20
239:4	aggressively 96:17	77:7,7,8 233:21	44:21 52:13 53:2
advanced 34:20	ago 132:8 148:14	american 22:12	anesthetic 45:1
54:12 79:4 232:10	$\begin{aligned} & 148: 21 \quad 151: 21 \\ & 161: 9 \quad 166: 11 \end{aligned}$	22:17 23:6	anesthetize 43:9

anesthetized	$194: 16,19$	$\text { app } 72: 2073: 16$	appropriately
42:18,21 44:15	antibiotics 57:1	73:22 180:20	99:17
47:20	68:4	181:7	approval 25:6,16
angeles 10:15	anticipated 85:17	apparently 212:18	68:17 83:7 84:3,4
angulo 2:4 140:7,7	antifungal 1:2	appeal 81:7	84:6,22 85:1,9,15
140:8,9 147:8,10	5:12 26:16 31:7	appear 16:22	92:7 99:21 117:18
147:13 159:6	33:1 34:7 35:12	20:13 108:3	139:20,22 145:15
animal 37:22	35:18 37:2,3	195:22	148:20 152:4,16
38:13,17,17 39:3	40:14 49:17 54:8	appearances 1:12	195:7,10 210:21
39:4,17 40:6,20	83:2,5 88:9,21	appeared 19:10	219:5 221:20,22
42:18 44:15,17	92:11 129:19	appears 14:11	approvals 84:15
46:2 48:20 50:18	142:16 148:6	20:11 130:3	205:7
51:13,13 53:9	164:22 169:2,7	appetite 58:12	approve 81:5
54:17 83:21 88:10	196:1	applaud 26:7	approved 29:15
88:11,13,18,21	antifungals 31:13	applicable 82:13	61:12 68:19 83:12
89:2,3 204:3	31:14 112:8	applicants 30:21	83:18 91:11 146:6
234:1	116:16 130:20	application 26:10	195:14 219:6,7
animals 12:2 39:6	161:5 165:3	72:7,9,17,18	220:1
39:9 40:12 41:3,4	167:21 168:5	73:15 83:19 86	approximately
43:10 47:1,19	169:11 194:17,1	87:5,20 186:13	45:10 47:6 63:19
48:19,22 51:9,11	194:19 204:3	applications 27:7	149:9
52:13 53:14 96:4	antigen 27:21 28:7	186:10	april 163:9
110:22 111:1	antigens 28:9 29:5	applied 157:	archaeology 10:19
186:22	antimicrobial	apply 30:21	10:22
anivive 28:578:6	166:19 194:13	214:15 217:6	ards 123:22
ankles 18:1	antimicrobials	applying 44:16	area 7:15 10:1,8
announced 128:16	197:1,3	appointment	25:4 48:9 143:21
announcements	antonino 1:22	65:17	148:19 157:15
27:6	102:12,17 174:12	appreciate 148:11	169:14 170:5
annual 9:1 170:12	174:16 183:8,11	207:10 232:15	180:5,7 200:4
annually 94:19	188:20 189:2	appreciated 19:3	207:12 225:9
answer 159:10	214:12	54:22	227:6
166:8 172:14	antonio 27:22	approach 20:19	areas 7:8 8:22 9:7
177:13 187:8	31:18 35:2	21:1 50:5 135:1	10:15 12:16,19
answers 169:17	anxious 154:15	139:5 237:7	20:5,9 27:7 36:17
anti 30:11 82:8	231:13	approaches 92:18	52:9 70:8,15
92:17 158:8	anybody 124:19	approaching 11:6	142:22
159:18 160:5	183:6	193:22	arena 26:8
185:21 197:6	anyone's 43:12	appropriate 85:1	argument 128:2
232:18	anyway 129:5	90:22 92:1 100:16	arikayce 84:19
antibacterial 83:3	156:1 222:5 223:4	101:19 121:12	arizona 12:20
195:15 196:14	apart 149:14	127:17 181:4	27:20 52:18 74:8
antibacterials	apologize 136:10	212:20	78:7 93:5,10
13:1,2 193:2	233:7 239:22		94:21 97:9 144:1

149:10 162:5,7	191:22 192:11,15	attention 13:22	avenue 139:21
170:3 172:3,6,7	220:15	23:11 29:5 81:8	211:10
203:5	aspergillus 140:22	93:1 102:3 113:8	avenues 137:8
arm 32:17 89:19	219:21	128:8 153:2 194:7	138:11
207:5	assess 31:15 32:8	207:15	average 12:9,10
arm's 223:4	47:1 50:4 53:3	attenuated 27:19	94:2 159:22
armed 108:20	88:21 209:8	28:178:4	160:11
armored 214:1	237:15	attorney 241:13	averages 160:15
arms 33:16	assessed	242:10	avirulent 28:2
arrangement	66:16,20 149:17	attractive 159:5	awarded 163:3
134:2	assessing 36:14	168:4	aware 6:20 104:16
array 174:7	49:5,8	attributes 145:4	118:12 159:7
arrow 113:22	assessment 32:15	153:11	165:16 178:22
114:6	32:21 35:4 49:4	aucs 98:18	213:22 214:19
arrows 25:1	49:14 52:17,22	audience 4:11,16	218:11
arteritis 50:15	111:19 144:11,12	25:12 34:1 149:22	awareness 61:19
54:13	187:6 220:4	audio 3:4,5 241:7	64:9 65:7 80:16
arthroconidia 7:4	assessments 88:18	242:4	axis 98:13
9:21 14:17 45:7	88:22 89:3 90:20	august 1:6	azole 155:18 190:2
47:16	144:17 210:20	auris 141:13	azoles 21:4,10
arthroconidial	211:2,8	author 165:10	61:10 83:16 156:2
51:21	assigned 22:7	authored 168:13	220:8
article 115:2	assist 199:11	authorized 80:17	b
156:22	assistance 33:6	authors 114:16,19	b 59:6 83:13,15
ascending 35:21	63:6,8	127:20 176:	142:2,3 156:12
36:2	assistant 6	authorship 112:21	169:14,16
ascertain 223:13	assistants 64:13	av 135:21 136:6	back 17:10 33:9
ascomycete	associated 18:17	availability	40:18 46:18 55:12
129:21	159:13 192:3	195:17	69:14 81:14
asians 16:22	199:21	available 5:1	103:16 114:9
asked 6:15 22:10	assume 6:16	18:13 30:18 34:17	116:2 117:4,12
38:5,6,7,9 70:4	assures 82:2	39:22 41:14 69:5	119:18 126:18
81:4 206:10	asymptomatic	69:11,17 70:9,13	133:15,21 140:4
asking 162:17	13:9 111:18	73:12 83:8 84:1,2	170:7 173:1,11,15
187:15	115:10	85:3,18 86:16,20	174:21 176:18
aspect 75:13,14	ataxia 48:18	87:11 105:11	177:7,9 182:15
91:1 111:21	attempt 168:11	106:10 125:5	183:12 184:8
aspects 56:17 67:2	attempted 143:16	127:16 138:1	190:11 194:8
83:3 87:21 92:13	attempts 93:14	145:9 167:22	199:3 200:9 203:2
155:14 233:4	168:20 214:22	191:2 211:13	$206: 21 \text { 216:3,4,4 }$
236:14 238:2	attended 24:4	216:5 222:7 229:8	backed 108:15
aspergillosis 91:8	60:20	233:9 234:11	backend 195:21
129:21 131:1	attending 82:17	235:12	background 82:19
141:13 158:8			$156: 8 \text { 179:10 }$

bacterial 6:5	basics 216:22	bennett's 226:9	bioavailability
bacteriology	basis 195:12 216:7	best 9:7 23:	40:20
3:18 191:	to	69:18 169:2,4,7	biohazard 94:12
216:15 218:6	battling	69:10 172:18	94:14 101:18
bacterioloogy	bayer 97:1	183:3 218:22	biologic 33:8
37:14	beach 60:7	221:13 222:3	biologics 169:18
bad 15:16 16:5,16	bear 112:4 211:17	239:13 241:8	biology 26:5
6:17 18:3 20:7	b	242:6	197:16
62:7 66:12 69:12	becoming 106:10	bet	biomarker 90:12
110:5,9	began 56:20 59:7	beta 158:4,9	91:17 179:19
bag 229:15	191:11 192:7	better 5:4 28:14	biomarkers 29:7
bakersfield 14:6	beginning	58:1 82:22 95	91:18 180:7
7:7 60:870:	87:14 99:19	107:6 116:16	207:14 237:22
99:9 153:17,19	201	117:16 131:18	biomedical 39:19
bala 92:21	120:5 16	133:15 134:7	biopharma 76:8
balboa 214:	begin	159:22 166:10	biosafety 38:16,18
balked 124:16	begun 45:12 71:5	168:21 177:13	38:19 39:8,9,10
krupt 193:2	196:21	180:17,17 181:12	39:12,18,19 40:3
ankruptcy	be	192:10 19	0:20,22 41
195:16	believe 200:19	198:9 205:15	47:18 51:13
baoying 199	226:5	209:19,19 217:18	biostatistical
218:8	be	221:15 225:16,18	226:19 227:9
bar 4:5	beneath	225:18,20 230:11	biosynthesis
barda 101	benef	230:12 238:11	129:20
barrier 152:	benefit	beyond 63:2	birmingham
barriers 151:8	69:4 72:13 81:10	168:5 173:5 191	163:4,19
base 206:12 236:8	5:6,13,17 90:14	195:9 227:3	bit 4:12 9:13
based 23:2 46:17	95:3 101:16 125:2	236:19	20:17 24:2 38:7
47:5 73:14 74:8	143:20 150:17	biased 165	38:12 41:2 42:7
78:4 84:4,7 90:16	151:3,5 182:22	168:19	43:8 44:4 45:3
91:22 94:19	187:6 201:14	biases 165:	47:14 60:19 62:17
103:21 107:15	208:11 209:9	big 14:18 103:11	72:5 84:21 117:1
115:9 123:7 130:8	224:4	110:5 133:8	117:5 121:4
134:10 135:1	benefits 5	192:16 193:5	129:17 131:3
162:17 165:22	69:7 84:8 87:17	208:11 227:5	132:7 133:13
166:2,9 187:3	118:8 201:1	bigger 195:22	139:8 158:17
219:2 229:20	bennett 114:18	bilateral 58:6	161:1 165:4 166:5
baseline 21:19,21	126:21 128:6	bill 114:14 127:19	170:2 194:18
bases 9:6 215:13	180:11,12 181:18	163:10 176:20	209:5 210:21
basic 26:4,5 78:14	184:13,14 188:4	billion 12:14	blair 81:21 161:18
79:18,20 206:13	201:8,12 202:2	94:19,22 100:2	161:20 162:2
basically $25: 5$	218:15,17,21	161:6	173:9,14 174:13
96:15 122:4	220:13	bio 39:3 160:20	175:12,17 177:5
132:18 140:3			177:17 179:12

180:10 181:17	brands 148:5	bullet 10:13,17,19	144:1 149:9
183:6,10 184:5,12	brazil 7:9	11:4	call 4:8 34:14
185:5,15,19	break 37:21 55:9	bullock 104:7	126:3 133:21
blasto 139:13	55:11 81:17	bumped 129:4	163:11 164:2
220:4 229:6,16	128:12,18,19	bunch 105:4	168:10 171:14
blastomycosis	136:2 173:10,13	179:10	173:22 179:12
228:14,16	195:11 206:11	burden 22:4 32:8	185:10,18 189:5
blastospora 130:1	breakthrough	32:15 35:6 44:5	192:19 194:7
blind 105:19	87:8,9 130:8	49:5,19 51:1	199:20 208:9
106:2 109:15	breathe 133:16	62:13 88:17	236:9 238:1
block 179:7	breathing 10:10	150:21	called 79:14 81:22
blood 33:19 66:13	brief 111:7 150:14	burdens 47:2	123:6 125:11
104:19	211:19	49:12,14	126:11 129:18
blue 7:16 25:11	briefly	business 95:7 97:5	calling 181:18
board 93:12	106:12 140:14	97:6 100:10	196:15
170:22	bring 76:19 80:15	157:16 158:22	canada 154:11,12
bob 55:17	80:22 81:8 105:9	159:1 160:1,16	157:6,7
body 6:21 22:4	106:16 132:3	161:2,14 193:5	cancer 18:15 60:4
50:10 59:12 62:5	159:7 193:14	195:10	60:9 164:10
115:17 231:22	216:4 232:2	button 129	candida 130:4
boils 178:18	bringing 26:9	buy 198:11	140:22 141:13
bolstered 223:18	184:22 190:11	buying 158:16	230:19
bone 17:5,19	202:7	bylaws 170:22	candidate 85:1
21:12 119:8 124:6	brings 226:6	bypass 43:11	candidates 40:14
126:7	broad 24:18 31:13	174:18	49:17 54:9 72:1,1
bones 132:	29:20 194:16	c	72:2 73:8 74:5
book 133:5	196:7 203:3 210:5		79:8 157:13
boost 204:16	broadened 108:6	$34: 2274: 1575: 7$	224:17,18
210:21	broader 108:7	75:16 98:1 171:3	candidiasis
bootstrap 182:18	219:1,9 220:21	c.e. $115: 9$	141:11
borrowed 125:20	broken 62:1	cabinet 39:10,13	can't 45:18
bother 19:19	broker 198:16	$40: 3,841: 1,143: 9$	cap 36:16,20 37:6
bottle 58:15	bronchi 43:2	44:16 47:21	capacity 104:19
bottom 25:11	brought 57:6	cage 40:22 46:7,14	capitalist 226:15
144:8	211:17 226:14	46:22 47:3	captioned 75:14
bout 153:18	bsl3 31:9 33:13	cages 40:6	capture 72:20
box 34:14 174	budget 25:2	calculate 62:18	235:1 238:12,14
brackets 163:17	200:22	229:19	captured 73:15
brain 18:22 19:1,2	bug 19:19	calculated 62:15	240:1
33:19 48:10,14	build 171:21	calculating 66:16	carcinoma 60:2
49:6 50:3 51:2	building 232:4	california 6:12 8:4	carcinomas 60:12
132:11 163:13	builds 174:22	$9: 2010: 6,14$	care 45:21 51:9
branch 6:6 23:18	built 8:5 131:9,11	12:13 69:22 70:11	56:12,22 61:6
37:15 170:18	139:4 176:8	94:21 102:8 103:1	64:4,6,9 83:14

89:13 125:22	categorization	122:16 149:19	155:1 181:13
142:9 145:22	125:8	172:10 199:15	192:20
146:5,16 208:4	categorize 237:1	200:6,18,22 201:4	challenges 5:9,14
222:1 240:17	categorized	203:8 232:5	5:17 28:15 29:4
career 126:18	131:16 135:5	234:13	29:10 52:11 83:1
215:5	category 131:15	central 8:5 10:15	83:4,6 142:21
careful 78:19	132:10 207:14	11:5 18:20 32:3	148:16 149:11
carefully 161:3	causative 24:21	70:10 74:1 77:7	152:9 159:1,7
carries 42:13	cause 130:21	198:17 229:11	181:1 210:2
43:15 47:14	131:21 196:11	233:20	223:16 224:2
carry 39:14	caused 8:15 17:3	centrally 226:19	challenging 26:8
cartoons 95:12	60:18 120:16	cents 227:16	27:18 41:2,12
case 65:1 131:7	227:17	century 122:2	43:8 44:4,8 150:7
133:2 151:19	causes 15:5	191:11	150:12
165:13,14,15	causing 14:8	ceo 153:5	chambers 43:15
166:9,13 167:2	cavitary 108:4	cepi 80:7	chance 118:4
168:18 182:5	cavities 16:2	cerebellar 19:2	chances 103:18
187:2 202:20,20	cavity 14:4	cerebral 51:2	changed 20:17
caseload 52:19	cbes 53:6	certain 16:7,18	118:19 125:7
cases 10:8,9 13:13	cd4 20:10	74:18 77:14 81:4	166:21 226:11
13:19,19,20 18:11	cdc 39:20 113:1	86:3 188:8 207:20	237:6
20:12 23:2 52:14	143:7 170:19	210:4 216:18	changes 88:17
52:20 65:1 67:1	cder 91:17	239:6	122:12 133:1
94:3 108:20	cdmrp 214:4	certainly 98:22	192:5
132:13 143:5,7,11	cdre 73:18	100:2 101:14	changing 166:21
143:12 145:13	cell 28:10 60:2,11	145:6 148:22	191:13 233:16
213:22 223:15	66:13 103:22	150:7,11,16 160:8	chapstick 58:16
cash 195:11	104:2,3,5,20,22	165:16 177:8	characteristics
casual 103:5	106:6 157:19,20	202:21 212:12,14	32:19 90:7 156:18
cat 229:15	158:12	212:19 223:7	characterize 89:5
cataclysmic 10:4	cellphone 180:20	237:10 238:17,19	characterized
catalogue 73:5	cellular 179:21	certificate 242:1	206:2
catalyzed 80:14	180:2 238:2	certify 241:2	chart 157:2,3,10
catanzaro 1:22	center 31:18 35:2	242:2	160:4
101:12 102:6,7,12	38:2 82:1 93:9	cetera 138:17,18	check 3:4 23:20
102:17 117:8	105:7 113:15	186:19 236:5	71:16 76:2
164:1 174:12,14	164:10 170:4	237:18 239:20	checked 121:19
174:16 183:8,11	171:4 172:6	cf 63:2 66:12	checklist 34:2
188:20 189:2	176:12 203:10	cfu 49:22	chemist 231:1
214:9,12	214:17	chain 8:5	chemistries 53:6
catanzaro's	centered 109:5	chairman 93:12	chemistry 33:3
175:13	112:5 234:22	chairs 5:21	156:9
categorical 121:11	$\begin{array}{ll} \text { centers } 22: 13 \\ 29: 19 & 30: 2 \\ 52: 8 \end{array}$	$\begin{gathered} \text { challenge } \quad 127: 22 \\ 151: 20 \quad 152: 20 \end{gathered}$	chest 13:21 16:6

chief 71:13 76:7	click 4:7	191:14 193:21	22:1 38:3,15
40:7 153:17	clicking 114:8	194:4,11 200:20	40:16 46:7 56:19
child 163:13	client 53:798:1	200:21 206:15	57:10,11 58:2
dren 187:1	climate 10:4	209:8 210:20	63:164:1,20
Ils 15:8	mates 9:5	211:7 214:6	65:10,17 67:20
209:5	clinic 63:18 65:17	216:13,17 217:6	68:2,9,11 69:11
chimeric 27:20	162:6 172:6	222:1 228:10	69:18 70:16 80:5
28:6	clinical 8:15 11:17	232:8,12 233:14	82:13,21 83:12,19
chitin 28:11 154:7	14:8 22:12,17,18	235:8 236:10	83:21 85:21 87:22
154:10 157:18	25:6,20 29:7,21	238:10 239:18	88:11,21 90:4,9
158:2,9	35:9,15,20 36:7,8	clinically 58:18	90:10,13,22 92:3
choice 105:11	36:11,22 37:1	59:2,4 87:12 89:6	92:10 94:9,20
choosing 159:2	48:15,17,21 50:12	127:15 134:7	102:10,22 103:3
chronic 15:18,22	52:21 53:15 55:16	clinicals 200:22	103:10,15 104:15
63:10 90:20 102:9	58:20 63:22 64:5	clinician 67:7	105:20 106:3,20
106:13,16,22	64:12 67:2 71:22	90:19 182:6	108:7,20 109:19
107:1 109:10	73:7,10 74:5	221:12	111:9,16 112:13
111:13 122:21,22	78:19,20 79:21	clinicians 23:5	112:14 116:20,21
123:19 150:7	82:7,12 83:9 84:5	72:9,13,21 76:3	117:7 119:8,13
chronicity 116:22	84:8,8 85:5,6,13	77:1 201:16	120:13,18 125:22
circle 184:8	85:17 86:20 87:10	close 4:197:1	126:4,18 130:1,16
circling 48:18	87:16,21 88:1,20	149:4 223:6	131:8 132:2,9
circulated 79:17	89:5,10,22 90:1,4	227:22	135:6,11 138:14
circulation 150:10	90:5,14,20 91:12	closed 198:7	139:6,22 142:14
cisternal 50:19	91:17 92:1,18,21	closely 149:3	143:16 144:4
cisternally 50:18	98:21 101:12	214:16	148:22 153:16,21
claim 79:6	104:9 106:7,17	cloud 164:8	154:1 156:3
class 39:10,12	107:2,14,15	174:22	158:19,22 165:3
40:3,8,22 41:1	113:13 117:11,13	clouds 9:20,	167:17,20,22
43:8 44:15 47:21	118:7 121:1,3,16	cluster 57:4	168:3 170:2,8,13
66:13 186:16	122:1,14 123:7	cme 64:21	171:15 172:10
classic 130:20	130:9 131:10,11	cn 133:6	175:20 178:22
clear 37:9 135:11	132:19 134:22	cns 32:5,18 35	189:4 190:15
147:4 228:7	135:2 136:20	44:7,10 50:2	191:3 193:9 194:1
clearance 192:14	137:17 138:3	133:7,7 229:10,21	194:3,9 196:12
cleared 91:11,13	139:19 141:9	232:10	197:17,19 198:4,9
199:16	142:14 143:15	coa 211:14	198:18 200:6,11
clearly 4:2 77:10	144:4,20 146:12	coalition 80:7	200:18 203:3,10
95:3 98:19 100:1	147:15 149:4,6	coasted 175:22	204:14 207:7,13
108:14 126:4	150:17,18 151:6	cocci 5:8,9 7:12	214:16 218:22
133:6 152:20	152:2 153:21	8:8,19 10:2,9 12:4	219:1,3,4,5,7,10
224:3	163:5 168:6	12:17,20,21,22	219:11,13,14
clemons 47:8	172:15 178:7	15:3,10 16:16	220:1,10,16,19
	186:6,11 187:1	18:2 19:2,16 20:7	221:15 222:18

226:3 227:6 229:1	collaborate 22:15	column 157:5	committee 74:15
229:5,8,10,12,21	200:20 233:19	combatting 79:8	190:21
229:21 235:15	239:14	combination	committees 227:2
236:11,13,14,16	collaborated	16:14,16 59:19	common 20:9
238:21	112:20	86:12 175:5	42:10 43:5 44:6
coccidioid 7:21	collaborating	combined 94:22	44:12 49:14 54:3
coccidioidal 12:1	22:22	123:6	58:14 62:21 68:5
13:17 50:15	collaboration	combining 147:20	103:6 122:2 124:6
114:13 169:7	22:12 75:2,18	come 17:10 20:21	124:7 180:16
coccidioides 26:6	78:6 236:15	53:15 100:18	189:3,6 238:9
27:13 28:9 31:9	collaborations	112:4 113:18	commonly 16:8
31:19 34:18,21	22:16 29:3	117:4,12 121:8,19	41:9
35:19 40:14 41:22	collaborative	129:3,11 132:6	communicate 58:1
94:5,11 95:19	22:19 23:4 29:18	150:1 170:7,19	67:6
116:14 141:1	29:20 75:15 105:7	184:17 193:20	communities
coccidioidi 24:19	163:5 176:14	196:11 203:2	25:18
coccidioidin	199:15 201:4	comes 90:16	community 12:19
103:18	203:3 228:10	114:22 203:4	12:21 14:11,12
coccidioidomyc...	234:13	comfort 223:18	15:5,11 28:16,17
1:3 5:5 25:2 27:15	collaboratively	coming 30:6	30:5 36:16 56:3
29:18 31:9 35:10	194:9	102:14 133:15	64:10 65:12 66:3
36:15,17 38:1,13	collaborator	148:10 149:21	129:8 143:19
57:19 76:16 77:19	74:11,14	152:4 200:6	149:18,21 153:16
93:8 101:1 105:3	collaborators	206:20,21	158:19 183:17
105:6 106:14,15	128:5	command 214:1	189:4 193:9,20,22
106:17 116:6	collaboratory	comment 119:1	194:2 196:17
141:19 142:5,17	73:18,22 76:1	173:20 180:11	197:8 202:5 205:1
143:3 147:15	collapse 191:11	183:9 185:4,7	207:3 208:11
162:19 163:21	colleague 162:6	187:16 188:21	239:4
164:15 165:1,8	colleagues 75:3	197:15 201:21	comp 207:13
166:5 167:7	102:21 105:4	205:19 212:5	companies 27:3
169:21 172:9	124:16 125:21	228:9	68:18 152:18
173:2 199:15	152:9 227:18	commenter 76:6	158:17 167:8
232:5,13 233:4	236:1	comments 71:8,9	192:16 193:1
234:13 235:10,13	collect 53:7	100:1 102:1	204:21 211:5
239:5	collected 192:13	181:15,20 182:9	221:21
coccidioids 38:17	collecting 71:6	190:14 204:4	company 52:21
coccoid 106:2	collectively $236: 1$	215:4 223:8 225:3	97:6 99:7 110:21
cocktail 62:2	college 162:5	225:22 228:1,13	158:16 192:1,4,15
code 134:15	colombia 7:9	232:16	195:16
coffee 63:18	colonizing 198:3	commercial 80:14	comparative
cohort 149:8	colony 49:16,21	148:1,7 151:8	165:2,8
cold 121:20	96:9	156:10 159:6	comparator 89:14

constrained 94:9	contracting 35:1	core 158:3 174:22	197:20 199:17
nts 236:8	contractors 31:17	175:6	225:22 228:12
7:14	contracts 25:13	rne	course 3:22 11:19
On	12 30:8,10	coronavirus 197:6	16:17 19:4 20:7
12	35:16	corporate 193:7	20:22 22:5 28:19
constructi	contrast 213:11	193:16 227:18	36:22 37:1 53:12
7:22	contribute 191:16	correct 76:8	63:7 68:4 72:12
consultant 135:16	contribut	115:22 208:1	74:7 75:1,7 83:6
162.6	92:20 175:4		85:11 116:17
Ited 12:3	control 4:175	lates 29:6	118:18,20 126:20
consuming 217:13	62:3 89:19,19	correlations 67:20	138:2 154:1 176:3
230:22	106:4 119:5	corticosteroids	180:22 205:17
contact 35:12	124:22 168:18	166:12,19	211:4 228:17
64:17	198:6 224:9	cost 8:7 35:16	239:21
ains	controlled 88:1,	51:8,10 53:13	courses 182:1
contemporaneo	146:15 165:7,9,12	54:10,15 59:20	court 81:18
89:20 224:8	166:1,13,18 167:2	62:15,16,18 68:14	cover 6:15 81:22
content 83:887:20	183:15 191:6	68:15,15 76:17	82:11
contention 78	199	99:15 144:19	coverage 151:20
:8 126	controlling	146:13 151:5,	covered 92:12
contentious	controls 35:7	152:12 160:8	137:13 239:20
:1	49:20 8	167:10	covid 74:20 197
context 91:14	105:16 224:8	costly	202:21,22
211:5	controversy 128:1	costs 12:13 6	cps1 28:3
continuati	convenient 230:2	66:16 94:20 99:17	cracked 58:13
136:14	co	160:3 221	cranial 48:3
continue 26:9 27:8	129:7	cough 15:8	created 39:16
5 92:16 99:17	211:18	counsel 29:	93:16 149:1
5:13 145:10	conversa	158:16 241:9,12	192:11
182:18 204:21	240:1	242:7,10	creates 97:19
40:13	conversely 111:17	count 66:1	creating 124:17
continued 59:10	conversion 13:10	207:14	credit 66:7 72:5
112:14		c	criteri
continues 9	co	counter	07:15,15
:1	cooperative	countermeasures	150:5
continuing 61:21	105:20	79:22	critical 21:871:12
98:6 138:6 156:12	coordinated 104:8	countless 56:7	71:13 73:17 74:8
189:22 228:10	129:10	57:13	119:15 164:16
continuous 121:1	coordinator 55:15	county 9:1917	175:9 204:12
contract 27:6	65:4	couple 17:21	criticism 127:2
101:13 137:12	cord 18:19 48:13	98:12 130:14	cross 81:22 210:4
163:2,8 192:11	48:13 49:6 50:3	139:11 140:4	crossed 191:10
217:15 218:11	51:2	153:12 155:4,7	crozet 76:7
		168:9 181:20	

crypto 130:4	71:22 72:21 73:5	131:21 134:6	declined 101:2
138:20 139:1,19	73:10,15 74:2,3	139:5 149:16	105:19
cryptococcal	75:5,10 86:20,21	166:22 183:17	decreased 125:4
125:21 138:20	87:16,20 89:11	206:4 221:15	dedicated 53:10
cs3856656 1:22	92:4,6 97:1 98:9	227:14 233:3	170:12
csf 50:19 108:18	98:11,12 100:7	239:22 240:21	deem 79:10
207:13	103:7 114:22	days 5:2 12:9,11	deemed 121:12
csg 216:9	117:10 121:13	28:19 32:7,7,9,15	deep 43:18
culprits 11:13	122:10 123:8	33:16 36:20 45:5	deeply 24:6
culture 21:17 22:9	130:9,13 146:20	45:5 46:5 48:16	defects 41:15
cultures 111:3,18	147:1 152:2	53:4 58:22 62:9	defense 116:12
curative 100:8	172:15 178:8	106:19 110:21	defer 185:15
curb 201:7 204:15	180:8 181:5	117:19 132:8	deficient 42:2
cure 72:6,19,20	185:13,22 204:12	140:4	define 90:15
73:16,18,21,21,22	210:14 212:14	ddi 178:12,15	119:20 184:1
76:2 77:5 96:17	213:9 223:19	de 25:9 211:14,14	definitely 43:3
96:19 145:5	238:14	dead 42:647:2	72:12 74:7,10
curious 206:6	database 92:2	48:22	108:12 132:5
currency 126:4	139:21 235:6	deal 117:3 133:8	142:18
current 5:5 23:15	dataset 132:8	195:20	definition 91:9
67:14 83:14 89:13	date 1:6135:9	dealing 13:22 75:5	136:18 138:17
138:19 145:22	137:4 237:20	118:21 188:19	165:15 170:2
165:22 169:22	dave 93:17 114:18	196:7	definitions 125:19
222:8	182:10 214:9	dealt 187:19	degree 16:9 56:12
currently 55:14	david 1:14 2:4,6	death 79:14,15	64:4 187:9 213:16
86:8 145:9 167:8	6:9,14 98:7	118:8	dehydrated 46:17
170:22 228:22	107:13 115:1,2,5	deaths 46:7 47:7	delay 4:12 226:16
232:18	115:13 132:10	48:16	delayed 104:1,7
cut 4:18 47:3	140:6,9 147:10,13	decade 12:13	104:10,12,19
59:13	148:14 151:9	158:14 170:15	230:1
cutaneous 17:14	153:5,6,7 160:10	176:1 226:12	delays 227:1
cutting 200:14	160:11,14 161:16	decades 83:19	deletion 28:2
cycle 6:18	164:1,20 205:22	153:22 161:12	delighted 128:10
cycles 9:1 17:11	215:5 228:3,4,8	december 59:7	deliver 43:10
cycling 6:21	228:22 229:13	decide 146:21	delivered 32:5,13
cyp51 136:16	230:7,8,10,13	187:6,11 213:7	43:3
cytokine 180:2	231:3 236:7	decided 100:22	delivery 28:11
d	david's 229:3	05:12 123:18	demonstrate
d 3:1	$\begin{aligned} & \text { davis } 157: 3172: 2 \\ & 172: 6203: 5 \end{aligned}$	$182: 2$ decision	$\begin{aligned} & 78: 2087: 11 \\ & 119: 19 \quad 151: 4 \end{aligned}$
daily $52: 12$ 132:21	day $3: 2132: 10$	182:6 201:9,17	demonstrated
danley 215:5	45:16 47:7 48:17	202:6,21 218:12	24:20 79:1 88:5
$\text { data } 31: 733: 14$	48:20 60:7 62:7	decisions 146:22	104:2 124:9
37:5 53:19 71:21	121:20 130:21		154:13

demonstrates 85:4	234:10	determine 32:20	$76: 1578: 2079: 14$
86:13	describes 7:16	36:2,4 100:22	79:19,21 80:19
demonstrating	descriptive 53:19	120:10	81:6 82:13,20
78:1	design 55:17	determined 121:9	83:2,3 86:18
demonstration	71:22 73:7,11	determines 68:16	87:14 91:19 92:10
195:13	74:4 82:12 83:9	determining	92:12 93:14 97:3
demosthenes	87:21 88:12,19	145:19	97:16,20 99:15
213:19	89:16,17 92:13,18	devastating 57:20	100:9 103:11
denied 221:21	130:15 138:3	77:2	111:1 136:21
dennis 190:13,18	139:8,20 163:19	devastatingly	137:17 138:19
190:18 194:15	164:6,10 171:16	213:1	146:14 147:5
196:15 197:10,12	171:22 172:17	develop 15:22	148:7 157:4,15
198:10 199:3,4,13	173:3 191:18	28:6 29:14 46:10	160:3 167:12
200:5 201:2,10,20	192:2 198:15	56:13 80:18 81:9	171:1 174:5 176:2
202:4,11,13,19	200:16 219:9	91:18 93:15 95:4	194:13 204:3,10
203:1,14 206:21	224:19 226:20	95:10 96:16	204:14,19 210:22
215:17,17,19,21	232:9 236:16	127:14 152:12	211:3,6,8,12,15
215:22 217:11	designated 118:15	168:4 198:7	214:7 220:11
218:5 221:5 223:1	designation 85:20	216:19 227:11	233:15 234:11,17
223:3 226:1 232:3	85:22 86:7,8,10	231:1	235:7,11,17
deoxycholate	86:17 87:1,6,9,9	developed 21:13	236:10,14 239:4
83:13 142:2	87:18 88:4 97:13	25:17 28:7 54:10	239:14 240:15
department 57:7	97:17 130:8	57:5 78:5 85:21	developmental
67:19	designed 30:10	96:20 103:5	79:15
depend 86:17 90:4	169:1 199:6	156:19 181:7	developments
97:20	designing 136:16	197:1 198:9	23:16 103:12
dependent 46:11	171:9	developers 5:17	device 80:17
63:6	designs 89:10,11	26:13 34:13 69:8	diabetes 133:6
depending 8:12	200:14	80:18,20	diagnose 96:18
157:19 167:2	despite 113:6	developing 1:2	diagnosed 36:21
depends 145:3	121:22 188:3	31:13 45:22 95:7	56:21 57:11,16
186:15,16,21	destroyed 68:10	136:15 137:4	60:1 65:22 68:1
depicts 6:6	destruction 16:3	140:16 167:10,21	115:12
depression 62:20	63:10	178:8 207:4	diagnosing 63:14
67:20	destructive 18:2	226:17 230:1,15	diagnosis 13:1,3
depth 194:1,9	detail 16:11 20:5	239:7,10	15:4,12 18:22
derived 104:18	84:22 101:6	development 5:6	29:22 57:4,14
dermatologist	detailed 111:22	20:12 24:2 25:3,4	60:3 124:21 125:2
60:11	details 233:11	25:10,14,18 26:2	143:13 192:9
descend 9:22	detects 91:3	26:16 27:9,15	diagnostic 27:12
describe 34:11	deteriorating	30:11,14 31:2,8	91:3,10,13,15
described 34:15	62:18	31:12 33:2,6	124:20 125:3
37:12 42:8 131:10	determination	37:11 53:18 55:15	192:10
140:1 192:17	101:5	72:6 74:11 75:12	

diagnostics 26:12	224:9,13 233:5	discuss 5:17 75:18	77:22 78:21 83:15
91:2 92:13 102:11	difficulties 14:8	82:22 130:18	85:11,20 86:13,14
diagram 79:18	62:11 65:6 159:6	209:15	88:10 89:15 90:6
dialects 70:9	236:2	discussants 4:1	90:7,12 91:4,6
dialog 128:2	difficulty 56:9	discussed 120:13	94:6 96:18 104:9
dialogue 92:16	116:22 184:15	135:9 156:14	104:9 106:21,22
dick 114:19 164:2	dig 10:20 201:5	157:10 179:17	107:1,5,6,17,19
die 46:22 49:11	digital 241:7	202:17 233:14	107:20 108:2,3,4
died 46:5	242:3	234:14 235:20	108:4,19 109:11
diego 102:8	digs 11:1	236:11	110:2,14 111:14
176:11	dilutions 49:22	discussing 23:15	112:2 113:6,12
dietrich 215:6	dilutive 147:13	194:6 233:3	116:9,11,12 117:2
differ 41:17	dimensions	discussion 3:13	119:22 120:5,19
difference 58:1	134:15	4:7 5:20 26:1	122:4,15,21,22
94:7 96:10 110:3	dimorphics	28:18 90:21 92:16	123:2,4,11,18,19
145:3	197:17 198:1	128:1 130:17	124:2,3,8 125:10
differences 32:13	direct 22:20 62:14	150:15 158:17	126:17,20 130:11
116:14	62:15 80:13 149:5	162:18 173:12	131:3 132:1,11,15
different 6:20	directed 214:4	181:20 206:15	133:7,7,8 135:4
8:16 67:6,16 68:2	226:1	210:2 228:9	135:13 138:16
73:1,1 74:5,16	directly 48:10	233:13 234:1,3,6	141:16,17 142:8
106:5 115:13	90:2,16	234:10,15,20	143:6 150:7,9,21
120:18 129:11	director 73:20	235:3,18 236:17	151:2,3,15 152:21
130:5 137:8 141:9	113:14 232:18	237:1,21 238:4,17	153:13,13 157:11
141:10 157:21	disadvantaged	239:12,21	159:13 167:19
166:8 180:15	77:8,10	discussions 5:4	168:12 169:3
184:18,22 192:3	disadvantages	127:21 233:5	172:19 178:7
210:18 218:4	139:17	236:19 240:10	180:14 184:16
222:16 229:12	disagree 169:15	disease 5:10 6:13	205:17,20 206:5
233:3 238:9	discharged 58:4,7	7:7,7 8:15 9:9	207:19 209:18
differential 15:4	58:8,22	10:3 11:10 13:20	213:6 232:11
15:12 18:22	disclosed 72:17	14:1 16:1,4 17:1,7	233:17,18 235:22
differently 166:6	disclosure 114:3	17:11,15 18:7,11	238:7
204:6	disclosures 24:10	18:13,17,21 19:6	diseases 3:3 24:13
differing 237:3	93:11	19:12,14 20:8,12	24:15,17 72:11
difficult 25:16	disconnect 67:1	20:14 21:5,11,17	74:17 79:6 80:4,8
52:20 62:17 65:1	discontinue 61:4	22:5 36:8 42:2	85:15 94:8 113:5
77:3 118:9 120:17	discontinued 61:7	50:16 53:4,22	141:17 154:4
146:19 147:2,5	discovered 7:9,11	54:2 58:1 59:20	159:21 163:20
149:14 152:14	96:22	61:3,5,9 62:12,15	200:10 220:4,9
157:14 180:14	discoveries 28:21	63:17 64:13 65:2	231:13
185:6 199:8 206:2	30:13	65:10,22 66:9,14	dish 11:19
218:1 221:17	discrete 31:1	68:6,12 69:13	dismukes 114:15
222:8 223:13		74:6,20 77:2,17	127:19 163:4,11

176:20	201:2,10,20	domestic 12:2	114:1,2,5,7 116:2
disproportionate	202:11,19 203:14	30:20	117:8 128:9,20,22
65:11 191:12	215:18,19,22	donna 190:12	129:1,2 133:19,20
disproportionately	217:11 218:5	194:2	133:21 134:1,5
80:12	223:3	donors 106:3,3	135:14,16,20,21
disputes 174:22	dixon's 232:4	don't 6:18 40:7	135:22 136:3,6,8
disseminate 15:19	dmid 6:6 24:17	42:19 43:12,16	136:11 140:5,7,8
16:6	25:16 26:11 78:12	46:16,21 47:11	140:9 147:8,8,10
disseminated 12:4	137:18 202:16	51:16 66:11 73:9	147:12,13 148:3,4
13:19 14:1 19:6	dmid's 29:16	77:9 79:3	148:8,8,9 153:3
21:2 44:3 56:19	dna 90:13	dosages 108:17	153:10,19 155:6
57:19 65:22 90:6	doable 139:5	dose 35:21 36:5	155:11 158:21
94:6 106:15 107:6	docs 207:15	54:5 58:14 59:13	159:5,5,6 160:10
108:4 115:13	doctor 61:17	59:16 92:2 142:15	160:12 161:16,20
119:22 135:6	doctors 12:16,18	143:21 154:21	161:22 162:2,3,3
150:6 169:6 213:6	13:3 57:10 58:19	186:4,5 228:18	162:8,10,11 173:9
229:1,5,21 232:10	63:14 64:19 66:6	229:19 237:17	173:14 174:10,12
disseminates	67:10,19 69:7	dosed 130:7	174:13,14,16
16:18 17:2 104:11	122:4	doses 33:20 36:3	175:12,13,15,17
disseminating	document 120:21	47:6 61:11 98:21	175:18 177:5,6,7
16:12 17:1	documentation	108:10 109:8	177:17 178:4
dissemination	33:7	228:18	179:12,13,14
14:21 16:17,19	documenting 69:6	dosing 33:16,22	180:10,11,12
18:3,7 19:8 44:2,5	dod 137:13 214:13	89:4 98:12 178:10	181:17,17,18,19
48:4 50:4 124:11	doesn't 15:14 44:2	212:20 229:15	183:6,8,10,11
168:17	46:18 80:5	231:3	184:5,10,12,13,14
distant 66:9	dog 51:22 53:11	$\boldsymbol{\operatorname { d o t }} 24: 9$	185:5,7,9,15,17
distinct 140:18	53:11 54:3 98:14	dotted 98:14	185:18,19,20
distress 14:14	dogs 52:16,22	double 57:6	187:13,17 188:20
distributed 43:18	53:7 54:6 78:8	105:19 106:1	188:22 189:2
distribution 7:6	98:16 155:8 234:4	109:15 158:21	190:8,10,18
9:14 33:18 141:4	doing 43:7,12,16	dove 28:20	194:15 197:10,11
212:13,17	50:2,3 52:21	downloaded 72:7	197:12,14 199:2
disturbed 10:10	54:19 102:3	dr 6:10,14 23:12	199:13 200:5
diverse 135:7	155:21,22 156:1	23:16,19,22 24:20	201:2,8,10,12,20
divert 228:12	167:2 171:9 177:9	28:1,4,7 37:20,21	202:2,11,13,19
divided 123:12,20	182:11 188:2	38:1,4 61:13	203:1,14,18,22
diving 24:5 25:7	189:15 193:8	71:12,15,18 76:5	204:1,8 205:8,8,9
division 24:16	198:2 200:20	76:6,7,10,13	205:11,12,16
82:7 88:20 92:17	202:8 203:3 204:2	81:13,19 82:6,8,9	206:18,20 208:12
185:20 193:6	231:5	82:10 88:12 92:20	209:2 211:20,21
203:16 232:18	dollar 218:11	92:21 93:2,3	212:1,3,4 214:8
dixon 190:13,18	dollars 195:9	102:7,12,16,17	214:12,20 215:19
197:10,12 199:13	197:7 231:11	113:9,11,11,16	215:21,22 217:11

218:5,15,15,17,19	86:11,18 87:10,14	189:9 190:1 191:2	116:8 126:18
218:21 219:17	87:17 88:9,9,14	193:17 195:14	143:19 154:16
220:13,22,22	89:12 90:3 91:18	196:11 197:22	182:7 216:13
221:2,3,4 222:10	92:9,11 93:16	205:5 206:12	earnings 62:17
222:13,22 223:3,5	95:13 96:3 97:8	219:20 222:6,16	earthquake 10:5,9
223:9,11,12	97:10,12,19 99:6	drug's 32:19 89:5	easier 198:18
224:20,22 225:1,2	99:15 100:3,6	89:8 96:21	easiest 173:21
225:5,7,10,12,13	105:10,11 110:12	dry 7:17	easily 44:7 47:20
225:15,16,17,19	110:14,16 117:18	due 4:18 5:10 15:3	49:7 56:15 62:16
225:21 227:21	123:1 146:2	18:2 19:2 30:16	101:18 122:16
228:3,4,6,8 230:7	155:12 156:10,18	41:12 59:9 60:4,9	125:5 160:7
230:12 231:14,17	159:8,12 160:16	62:10,12 109:2	eastern 81:15
231:19,20 232:14	167:11 169:4	duly 241:4	easy 40:19,21
232:17,20,21,22	174:5 186:17	duration 14:21	47:17 53:6 54:6
233:1 234:7,10,14	190:2 192:21	32:17 33:22 92:3	68:18 72:15
234:15 235:20	193:1 194:20	142:15 144:6,8	100:15 121:17
236:11 240:18	195:7,8,17 197:6	179:2 186:3,6	146:12 147:21
draft 117:10	197:18 204:10,19	236:5 237:21	eccmid 133:4,5
draining 17:17	209:18 210:22	239:19	echinocandins
dramatic 96:9	211:3,5,8,12,14	durations 15:15	140:20 158:10
drawback 41:22	218:22,22 219:2,4	32:7 186:11	220:8
drawbacks 41:16	219:6,8,12,16,22	dust 9:17,20,21	echo 175:19
51:5 53:12 54:14	220:13,18,21	10:6,10,21 11:2,6	economic 12:4
drinking 229:18	221:6,6,8,9,9,13	dying 103:19	94:18
229:19	222:3,4 228:15	131:5	economically
drive 53:18	234:17 236:14	dynamics 1	220:18
driven 89:11	237:16,16,17	dysfunction 104:3	ed $2: 398: 17,17$
drivers 25:13	239:4,14 240:14	dyspnea 133:9	135:15,17,18,20
driving 11:7 70:1	drugs 1:2 5:7,12	e	136:3,8,11 140:5
drop 44:16 144:18	26:12 33:19,21	e 3:1,1 124:	ed's 135:17
188:13,16,17	41:17 52:2,12,21	eager 69:2]	edge 200:14
dropout 53:10	56:14 61:20 68:17	$\text { ear } 60: 13$	education 57:22
dropped 133:22	69:5,11 72:11	earlier 15:15 78:5	64:9 65:7
drug 5:16 26:13	73:1 83:12,20	78:13 84:9 90:11	educational 64:21
31:8 33:1 34:13	84:2,12 85:1,15		effect 85:4 90:2,3
40:14 41:7,10,11	85:21 86:3,6,8		96:10 107:13
43:20 45:13 51:6	95:8 106:9 110:16	132:	120:8 220:17
52:18,22 54:9,20	112:9,10 117:21	$153: 10155$	effective 54:11
55:22 58:21 59:9	119:17 133:14	204:11 $208: 1$	59:19 76:17 78:2
61:17 62:3,5,8,10	151:5,17 157:4,22		78:17 98:18 112:8
69:7 72:1,1 73:8	158:12,22 159:22		116:18 154:9
73:18,21 74:5,11	161:7 167:10		157:22 158:1,5,6
82:13,20 83:2,3	172:21 175:11		158:7 163:9 202:9
83:19 84:17 85:13	180:17 184:2	103:15 112:3	229:20


```epididymis 124:12 episode 10:7 epitopes 28:10```	$\begin{aligned} & \text { establishment } \\ & \text { 46:2 } \\ & \text { estimate } 9: 2,10 \end{aligned}$	219:19 evolution 112:15 evolve 223:22	177:2 $211: 16$ $238: 12$ exists $131: 16$
eq 127:9 134:13	3:8 18:10 22:4	exactly $54: 4189: 5$	expand 30:5 67:21
135:10	46:20 120:9	202:1,22	223:18
equal 36:13	estimated 12:12	exam 22:8	expanded 34:22
ally 118:9	3:6 213:19	examine 36:	176:10 189:16
ent 4	estimates 115:7	ex	expanding 29:2
alent 110:2	ting 62:16	example 9:19	139:13
5:17 207:22	et 138:	34:1	expect 4:13 50:7
er 133:15	86:19 236:	35:10 83:5 88:1	99:
ate 49:	237:17 239:	9:20 90:7,13	expectation 68:8
dicating	ethical 89:18	91:7 131:17 144:9	expectations
$11 \cdot 10$	et	66:3,10 172:16	68:11 191:14
dication 49:16	euthanize 46:21	74:6 186:10	expected 7:13
c 149:3 160:20	evaluate 37:2 51:2	204:18 212:15	157:13
in 1:15 23:16,19	66:20 67:16 112:7	216:8 220:8	expensive 51:19
23:22 38:11 41:8	evaluated 31:21	221:18 238:1	160:16 230:22
42:8 137:17	:20	examples 17:1	experience 10:2
3:10 199:20	evaluating 69:17	83:20 84:14	13:10,17 15:8
eruptions 14:15	:18	234:1	21:15 48:19 50:6
es 241:3	atio	exceedingly	52:11 56:6,19
escape 77:16	9:19 157:16	excellence 38:2	60:16 61:4 62:11
escaping 9:5	evaluations 20	93:9 170:4 232	64:19,22 67:3
ophagus 42:22	31:10 127:15	excellent 3:8,8,13	71:4,4 72:10,14
especially $11: 8$	evening 240:17	:19 55:7 100	72:21 96:1113
65:21 91:4 93:21	events 10:4 18:16	153:9 174:20	121:18 137:4
122:16 132:1	60:19 64:21	179:17	149:5 166:9
150:22 214:1	eventu	exception	214:10 215:3
223:18 224:2	eventually 57:5	excited 67:18	experienced 60:
226:19 232:4	59:18	5:	61:12
essential 28:3	everybody 6:1	exciting 26:9 29:1	experiences 73:2
152:1 193:17	11:20 55:1,6,18	00:6 220:9 232:5	208:17
essentially 74:1	71:15 109:15	exclusiv	experiencing
77:16 172:9	5:8 153:8	exclusivity 86:3	19:12 61:16
192:14	178:22 192:2,	97:14,18	experiment 231:4
establish 29:19	207:8 232:16	excuse 109:19	experimental
36:22	240:7,16	5:	100:7
established 40:16	everyone's 19	execution	experimentally
45:17 63:12 65:5	evidence 73:14	executive 73:20	51:18
105:20 178:16	74:3 75:10 86:18	exist 54:18 79:3	expert 150:15
183:1 234:10	87:10	142:1	166:2 208:7
establishing	94:16 100:5	existing 23:6	expertise 54:15
139:20	110:17 187:10	132:13 151:12	171:11,19 231:22


232:3	extreme 57:18	faculty 93:6	fast $86: 7,9,10,22$
experts 64:22	61:13	fail 146:4 169:9	87:18 227:20
166:4 169:14	extremely 51:19	183:19,22	fasted 36:3
216:21 232:1	53:8 57:15 163:14	failed $58: 18,19$	fatal 18:13
239:15	165:19 172:8	59:2,5 60:3	father 153:16,18
explain 74:6 101:7	224:10 240:10	184:21 187:22	fatigue 15:8 57:19
explanation	eye 18:4	188:15 189:7,13	133:9
199:17	f	190:6	favorable 105:15
explicitly 209:21	f2g 34:10,15,16,19	fails 206:9	favorably 182:16
exploratory 119:3	35:9 129:5	failure 106:8	fda $1: 13: 373: 18$
119:18	f2g's 129:15	116:12 123:21	74:15 80:17 81:5
explore 137:9	$\text { f2g's } \quad 27: 1$	131:14,16,17,20	82:15,19 83:11
139:6 170:1	fabulous 159•12	134:8 135:5	87:13 91:11,11,13
explored 134:13	$159: 12$	194:19	98:1 99:6,21
202:18	fabulous	failures 59:8,9	100:19 117:10
exploring 35:9	face $41: 11$	178:17 183:20	118:3 120:20
exposed 9:11	$98: 2,2$	184:2 189:20	127:17 130:8
43:14	faced $65 \cdot 6$	216:11	136:12 138:2
exposure 77:16,17	facilitate $3 \cdot 135 \cdot 6$	fair 177:22	148:20 152:4
78:3 89:6 214:3	facilitate $3: 135: 6$ $73: 1378: 14$	fairly 8:189:18	153:9 170:20
express 240:8	$147: 16222: 21$	150:14 151:14	182:8,15 185:11
expressed 209:7	facilities $31: 10$	154:15 159:18	190:14 192:15
expresses 154:1	$38: 18 \text { 51:12 54:16 }$	177:20	195:14 208:14,19
expression 180:1	facility $64: 8$	fall 132:10 160:22	221:22 227:3
extended 85:12	facing 28:15 65:20	falls 155:19	232:19 239:8
179:2 230:21	fact $95: 4,14$	familiar 3:20 24:4	feasibility 144:3
231:10 237:21	101:16 105:1	25:12 85:19	feasible 76:17
extension 232:8	16 113:6	130:19 153:14	77:20 79:1 89:18
extensions 213:8	$115: 5117: 12$	193:9	210:15 239:14
extensively 38:10		familiarity 127:5	feature 40:10
38:10 84:17	$3: 10 \text { 137:5 }$	families 61:18	features 212:10
114:12 224:7	4:9 157:6 166:1	family 62:19 63:8	february $57: 9$
extent 21:18 $23: 8$		63:9 65:19 69:3	58:5,6
188:8 196:18	194:22	69:15 153:19	fed 36:5
external 89:19	factor $20: 10,1$	fantastic 176:20	federal $8: 10$
137:6,15,22 138:2	factor $40: 21104: 4,17$	far 8:13,15 $22: 3$	100:17 227:3
138:6,22 152:15	$\text { 105:14 } 106$	22:22 95:19 138:5	feedback 208:18
extinguishers	$16: 8 \quad 161: 2$	189:3,6 205:4	feel $12: 1026: 2$
197:2	factoring 209:21	farley $1: 133: 2,8$	46:15,16 57:15
extra 39:1154:16	factors 8:12 16:7	23:13	62:5 66:9,10
217:11,12	$70: 5152: 15$	farther 191:9	126:5 131:19
extracted 160:19	186:2 187:10	fashion 176:19	134:15 138:21
extraordinary		177:4 226:8	139:5 180:17
206:6			207:5 209:9,19


238:11	figure 38:14 147:2	165:20 168:7	222:3
feeling 61:15	198:19 220:20	170:11 174:3	fluid 51:3 126:3,6
131:18 181:10	223:3	193:15 220:11	focal 17:9
210:7	filipino 16:20	222:4,4 228:13	focus 5:5 87:20
feels 70:22 84:5	fill $31: 1134: 17$	231:4 233:14	100:20 138:20
90:3 235:1	143:2	firstly 77:21	139:19 142:22
fellow 64:14	filling 30:12 34:4	fistula 107:8	207:4
felt 58:14 110:22	final 76:6 91:20	fits 53:16	focused 74:17
females $16: 8$	99:22 231:16	five $13: 19,2014: 1$	107:16 136:15
fences $80: 21$	finalized 199:19	31:21 32:14 45:5	224:13
ferreted 226:8	finally $87: 8$	45:16 86:2 97:6	focusing 31:5
fever 1:3 15:8	101:17 169:17	97:18 114:20	102:10 238:5
24:3,21 25:1,8,10	finance 63:10	126:9 129:9	folks 24:4,7 $25: 11$
26:13,17,21 27:8	finances 100:9	134:14 158:15	26:8 139:4
30:1,4 31:5,22	financial 5:13	167:18 191:19	follow 22:5 36:21
32:4 33:10 36:11	80:6 83:6 126:19	192:5,22 193:1	60:10 71:20 75:17
37:11,15 38:2	236:8	195:15	174:19 175:13
55:15 56:3,10,11	financially 171:2	fix 207:13	185:7 186:7
56:16,20 57:8,15	241:14 242:11	fixation 124:15,18	192:18 236:5
57:17 61:10,19	find 7:21 14:6	124:19	239:19
62:13 63:11,14,15	31:11 45:1 48:13	flavor 31:16	followed 32:9
63:21 64:2,15,16	61:14 93:21	fledged 158:18	233:13
65:7,18 66:3,4,6	128:17 133:4	fleet $168: 10,22$	following 11:1
67:2,5,8,13,15	149:16 192:1	189:10 202:3	110:7,7 112:10
72:3,12,19 73:8	205:3 210:3	flexibility 187:9	199:5 226:9 232:3
74:9,12,22 75:12	229:11 240:14	flight 179:9	follows 61:22
77:20 79:16 80:11	findings 187:5	floor 129:1 153:6	folsom 1:9 241:1
81:6 93:9,13,19	fine 3:671:18	floras 7:18	241:17
93:22 95:8 97:16	236:20	flow 195:11	fomites 11:11
99:8 100:11	finish 22:1192:19	flu 14:11 57:18	food 55:22
113:14 122:6	finished 137:1	68:9 119:10 191:4	forced 138:8
128:5 153:6	158:20	213:12 224:11	foreboding 79:16
158:20 161:5	fire 197:2	fluconazole 58:4	foregoing 241:2,3
170:4 205:14	first 3:15,22 6:2,6	58:14,18 83:14	242:4
215:7,7 221:14	6:9 24:9 38:5 45:6	108:9,14,16,21	forehead 121:19
fevers 133:10	45:7,14,22 65:16	109:3,16,22 110:4	foreign 30:20
fewer 51:11 150:9	66:8 69:20 70:7	110:7,10 142:6,15	foresee 72:19
fibrosis 16:2	71:11 76:13 77:20	143:20 144:10	forgot 184:8
field 27:17 28:21	82:5 86:4 88:4	146:1 161:12	form 15:22 17:7
29:2 30:3 102:9	93:3 110:14	165:2,11 169:4,8	17:15 45:8 61:1
172:15 200:15	112:13 117:12	183:16,22 184:21	80:6 90:16 153:12
fifth 167:17	123:13 124:2	188:15 189:7,14	153:13 230:1
fighting 56:9 66:4	146:4 153:12	206:9 213:12	formal 71:8
	156:11 162:9	216:11 221:13	


formalin 214:21 formalizing 74:22	$\begin{aligned} & \text { 132:20 } \\ & \text { foxmanogepix } \end{aligned}$	$\begin{aligned} & \text { funding } 25: 1 \\ & \text { 26:15 29:17 30:17 } \end{aligned}$	$\begin{aligned} & \text { 169:19 } 235: 18 \\ & 236: 15 \end{aligned}$
formatted 99:13	84•1	30:21 99:4 137:6	fy22 29:15
	fragments 28:8	137:15,22 138:7	g
formed 97:15	framework	138:10,13,22,22	g 3:1
formerly 168:10	196:10	147:13 164:5	$\text { g.r. } \quad 171: 13,16,22$
forming 49:16,21	francisco 10:14	171:18 200:21	172:21 177:5,8
ms 63:16	frank 9:10	214:19	
formulate 177:10	frankly	funds 25:3 79:20	
formulated 28:10	free 25:17 30:11	fungal $27: 13$	91:7
formulation	30:18 35:14	28:18,22 32:8,1	galgiani 1:21 28:4
231:10	frequency 94:6	35:6 44:5 47:1	75:3 81:19,20
formulatio	213:21	49:4,12,14,19	82:10 93:2,5
230:22	frequent 60:16	51:1 88:17 89:1	102:16 113:9
forth 76:19 177:12	87:1	96:6 116:20	114:1,5 128:9,20
191:15 226:1,18	frequently 31:	130:11 132:1	129:1 133:19
fortunately	221:20,21	136:16 141:15,17	19
159:17	friend	163:7,20 226:3	
forum 6:21	friends 62:19 69:3	fungi 95:16	147:12 148:3
forward 5:18,19	69:15	129:21 157:4,12	153:3,10 158:21
10:11 26:9 29:12	front 2	157:14,22 158:7,7	160:10,12 161:
29:16 30:4,16	frontier	fungicidal 110:16	161:22 162:10
31:2 37:4 75:21	fruit 112:4	110:18 112:9	163:22 174:10
81:1 90:21 97:10	frustrating 217:14	119:16 130:3	181:18,19 185:8,9
100:13 116:10	ft 215:	154:8,13 155:12	185:18 187:13
154:15 159:8	full	176:3 212:11,18	188:22 190:8
172:15 177:4	fully 66:15	fungistatic 110:17	197:11,14 200:5
191:1 193:14	fun 207:6	112:9 156:4 206:9	202:13 203:18
194:11 200:7,7,15	function	fungus 11:18	5:8,12
203:17 204:21	180:17 209:9,	111:11 115:17	$06: 18 \text { 208:12 }$
218:12 227:19,19	functional 57:21	119:14 120:17	
237:5 240:14	132:22	198:6	212:3 214:8,20
fosmanogepix	functioni	fun	215:21 218:15,
26:19	181:12 210:8	fur 46:11	19:17 220:22
found $8: 1,896: 11$	functions 70:2	further 28:6 135:6	221:3 222:10,13
108:11 111:3	84:6 90:3 235:1	162:19 176:10	222:22 223:5,11
121:20 197:18	fund 105:19 147:5	213:16 214:6	224:20 225:1,5,10
228:19	191:17	239:12 241:11	225:13,16,19
foundation 67:10	fundame	242	$27: 21228: 6$
99:8,9,9 232:4	79:	furthermore	30:7,12 23
ounded 93:8	funded $27: 10$	future 10:12 64:17	31:19 232
four 28:8 45:5,5	73:17 113:2	67:21 100:12	232:22 240:18
60:11 109:21	163:15,18 166:18	103:12 138:6	galgiani's 28:1
111:3,4 114:15	217:1,3 218:6	162:21 168:7	galgianis 28.1


gap 30:11 34:4,5,7	198:11 200:16	182:19 183:12	196:9 200:19,21
142:18,20 143:1	205:5 222:21	185:16 187:11,11	201:18,21 203:7,9
gaps 28:15 29:4	223:4 226:5	188:22 191:17	210:14,16 215:11
30:17 31:1 80:8	gift 202:5	196:4 205:15	222:15 226:17
209:16	give $24: 2231: 16$	207:17 218:13	230:14 232:8
gareth 2:5 148:4,9	39:5 43:6 54:4	227:1	good 3:9 5:20 6:3
153:3 172:2	71:9 76:2 137:4,7	goal 30:1 64:3	23:14 38:4 50:11
garvey 2:3 135:16	138:5 164:7 173:5	128:3 163:5	51:3 52:1 55:22
135:16,20,22	185:11 187:7	170:12 175:7	62:9 69:10 76:13
136:3,8,11	203:15 204:12	goals 57:22 68:10	82:10 98:19,20
gathered 80:10	given 34:10 49:10	209:7	102:5,17,21
gauge 127:10	62:2,4 66:4 89:1	goes 3:187:1	104:10 107:5,12
gear 47:22	149:5 152:11	21:15 40:17 42:22	108:5,17 110:9,11
gears 30:7	174:4 178:6 214:3	44:6 48:10,12	128:10 129:7
gene 28:3,3	220:5 224:9	49:7 56:4 61:13	134:1 143:22
general 34:16 46:8	gives 44:545:17	97:6 99:14 156:5	155:16 158:20
53:11 83:1,8	97:13 185:1 197:3	going 10:15 16:10	160:15 168:6
91:10 122:5	giving 24:1 42:18	20:15,16,20 38:7	170:17 172:15,20
123:14 158:15	72:4 190:14	38:9,10,12 42:7	184:3 197:8,17
180:7 182:4	glad 135:15	52:15 55:16 56:4	201:7,13 204:1
194:13 207:12	glaringly 195:5	66:11 69:2 72:4	205:8 210:20
208:5 215:2 227:7	global 7:12 74:1	75:5,8 82:5 85:18	211:1,10,18 212:4
generally 14:17	196:8	93:19 95:10 99:12	220:15,20 225:2,2
49:2 84:4 85:2	glp 137:13	99:20 100:20	225:21 230:19
102:1 159:20	glucan 28:11	101:5 103:12	237:4,19 238:16
179:10 186:7	140:17,18,21	106:11 112:8	240:17
217:13	141:7 158:9	114:12 116:10	goodness 202:22
generate 73:674:3	glucans 158:5	117:13 118:2,11	google 61:14
152:1	gmp 33:478:19	120:17 123:10	gotten 23:13 99:3
generation 45:6	81:197:8	126:18 130:5,13	204:15 240:21
73:14 136:15	go $4: 20,2115: 16$	131:7 132:3,5	government 5:15
generic 116:22	15:18 16:5 17:5	134:3 135:8,12	30:20 63:6 79:12
146:1	18:4 34:12 38:10	145:1,12,13,16	100:13 190:15
generically 46:8	39:22 43:18 44:2	146:20,21,22	191:12 205:2
generous 173:17	52:4 66:12 69:14	147:1 148:13	governmental
genetic 145:10	84:21 99:14,18	150:9 151:19	201:13
genetically 41:13	103:2,2,12 114:9	156:20 157:15	grade 78:19
gentleman 17:18	115:22 116:2	159:14 160:12	189:15
george 175:14,15	118:11 123:10	161:3 171:12	grail 116:17
175:18	126:2 129:3 136:9	172:18 173:20	grant 26:10,12,14
getting 116:4	143:8 154:4 156:6	179:8,15 182:15	27:16 99:6 137:11
117:18 146:5	159:18 162:12,15	185:13 186:22	137:13 139:7,7
172:15 179:8	162:15 165:3	189:8,11,11	214:13,15 216:17
181:14 192:20	173:1 177:7,9	193:17 195:1	217:7,15


granted 85:15	183:22 189:15,18	173:21 174:11	178:13
grants 25:12	191:21 194:6	180:11 184:8,11	hear 3:6 6:16
26:18,20 27:11	198:18 199:14	184:12 190:9	23:21 35:8,13
30:8 214:5 218:6	201:15 208:10	206:19 211:21	37:19 55:2,19
granular 170:8	216:6,15,17	215:18 223:2	71:16 76:11 82:17
granulomas 17:16	222:18 223:21	226:18,21	102:14 133:20,22
48:3	226:6 227:8 229:8	hand's 218:16	147:18 161:20
grapple 205:	235:15 236:12	221:1 222:11	162:8 175:16
grappling 138:13	237:2,13	handle 40:19 51:9	190:19 197:15
grateful 53:8	groups 74:17 75:5	handling 39:9	202:14 209:1,4
gratifying 217:14	77:11,14 80:9	handoff 193:6	212:2 218:18
gray 1:19 76:6,10	106:5 174:9	hands 184:6 228:2	221:2 223:10
76:13	177:21 178:9	hans 103:2 153:17	224:22 225:9
graybill 114:19	181:21 183:5,13	happen 15:21	228:4 231:17
164:3	185:12 194:8	143:5	232:21
great 55:21 72:8	203:3 218:6	happened 108:12	heard 4:969:20
81:10,19 113:7	226:14,15	205:10	76:22 78:5,13
122:9 197:3 209:3	grow 146:17	happening 147:17	88:10 97:13
224:2,17 226:10	growing 7:4 64:11	happens 4:18 16:1	100:19 112:6
228:8 231:14	grown 96:9	16:8,9 17:2 19:20	142:21 143:8
232:3 240:21	growth 96:6	45:18	160:7 167:4,7,13
greater 16:22 23:7	guards 8:10	happy 23:10 35:13	167:14 168:9,20
36:13 61:8 126:10	guatemala 7:9	71:2 103:10 204:6	172:2 176:2,6
136:19	guess 9:746:7	hard 3:12,22	180:13 184:19
greatest 39:14	179:8 203:11	105:17 139:2	199:4 204:2,10
42:13	205:19 206:16	150:18 157:16	205:6 206:4
greatly 101:21	208:17 222:16	178:21 191:9	208:13 209:7
green 4:6	guessing 115:6	192:1 198:6	210:1,11,17
gretchen 164:8,9	guidance 87:13	220:10	235:10,14,22
174:22	120:21 127:17	harness 235:5	238:7 239:2,6
group 20:6 74:22	guide 142:14	harrison 139:4	hearing 27:2
81:3 101:11	guidelines 39:17	head 34:2 48:18	75:22 142:7
102:22 103:3,11	61:22 141:21	headache 56:20	184:15 210:7
105:7,20,21	142:13 165:22	58:10,11 122:7,9	hears 177:1
107:11 108:8	guy 134:6	headaches 57:5	heartburn 227:17
109:5,10,20	guys 170:1 207:11	health 5:22 6:4	heavier 208:1
112:13,15,16	h	31:18 35:2 59:17	heavily 70:8
123:3 126:16	half	66:20 67:14 70:20	heck 154:3
156:11 163:2	$19: 528: 19 \text { 59:14 }$	72:16 76:20 90:17	hector 95:22 97:1
164:19,21 169:21	$115: 15,15 \text { 135:18 }$	95:2 100:3,14,15	154:17 229:10
170:3,8 171:16	$148: 21157: 12$	226:4 227:6	230:16
174:21 175:1,19	230:2,3	healthcare 5:16	height 22:8
175:20 176:19	hand $40 \cdot 258 \cdot 15$	healthy 19:7 35:22	held 171:3
177:2 183:15,21	74:18,19 99:15	36:3,5 128:1	


hello 55:1 136:8	high 10:13 16:9	honestly 175:22	192:19 228:18
203:22 230:10	43:15 52:19 58:14	honor 114:15	human 28:10
help 13:2 26:16	70:3 77:11 82:14	honored 38:5	41:12 42:2,11
28:14 32:19 33:20	89:9 92:9,12	71:20	45:21 52:3 53:15
53:17 81:9 93:16	107:21 108:13	hoover 5:21 6:3,4	77:21 78:9 79:2
97:16 100:17	110:5 115:4 141:3	23:12,21 37:20	83:21 96:12 98:11
105:2 171:22	141:5 151:18	55:3,20 71:7,17	115:16 193:15
206:14 209:19	154:21 159:20	76:5,12 81:13	humans 12:7
222:20 227:10	236:22 239:1	hope 6:15 37:8,18	41:18 50:16 51:4
236:12	higher 61:11	66:1 83:20 127:20	54:3 78:17 215:2
helped 37:9,15	141:6	137:16 139:6	230:21
204:9 238:19	highest 16:20	187:12 205:9,9,11	hunched 46:10
helpful 70:12	highlight 25:20	205:16 218:22	hundred 195:9
135:12 159:21,22	highlighted 26:14	230:5 239:20	hundredfold
170:20 178:3	234:21	240:13	45:10
205:4,14 212:6	highly 29:19 94:10	hoped 117:2	hurdles 29:8
240:11	111:16	hopefully 17:12	hurt 66:12
helping 205:7	hispanic 70:8	99:20 127:16	hyde 242:2,15
234:17	hispanics 16:21	156:5	hydrocephalus
helps 91:18 136:5	histo 129:22	hoping 67:21 76:8	18:18
147:7 187:12	139:13	101:6,7 193:15	hypersensitivity
196:19	histopathology	horrible 154:2,4	104:1,8,11,12,20
hematogenous	51:1	hosing 56:1	hyphae 7:4 153:12
17:3	historical 224:8	hospital 57:9 58:4	hypotheses 73:6
hemisphere 94:15	history 17:11	58:6 215:1	i
$\begin{aligned} & \text { hepatic } 178: 17 \\ & 237: 17 \end{aligned}$	18:12 23:4 27:16 $114: 13153: 10$	hospitalization 66:16	i5 11:8
heppner 1:19 76:6	172:8	hospitalizations	ia 132:1   ibrexafungerp
76:7,10,13 81:13	hitting 3:16	167:16	$140: 16212$
hereto 241:13	hiv 20:7,8 166:11	hospitals 150:1,3	224:18
242:11	207:19	host 26:6 42:11	ich 186:8
here's 44:11	hodgkin's 19:13	116:7,12 170:12	$\text { icon } 4: 5,8,17$
heterogeneity	hold 5:4 96:12	hosts 26:6	173:21
187:18 188:7	171:4 197:11	hot 7:17	
210:2	holds 35:17	hotel 98:3	icr 32:6,14
heterogenous	holy 116:17	hour 74:20 135:18	icus 198:2
185:1 188:19	homage 163:10,12	hours 45:10,13,16	idea 24:22 95:3
189:8 238:7	home 57:8 100:10	46:21 47:10 49:1	107:12 117:20
he's 17:20 55:14	106:16 133:12	49:3 167:5	126:13 132:5
55:16	homes 9:22	houses 113:1,3	134:13 139:18
hi 55:4 81:19	homogenized	housing 51:10	142:13 147:19
185:18,19 206:20	49:22	hub 74:1	$172: 21 \text { 190:17 }$
222:13	honest 198:16	huge 20:4 139:2	200:6 202:15
		165:14 167:19	207:6 208:3


216:21 220:7	immunocompro...	implement 163:20	improving 26:5
226:18 232:5	19:4 77:13 174:7	236:16	66:10 121:16
leal $22: 3$	181:21 182:2	implementation	inactivated 97:15
ideas 5:18 26:9	7	164.11	active 21:5
21 222:19	immunodeficien	implemented 52:3	inaudible 29:9
240:21	16:12	implicated 11:13	31:15 44:10,17
entical 8:16	immunog	implications 144:7	48:9 90:21 96:6
dentification 91:9	116:10	144:21	130:4 147:16
fied 28:9	immuno	importance 56:13	155:7 157:3 171:3
ntify		61:21 78:12 118:7	206:6,11 218:2
37:1 73:6 238:19	immunol	121:3 139:3	234:3,14
identifying 29:5	24:14 41:1	234:21 235:3	inbred 41:8
36:4	,	238:18	incentive 81:9
ignore 139:2	78:14 116:9	important 7:3	incentives 79:12
ii 39:10 41:1 47:21	immunomod	14:22 26:2 46:6	80:2 83:8 85:19
220:22	16:17	63:2 69:10,19	92:11 138:1 211:3
iii 39:12	-	70:5 75:13 78:14	235:12
43:8 44:15	198:20	79:19 85:6 91:1,3	incentivize 80:19
Iness 9:1	immunosuppres...	91:4 103:16 105:5	81:6
0,16 57:18	19:11	114:13 150:17,22	include 9:4 25:19
63:8,10 68:2,11	immunosu	151:3 156:16,18	33:3 35:14 50:22
94:17 120:14,15	19:13,20	159:15 164:9	51:15 83:7,16,22
127:2	immunosup	169:6 181:10	84:4,15 86:19
illnesses 57:12	20:3	194:22 195:1	88:8 89:18 92:10
120:16	impact 12:9 32:8	196:16 205:1,3	122:22 125:19
illustrated 31:22	32:11 35:11 58:2	210:14,16 220:	239:15
158:2	60:16,21 61:1,8	227:16 228:11	included 29:2 92:1
ustrates 157:	63:164:1 65:11	233:8 234:20	124:11 141:
lustrative 34:1	66:14 68:13 69:1	importantly 63:21	201:16
imagine 10:16	74:9,11 93:18,22	impressive 228:15	includes 33:15
11:6 200:13	94:1,17,18 101:20	improve 22:164:8	64:11 83:14 148:6
212:16 215:15	12:1 151:2	98:6 132:4 188:6	including 24:19
immitis 8:14	158:12 160:1	188:6	27:13 29:9 31:8
34:22	20	improved	33:4 57:670:12
immune 16:10	impacting 154:9	59:17 60:20 67:11	87:2 102:10
78:1,2 103:15,22	impacts 222:1	69:6 131:19 134:6	123:15 150:3
106:6 177:9,11	impaired 104:	209:20	158:8,15 165:1,2
237:9	impairment	improvement 53:4	200:1 222:19
immunity 104:2,5	237:17	8:20 87:1	234:21 236:8
104:20,22 179:21	imperative 76:	31:13 132:20	237:20
180:2 238:2	imperfect 179:20	134:20 135:2	inclusion 150:5
mmuno 42:2	imperfections	151	incompetent
immunocompro...	237:22	improvements	177:10
177:21		132:21 134:10	


inconvenient	industry 30:19	96:19 102:10	inhaled 45:1
57:18	79:10 80:2 129:9	111:15 115:4,10	inherent 226:16
incorporate 75:15	164:5 167:6 168:6	115:14 116:20	inherently 165:15
incorporating	173:5 175:4,6	131:6 141:13	168:19
29:12	180:5 190:16	149:12,15 150:6	inhibition 104:4
increase 7:13 20:1	191:16 198:11,14	163:7	inhibitor 95:15
45:9 136:17	199:8 204:11	infectious 3:3 6:13	140:17
139:12 172:12	213:15 219:1,15	24:12,14,17 36:8	inhibitors 136:16
increased 16:16	226:22 236:1	64:13 65:2 72:11	140:19,22 141:7
51:8 139:16	inexorably 131:7	74:17 78:21 79:6	158:9
increases 144:18	inexpensive 41:9	85:14,20 113:11	inhibits 129:19
increasing 8:21	146:1,4	122:4 141:16,17	initial 19:16 80:22
increasingly 112:7	infant 153:16	infective 30:11	109:7 112:10
incredibly 113:4	infect 7:5 11:20	infectives 82:8	195:6
incubating 50:4	43:5	92:17 159:18	initially 21:16
ind 33:7 35:18	infected 9:17 20:7	160:5 185:21	108:10
87:2 97:15 137:15	20:8 42:5 44:12	232:18	initiate 47:16
independent	52:7,16,22 54:18	inferiority 89:10	initiated 27:11
172:17	115:17	89:1291:5	29:3 30:8 97:3,14
independently	infecting 32:5,13	infiltrative 107:19	105:4 193:21
63:5	39:6,14	108:2	217:6 234:12
index 22:5 136:19	infection 1:39:3	influence 61:2	initiating 132:20
indian 10:20	11:15 12:1,5 15:3	inform 73:10 74:	initiation 88:15
indicated 12:17	15:7,10,14,17	223:17	initiative 29:15
73:3 148:22	16:13 17:4 19:17	information 47:11	194:2,8
indication 24:6	26:7 31:22 32:3,4	61:14,19 65:8	initiatives 27:9
87:22 88:3 110:15	35:5 40:16 42:11	71:3 72:17 73:12	injected 230:18
142:10 151:16	43:4,16 44:1,8,9	82:18 84:1 86:16	innovation 80:8
176:7 198:20	44:10 45:6,9,13	88:8,14,19 91:14	innovators 30:18
220:12,14,19,21	45:16,17 46:2	97:7 170:13 187:4	inoculum 32:5,13
223:17	47:10,13,15,16,19	194:11 230:6	input 92:22 201:9
indications 74:18	48:1,16 49:18	informative 55:8	202:8,9
141:10 142:5	50:7,12,17 51:20	73:3 88:11	inside 130:4
151:17 219:3	52:1 56:21 57:3	informs 158:17	insight 195:5
indicator 50:11	77:21,22 84:13,20	infrastructure	insights 67:9
indirect 62:14,16	89:1,2,3,7 111:10	176:9 177:3 216:7	inspections 63:21
individual 22:20	131:4 154:20	227:9	instance 182:21
211:5	198:5,5 213:21	infrastructures	instances 154:9
individuals 36:12	234:4	217:2	instantly 62:4
36:19,21 177:11	infections 9:8,12	infused 230:17	institute 6:12
210:4,5	9:12 12:8 13:6,8	infusion 230:18	24:12 49:2 55:15
induced 54:18	14:20 20:13 39:13	infusions 63:20	56:11 57:8 63:11
industrial 28:5	39:14 41:11 43:18	inhale 14:17 42:20	63:16,21 64:2,15
	47:4,9 68:5 90:20	44:18 45:7	66:6 67:13,15


71:12,14 73:17	130:14 140:14	intracerebral 44:9	invest 80:3 160:17
74:8 113:14 128:5	172:22 180:6	48:6,10	invested 160:18
instituted 47:10	182:8,20 206:7	intraconazole	192:10
institute's 65:14	207:4 213:14	59:1,2	investigation 88:6
institution 40:4	214:6,14,18	intracranial	216:13
institutions 30:20	239:10 241:14	125:21	investigational
31:20,21 145:19	242:12	intracranially	83:20
instructive 133:2	interesting 6:17	32:6	investigations
234:16	11:18 52:17 129:7	intranasal 39:13	22:17 114:14
instrumentally	141:3,22 142:12	39:13 47:15,18	investigator 27:11
153:20	154:14 155:3,12	48:2 50:7	30:8 182:5 193:20
insufflation 42:15	157:2 159:11	intranasally 42:14	217:6
insurance 68:18	160:4 161:7	intraperitoneal	investigators 23:5
69:5 79:22 151:20	200:13 233:3,13	44:4 47:13	23:6 29:2 33:11
221:21 222:8	234:5 235:5	intrathecal 44:7	175:1,2,6 198:15
insurers 152:6	236:18	48:6,8 63:20	investing 80:22
integrated 74:2	interestingly	169:14	investment 95:9
integrity 226:7	141:20	intratracheal	99:11 100:12
227:9	interests 103:6	51:20	147:3 152:10,19
intelligence 61:7	215:12 217:19	intratracheally	152:22 191:12
intended 30:12	interfaced 158:3	43:6	192:8,22 193:16
31:1 34:4 84:12	interject 230:4	intravenous 43:22	204:18
85:13 86:11 91:14	interlinked 158:4	47:4,9 48:2	investments 79:11
intensive 87:13	intermediate	169:15 182:11	159:4
intent 201:5	50:20 85:5	intravenously	investors 147:6
intention 73:4,11	intermittent 30:17	47:7	159:3
interact 75:8	international	introduce 5:21	invisible 179:11
170:19	170:17	30:9 55:13 82:5	invitation 102:18
interaction 34:13	internet 4:19	102:5 140:14	140:11
67:7 237:16	interpretation	introduction	invited 103:2
interactions 34:11	90:18	140:10	inviting 102:14
56:7 87:1	interrupt 228:12	introductory	136:13
interactive 217:22	interstate 11:5	34:14	involuntarily
interest 25:22	interval 71:10	intrusive 72:15	240:19
27:8 80:6 82:20	120:11	invasive 89:15	involve 41:3 53:22
91:4,6 112:18	intervals 22:3	91:8 130:10,21,22	124:1
118:16 119:21	intimate 201:16	131:22 141:12,15	involved 83:1
140:15 141:14	intimately 202:4	163:6 167:15,16	124:2 153:20
148:18 172:9	204:2	167:19 191:22	157:19 159:9
179:20 183:3	intolerant 84:17	192:11,15 194:4	170:9 171:7,9,10
213:17	224:3	invent 194:20	176:12,13 183:2
interested 41:10	intraabdominal	invented 156:9,11	202:4 203:8,11
43:17 50:8 51:17	124:7	inversely 104:8	204:2 208:14
74:21 75:22 93:7			229:3


involvement 17:20	91:2 94:15	job 1:22 176:20,21	225:19 227:21
18:5 214:22	iv 63:19 230:18	joe 92:20	228:6 230:7,12
involves 17:11	i'd 23:9,22 30:8	john 1:13,21 2:2	231:14,18,19
involving 109:10	34:7 37:13 55:22	3:2,6,8 6:4 20:16	232:14,22 240:5,5
iphone 180:20	58:8 80:15 92:20	23:13 75:2 81:19	240:6,18,19
irreversible 84:9	i'll 5:22 23:9 24:5	81:20 93:2,4	john's 115:1
island 190:21	24:7 56:17 74:6	102:13,16,22	208:18
isolation 62:20	75:19 76:4 95:6	113:9,16 114:1,5	johnson 2:1
isotonic 44:14	i'm 5:19 6:3 20:15	126:8,8 127:9	113:11,11,16
issue 4:19 15:12	20:20 21:2 38:5	128:7,9,20,20,22	114:2,7 116:2
100:8 187:18	38:12 42:7 43:20	129:1,2,5 133:19	155:11 164:2
192:9 221:7 226:4	52:15 55:5 60:5,8	133:19,21 134:1,1	177:6,6,7 180:18
227:6	62:3,21 67:17	134:5 135:14,14	187:17 235:20
issues 171:17	71:2,19 72:4 76:8	135:20,21 136:6	join 70:4
178:12,15 198:13	79:13 81:20 85:18	137:7 138:7 140:4	joined 158:19
206:15 221:5	93:4,11,19 95:10	140:5,10 147:8,12	234:19
237:16	i've 18:8 57:13	148:3,9 153:3,7	joint 124:6
it'll 163:17	60:11,19 61:6	154:7,17 158:19	joints 17:6
items 99:4	66:2,5 67:5 69:21	160:10,12 161:16	jose 6:12
iteration 20:18	93:5,7 238:22	161:22 162:10,12	journal 167:1
191:19	j	163:22 165:10	journals 65:2
iteratively 203:17	jack 114:18,19	166:3,7 168:14	journey 56:16
	126:21 127:6		
	128:5 188:4 189:7	180:12,18	jut 99:7
190:1 191:4	207:5 222:6 223:1	181:21 184:14	judge 8:10
224:11	226:9	185:7,9 187:13	judged 156:4
itraconazole	janel	188:3,22 190:8,10	judgment 183:2
83:15 109:17	janis 20:5	192:17 194:12,12	judy 3:5,6
110:1,8 142:6	$81: 22$	194:15 197:11,14	june 59:11,11
144:10 148:19,21		199:2,5 200:5	justification 89:12
165:11 172:2	$166: 4,7 \text { 168:14 }$	201:8,12 202:2,13	justifies 95:3
it's 3:64:5 5:20	$173: 9,14 \text { 174:10 }$	203:18 204:1	justify 227:7
7:2,7 8:1,18,19	174:13 175:12,17	205:8,12,19	juvenile 186:22
13:19 17:3 22:15		206:18,19,20	k
22:19 26:2 28:10	179:12,15 180:10	208:12 209:2	keep 30:15 31:
38:9,10,15 39:3	181:15,17 183:6	211:20 212:1,3,4	169:3 174:2
39:21 40:9,21	183:10 184:5,11	214:8,20 215:21	195:10
42:17,20 44:3	184:12 185:4,5,15	218:15,17,18,19	keeping 195:4
46:6 47:17 48:5	185:19 187:14	218:20,21 219:16	kept 133:1
50:10 52:19 53:14	january 56:20	219:17 220:13,22	kern 9:19 57:7
55:8 56:2 72:8	$59: 3$	221:2,3 222:10,13	$58: 18 \text { 63:11 }$
76:2,16,17 77:2,3		222:19,22 223:5	$113: 15171: 3$
77:6,18 78:9,16		223:11,12 224:20	172:6
79:19 81:18 89:18	jerry 176.22	225:1,5,10,13,16	172.6


$\begin{aligned} & \text { ketamine } 44: 19 \\ & 45: 2 \end{aligned}$	$\begin{aligned} & 176: 4,8,20,21 \\ & 178: 14 \text { 179:5,5,19 } \end{aligned}$	$\begin{aligned} & \text { lacking } 80: 1 \\ & \text { lag 80:5 } \end{aligned}$	$\begin{aligned} & \text { layer } 217: 11,12 \\ & \text { layers } \\ & 158: 3 \end{aligned}$
ketoconazole	180:4 181:11	laid 196:10	lead 24:13 131:20
83:13 106:12	182:8,12,20 185:2	land 8:7	136:22 165:10
107:9	186:4,16 189:5	landscape 191:13	167:20 205:7
key 22:21 32:12	190:12 196:17,18	language 70:16	223:17 226:9
33:15 86:22 92:9	197:5 200:15	181:4 196:22	leader 163:22
116:10 125:22	204:22 205:2	210:18	leaders 79:4
140:2 147:6 238:	206:5 207:1,20	languages 70:1	leadership 196:
239:21	208:15 209:10	lanling 5:22 6:5	leading 149:22
keyboard 129:4	210:11 218:8	55:1,4,5,12	leads 135:4 229:22
kicked 10:6	219:5,15 222:22	large 9:16 10:8	learn 68:6 196:3
204:15	225:9,22 226:21	95:16 113:13	196:21,22
kicks 9:20,	knowing 61:20	120:3 124:3 137	learned 3:21
killed 214:21	114:15	137:13,14,22	29:12 103:14
kilogram 98:13	knowledge 26:5	138:9 152:12	117:1 129:13
155:1 228:21	33:20 56:6 63:13	167:11 212:13,17	235:16
kind 11:14 45:1	219:10 241:8	223:15 224:11	leave 201:7
46:8 52:3 99:11	242:6	largely 32:15	leaving 229:17
100:3 101:16	knowledg	115:12	led 130:16 166:20
102:19 103:1,5,22	175:2,6	larger 41:2 51:13	ledanski 242:2,15
104:15 107:18	known	54:17 80:9 167:21	left 4:5 6:22 10:18
118:13 177:19	168:10	196:13 237:13	14:3 17:17 34:14
181:5,12 195:5	knows 1	largest 64:16	79:17 114:6
201:14 204:15	183:16	191	124:10 164:20
216:9 225:4,8,10	kols 138:	larwood 2:6 98:7	198:5
227:15 229:14	kova	1	legal 171:5
kindly 34:10	222:10,12,14	-14 228.22	legally 171:2
kinds 15:11 22:2	1	230:8,10,	legislative 196:9
103:9 186:17		lasted 143:17	lemoore 215:1
19 217:7	label	lastly 13:18	length 127:8
229:9 239:9		lasts 44:21 45:3	181:22 210:12
klaus 1:1871:11	$51: 13$		leprosy 104:7,10
71:15,18	els	latest 20:18 28:20	lesion 18:21
knew 114:20	orsis	latin 22:12	lesions 18:2 21:7
know 7:2 8:15	la	latina 22:17	21:18 107:9 154
24:8 34:3 42:2		launched 73:17	leslie 94:20
43:16 46:6 50:10		106:10 110:18	leslie's 95:1
53:14 54:4 66:11	$\begin{aligned} & \text { ratory o:15 } \\ & 15,21 \quad 38: 20 \end{aligned}$	laura 205:22	lesson 95:6197
78:22 83:11 88:18	39:6.18 42:5	222:10,12,14	lessons 197:8
91:17 98:10 99:16	44:13 54:18 123:7	223:21	235:16
105:17 115:6,21	$228: 16 \text { 229:1 }$	lavaging 229:1	let's 5:17
122:3 129:17		lawrence 104:16	level $38: 16,18,19$
131:20 145:5			39:3,8,9,18 40:21


47:18 51:14 82:14	111:6 130:11	liu 199:21	look 10:11 25:10
89:9 92:9,12	146:17 174:7	live 27:19 28:1	40:1 45:11 75:21
125:18 130:10	limiting 31:11	77:6 78:4 94:13	90:21 107:10
154:21 212:9,20	line 123:21 146:3	101:21 158:13	108:6 110:13
227:3 236:22	215:20 222:16	lively 127:21	111:22 120:4
239:1	lingering 57:18	liver 48:4	123:18 144:1
levels 58:21 98:14	link 4:20 194:8	lives 63:4 66:15	154:15 157:17
leverage 29:13	liposomes 156:10	68:13 69:14 79:7	161:3,6 164:21
30:2 71:21 74:2	156:12	living 19:16 58:15	172:18,20 174:21
194:10 196:17	lips 58:13	132:22	189:17 192:7
216:9 217:19	lisa 1:16 12:5	load 207:21	194:10 202:21
leveraged 36:10	37:21 38:4 96:5	loaded 136:2	205:20 212:13,22
74:4 177:3	98:14	localized 90:6	212:22 217:17
leverages 25:9	list 95:16 99:10	104:9	220:3 238:1 239:9
leveraging 37:10	133:14 160:5	location 1:8	looked 109:16
73:10	164:17	locations 21:8	111:2,7 117:6,9,9
lewis 2:5 148:4,4,8	listed 37:1661:16	locks 129:4	118:17 122:14
148:8,9 159:5	88:13 157:3,5	$\boldsymbol{\operatorname { l o g }} 99: 15$	137:20 157:1
liberally 125:20	183:13 199:16	logged 205:9	160:4 167:14
licensed 193:18	listening 4:15	logical 213:8	230:20 231:2
licenses 192:21	205:16,20 209:14	232:7	looking 5:19 11:18
licensure 81:2	225:3 231:21	logically 131:12	30:4 37:4 49:18
life 6:187:16,21	literacy 70:14	lomentospora	79:16 106:14
7:22 13:16 57:20	literally 107:1	129:21	108:19,20 113:5
57:21 58:9,15	166:22	long 25:16 27:16	126:12 128:6
60:16,20 61:1,9	literature 40:17	44:21 57:12,13	141:20 155:6
63:1 66:7,21,21	45:11 47:6 125:13	85:11 95:12 126:8	157:11,20 160:17
67:3,14 70:20	liters 212:17	135:4,4 144:6,7	200:7 211:7 216:2
77:4 79:22 84:13	little 9:13 20:17	144:13,15,17	216:10 217:8
86:12 112:1	38:12 41:2,5 42:7	146:12 147:4	231:8
150:20 159:3	42:19 43:8 44:4	152:13,14 155:15	looks 46:11 126:6
230:3 235:4	45:3 46:14 47:14	161:10 172:8	215:19 217:5
lifesciences 28:5	62:17 82:4 84:21	176:17 179:1,3	looped 95:19
lifetime 195:8	107:6 109:3	180:22 181:14	loosely 129:10
lift 208:1	128:13 129:17	182:19 227:1	$\boldsymbol{\operatorname { l o s }} 10: 14$
lights 195:11	131:3 132:7	236:5	lose 18:5 46:9
liked 192:2 229:13	133:13 136:20	longer 4:13 12:11	loss 16:3 66:21
likelihood 151:13	159:21 161:1	21:6 45:3 60:5	lost 18:8 58:9
likewise 131:14	163:10 164:7	87:7 106:21	62:16 103:1
limit 60:670:17	166:5 170:10	119:15 142:1	126:15 163:16
231:6	187:14 194:18	185:13 186:10	lot 10:21 41:13
limitations 156:19	219:12 223:6	longest 119:12	47:21 101:15,16
limited 50:1 69:11	225:5 228:9 240:5	longwinded 181:3	104:2 111:12
84:11,13 100:9			113:1 123:17


126:18 137:10,13	49:5 96:8 111:13	$233 \cdot 18$	match 135:8
137:16 150:15	lymph 124:8	ta	hed
154:12 156:14,15	lymphatic 18:6	:11 122:15	aterials 70:16
7:7 170:9 176:3	lymphocyte 104:3	15233	70:20 233:8
8 179:20	m	238:8	a
186:15,20 196:2,8	macula 18:5	mankind 78:	115:6 154:19
8:2		manner 171:5	194:22
206:13		manual 215:8	matters
207:2,15,18 208:5	$\text { mail } 39: 21$	acture 81:	:19,21 139
:17	mail 30.21	156:19	9:12
214:21 2		manufacturin	maximizing
227:17 234:8,9	$6239: 1$	9:8 33:3,4,	136:18
238:5 239:3		:19 98:7	mayne 148
240:21		map 216:21	172:1
$\begin{gathered} \text { lots 3:17 195:6 } \\ \text { 198:8 226:13 } \end{gathered}$	130:3	$\begin{aligned} & \text { march } 58: 8,8 \\ & 179: 18 \end{aligned}$	mayne's 148 mayo $162: 6$
oud 206:22 22		m	mba
louder 225:5	majority $40: 12$	margin 89:12	meglynn 176
love 75:17 190:12 226:18	majority 189.12	167	md $1: 8$
low 7:18 20:1	making 34:2	80	124:13
70	:13 187:16	margins 80:2	196:2 202:20
:22 108:10	3:6 198:10	arked 166:20	meaning 115:16
8 115:	$: 9,1720$	markedly 104	7:11
149:16 151:12,		marker 90:13	meaningful 29:6
154:20 213:21		arket 80:13	85:3 105:8 177
ower		85:16 92:6 101:3	181:14
12 40:2 43:3		4:21 145:2,7,12	means 13:14
59:12,16 167:18	nage $11 \cdot 19$	5:15,16 146:9	41:19 58:19
lowest 95:20		6:16,19 148:2,7	1:12 123:11
lpad 84:12,15		:12 159:11	4:7 145:16
luckily 62:6 106:		1,18	79:1 184:1
lucky 57:15,		194:	$8: 12$
65		22 196:	nt 105:17
		220:16	6:22
lumbar			measure 49
lunch 81:14,17		marketing 86:2	0:11 76:20 85:13
lung 15:17,20 16		86:9,13 220:2	:11 158:20
17:3 18:15 44:5		kets 79:10	80:14 208:4
50:1 96:7 132:11	neuvers	0:5,	84
133:8	1-318	ryland 241:19	measurement
lungs 32:14 33:19		massive 20:1,3	90:15 122:2
:12 43:19 44:3		aster 222:17	ures 50:20
44:6			66:19 88:16 90



$\begin{aligned} & 231: 15 \\ & \text { missed } 66: 13 \end{aligned}$	$\begin{aligned} & \text { 100:11 158:22 } \\ & 204: 17 \text { 206:1 } \end{aligned}$	$\begin{gathered} 221: 19 \\ \text { months } 17: 4 \text { 21:5 } \end{gathered}$	$\begin{gathered} 227: 19 \\ \mathbf{m s g} \quad 114: 10 \end{gathered}$
233:8 238:22	229:2 234:2,2	36:22 57:14 58:9	116:19 117:3,7,15
239:22	moderate 155:1	58:20 68:6 86:5,6	119:9,10 121:15
missing 210:14	173:11	109:21,22 111:8	122:8,20 123:10
mission 24:11	moderator 6:5	132:13 144:13,13	131:9 134:12
0:15 63:13 64:8	55:5 81:21 161:19	145:6 150:13	135:1 149:3
73:21	moderators 6:7	182:12,12	163:13,18 164:6,8
mitigated 186:19	1:20	morbidity $84: 10$	164:14 171:10
mix 26:20 123:1	modern 125:1	moribund 46:4	173:2,2 175:8
mixed 158:8	163:1	morning $3: 9,10$	188:11 190:12,20
mixture	modest	6:3 37:21 38:4	191:20 193:4,13
mixtures 20:13	0:5 228:22	55:6,22 93:18	198:16 199:11
mobile 239:6	m	193:11 205:6,18	207:11 216:3,3,4
mobility $132: 22$	7:12	218:9	235:21
modality 20:2	modules	mo	msgerg 173:1
mode 4:15			multicenter 163:5
model 32:3,4,5,12	130:10 167:1	mortal 126:20	ulticentered
:18,20 33:13	molds 130:21	mortality $84: 10$	113:13
35:5,6,8 41:21	167:15,16	118:8 130:21	multicomponent
43:20 44:1,7 45:5	molecule 154	131:21 166:21	121:6
45:19 46:6 48:1	86:21 231:2	mortem 50:22	multidimensional
49:2 50:14 51:3	molecules	mount 78:2	111:20,
52:1,17 53:21	moment 13:12	mouse 41:7	multidisciplinary
54:1,7,13 56:12	149:7	44:11 45:19 46:12	29:20 30:1
64:4 86:19 88:13	money	46:16 48:8 49:8	multidose 97:22
88:21 89:2,3	160:18 161:13	54:7	multidrug 84:18
94:21 95:7 104:6	171:2,4 191:16	move 29:1138:14	multimillion
105:22 161:8	216:18	93:16 97:10 114:8	218:10
167:5 172:11,13	monitor	148:12 162:18	multiple 13:7
173:1 175:8	monitorable	177:3 194:1	17:16,19,20 28:10
176:17 181:6,13	186:18	200:15 203:17	33:2 63:7 117:11
184:3 190:20	monitored 174:2	222:5 227:19	120:18 144:16
191:11 198:19	229:18	237:5	181:6,11 186:5
206:1 231:8,13	monitoring 32:10	moved 10:1 59:15	189:21 209:7
237:2,4	32:19 52:13	59:18 108:9	221:7 222:16
modeling 17	mo	109:13 119:17	238:14
models 31:22	monothera	1:9193:16	murine 234:2
33:10,17 37:22	59:5 158:6	205:5 221:16	mute 148:10
38:13 40:16 48:7	montana 225:	moving 5:18 29:16	206:21 211:21
48:11 49:8 50:2,6	month 12:12 $22:$	30:15 31:2 63:22	224:21 228:3
51:13 54:9,17	59:18 63:19	64:3 76:22 89:22	muted 215:20,22
78:15 79:2 83:21	155:11 179:4	109:9 172:14	240:20
88:10,11,19	182:14 186:14	204:21 218:12	


mycological	54:18	237:6,19 239:9	new 7:7,8 18:11
131:12	nature 120	240:1	20:13 29:3,5 45:8
mycology 6	194:12	needed 19:18 29:5	56:14 64:2 66:4,5
23:18 37:15 132:5	nauseated 62:4	76:16,20 77:2,11	69:5 72:1 79:9
133:1 170:18	naval 215:1	80:2 81:9 92:4	83:19 87:20
216:15 218:8	ga	99:21 133:11	100:11 112:16
227:7	navy 214:17	185:12 186:6	113:5,5 119:16
mycoses	naïve 150:5	91:1 239:12	41:14 145:2,4
163:1 164:	ats $72: 5$	edles 39:16	151:2,5 152:3
174:21 175:19	da 83:9 86:	needless 236:18	167:1,10,11 168:5
176:19 177:1	87:16,20 159:1	needs 5:11 76:21	170:13 173:2
	near 18:5 155:10	77:6 80:10 84:14	176:1 188:1 190:1
201:15 237:	nearly 57:11	86:14 88:4	90:2 193:14
mycosis 101:11	191:7	152:15,21 175:8	94:20 195:7,
7:11 108:7	lization	181:4	98:3 207:14
109:10,20	bulized 43:17	190:5 196:1	208:20 216:13
mycovia	nebulizer 51:22	227:12 237	221:14 232:2
3,13,	necessarily 13:10	neg	238:20
mycovia's	211:14 224:5	1	newer 116:16
	necessary 70:17	neil	69:10 172:21
myriad	neck 46:18	0	newly
mystery 146:10	need 5:11 6	162:11 173:10	news 108:17 110:
n	20:20 30:21 33:13	176:9 179:	197:17
	20	9,10	tter
	4	3:1,2	ni
	54:4,12,14,19	14	n
	61:18 62:7 68:22	neil's 174:1	4:13,16 25:
name	92:1 100:1,1	neither 241:9	7:5,10,16,18
185:18 199.14	111:22 117:14	242:7	28:16 34:15 35:17
205:13 209:4	119:2	ne	37:10 137:10,
names 187:15	129:17 132:	2:3 229:1	37:12 143:16
192:3	134:3,16 13	network	63:3,18 164:19
nares	139:1	39:1	66:18 170:18
narrow	144:14,16 147:	networks 139:3	90:13 199:17
	147:22 156:20	47:1	04:4 226:17
	160:1	neurora	234:8
national 24:12	169:17 174:20	126:1	niaid's 24:22 25
	175:11	never 10:1 130:5	,
onwide	181:5 186:1	171:6173:14	2:22 34:12,13
ve $16: 21$	195:9,20 197:21	183:18 188:16	36:8
natural	208:20 209:10,1	189:9 214:16	nice 40:9 44:20
$155$	210:12,18 211:1	223:16 228:19	105:14 108:21
	21	229:2	09
52:7,16,22 53:22	222:6 227:3 236:4		124:12 126:16


$\begin{aligned} & \text { 175:21 176:8,9,14 } \\ & \text { nicely } 103: 5 \end{aligned}$	nonmeningeal 109:19 110:13	$\begin{aligned} & 70: 17 \text { 94:2 103:21 } \\ & 106: 9115: 1,3,13 \end{aligned}$	observer $153: 15$   obtained $97: 17$
109:14 112:5	117:4 122:19	117:20 137:8,20	148:20
123:1 231:9	123:11,12,13	138:21 143:5,22	obtaining 152:4
nih 5:22 6:6 30:21	125:10 169:3	149:15 158:11	obtundation
72:5 74:15 78:13	235:22	172:12 175:10	48:19
79:20 99:5 101:9	nonprofit 30:19	176:1 177:1	obvious 8:19
101:10,13 105:19	nonresponsive	183:12 212:7	131:14 195:5
113:1,2 135:11	84:18	213:9,10 218:5	obviously 13:2
153:8 160:21	nontuberculous	numbers 9:16	91:21 105:16
204:19 208:14	84:20	10:8 41:4 53:17	107:16 113:3
217:16 222:18	norm 201:2	79:7 108:13	117:1 120:9 206:1
nih.gov. 24:10	normal 46:16,19	132:18 138:17	213:15 226:2
nih's 24:2,6	69:13 106:4	139:12 143:7	occupations 77:15
nikkomycin 26:22	normally 141:6	144:15 149:13,20	occupy 13:21 65:5
83:22 93:14,15	north 77:7	151:10 161:12	occupying 18:21
95:11,13,14 96:1	northern 9:5	177:14 237:10	occur 9:1 15:6
96:4,8,10 97:4	69:22	numbness 59:12	18:18 19:10 48:15
153:11 155:14	northridge 10:5	numeric 121:11	117:4 220:2
157:5,18 158:6	nose 42:21	121:13	occurred 19:4
219:13 228:13	nosebleeds 60:17	numericall	94:5 118:5 144:12
230:18 235:16	noses 46:14	134:16	occurring 11:16
nikz 228:13 229:3	notably 7:10	numerous 79	53:22
230:5	notary 1:9 241:18	99:4 137:11 177:1	occurs 9:10
nine 111:5 144:1	note $4: 10,2227: 19$	nurse 64:12	october 58:17
179:4 186:14	78:11 85:7 87:6	0	odds 118:5
nmd 123:11	161:7		offer 31:13 32:2
node 124:8	noted	o'shaug	32:22 66:1 214:5
nodule 14:4	132:19 223:16	$1: 20$	office 3:2 42:4
non 11:11,12,16	233:18	objected 127:7	officer 71:13 76:7
15:13 19:9 20:9	notice 119:9	objective $36: 14$	140:7 241:1
61:3 89:10,12	123:16 161:10	objective 36.14	officers 29:13
91:5 109:11,12,18	194:2	objectives 36:1	oftentimes 226:13
125:14 126:13	noticeably 99:10	obscures 212:8	oh 55:4,21 154:2,3
147:13 170:11	noticed 160:5		174:14 185:16
186:6	noticing 203:18	$121: 7$	209:3 212:1 $225: 7$
nonclinical 86:19	novel 35:18 92:18	observational	okay 3:4 6:14 18:8
88:2,8 91:22	100:4 129:18	36:12 37:3	55:4,19 93:2
185:22 186:3,12	154:8 224:19	observations	102:14,15,17
187:4 237:20	232:9	$77 \cdot 19155 \cdot 20$	113:22 114:8
238:18	novo 211:14,14	observe $32 \cdot 10$	129:2 131:22
nonhuman 51:15	number 8:6,20 9:8	$46: 13$	134:5 135:21
52:4,7,12 53:1	12:9,10 14:6 20:2		147:12 155:21
	20:3 23:2 40:20	$110: 21$	156:6 157:7


160:14 162:2,15	220:2	ordered 121:11	207:19 209:6
174:14 175:16	opened 108:18	ordinal 121:13	210:20 211:1,7
179:12 184:5,13	opening 64:2	oregon 7:11	238:12 239:11
199:13 209:4	opens 111:14	organ 49:12,14	241:14 242:12
212:1,4 218:18,21	operate 167:8	124:1 158:11	outcomes 29:1,14
225:2,9,15,21	opinion 22:19	177:22 237:12	67:17 69:7 120:18
228:4,8 231:20	23:1 166:2 202:12	organism 7:3 8:4	121:1 151:4
232:21 233:1	237:4	9:16 157:20	180:14 209:10
240:6	opinions 237:3	organisms 19:16	220:3 222:20
old 20:14 97:19	opportune 82:21	38:21 48:13 50:9	235:19 238:5,6
133:6 161:13	opportunities	198:3	outdoors 60:6
193:10	5:10 52:7 74:10	organization	outlined 148:14
olden 117:19	95:9 100:12	103:4,7 170:11	outlining 79:18
older 77:11 173:1	137:20 138:11	organizations	outside 13:21
174:17	143:2 146:8	30:19	15:19 204:13
olorofim 27:2	193:19 199:22	organize 75:9	206:17 233:20
34:20 35:4,9	200:4	organized 28:16	239:16
83:22 129:18	opportunity $24: 1$	103:6 171:2,5	outstanding
132:21 157:9	29:17 42:16 53:8	226:19	231:21
169:11 176:4	54:22 56:12 66:5	organizers 24:1	outweigh 139:16
212:14 220:14	66:19 71:19 75:21	102:13 113:17	overall 94:18
224:17	81:12 139:7	129:6 162:16	121:9 131:9,12
onboard 45:14	146:16 148:2,11	organizing 136:12	134:8 144:18
once 15:14 16:12	149:1 208:20	organs 50:5	187:5
16:17 17:13 19:21	222:15,17 233:19	oriented 24:11	overcoming 29:8
34:8 48:21 59:15	235:5 237:15	55:16	overlap 82:15
59:18 106:22	optimal 142:15	orients 88:17	overlapping 212:8
146:8 148:1	optimization 29:9	original 116:19	overlooked 109:6
oncology 74:18	optimize 71:22	117:3 122:20	overseen 171:6
125:12 126:12	73:7 74:4 75:11	125:9 171:10	overview 83:7
151:17	option 54:14	189:18	102:19 175:21
one's 146:21	217:6	originally 160:5	176:9
ones 65:21 143:13	options 75:18	originated 202:4	owned 53:7 98:16
164:18 218:7	83:16 100:19	orphan 88:3 97:12	owners 53:7
ongoing 103:3	130:12 145:10	99:5 151:15	oxygen 133:11
120:3 141:12,15	146:5 239:17	osteo 107:8	o'shaughnessy
149:8 150:7	oral 21:4 36:2,4	outbreaks 8:9	82:6,7,8,9 93:3
online 233:10	54:5 98:12 140:17	10:22	p
onset 14:16 18:16	140:20 148:19	outbred 41:7	p 3:1 110:5 120:10
36:20 111:4	order 34:18 38:16	outcome 66:	p.m. 1:7 81:15,18
onward 32:16	40:8 69:4 146:1	69:11,16 88:16	173:11
oops 18:8 34:12	147:15 215:10	90:11,20 103:19	pace 133:1
open 3:20 11:17	221:19	121:1 127:10	package 33:14
130:10 168:21		180:13 181:5,14	$83: 987: 21185: 12$


185:22	119:21,22 121:4	partnerships	182:16 185:2
packing 40:6	138:12 163:20	190:22	189:3 190:4
page 90:1 199:16	201:18 216:20	pass 31:15 153:2	198:20 205:14
pages 160:21	227:17 229:7	passages 43:2,11	208:18 209:6,17
paid 197:6	partial 125:13	patent 9:12	210:7,15 234:20
panel 4:6 34:22	126:13 134:10	path 25:6,15	234:22 235:1,19
173:12,19 183:7	participants 82:16	71:12,13 73:17	238:6,10 239:10
203:19 233:13	91:21	74:8,15 75:7,16	patient's 234:22
234:9,15 235:2	participate 60:9	138:4,20 147:19	patients 5:16
236:17	69:21 140:11	219:22 232:4	12:10,22 14:9
panelist 4:14	148:11	240:14	15:7,22 16:11
panelists 3:114:4	participated	pathogen 38:16	19:5,6 21:2,3,4,16
233:2 240:9	102:20 112:13	39:178:9	56:8,9,11,13,19
papadopoulos	participating 76:1	pathogenesis	57:14 58:14 61:3
207:1 208:22	120:4 149:10	116:15	61:5,7,12,18 62:7
209:3	240:4	pathogens 24:19	62:8,9,11 63:2,3
paper 213:19	participation 70:3	27:13 28:19 79:2	63:15,19,22 64:4
papers 164:20,22	148:18 173:16	226:4	64:16,19 65:9,13
166:22 168:13	particle 28:11	paths 100:13	65:18,21 66:8,15
pappagianis	particular 4:15	205:6	66:22 67:3,6,8,8,9
213:19	19:5 83:4 118:3	pathway 30:14	68:1,3,13,20 69:1
pappas 172:22	118:22 119:9	84:11,15 85:10	69:7,13,20,22
176:20 190:13	141:14 142:8,8,19	211:7,9	70:4,21 71:5
224:21,22 225:2,7	143:21 145:4	pathways 83:8	72:14,22 77:13
225:12,15,17,21	146:6 164:5 187:7	84:3 92:11	84:14 105:3,8,12
parallel 94:5	197:18 214:14	patient 5:11 12:3	105:15,22 106:13
139:6	216:9,10	17:15,16 18:5	106:14 107:21
paralysis 48:18	particularly 3:11	19:1 21:8 30:2	108:11 109:12,18
paralytic 153:18	4:10 16:15 18:4	55:14,16 56:3,6	109:18 110:19
parameters	21:12 78:12 92:17	61:2,13,22 62:1	111:15,17 113:4
121:16 123:7	107:6 111:13	64:9 65:4,6,12,15	122:10 125:5
127:15	154:11 203:10	66:10,17,18 67:5	126:5 127:1,7
paramount 91:21	222:2 224:1	67:12,16 68:21	130:11 131:3
parasite 116:7	237:12	69:6,16 70:6,22	132:9 134:21
pardon 240:6	parties 78:7	70:22 71:1 73:2	138:17 143:18
paresis 48:17	241:10,13 242:8	75:16 76:22 83:5	145:11 149:9,17
parsimonious	242:11	84:5 90:3,8,10,16	150:9 151:11
210:13	partner 28:5	91:8,9 109:4	168:15,16 169:9
part 38:6 51:7	partnering 138:10	112:5 121:7,8	169:17 174:8
56:2 57:22 63:12	partners 153:22	126:16 130:10	177:14,21 181:15
69:10 70:1 84:16	204:11	133:3 146:4,6	182:2,3 183:3
94:9,19 97:7	partnership 76:19	149:7,13,20	187:19 188:1
101:1 103:11	193:22 204:9	151:10,18,20	189:12,12 191:7
113:2,3 114:11		152:6,11 174:8	194:4,10 203:10


208:4 209:9,13,15	144:22 146:13	periods 215:13	pharmaceuticals
210:6 212:21,22	156:16,21 157:16	peripheral 104:18	97:3 135:17
213:4,10 214:18	161:2 169:20,21	153:15	136:14
221:16 224:1,4,14	170:9 180:17,21	permanent 18:6	pharmaceuticals'
232:10 235:6	181:8 183:18,22	permission 34:10	26:19
236:4 237:9,11,12	184:6,15,17,19,20	182:18	pharmacist 64:12
237:16 239:5	184:22 185:13	persistence 107:8	pharmacokinetics
240:15	187:20,21 189:6	persistent 156:4	33:5,5,18 41:17
patient's 66:20	189:13 190:6	person 11:17	98:10 237:15
90:17,18	191:1,22 197:7	188:5 215:5	pharmacologic
pattern 48:5	201:5 203:19	person's 181:11	86:20 100:4
patterns 90:6	206:7 207:5 213:1	188:14	pharmacological
patterson 203:20	216:3 217:1 218:9	personal 22:13	206:8
203:22 204:8	218:13 219:10	52:10 56:6 57:22	pharmacology
pay $163: 12197: 7$	225:17	126:19	92:21
207:15	people's 78:1	personnel 39:2,7	pharmacovigila...
paying 163:10	percent 12:18	77:12	92:7
pcc 120:2 127:4	14:9 21:21 42:17	persons 19:7,9,10	phase 35:15,16,20
pd 88:18,22 89:2	109:22 110:1,3,4	20:8,10 142:16	36:7 81:2,2,2
pdf 39:22	110:7,7 115:10,11	perspective 22:13	83:21 87:3,3,15
pediatric 174:8	115:11,13 125:8	56:8 65:15 129:15	97:21 98:1,15
183:1 186:20	125:11 126:11	148:18 194:4,5	99:13,14,20
pediatrician	145:5 188:12	206:8,16 236:2	129:18 137:21
182:21	195:8 196:6 213:3	perturbing 11:2	138:14 139:9
pediatrics 182:21	213:20	pete 172:22	141:10 146:14,14
peer 217:12,13	percentage 145:2	176:20 190:13,19	146:20 147:1,14
pegylated 156:10	perception 127:1	197:14 224:21	147:14 159:19,19
pelvis 17:22	perfect 23:22	225:6 227:21	159:19 160:6
penetration	222:15	pete's 190:16	176:5 178:13,20
206:12	perfective 37:5	peter 224:22	183:4 185:11,13
people 4:11 9:3,4	perform 41:19,20	225:2,7,12,15,17	186:4 192:20
9:11,16,22 10:9	44:21 47:18 53:13	225:21	193:6,15 200:9,12
11:7 13:9,15 14:5	163:5	petri 11:19	200:13 201:3
16:9,19 22:20	performance	pets 234:6	202:15 220:3
28:20 44:22 45:19	148:7	phage 130:10	phases 185:1
51:17 57:17 77:6	performed 31:19	136:22	phd 156:9
77:9,9,15 80:3,4,6	47:5 50:17 124:20	pharma 80:7	philanthropic
80:9 81:10 94:1,4	performing	138:10 148:5	99:7
94:13 96:16	137:19	191:13	phoenix 9:19
104:21,21,22,22	period 21:22	pharmaceutical	phone 4:5,8,11
105:9 106:20	32:10,19 49:10	79:10 110:21	73:19 207:5
112:18 119:22	71:8 81:14 85:12	113:1,3 152:18	223:13
122:5 123:20,21	109:14 167:17	167:8 180:6 203:3	photograph 40:3
126:19 128:15	192:22	234:16	


physical 22:8	platform 3:19	160:21 175:2	120:1 149:1,7
physician 82:1	play 21:10 200:7	184:7 190:4 193:6	152:11 155:9,10
physicians 22:4	please 34:3,8	195:10 198:4,10	185:2 188:19
63:3 64:11 149:18	35:12 37:17 55:9	201:13 203:15	189:9 190:5 194:1
pi 6:13 163:4	55:17 81:14 116:3	204:14 207:2	210:19 237:8
pick 46:15 47:2	116:18 117:5,17	221:11 235:4	239:19
129:13 157:6	118:1,14 119:4	237:14 238:7,13	populations 30:3
178:4 189:16	120:7 121:5,14	239:22	80:13 91:9 174:6
194:17 197:9	122:13,17 123:8	pointed 103:13	175:10 177:10,18
picking 119:15	123:15 124:4,13	109:4 112:5 125:9	178:5,11 198:21
picture 7:14,20	125:6,16 126:2,9	179:21 221:22	224:13 237:11
10:4,18 11:4,22	126:14 127:12,18	pointer 154:18	portfolio 26:4,12
13:5 15:21 37:9	136:9 147:18	155:16,17,17	portfolios 25:8
42:19 44:11	188:22	156:5	37:12
124:12 126:15	pleased 194:21	points 6:19 21:19	portions 87:4
154:4	pleasure 5:20	22:7 86:22 89:9	posaconazole 60:5
piece 123:13	55:13 113:17	93:17 98:12	60:15 83:17
pilot 74:20	plenty 190:6	118:20 138:15	110:14,17 111:6
pinch 46:17	plotkin 79:4	150:21 153:1	212:12 213:2
pioneers 112:12	plum 125:19	156:21 184:18	221:18 223:15
pipeline 148:8	plural 58:6	188:13 200:1	224:15
pipette $42: 16,20$	plus 160:1	207:11 233:8,16	posaconazole's
43:10 44:16	pneumocystis	235:20 236:21	219:7
pk 41:20 51:6 54:3	141:1 166:12,20	238:22 239:2,21	posadasii 8:14
88:18,22 89:2	pneumocystosis	poised 29:11	28:4 35:1
178:8	166:15	137:18 232:2	posed 173:18
place 18:3 40:4	pneumonia 12:19	policy 202:16	174:18
115:16 134:18,19	12:21 14:12,13,14	203:15	posit 72:12
152:3 168:1	15:5,11 36:16	polio 94:1,3,4,5,8	position 46:19
205:17 233:6	143:18,19	94:11 153:18	152:3,5
239:21	poc 139:9	political 196:20	positions 238:17
placebo 89:18	pocket 68:15	polypeptide 27:21	positive 29:14
96:7 165:8 166:17	point 4:7 6:1 8:10	28:7	106:2 111:18
places 8:8 49:7	22:10 32:16 37:7	pool 60:7	positivity 22:9
plan 10:12 33:21	63:4 78:16 95:5	poor 65:11 80:12	posner 125:19
105:18 220:11	95:17 99:11 100:5	103:19	possibility 17:6
planned 176:11	102:22 105:5	poorly 95:8	108:18 180:19
planning 33:6	107:10 110:16	100:12 158:22	202:17 220:9
92:18 128:15	112:19 113:4	pops 178:16	229:22
201:19 216:17	119:7,17 120:9	popular 60:8	possible 22:13
plans 216:4	122:20 129:16	population 64:16	51:16 53:3 96:19
plate 11:18	130:12 132:16	65:6 67:12 70:6,8	152:5 193:14
plates 50:5	134:14 150:13	84:11,13 90:8	possibly 139:6,7
	157:10 159:6	91:6 94:12 119:20	139:21 210:3


post 47:10 48:16	preclinically	231:22	pricing 152:12
50:22 85:16 92:6	20	presented 104:7	primarily 53:19
92:7 220:2	predict 84:8 85:6	113:2 133:3 144:9	85:10 219:22
posted 199:19	90:14 146:19	212:14 229:7	220:1
201:22	predictors 37:1	234:7 236:15	primary 14:19
posture 46:10	predispose 16:7	presenter 93:4	15:2,7,10 16:13
8:20		presenters 233:2	7:4 36:1,14
potency 1	6:19	240:9	49:15 119:2 120:4
potent 130:2	predominant 8:1	presenting 36:19	142:16 164:10
potential 5:6	prefer 47:2	149:21 154:3	168:12 170:12
22:22 29:16 35:11	preferred 88:2	170:13	172:19 191:8
9,21 80:13	191:18	presents 5:9	primate 52:4,6,8
86:13 89:4 101:2	pregnancy	president	primates 51:16
152:11 210:3	74:8	148:5 153:	52:8,12 53:1
212:11 217:22	pregnan	169:22	princeton 79:3
235:5 236:6	82:3	pressure 125:21	principal 9:15
potentially $224: 16$	preliminary 33:14	presumed 180:1	principles 83:1
24:17 236:9,12	30:9	pretomanid 84:16	prior 13:1 94:3
238:13 239:13,15	premium	pretreatm	132:12 166:12
pounds 5	pr	21:	221:20 241:4
powerful 35:10	preparations 21:7	prett	priority 80:16
ppe 36:15,19,21	prepare 3:12	54:2,6 62:15	81:5 86:3,5 87:15
37:5,6	prepared 242	75:20 93:6 110:	100:21 191:22
ppe	pr	110:11 147:9	215:11
practice	0:7 197	204:12 206:2	prisoners 8:9
6:21	preparin	p	77:14
actices 172:19	22	937	prisons 8:4,5,8,
practicing 182:6	prerequisite 91:16	prevalent 70	private 76:19
practitioners	prescribed	prevent 14:	78:10 99:11
122:5	presence	24:14 46:7 168:17	190:21
pre	presen	preventin	privilege 22:15
162:18 185:2	7:20 133:	118:8	56:2 174:17
precautions 59:22	167:5 168:8	prevention	pro 90:15,15
60:1	presentation 37:8	77:4 163:6 178:2	132:5 207:4
preclinical 22:16	37:13 71:20 73:3	215:7 220:15	211:14 222:19
23:17 25:19 26:15	82:15,16 87:19	preventive 167:19	proactively
26:20 27:1 29:7	90:5 92:8 93:3	previous 33:11	137:20
30:9 32:2,22 33:1	95:7 101:9 103:7	124:9 143:8	probably 14:5
34:3 40:13 52:17	112:6 113:10	187:21	47:21 49:13 52:3
54:8 78:15 79:2	135:18 136:5	previously 28:9	145:3,6 172:18
178:19,21 193:13	140:6,13 174:19	36:9 144:10	173:20 174:6
204:18 206:1	presentati	205:21	177:19 193:12
212:5,9 213:9	3:12 55:7 143:9	prices 160:17	197:18 208:1
223:19	147:18 170:16		217:7 221:13


probe 154:10	85:20 145:17	progress	proposal 171:12
problem 12:15	146:3,8 148:1	97:5,11	90:20 236:15
20:4 59:14 80:11	151:13 159:14	131:6 138:7	propose 193:21
94:7 100:3,15	195:4	progresses 16:4	proposed 90:12
101:20 107:9	production 15:9	42:1 49:4	92:2 169:20
115:18 136:11,11	productive 22:11	progression 18:17	171:14 221:5
165:14 185:3	8:4 163:14	50:	pros 90:19 150:20
188:7 189:10	products 5:11	progressive 16	207:2 208:6 236:7
194:13,16,19	30:15 33:12 142:1	20:12 109:18	237:2
195:21,22 196:7	142:7 148:19	132:11 133:9	prospective 191:6
196:14 198:19	152:3 195:21	progressor 126:13	prospectively
203:2,6,7,13	23	p	118:16 119:5
216:2,10 221:16	pr	25	134:17
222:2	08:16	proh	protect 59:22 80:3
problematic 133:9	professor 6:10	167:10	protected 72:16
165:19 166:2	102:7 162:4	pr	155:18 180:3
190	profile	74:20 202:3	protecting 158
problems 77:4		project	protection 29:6
78:22 132:15		projections 161:4	35:5 39:11 97:20
168:13 184:16	profuse 60:17	161:8	154:21 155:2
199:4 201:6 230:2	prognosis	projects	180:7
230:3	124:22 125:2	prominent 48:5	protective 47:22
proceed 136:10	prognostic 124:20	171:8	47:22 77:22 78:8
7:6	pro	promis	156:2
proceeding 2	23:17 25:19 26:19	135:11	proteins 104:18
proceedings 241:2	26:21,22 27:2,5	promise 176:4,7	104:18
241:3,5,7 242:6	29:11,13 34:5	promising 30:13	protocol 141:18
process 31:3 75:11	55:14 65:4 72:19	31:14 35:12 155:9	186:19 192:2,5
200:7 201:9,17	75:7 87:14 91:18	234:12	216:19,22 217:4
02:6 204:5 205:	97:4 100:21 101	p	222:17 223:22
218:1	120:6 141:18	p	tocols 226
processes 98:7	156:9 201:18	76:	proud 194:21
produce 15:18	212:18 214:5	proof 28:12 78:15	prove 118:9
38:20 48:7,11	235:17	81:1	207:18
17		propagation 28	proven 21:14 78:8
produced 52:		p	rovide 31:7
produces 44:10,20	programs 26:16	properties 212:16	35:16 37:9 56:8
47:7	2,18 31:2,8	213:11,13 231:2	65:6,8 67:9 80:19
producing 37:5	31:12 33:2 34:7	property 84:1	88:19 89:7,11
51:8	63:9 68:21 69:1,6	prophylaxis	102:19 138:22
product 25:4,9,14	147:5 211:6,12	177:16 178:2	172:16 210:9
25:15 26:1 30:11	236:10 238:19	198:2,12	211:4,11 234:8
30:13 31:1 33:6	239:18	proportion 145:11	237:14
37:10 52:5 75:11			


$\begin{aligned} & \text { provided } 37: 17 \\ & 64: 1979: 1291: 15 \\ & \text { 92:8 164:6 234:15 } \\ & \text { 239:8 } \\ & \text { providers } 5: 16 \end{aligned}$	$\begin{aligned} & 123: 2,17,18,19 \\ & 130: 22 \text { 131:22 } \\ & \text { 133:7 142:17 } \\ & \text { 143:18 154:20 } \\ & 168: 12 \quad 169: 5 \end{aligned}$	qualification 91:15,18 $211: 9$ qualified $\quad 85: 20$ $241: 6$ qualify $69: 2$	149:16 $156: 5$   $157: 21$ $158: 11$   $206: 15$ $208: 8$   $217: 21$ $231: 12$   quoted $115: 5$
provides 44:1	172:19 232:11	qualifying 87:7	$\mathbf{r}$
66:19 67:10 85:2	234:4	qualitatively 50:4	r 3:1
86:2 173:3 227:8	punjab 70:12		r01s 232:8
providing 64:18	purchase 41:15	quality 60:20 61	r21 137:11
proving 231:9	purchases 192:4	61:9 63:1,4 66:20	r33 137:11
proximity 23:3	purdie 1:17 55:14	66:21 67:3,14	r34s 232:8
proxy 149:9	55:18,21 234:18	70:20 112:1	rabbit 50:14
psychiatry 67:18	234:21	150:20 235:4	$54: 13 \text { 234:3 }$
pub 112:21	purpose 5:3 66:5	quantitate 49:21	race 146:11
public 1:1,9 57:22	93:16 163:12	quantitative 75:6	racial $16: 18$
65:7 71:8 76:6,18	186:11 208:6	207:20	$\begin{array}{ll}\text { radar } & 31: 12\end{array}$
76:20 78:10,12	226:20	quantities 156:20	radiograph 14:5
95:2 100:3,14,15	purposes 48:21	quarterly 60:10	15:2
158:16 190:21	91:13	question 14:18,22	radiogra
199:18 226:4	pursue 32:20	49:15 124:17	$13: 15107: 15$
227:5 241:18	pursuing 43:21	130:15 168:22	radiography 53:5
publication 39:20	push 99:22 215:16	174:3 177:9,13	radiologic 123:8
94:20 117:11	puss 17:18	179:15 183:12	radiological
154:16	put 8:1111:22	187:8,16 201:11	131:
publications	40:22 42:12 48:	207:3 214:3 219:8	
112:19 155:4	52:6 101:7 105:18	221:4	131:19 132:4
164:18 230:15	107:13 131:5	questions 22:18	133:1 134:11
publicly 211:13	146:3 148:17	23:10 37:18 70:17	35:3
publish 154:15	172:5 196:5	168:9 169:16	rafael 23:7
published 35:8	197:19 220:10	173:18 174:18	$\text { rainfall } 9: 1$
39:18 44:9 47:8	223:2 227:15	191:1 209:6 223:1	raise 180:19 184:6
65:1 90:10 95:22	putting 8:7 216:11	236:18,20	$184: 8,12214: 2$
165:9,16 202:1	227:8	quibbling 100:2	raised 138:15
228:14 229:6,16	puzzle 138:12	quick 3:4 23:20	139:11 173:21
pull 80:20 222:18	puzzled 208:8	71:16	180:11,19 236:2,7
pulmonary 13:14	pyrimidine	quickly 31:1 46:10	236:21
14:2 15:3,18,22	129:19	68:9 108:13 136:4	raising 184:10
32:4,12 36:15	q	136:13 147:	ran 151:9 192:5
42:9 45:4,13 53:4	q\&a 130:19 174:1	$\begin{array}{cc} \text { quite } & 27: 17 \quad 60: 19 \\ 72 \cdot 4 & 06 \cdot 27 \\ 101 \cdot 4 \end{array}$	random 14:5
$84: 19102: 9$ $106 \cdot 13107 \cdot 5,16$	$\text { q. } 12 \quad 98: 11$	$72: 4 \text { 96:22 101:4 }$	randomized
106:13 107:5,16	q. 8 98:12	103:5,20 110:3	130:15 146:15
108:2 109:11,19	qid 208:12,21	111:6,16,17	166:1,13,17 191:6
111:13 115:12	qidp 85:22 86:1,4	127:11 135:6	224:6
122:18,21,22	86:7,9 97:17	139:8 143:5,22	


range $7: 1212: 18$	real 45:19 71:21	213:1 221:6,7	reconstructive
14:10,12 54:2	71:22 72:10,20	222:1 223:17	60:13
58:22 98:22	73:5,10,14,14	7,10,15	convene 128:12
204:13 207:7	74:1,2,3 75:9,10	227:11 228:6,11	ecord 66:19
228:21	99:21 100:8 135:7	236:22 237:1	241:8 242:5
nging 2	179:7 194:18	240:21	ecorded 241:5
rapid 33:5 44:1	204:16	really 8	ecording 233:9
177:4		reason 82:3 98:20	240:2 241:7 242:
rapidly 2	realize 163:13	42:11 147:6	recordings 5:1
42:1 48:22 49:3	realized 65:18	196:16	cords 66:17
rare 151:17	really 5:19 13:20	reasonable 50:5	ecover 79:11
157:11 159:21	20:15 39:4 43:20	130:22	recovering 63:9
shes 15:6	44:7 45:18 50:11	reasonabl	68:8,9
rate 19:8,9	52:5,19 53:6,10	85:5 90:14 12	recrudescence
54:2 70:3 119:1	54:10,22 76:2	178:19 207:7	17:12
119:11 145:5	97:5 102:21 105:8	reasons 8:6,20	recruit 188:1
159:20 213:3	105:14,17 106:16	51:19 61:16 79:9	recruitment 83:5
230:18	107:9,12 108:1	131:5 197:20	150:12
rates 53:10 70:14	109:5,7 110:5	198:8	recurrent 141:12
94:1 110:6,10,11	111:7,19 112:4,16	recall 213 :	duce 80:20
144:18	120:2 123:1,2	received 12:22	reduced 63:4
rating 1	129:10 133:8,12	26:14 71:9 96:3	165:20 241:5
rationale 86:20	135:10 136:14	receives 87:17	reduces 146:7
189:17	137:3,13 139:18	receiving 19:11	reduction 21:20
ationally	140:12 142:22	132:16	35:6 49:16,19
rauseo 157:2	144:11,18 145:12	recognition	125:9,11 166:20
ray	145:21 146:8	recognize 5:12	188:12 189:17
reach 24:7 34:6,9	147:20,20 149	25:15 74:9	redundant 38:8
37:18 45:5 191:7	150:22 151:7	74:10 174:11	reevaluation
205:2 216:16	152:2,18 155:2	recognized 89:1	147:17
eached 155:10	156:14 161:17	103:17 104:5	reexamine 200:9
reaching 216:14	168:5 169:	112:3 155:15	reference $84: 2$
eact 62:5		recognizing 192:8	95:2 116:21
reactions 100:6	175:8,21 176:7,8	recombinant	referenced 120:21
2:17	176:18 179:5,22	27:20 28:6	references 92:19
eactivated 97	182:7 183:4,14	recommend 49:5	referral 172:10
reactivation 19:10	185:14 186:15,21	51:20 190:4	189:6
20:14	190:20 195:2,2,2	recommendatio	referred 112:19
y	195:7 197:8 199:6	16	149:18
readmitted 58:5	200:13 201:13,20	recommended	referring 79:13
17	203:8 204:9,16,19	59:6 141:21 142:2	reflecting 215:4
eadout	205:4 207:10	reconceived 123:3	reflection 223:14
ready 178:12,15	$\begin{aligned} & 208: 4,8209: 8,12 \\ & 209: 17,21210: 8 \end{aligned}$	reconsider 101:8	reflections 225:22


reformulated	related 11:3 67:14	227:16 228:21	reputable 144:2
148:19 161:11	70:20 76:15 150:8	remind 11:22	request 31:3
refractory 141:15	236:13 241:10	remington 114:20	100:22
223:14,15 224:1,3	242:7	remiss 78:11	requested 85:22
224:8 232:10	relates 8:22	remission 17:	86:11 92:6
regard 174:5	relation 157:21	remote 225:9	requester 35:17
2:5 236:3 237:8	ons 144:17	move 68:12	requests 71:9
239:18	relationship 38:21	removed 60:1	require 21:3 31
regarding 141:21	98:10 116:7	122:6 151:16	52:13 53:2 60:10
181:20	201:16	renal 178:17	68:20 78:18
egardless	re	237:17	100:13 105:6
ards	62.19 233.21	red	186:22
egimen 84:16	1:2	renewed 82:20	required 60:12
89:4,13	41:12 242:10	ordered 125	68:7 85:12,16
imens	relatively $22: 2$	repeat 140:3	88:1 185:22
region 7:17 11:16	41:9 109:7 154:20	201:10	requirement
regional 215:13	171:1 224:11,16	repetition 129:12	123:22 126:11
regions 9:19 11:12	release 27:5 180:3	replicated 94:21	186:9 188:10
11:12 30:3 94:10	230:1,21 231:10	report 72:9 90:16	215:8,9,17
101:22	239	182:15 210:6,10	requires 39:7,9
gularly 79:6	released	reported 1:9 51:3	45:10 47:15
regulators 75:9	releases 7:5	66:18 67:17 69:16	111:19 131:13
regulatory 25:6	relevance 121:16	90:11 94:2 143:11	144:14,19 221:20
29:10 75:8 82:11	179:16	235:19 238:6	rescinded 87:6
83:7 84:3 92:10	relevant	239	research 6:12,13
147:19 205:5	9:6 92:11 93:1	reporter	24:13,18 25:3,5,6
207:17 209:5	122:14 144:12	reporting 72:14	25:18 27:7,9
211:2,7 235:10	151:22 210:5	reports 77:1	28:16,17 29:19,20
reimbursed	reliable 47:17	165:13 166:14	29:21 30:5 36:9
145:18,20,21	50:14 209:1	209:	38:1 40:13 64:8
146:22	relie	re	64:10,11,12,12,17
reimburse	relie	75:16	64:18 67:11,14,15
146:2	reluctance 1	representative	67:17,19,21 69:19
initiated	213:16	74:16	69:21 70:2,4,19
reinvigorating	remainder	rep	79:20 142:19
199:11	remained	27:3	150:1 170:5,13
iterate 9	remains	repres	171:6 199:15
oin 4:20		234	201:4 214:5
labeled 191:20	rem	reproduce 121:18	226:14 232:12
relapse $17: 8,12$	remarks 127:21	reproducible	234:13 238:3
110:6,11 119:11		122:10,16 127:16	researcher 67:7
relapses 108:12	remdesivir 118:17	repurposing 72:2	researchers 5:16
112:10	remember 19:7 $65: 16218: 7 \text { 227:4 }$	73:18,21	26:4 73:13


resemblance	135:1 213:3	106:11 217:12,13	risk 8:12 9:3 16:7
95:12	217:20 224:15	217:20 218:1	16:12,17,19,20,22
resembles 154:6	responses 106:7	reviewed 211:10	19:10,21 20:6,10
residency 153:17	107:4 108:5,22	217:1	20:11 25:9 30:12
residents 9:4	131:12	reviewer 82:7	39:2,14 42:13
residuals 13:14	responsibility	218:2	43:15 47:14 69:2
14:3	148:6	reviewing 66:17	77:11 80:3,20
resistance 197:22	responsible 143:1	reviews 157:1	131:5 152:14
198:7 206:10	145:19	revised 123:14,17	161:2 182:22
resistant 84:17,18	responsive 108:12	revisions 117:15	187:6 226:2
resolution 17:9	161:17 209:11	revisit 237:6	233:17
155:10	rest 13:16 145:8	revolving 73:22	rival 170:16
resolve 15:15	226:3	rewarding 66:1	rob 1:17 55:13,18
68:12	restricted 26:1	rex 2:2 127:9	55:21 71:7,20
resolved 19:17	restrictions	128:7,22 129:2,5	73:2 75:17 126:15
resolving 15:17	151:21	133:20,21 134:5	robust $26: 12$
resounding 22:14	restrictive 68:22	159:7 178:4	33:14 51:12 139:3
resource 67:13	result 62:20 118:5	180:18 188:3	139:19,20
76:3	165:20 185:6	192:17 194:12,15	robustly 147:21
resources 25:17	202:10	206:19,20 222:19	rockville 179:18
30:2,17 65:8	results 35:7 72:22	rex's 181:22	role 21:10 65:4
200:3 217:17	99:1 106:7 111:3	rfa 203:4	85:14 91:2 169:13
233:15	126:20 127:2	ribs 17:21	169:15 238:20
respiratory $14: 10$	154:14 155:8	rich 95:22 97:1	roll 200:9
14:14,16 123:20	200:16 228:14	235:6	rolling 87:5
respond 103:17	230:19	richard 96:11	romero 1:18 71:12
181:1	resume 69:13	154:17 229:10	71:12,15,18 76:5
responded 109:22	resurrected	230:16	room 65:18 98:3
110:1	101:14	rid 111:15	rotate 215:14
responder 126:13	retained 122:18	right 6:22 11:3	218:3
126:13	124:14 126:3,10	14:4 17:15 38:14	roughly $157: 12$
responders	retina $124: 11$	40:2 55:10 79:17	round 31:4 45:8
109:13 125:13,14	retinal 18:4	99:15 106:9	45:14,22
125:14	retreated 17:13	107:19 114:6	rounds 57:1
responding 110:3	retrospect 195:6	124:21 140:19	route 42:9 47:16
110:4 213:4	return 46:18	141:21 161:19	88:14
response 21:20	147:3 192:8,21	165:18 173:8,10	routes 42:848:7
26:6,7 37:2 78:2	216:2	177:18 195:19	routine 51:7
90:18 100:14	returned 153:19	214:13 232:1	royce 2:1113:11
101:7 103:15,22	revenue $152: 10$	240:7	113:15,16 114:1,2
104:11 105:3,14	reverse 96:13,18	rigid 202:16	114:5,7 116:2
105:16 107:2,3,17	review 80:16 81:5	rigor 191:15	128:10 164:2
110:10 111:5,11	86:4,5,6 87:2,4,5	rise 8:20 212:19	177:6,7 180:18
131:10 134:8,10	87:15 92:9 100:21		187:15,17 189:3


207:10	satisfactory 111:5	126:14 134:14	107:19,19 108:3
rsa 200:19	save 172:19	135:11 188:5,7,8	109:13 116:3
ruffled 46:10,11	saving 66:7	188:12,15,17	124:8 133:14
rules 121:10	231:11	189:15,16,16	134:20 140:12
ruling 8:11	saw 57:1 104:15	scored 21:16	141:6,22 142:20
runners 146:11	107:11 109:21	159:20	143:19 144:8
147:7	114:7 143:15	scores 107:20,21	149:1 152:8,20
running 74:19	169:3 190:12	107:22 122:7	154:18 157:5,8
160:6	saying 142:13	125:3,8	158:11 162:14
runs 11:5 32:15	184:15 202:14	scoring 21:13 22:2	163:22 164:22
rupture 45:15	222:7	22:3,6 67:16 90:9	165:21 173:21
S	says 231:6	107:11 109:20	174:10,15 177:6
S	sbir 27:6,11	114:11 207:11	180:11 181:7
$\operatorname{sad} 137: 18$	scale 31:16 99:15	235:20,21	184:17 187:21
$\text { sadly } 80: 1$	196:8	screen 25:11	189:13 198:12
safe $78:$	scales 121:11	129:4	203:12 204:22
202:20	scan 17:19	screen's 156:1	205:8,12,17
safeguards 92:1	scedosporium	screening 33:6	206:18 209:20
safely 5:7	129:22	231:12	211:20 217:18
$\text { safety } 35: 2136: 2$	schedule 33:22	scynexis 140:8	218:15 220:22
36:4 39:3 40:10	128:13,16	sea 82:8	221:15 222:11
85:8 91:20,21,22	scheduled 173:10	search 117:9	228:3,20
92:2,4,5,6,14	schito	second	seeing 30:4 150:11
117:20 137:14	school 6:11 12:1	16:15 60:3 66:9	184:5 187:14,19
139:21 178:19	69:14	93:4 114:11	205:15
179:2,4 183:1	science 28:20	117:14 126:15	seeking 45:21
sake 56:16	31:18 75:8 78:14	146:3 148:14	57:14 87:22 150:8
$\text { sales } 161: 6$	118:13 206:14	150:13 156:9	seen 14:3 15:10
saline 4	sciences 35:2	206:21	41:18 82:20 94:16
44:14 106:4	159:3	secondary 10:9	101:8 138:9 186:2
salvage 213:3	scientific 5:4,13	111:15 119:3	186:17 189:4,9
samples 192:13	29:4 71:13 103:6	seconds 4:13	200:18 214:16
sampling 50:19	103:8 112:16	section 123:17	215:16
$\operatorname{san} 6: 1210: 14$	scientist 38:2	125:17,20	sees 63:18 105:8
$2231: 18$	scientists 5:15	sections 122:8	203:10
102:8 176:11	sclerosis 181:6,11	124:1	segment 153:4
sands 101:9 120:2	238:14	sector	seizures 48:18
127:4 168:10,22	scope 24:2	see 3:18 4:6 10	select 32:9 33:20
antorius 121:22	score 21:19,2	11:6 17:20 48:3	selecting 89:2,4
sars 197:6	107:14 116:19	49:11 51:16 55:10	198:3
97:6	117:7,15 121:10	58:19 74:7,19	selectivity 136:17
	121:17 122:3,8,12	94:2 98:18 99:1,4	self 60:18 66:20
$128: 3$	122:19 123:3,5,11	100:5,15 101:17	196:2 210:6,9
	123:14 125:10,11	102:3 106:5 107:4	226:2


sell 117:22 146:8	session 4:6,15	shifts 193:5	signal 92:5
159:14	5:21 6:2,8 81:16	ship 38:22	signals 73:691:22
selling 158:16	81:20,21 162:3	shoot 189:9	signature 241:16
161:11,13	173:17 233:14	short 55:9 161:1	242:14
sems 206:13	235:8	164:17,21 224:16	significance
send 180:21	sessions 233:12	224:18	120:11 191:8
sense 42:12	set 21:2174:16	shorten 14:20	significant 35:5
120:15 163:17	104:17 123:13	shorter 32:17	39:1 40:20 41:4
187:20	135:7 176:18	shoulders 17:21	53:17 87:12 92:5
sent 194:2	179:4,5 181:7	shoutout 164:7	93:12 97:11 101:3
sentence 57:20	188:8 198:13	show 22:14 42:3	109:6 110:6,11
199:17	204:7	45:20 87:10 95:12	112:2 116:14
separate 123:4	sets 43:4	98:9 117:19,21	119:11 122:12
serial 28:3 49:22	setting 39:17	120:8 130:13	132:12 144:19
50:19 153:13	74:21 75:2	145:21 152:2	146:16 151:18
214:21	settings 85:11	161:4 173:21	152:14 161:12
series 19:5 106:10	seven 32:771:11	178:8,9,10 204:17	193:12 206:3
112:7 120:16	96:8 97:13 132:9	showed 97:2	significantly
123:22 141:8,9	severe 61:4,5	166:18 230:19	41:18 108:5
157:8,9 165:14,15	63:16 64:20 67:1	showing 17:18	146:17
167:3 227:2	104:12 116:12	19:1 96:5 107:20	signs 15:13 48:15
serious 84:12 85:2	123:2,18	118:13 119:16	48:17,21 50:12
86:12 141:16	severity 58:2	shown 25:4 26:11	silico 34:19 178:14
212:21,22 213:21	62:12 122:8 123:6	34:19 98:11,17	silicon 158:14,15
serologic 21:17	sf 127:3,6	104:6 117:8	siloing 203:7
22:9 107:2,17	shaman 97:3,8	shows 7:6 11:13	silver 1:8
213:20 237:22	shane 92:21	14:2 17:14 99:13	similar 32:18
serological 90:13	shaping 138:3	228:2	45:21 48:2 50:16
serology 53:5	share 56:10,17	shrank 124:16	53:14 54:2 56:18
135:3 179:19	63:13 64:20,22	shrink 124:15	83:2 96:5 121:3
serum 53:5 108:16	71:3 113:18 145:2	shubitz 1:16 37:22	134:20 137:7
served 172:10	145:7,12 155:5	38:1,4 88:12 96:5	148:13 151:8
237:4	shared 112:18	98:15 155:6	212:16
serves 113:14	240:9	sick 42:4 46:8	similarly 104:6
services 23:17	sharing 56:5,16	54:1 111:17 181:2	simple 35:11
25:17,19 26:15,20	103:5 112:15	188:5	42:17 70:16 77:19
27:1 30:9,12,18	sharply 155:19	side 11:3 59:9,16	135:10 136:5
31:7,14,17 32:2	shavings 46:14	60:14 61:2,4,8,13	144:5 199:17
32:22 33:3,8 34:3	shelves 197:19	61:15,20 62:3,10	simplified 31:3
34:16 35:14 64:5	sherwood 104:16	69:9,12 109:2,3,5	simply 100:9
137:12 193:13	she'll 82:2	111:6,22 113:7	105:13 107:3
serving 196:2	shifted 192:9	115:8 136:20	110:22 111:10
226:2	193:4	220:17	142:9 159:4
			195:10 199:8


simulation 231:10	25:5 26:11 33:11	smart 134:17	Soon 38:13 59:21
sincere 234:18	37:16,17 42:20	smartphone 72:6	82:2 154:15 156:3
240:8	51:15 75:14 84:2	smith 115:9	sorry 18:895:18
single 24:634:17	99:12 102:2	smooth 44:20	133:22 136:1
35:20 36:2,4	113:21 114:3,6,9	smoothly 3:18	154:19 155:12,22
75:15 89:19 96:9	115:19,20,22	snail's 133:1	156:2 184:11
112:20,21 119:3	116:3,18 117:5,17	snapshot 74:13	197:12 220:8
121:9 186:4	118:1,10,14 119:4	snowstorm 98:3	223:12 225:7
sinus 56:21 57:2	120:7,12 121:5,13	social 64:5	230:13
site 17:9 18:7 35:1	122:13,17 123:8	society 103:1	sort 131:15 147:9
89:7 124:6,7	123:15,15 124:3,6	socioeconomic	160:13 172:11
sites 7:10 17:6,8	124:9,13 125:6,16	64:1 151:1	175:22 176:18
17:19,21,22 21:17	126:2,9,14 127:12	soft $17: 1721: 12$	182:18 192:17
23:1 89:1 117:4	127:18 144:8	108:2	196:7 205:19
122:11 124:10	147:11 148:13	soil $7: 1,2,5,12,18$	206:6,7 216:12
143:22 144:1,2,2	154:5 156:7	8:9	219:21
149:10,21 215:1	162:11	solicitation 201:22	sound 3:4 23:20
233:20,22 239:13	slide's 155:22	solid 152:22	71:16 102:14
239:15	slides 4:22 38:14	177:22 237:12	227:11
sitting 46:13 201:7	56:4 123:9,13	soluble 104:18	sounds 201:12
situation 104:14	130:14 135:19,22	solution 116:15	source 11:14
six 21:5 57:11,16	136:4 153:12	153:6 159:11	64:18 198:4
58:20 64:11 86:5	154:8 162:12	199:5 203:12	sources 115:3
106:21 111:8	slightly $12: 18$	221:10	south 77:8 233:20
186:14	115:12	solutions 93:13	southern 52:18
size 50:18 220:5	slope 109:14	97:16 158:20	souvenir 13:16
220:16	slot 34:17 124:10	196:19	space 18:21
sizeable 183:22	slow 135:2	solutions' 26:22	159:17 178:22
skeletal 17:20	slowed 97:5	solve 80:11 185:2	194:20 198:7
110:2	slowly 22:2 131:7	201:5 221:6	206:10
skills 241:9 242:6	small $26: 339: 15$	solved 132:15	spaces 195:15
skin 13:10 14:15	40:19,22 52:10	190:6	span 224:16,19
15:6 17:5,16	54:9 92:3 94:7,12	solves 188:7	spanish 70:10,15
46:17,18 59:22	105:21 113:13	solving 203:6	spans 25:5
60:4,9 103:18	119:22 152:10	somebody 185:10	spark 127:21
106:6 123:15	155:9 156:11	188:1 202:15	sparse 7:18
124:2 132:12	167:20 168:4	206:17 207:1	speak 4:1,9,12
180:2	177:14,19,19	216:1	20:5 38:7 54:22
skip 62:9	181:21 185:12	someone's 180:3	55:16 56:3 81:12
skipped 114:9	224:1 236:8	somewhat 120:14	148:12 173:22
155:13	237:10	129:11	196:22
skull 17:21	smaller 139:22	sonoran 7:15,21	speaker 4:14,16
slide 6:6,19,22 7:2	145:14 204:21	sonya $242: 2,15$	4:17,22 6:9 23:15
7:6,8 8:17 13:7	224:13 226:14,14		55:13 71:11 82:6


102:5 113:10	spinal 18:18 48:12	standard 83:14	statistically 40:20
135:15 140:6	49:6 50:3 51:1,2	86:6 88:4 89:13	41:3 53:17
148:4 153:4 162:3	126:3,6	106:19 142:9	statistician 164:9
speakers 3:114:1	spinoff 93:15	145:22 146:5,15	176:22
4:4 6:7,8 55:6	spirit 127:21	178:13,19,20	statistics 51:12
70:15 71:10 98:8	spite 65:19	183:17 217:20	118:13
124:10 129:9	spleen 48:4 50:2,9	218:1	status 90:17
150:19 159:5	spleens 49:6	standardize	statutory 85:7
speaking 65:17,21	spoke 153:10	189:14	88:4
speaks 142:4	218:9 222:1	standards 85:8	stay 4:3 128:15
spearheaded	spoken 38:15 61:6	standpoint 209:5	195:10,11 196:12
114:14	70:10 184:6 199:7	stanford 5:22 6:4	staying 133:12
spearheading	sponsoring 153:9	6:10	steadily 134:6
98:8	sponsors 35:17	stanley 79:4	step 31:1136:18
special 19:4 21:3	92:15 112:22	start 23:14 45:15	36:20 240:6
27:7 68:17 178:16	193:7 234:17	48:16 72:4 81:15	steps 28:22 239:2
198:13 237:8,11	spore 78:4	102:21 137:18	sterile 96:8
specialist 57:2	spores 7:543:17	147:16 173:11	steroids 166:14
113:12	44:12 47:6	174:13 182:12	stevens 1:14 6:9
specialists 189:5	spread 9:16 10:3	199:14 215:14	6:10,14 23:12
specialty $148: 5$	11:10 17:3 25:3	started 6:16 10:13	24:20 93:17
species $8: 14,16$	45:6	32:14 58:3 59:1,3	107:13 114:18
24:19 27:14 35:19	spreading 11:14	59:21 60:4 97:10	115:2 132:10
51:7 54:1,4	spreads 13:20	106:16 107:10,14	164:1,20 182:10
specific 15:4,10	62:6	108:3,10 109:9,12	205:22 214:9
25:8 72:18 116:20	springs 1:8	112:14 118:18	228:3,4,8
116:21 119:7	spur 204:10,19	128:14 163:2	stick 4:2
121:8,9 124:1	spurts 53:16	starting 34:13	stilted 217:22
135:12 161:7	sputum 15:9	94:18 106:12	stockholder 93:12
168:1 174:6 187:8	108:7	112:9 166:19	stop 49:11 61:16
specifically 117:9	squamous 60:1,11	startups 158:14	73:9 75:19 76:4
specificity 15:13	squirting 39:16	stat 114:19	200:12
specified 49:12	stable 14:3 131:15	state 5:5 8:4 34:8	stopped 110:12,20
spectrum 5:10,12	131:20 134:8	36:4,6 44:3	111:2 169:13
31:13 90:5	135:4	131:15 152:21	stopping 49:13
speed 10:13	stack 152:	225:8 241:19	192:14
spend 9:4 56:15	staff 27:5 29:11	stated 213:15	stops 156:3
69:15 118:2 196:6	stage 28:13 52:2	statement 142:12	stories 71:4 160:7
spending 60:7	86:17 216:13	175:14 202:20	storm 3:16 9:17
spent 57:14	stages 33:2 75:1	states 23:3 239:16	9:20 11:6
158:14	stall 30:16	statistical 164:6	story 11:15 56:18
spherules 45:9,14	stand 212:10	172:17 173:3	56:20 129:14,14
46:1	213:11	$\begin{aligned} & 191: 8 \text { 198:17 } \\ & 226: 7 \end{aligned}$	156:12 196:12,18


strain 28:2 44:13	41:7,10 45:12	110:20 111:2,7	suba 172:2
46:12	47:8 53:11,11	112:13,15 118:17	subcommittees
strains 33:17 41:6	54:10 65:2 70:5	119:9,10,11,20	227:2
strategies 5:6	83:21 88:3,8,13	120:2,3 123:6	subcutaneous
28:18 96:15	89:20 91:22	127:1 130:10	124:5
212:20	102:20 103:9,22	132:8,17 133:17	subgroup 163:21
strategy 96:13,15	104:5,16 106:10	137:18,19,21	163:22 164:15
156:13 212:6	108:15 109:7	138:14 139:9,22	173:2
streamline 238:19	112:3 113:2 116:8	141:15 143:14,15	subject 116:11
239:17	117:6 119:8,12,18	144:2,9,10,19	137:2 155:3
streamlined	123:1 124:22	147:21 149:6,7	180:13 183:14
147:19	136:22 137:14	154:10 155:11,16	184:1 196:1
streamlinin	139:1 141:12	163:1 164:5,19	subjects 36:3,5,15
236:10	142:14 143:3	168:10,21,22	97:22
strength 165:21	144:14 154:17,19	169:21 170:2,8	submission 86:1
167:1	155:2,7 162:19	171:6,15,22	87:4,17 200:1
strengthening	163:20 164:11,11	174:21 175:19,20	submit 221:9
29:7	164:12,13 168:1	176:19 177:1,15	submitted 158:21
stretch 121:4	168:19 170:1,6	178:15 179:4	subsequent 77:22
stricter 167:9	171:9,10,16	180:5 183:21	155:2
stroke 18:16	172:13 173:5	186:5,12 189:11	substantial 66:22
strong 76:18	175:3,22 176:11	189:15,18,18	78:18 87:11
152:3 174:21	177:2,9,16 178:2	191:21 192:6	103:20 117:22
175:5 201:8,15	178:20,21 179:3	194:1,3,9 201:15	145:7,11 177:21
stronger 76:18	182:3,7,19 186:1	202:7 205:21	183:15 188:8
strongest 152:5	186:3,4,5,6,7,14	213:3 215:1	substantially
strongly $72: 8$	186:22 187:4	216:10,12 217:8	143:9
strove 28:21	190:15 191:4	219:3,9 220:20	substrate 95:13
struck 208:3	198:12 203:4	221:8 223:14,21	154:7
structurally	204:3,12 221:22	224:11,15,18,19	success 22:21 23:4
140:18	222:17 224:1	227:8 228:19	119:14 125:11
structure 154:6	226:10 227:11	229:8 232:9	126:11 131:12
158:13 163:16	228:10,17 229:3,6	235:15 236:11,13	159:20 160:22
structured 74:14	229:10,17 230:17	237:2	161:1 188:18
structures 157:20	231:12 237:20,21	study's 144:15	successful 17:9,10
students 10:20	study 32:1733:15	studying 93:7	19:19 21:20
11:1	33:16 34:17 36:1	106:13 116:9	175:21 176:17
studied 83:20 91:6	36:12,18,21 37:4	119:21 150:8	202:10 204:5,9
175:11 183:18	53:19 91:21 92:7	184:16 229:1	217:3
224:4 228:13	96:2 97:22 101:11	stuff 178:14 196:9	successfully 13:4
229:2 234:2	102:22 103:3,11	208:9	19:17
studies 12:17	105:6,8,19 107:11	stumbling 179:7	successive 16:1
22:15,18 31:6	108:7,20 109:9,10	sub 131:13	suffer 66:22
33:1 36:11 40:13	109:15,20 110:18		194:18


suffered 126:19	64:5 69:3 78:12	survey 69:1870:9	synergistic 219:20
suffering 126:17	78:13 81:4 86:17	surveys 69:17	nergy 220:7
133:13	99:3,7 100:17,18	70:7,18	synovitis 107:7
suffice 186:12	101:13,17,19	survival 32:11,16	synthase 95:14
sufficient 33:15	103:8,8 138:9	49:5,9 71:1 88:16	140:17,18,22
79:12	147:14 153:8	survive 46:21 63:5	141:7
sufficiently 79:11	164:7 167:6,11	209:9	synthases 95:15
98:19	168:6 172:17	survives 84:6 90:4	synthesis 154:7
suggest	173:4,4 175:4	235:2	system 4:12 18:7
110:18 168:14	182:13 183:14	susan 5:21 6:3,3	18:21 22:3,6 32:3
199:20	185:22 186:7	23:12,19,21 37:20	41:15 90:9 107:12
suggested 127:6	190:15,16 192:1	55:3,20 71:7,17	109:21 114:11
169:22 223:21	193:12 198:17	76:5,12 81:13	121:10,17 122:3
suggestion 126:21	199:9 200:19	suspected 140:21	122:12,19 123:3,5
135:9 162:21	204:22 210:21	suspension 42:15	123:11,14 125:10
suggests 219:19	212:7 213:16	42:16 44:18 51:21	126:14 127:14
suite 30:10 31:6	214:6 216:7	suspension's	131:21 188:5
32:22	217:15 219:2,15	44:18	207:12 217:9
sum 21:18	227:9 234:8,11	sustain	218:3,4 222:9
sumathi 185:10,17	237	sustainabilit	229:12 235:2
185:20 232:17,19	supported 87:16	48	systematic 224:5
232:20 233:1	101:	sustaining 195:21	systemic 161:4
240:18	supporting 24:18	sweating 60:18	systems
sumati 2:8	27:12 91:14 175:1	wift 41:8	67:16 78:1 124
summarize 99:22	213	swing 190:	235:20
233:5	su		t
summarized	88:2,7 89:7	switchin	
summary 54:7	supports		5ble 5:18 226:6
92:8 111:9 134:22	18	sympathetic	tablet 130:7
summer 59:4	su		tachypneic 46:13
summers 7:17	sure	symptom 36:20	tackling 26:4
60:7	4:17 118:4	50:20	$\text { tacky } \quad 118: 21$
sun	:22 177:17	symptomatic 12:8	tagalog 70:12
superior 145:22	184:7 194:1	1,18 111:16	tai 99:7
superiority 89:17	219:17 221:	115:11 132:9	tail 113:18 114:22
supplemental	229:13 238:22	sym	tails 161:10
133:11 162:6	su	15:9,13	take 8:18 23:10
supplies 144:20	su	:8 57:5 69:12	51:9 55:17 70:
supply 156:19	surgery 60:	32:	100:10 101:15
support 24:3,6	surgically 43:12	135:7 210:4	5
25:2,9,14 26:16	surprised 68:5	syndrome 1	$45: 7 \text { 147:4 152:6 }$
27:16 30:10,22	101:4 208:8	syndromes 131	
33:1,14 36:11	surrogate 84:7	135:13 207:8	170:8 174:17
37:10 38:19 56:11	85:4		179:3,15 185:13


185:17 187:9	talks 8:17 204:11	tendency 17:8	140:10 148:2,3
189:21 209:12	tangible 224:4	tends 22:1	153:3,7,7,8
210:8 217:17	target 88:17 89:1	tenfold 49:22	161:15,16 162:16
240:17	89:7 130:5 159:11	term 144:15,17	173:9,15 174:15
taken 10:5 11:4	168:4 210:19	181:14 182:19	174:16 175:12
137:9,22 152:16	targeted 29:15	terminated 144:3	177:5 179:14
241:2,11 242:9	149:8	163:8	180:10 181:16,17
takeovers 192:4	targeting 26:13	terminology	187:13 202:22
takes 4:13 8:18	27:12 31:8 37:11	125:12	206:18 211:20
45:5 53:13 151:7	targets 172:21	terms 49:8 54:5	214:8 218:19
186:1	task 26:4 34:18	93:11,13 94:1	222:14,21 224:20
tales 112:15	233:5	119:8 125:8 138:3	227:21 230:7
talk 9:13 12:5	tb 214:15,17	138:4,10,10,16	231:20 232:14,16
13:12 16:10 20:15	teaches 19:15	148:15 152:9	232:20 233:1,2
20:16,20 24:4,7	teaching 64:7	185:21 186:9,20	240:3,16,22
26:1 37:21 38:8,9	team 34:16 37:13	193:13 198:11,14	thanks 6:2 23:13
38:12 42:7 52:15	64:11 87:2 159:9	205:15 212:7	71:15,19 75:21
55:10 61:17 71:20	216:15	229:14 239:2	129:6 136:12
80:10 82:14 83:6	teams 29:20	terrible 126:6	140:5 148:2,9,10
88:11 90:12	technical 54:15	terribly 178:6	153:1 190:8
103:12 107:14	technically $44: 4,8$	tertiary 187:20	194:16 196:15
114:11,12 116:16	47:17	test 12:19 13:10	202:11 234:18
117:5,13,14	techniques 239:6	33:12 56:13 74:5	240:8,19,20
126:16 128:7	technology 159:10	91:3,7,13 103:18	that's 6:21 7:2
137:2 138:8	238:13,15	123:16 180:2	11:4 14:22 20:6
141:14 162:17,20	telephone 98:4	testifying 241:4	20:17 22:7 51:21
184:4 188:9	tell 24:2 34:6	testimony 76:22	54:1,2 66:11 67:3
221:12 230:14	66:11 129:14	testing 29:8 31:19	68:16 71:18 75:6
talked 12:8 13:6	134:9 162:20	33:7,16 34:18	81:15 82:3 94:19
15:15 19:7 57:13	173:14 199:22	54:8 106:6	95:9
109:16 139:8	214:14 219:16,18	tests 91:10	theme 95:10
149:15 156:16	225:13	texas 27:22 31:18	129:13 130:16
159:1 160:3	telling 154:16	35:2	132:2 178:5,20
171:16 172:22	tells 180:3 188:5	thank 3:7,10	235:2
193:10 224:7	194:21	23:10,12,19 24:1	therapeutic 21:14
231:3	temperature	37:19,20 54:21	58:22 90:2 96:10
talking 21:2 37:22	121:19,21	55:6,18,21,22	96:14 99:1 136:19
41:8 45:4 96:14	temperatures	71:2,6,7 76:4,5,10	167:6 189:21
123:1 127:8	122:1	76:14 81:8,11,13	203:9 209:16
150:20 156:7	templated 223:22	82:9 92:22 93:1,2	therapeutically
184:2 187:21	ten 50:9 62:7 86:6	102:2,12,13,18	96:2
200:11 208:16,18	tend 10:20 159:18	112:22 113:7,9,16	therapeutics
230:5,16	159:21	113:17 128:4,7,9	98:15 102:10
		135:13,14 140:9,9	163:1 172:16


therapies 85:3	178:21 180:15	197:22 198:4,7,12	thoughts 113:18
95:4 100:11	182:11,15 193:8	199:7 200:11	128:6 139:11
142:16 151:2	193:10 194:5	201:3 202:9,19	148:14 185:11
158:5 198:9 220:6	195:6 200:9	204:5,9,10,17,20	198:22 199:3
therapy $17: 10$	203:17 204:20	205:3 206:22,22	231:16 239:9
32:10,18 37:2,3	207:13 208:4	208:1,14 209:6	240:10
59:19 87:9,12	209:17 216:6	210:3,11,13,19,19	thousand 13:8
100:1 130:8	219:20 227:1	211:17,19 213:4	14:1 36:12
132:12 144:13	239:9	214:9 215:15	thread 238:9
145:6 146:3	think 8:19 20:17	216:2,18 218:3,7	threatening 84:13
155:18,19 156:3	40:7 42:18 43:7	220:5,7 221:12,19	86:13
164:22 166:20	43:12 44:22 52:5	222:2 226:3,9	three 11:13 13:3
167:19 169:13	52:16 55:8 76:21	227:5 228:20	22:2 42:3,4 50:9
177:15 188:15	77:9,18 79:17	229:22 231:2,21	58:9,22 106:5
thereof 195:17	93:19 94:11,16	232:1,11,15	119:2 131:13
there's 3:174:12	95:2 98:20 99:16	233:15 234:2	136:22 145:6
6:20 8:6,20 11:18	100:10,16 101:6,8	236:20 237:3	173:18 174:18
14:12 15:12,16	101:10,15,15,17	238:5,6,12,16	179:15 192:3
16:18 17:8,22	102:2,4 104:15	239:1,2,3,5,12,16	215:14 236:18,19
21:15 31:3 47:10	105:5 106:15	239:20 240:10	threshold 232:11
51:8 67:1 94:7	114:12,16 115:3,6	thinking 33:9	throw 199:3
they'll 48:22	116:10,13 117:16	122:9 125:15	thrown 10:21
they're 9:22 40:19	118:3 119:7,15,19	201:14 202:3	ties 23:6
41:4,9 42:4,21	121:4,12,18	thinks 127:9	tight 124:22
43:7 45:20 46:4,5	122:22 126:22	190:17	161:18
46:17 51:16 52:16	127:11,20 128:12	third 9:11 12:20	tightly 158:4
53:9 54:9 55:7	128:14 130:18	16:15 102:5	tilt 48:18
60:17 61:14,16	139:14 142:20	155:10	time 1:74:2 6:18
63:5 64:20	143:14 145:1	thirdly 151:19	9:17 11:8 14:8,18
they've 13:2 79:1	146:10 147:6	thirds 161:6	15:1 21:22 23:14
thin 46:9	148:12 160:20	thirsty 58:13	25:22 34:19 45:7
thing 7:1 46:22	162:17 163:9	thomas 223:8	45:14,17 49:10,13
47:1 49:9 66:2	164:15,20 170:4,9	thompson 171:13	53:13 54:21 55:8
125:22 139:10	170:10 171:14	175:14,15,18	56:17 57:12,13
159:10 160:19	174:19 175:7	thoracic 48:9	60:6 69:15 71:2,6
161:9 178:1	176:5,16 177:2,6	103:1	75:20 81:9,15
194:22 199:18	177:12,18,20	thought 101:18	82:21 83:18 85:12
229:12	178:1 179:16,18	105:14 107:12	86:1 87:16 93:7
things 3:21 10:11	181:10,12 182:4	109:3 157:1	95:12 102:4 103:4
15:16 16:5 39:16	184:3 186:1,15	162:20 184:20	105:10,12 106:9
62:22 73:9 103:14	187:18 188:4	188:10 190:12	109:2,14 116:13
113:19 117:13,19	189:3,8 190:20	207:2 209:4 228:9	118:2 119:6,7,14
123:14 129:22	192:3,7 194:7	234:5 235:4	119:15,17 120:9
156:1,17 165:22	196:16 197:16,16		128:11,13,15,17


131:9 132:14	76:22 80:10,16	topics 6:15 27:6	transformation
133:14 134:18	81:8,12 93:4	129:12 237:1	104:3
135:4 146:14	106:12 113:19	total 22:4	translate 151:1
147:4 150:2	114:17 116:12,16	touch 76:14 93:13	translating 104:1
155:15 156:5	130:18 138:16	101:11 156:8	translation 79:21
159:15 161:9,15	149:22 150:15	157:13 192:16	translational
165:13 166:19	168:20 171:13	240:17	29:21
173:17 175:9	176:2 178:13	touched 116:8	translationary
176:17 179:1,3	188:9 194:14	tough 33:12	213:8
189:22 193:4	199:8 208:13	105:12	translations
196:6 197:1 199:6	233:6	tourists 9:5	210:18
204:14 215:13	today's 233:12	tox 179:2,4 231:6	transmissible 39:4
217:13 223:7,7	today's 56:18	toxicities 186:2,17	transplant 77:13
224:16,19 227:22	told 57:10	186:18	177:22 198:1
228:1 230:22	tolerance 226:22	toxicity 110:22	237:12
232:1,16 237:5	tolerant 113:5	182:19 228:19	transplantation
timeframe 99:20	tolerate 226:15	toxicology 33:4	20:1
161:18	227:1	54:3 78:15 144:16	transplants
timeline 86:5	tolerated 33:21	182:13	169:18
96:21	tom 139:4 153:16	tr 221:18	transport 40:7
times 19:9 20:9	203:20,22 204:1,8	trachea 43:	trapped 169:8
62:8 63:7 79:1	211:21,21 212:1,4	track 86:7,9,10,22	travel 101:21
96:6 149:2 167:18	214:8 223:9,12	87:18	travelers 9:6
168:9 209:7	224:20 231:15,17	tracked 43:1	traveling 11:11,11
239:19	231:20 232:14	traction 217:5	treat 5:7 21:1,4
timing 88:15	ton 85:4	traditional 84:4	24:14 45:15 49:10
tiny 183:14	tony 101:12 102:5	85:8 146:14 147:6	52:7 61:10 69:11
tips 3:21	102:11 113:9	226:16	72:2,11 77:3
tired 223:4	116:7 164:1	train 10:13,17,19	84:12 85:2 96:17
tissue 16:3 17:17	174:10 175:12,21	11:4	106:20 166:5
21:12 108:2	177:8 183:8	trained 39:8	209:18 224:14
111:12,14 141:4	188:20 189:1	training 77:12	treated 32:6,9
206:12	190:8 214:9 216:8	214:2	46:6 62:1 63:15
tissues 32:9 50:1	tool 107:18 117:16	transcriber 242:1	105:22 108:21
141:5	207:8 211:10	transcript 242:3,5	143:13,14 145:1
titer 21:18 22:9	tools 91:19 208:5	transcriptionist	151:11 168:15,16
63:2 66:12 124:18	211:8,16 238:12	241:6	179:1
124:19 207:13	top 37:1795:18	transcripts 4:22	treating 45:22
titers 124:15	191:21	233:9 240:2	63:14 64:20 67:2
titin 95:13,15	topic 56:18 76:15	transfer 104:17,19	72:13,22 180:22
title 164:19	82:22 140:15	105:13 106:1,2,3	treatment 1:2
today 3:13 5:3,20	238:2	116:8	14:19 18:12,14,16
25:7,21 35:9 38:6	topical 166:11	transferred 97:8	19:18,18 20:2,16
66:13 73:19 75:17			20:19 21:3 22:6


29:22 32:8,14,17	92:18 98:15,21	triazole 169:10	turns 132:1
37:7 45:12,20	118:4,18,20 119:1	222:5	twenty 126:8
47:9 49:3,9,11,13	120:5,18 130:15	triazoles 206:4	twice 48:20 59:10
53:5,9 59:6,12,13	139:20 143:15	221:14	two 6:19 8:14,15
61:3,5,7,21,22	144:20 147:15	tried 120:4 127:8	8:21 14:2 15:6,16
63:22 64:7 66:15	149:4,21 150:4,8	133:4 143:19	18:14 21:6 27:18
67:11 68:2,10	156:13 165:3,9	192:10 193:1	31:22 32:6 36:20
69:10 83:12,16	178:7 183:15	trillions 197:7	40:5 42:3,4 56:22
84:16,19 85:21	185:1 186:12	trimesters 16:15	56:22 62:8 71:9
86:12 88:16	188:11 191:6	trip 156:21	81:16 83:11 94:8
105:20 107:22	194:11 207:16	trips 56:22	94:22 97:22
110:10 111:4,8,12	210:12 213:2	trivial 94:17	114:16 117:19
112:2,11 113:7	214:6 215:2	tropical 3:16	121:7 127:20
120:8 121:2 126:5	216:17 217:7	100:20	136:2,21 137:3
127:2 130:12	226:20 232:8	trouble 59:12	155:11 158:14
142:13 143:15,20	233:21 235:8,11	113:20 114:3	159:5 161:5 165:3
144:6,8,17 145:9	237:14 239:13,18	116:4 122:9	166:17,22 168:13
146:6 155:18	239:18	187:14 203:12	171:15 215:14
162:19 163:6	trials 21:14 22:12	207:18	221:5 227:16
165:1 168:16	22:19 35:16 53:15	true 151:1 $241: 8$	231:15 233:12
178:1 182:1,12	72:173:8 74:5	242:5	type 14:13 63:7
184:18 186:10	83:5 85:7,16	truly 206:2	98:1 104:1,7,10
187:22 188:17	88:20 89:5,14	try 93:20 95:6,10	104:19 139:9
206:5 209:16	90:10,22 91:5,8	96:18 97:10 99:12	174:1 222:20
215:6 220:14	91:17 92:2,3	107:13 113:21	types 15:6119:2
235:9,12 236:13	96:13 101:12	119:19 129:14	186:2
236:16 238:21	105:21 113:13	147:20 151:1	typewriting 241:6
treatments 36:9	117:12,13,17	168:21 174:1	typical 7:20 9:18
59:7,10,15,18	127:10 130:21	194:5 198:19	11:15
62:10 113:5	141:9 144:4	217:9 221:15	typically 7:18 42:5
141:22 151:12	146:12,15 147:16	231:13	44:6 45:15 141:4
240:15	152:13,14 153:21	trying 20:21 95:3	u
tree 160:17	159:2,18 160:6,15	142:21 143:17	u 75:2
tremendous	163:6 165:7,12,18	192:1 214:10	u.k. 196:10
171:11	166:1,13,18 167:2	217:2 229:14	u.s. $7: 10,15$
trenches 72:13	167:7 168:6 176:5	233:5	U.s. $233: 20$
76:3	184:17 187:1	tuberculosis 84:17	u01 139:7
triaged 149:17	191:14 193:21	84:18	uab 164:9
trial 20:22 25:20	198:13 199:7	tucson 75:1 172:3	uc 172:2,5 176 :
35:15,17,20 36:8	200:2,13,20,21	172:7	203:5
52:4 55:17 73:11	203:9 220:3	tumors 111:1	ucla 176:12
82:12 83:9 87:21	222:21 235:14,18	turgor 46:17	ucsf 156:9 176:13
$\begin{aligned} & 88: 189: 10,10,15 \\ & 89: 1791: 1292: 13 \end{aligned}$	236:3,16	$\begin{gathered} \text { turn } 6: 1140: 4 \\ 180: 12240: 4 \end{gathered}$	ugly 110:10

ulcer 17:17
ultimately 193:17
un $184: 8,10,12$
unable 63:5 106:5
unacceptable
111:1
unanswered 168:8
unavoidable 77:3
uncertain 160:18 195:18
uncomplicated 68:6
undereducated 12:16
underlying 41:12 131:2,4
underreported 9:9 143:10
underscored 227:15
understand 5:4
8:13 13:5 24:13
28:14 34:4 41:20
51:6 65:14 82:22
129:16 168:11 185:6 200:18 202:14 217:18 224:12
understanding 29:6 33:18 65:13 116:11 206:8 207:12 237:5
understood 18:13
20:16,20
undertook 103:21
underway 78:10 81:7
undulant 28:11
unfortunate 17:18 unfortunately 38:8 62:21 81:22 106:4 110:20 187:7
unfunded 105:21
uniform 226:6
unique 30:2 65:1
65:13 73:2
unit 36:10
united 23:3
239:16
units 25:20 35:15
35:15,20 36:8 49:16,21 96:6 198:1
universal 223:22
universe 196:1
university 6:11
27:20,21 31:17
35:1 78:6 93:5,9
97:9,9 102:8
162:5 163:3,19
170:3 172:3,7
203:5
unknown 14:22
14:22 179:22,22
unmet 84:14
86:14 100:1 152:21
unmute 230:9,10
unmuted 216:1 240:20
unmuting 4:11
unnecessary 57:1
unpreventable
77:16 80:4
unravel 206:14
unreachable
231:7
unsaid 124:18
unsolvable 184:19
untold 79:7
untoward 100:6 182:16
untreated 18:15 35:7 46:3
upcoming 146:18 155:4 176:5

updated $47: 11$
$196: 21$
upfront $24: 8$
upper $4: 543: 1,2$
$48: 9231: 6$
ups $60: 10$
uptake $151: 13$
urbanization $8: 21$

urgency 118:19
urgent 56:22
usable 211:12
usage 219:9
223:17
use $4: 19$ 20:3 21:6
35:9 41:15,21
42:20 48:14 58:21
66:18 68:20 70:7
70:16 71:21 91:11
91:14,16 94:18
100:1 121:13
138:6 139:7
145:17 162:20
166:10,10,12,14
166:15,15,16
169:8,9 171:15,21
191:2 192:15
195:1 198:8
199:12 207:16
218:3,4 219:1,10
219:11,13,14
220:16,19 221:14
222:3,8 224:12
234:22 235:7,19
236:6 238:11
useful 21:14 90:19
93:21 205:3,7
207:7 230:5
user's 215:8
uses 28:2 134:14
usually 46:4 47:9
47:15 48:16 50:1
53:1 60:17
utility 149:1
utilize 26:18,20
27:1
utilized 80:1
utilizes 67:15
utilizing 45:12
utterly 213:4

$\mathbf{v}$
vaccine $27: 15,18$

27:19,21 28:1,6,7
28:12,16,18 33:2
33:7,7 36:9 76:15
76:16,19,21 77:2
77:10,20 78:4,7
78:16 79:8,14,18
80:3,14,18,20
81:6,10 94:3
101:3 116:18
179:17 214:21
215:2,10
vaccines 28:22 78:22 80:18 95:4 95:8
vaccinology 79:5 valid 181:22 209:11 236:21
validate 56:14
validated 69:16
valley $1: 38: 6$ 10:15 11:5 24:3 24:21 25:1,7,10 26:13,17,21 27:8 29:22 30:4 31:5 31:22 32:4 33:10 36:11 37:11,15 38:2 55:15 56:3,9 56:11,16,20 57:8
57:15,17 61:10,19
62:13 63:11,14,15
63:21 64:2,15,16
65:7,18 66:3,4,6
67:2,5,8,12,15
72:2,12,19 73:8
74:9,12,22 75:12
77:20 79:14,15,16

80:11 81:6 93:8	viable 19:15	w	216:1 227:15,20
93:13,18,22 95:8	220:18	wait 46:22 96:15	230:4
97:16 99:8 100:11	viamet 136:14	113:19 162:13	wanting 216:3
113:14 128:5	vice 148:5	227:18	wants 118:3 182:8
153:6 158:15,19	view 122:5 170:8	waiting 44:17	190:14
161:5 170:3	201:13	65:18 190:19	ward 104:6
205:14 215:6,7	violently $62: 6$	walk 13:15	warming 7:12
221:14	viral 207:21	walker 133:12	washington 3:16
valuable 53:20	virtual 1:8 3:14	walking 14:6,13	7:11 98:2
88:19 150:3	virulence 116:15	59:13	water 58:15
value 110:5	virulent 44:13	wall 157:20	229:17 231:3
120:10 151:18	visible 50:13	158:12	waves 16:2
variability 206:3,6	vision 18:6 57:6		way $3: 229: 15$
224:10	visit 200:3	walsh 211:21,22	10:3 11:10 14:14
variables 122:15	visitors 94:13	212:1,4 223:8,9	16:5 42:10 43:5
variation 149:12	visits 13:3	223:12 231:15,17	46:9 67:6 70:1
varied 135:13	vitro 31:634:19	231:20	72:14 82:19 94:14
238:8	88:2,9 95:21	wang 28	111:14,22 127:10
variety 41:670:11	104:4 108:15		132:4 135:3
102:20 117:3	110:17	20:19 2	160:19 163:18
122:10,11 157:4	vivid 195:13	55:5 68:12	164:4 181:13
210:5	vividly 65:16	69:14,15,20 95:17	188:18 193:4,7,8
various 12:17 25:8	vivo 31:6,21 33:10	69.14,15,20 95.17	195:8 196:3
37:9 88:11 103:9	34:15,18 35:4	14:8,10	203:16 204:7
158:4 178:10	voice 210:7 234:22	$128: 4 \text { 129:16 }$	208:3 210:6
204:3	voices 212:8		217:14 218:12
varying 174:7	volume 212:13,17	138:5 139:10	220:20 222:20
vast 40:12 231:22	volunteer 178:14	40:2 145:21	224:5,13 226:5,10
vehicle $28: 12$	vori 190:1	62:16 164:7	226:16 228:11
vehicles 127:3	voriconazole 59:4	166:10 170:1,7	236:19
venture 78:10	59:5,19,21 60:4,6	173:20 174:11,17	ways 15:16 40:9
226:15	83:17	175:2,13 178:10	164:8 188:1
ventures 23:4	voucher 80:16	180:16,19 181:2,3	196:13 216:14,16
verify $34: 2185: 17$	81:5 100:21	$181: 11 \text { 183:11 }$	217:8
version 127:3	vp 158:14	192:16,18 194:12	we've 99:3,5,6
154:22	vt $26: 2135: 18,20$	$196: 3199: 3$	100:19 101:8,12
versus 37:3 49:16	36:3,5 52:21		117:1,15 122:2
90:6 109:17	83:22 157:8,8	204:4 206:22	123:19 127:7,13
119:10 144:10	vulnerable 175:10	207:16 214:11	128:11 130:17
146:15 169:5	vulvovaginal	$221: 11228$	134:13 137:5,9,10
190:2 191:4,13	141:11	$230: 8231$	137:11,20,22
vertebrae 17:22	vvc 141:12	$233: 2,724$	138:2 149:2 159:
vey $240: 16$			165:11 167:7,13
		197:15 212:5	168:1,3,9,20


170:18 176:8	we're 3:19 16:10	wonderfully	156:17 172:1,3
180:13 184:2	33:9 37:4 64:3,4	128:11 200:6	175:7 208:19
186:2,17 209:7	64:13 67:20 74:19	wondering 201:18	231:1,12
210:11,17 215:12	74:21 75:190:1	won't 19:19 46:20	works 45:2 131:22
218:8 229:1,9	we've 40:3 76:21	word 91:20	178:10
240:12,21	91:7 94:16	153:11	workshop 1:1 3:9
weak 46:15,16	what's 19:22	wording 125:18	3:14,18 5:3 24:5
225:11	41:18 91:2	words 121:10	27:4 28:16 29:1,4
weakness 108:3	whichever 21:6	232:15	29:13,14 38:6
133:9	whilst 151:15	work 5:14 12:11	56:1 140:12
wears 156:2	white 66:13	38:17 40:6,9	205:14 233:12
web 199:16	207:13	52:18 56:10 66:6	234:19
201:22	whites 17:1	66:12 69:14 78:18	workshops 82:17
webpage 5:2	who've 113:4	121:20 130:3,6	workstations 40:5
200:3	who's 23:13 43:16	131:6 132:2	world 7:7 45:19
website 39:22	73:19	155:17,17 157:7	71:21,22 72:10,21
170:4 196:4	who've 3:12	165:17 166:3	73:5,10,14,15
wednesday $1: 6$	wide 41:6224:9	176:14 178:13,16	74:2,3,3 75:6,9,10
week 48:1 59:10	widespread 44:1	178:19 179:10	79:7 94:10 159:1
59:15 62:8 97:22	213:5	189:19 194:9	worldwide 94:8
186:12 221:13	william 163:4	195:3 196:2,8	101:20
weeks 14:17 42:3	205:11,16	198:14 199:22	worrying 185:3
42:5 46:3 57:11	willing 198:14	203:16 208:5	worsening 21:8
57:16 62:7 106:21	wilson's 94:20	214:16 217:9,12	worst 17:6 18:9,14
132:18,20 186:11	win 118:5	217:21 218:1,14	worth 43:20 77:4
weigh 54:19	windows 11:9	238:1,18 239:3	77:18 163:10
214:11	winners 7:17	240:12	227:16
weight 46:9 50:10	winter 9:5	worked 3:12	worthwhile 76:2
124:18 125:4	wisdom 120:20	51:22 52:20 108:1	worthy 118:9
welcome 3:96:2	wise 23:14	117:21 163:18	152:22
55:12	wisely 213:15	164:4,14 166:3	would've 197:5
welfare 48:20	wish 219:18	175:8 190:22	204:15 229:13
went 3:17 25:2	withdrawals	191:22 205:21	wouldn't 13:2
34:21 97:4 98:20	109:2	218:2,13 231:4,4	wrap 134:3 147:9
104:11 107:1	witness 241:3	233:22	160:13 232:17
108:18 110:13	woman 115:20	workers 10:16,19	write 216:16,17
124:5 171:17	136:1,7,9	39:5,15	written 215:7
172:1 202:21	wonder 142:10	workgroup 75:8	wrong 182:4
236:19	201:14	workhorse 54:8	208:15 219:16,18
western 94:15	wondered 105:2	working 10:17	219:18
we'll 6:16 9:13	190:13	28:4 38:3 39:3	$\mathbf{x}$
13:12 27:2 93:13	wonderful 126:5	66:3 74:17,22	
96:14	160:22 202:5	75:4 77:13 102:9	xylazine $44: 20$
	232:7	113:21 149:2	xylazine $45: 2$


y	160:7 192:17
$\begin{aligned} & \text { y 213:10 } \\ & \text { yeah 55:20 71:19 } \end{aligned}$	$224: 7$
	192:19
75:20 76:3 102:18	192:19
116:3 148:10	yesterday's 24:5
150:11 152:8,17	young 77:12
162:11 175:15,17	you'd 52:5
175:18 177:7,17	you'll 4:6,8,15
178:4 179:14	19:6
181:19 185:15	you're $4: 1439: 6$
187:17 190:10	41:2,10 42:18
194:15 208:12	43:17 45:22 46:12
209:4 211:18	49:18 50:2,2,8
221:3 225:12,19	51:8 57:20,21
230:14	you've 19:17 46:1
year 9:8,8,12 13:6	50:682:3
18:11 21:5 27:10	z
31:4 63:16 102:19	z 83:22 93:14,15
115:4,14 119:11	95:11,13,14 96:10
132:18 133:4,5,18	97:4 153:11
137:1 143:8 145:1	228:13 235:16
145:13 148:20	zeituni 1:15 23:16
149:12,12 156:10	23:16,19,22 37:20
161:8 167:16	193:10 199:20
171:15 179:18	234:7,10,15
192:22 197:5	zone 7:16,22,22
229:9 231:11	zou 5:22 6:5 55:1
years 18:14 26:15	55:4,5,12
27:17 30:6 35:22	
36:13 40:17 62:21	
86:2 95:2 97:7,14	
97:18 99:2,5	
103:4 106:11	
107:1 113:12	
126:9,19 132:13	
146:18 150:13	
158:15 163:14	
166:3,11 168:2	
191:20 192:5	
208:6 215:14	
235:15	
yesterday 3:15,22	
82:16 138:15	
139:12,15 147:19	

