Legacy Biomarker Qualification Project Status Update!

Administrative Information
Requesting Organizations
Name: Biomarkers Consortium, Foundation for the National Institutes of Health (FNIH) &

The Radiologic Society of North America, Quantitative Imaging Biomarkers Alliance (RSNA-QIBA)

Addresses: 11400 Rockville Pike, Suite 600
North Bethesda, MD 20852

820 Jorie Blvd
Oak Brook, IL 60523-2251

Phones: (301) 402-5311, (630)-571-2670

Emails: foundation@fnih.org qiba@rsna.org

Websites: https://fnih.org/what-we-do/biomarkers-consortium http://www.rsna.org/qiba

Primary Contact

Name: Linda Doody, PhD; Executive Director, Senior Director Clinical Research and Regulatory Affairs
Address: CCS Associates; 2001 Gateway Place, Ste 350W, San Jose CA, 95110

Phone: 650-691-4400, ext 107

Email: ldoody@ccsainc.com

Alternate Contact

Name: Ying Tang, PhD; Senior Scientist, Scientific Affairs

Address: CCS Associates; 2001 Gateway Place, Ste 350W, San Jose CA, 95110
Phone: 650-691-4400, ext 134

Email: ytang@ccsainc.com

Submission Date (MM/DD/YYYY): 10/02/2018

1 The content you provide in this completed Status Update will be publicly posted as part of the section 507
transparency provisions.



mailto:ytang@ccsainc.com
mailto:ldoody@ccsainc.com
http://www.rsna.org/qiba
https://fnih.org/what-we-do/biomarkers-consortium
mailto:qiba@rsna.org
mailto:foundation@fnih.org

Context of Use

A. Biomarker Category
pharmacodynamic/response

B. Intended Use in Drug Development
As a primary endpoint for evaluating treatment efficacy/response.

C. Context of Use Statement

Radiologic measurements of whole tumor volume are more precise (reproducible) than
unidimensional measurements of tumor diameter. Therefore, longitudinal or serial changes in
whole tumor volume during therapy can identify response earlier than corresponding
unidimensional measurements, resulting in smaller, more efficient clinical trials. Tumor response
or progression as determined by tumor volume can serve as the primary endpoint in well-
controlled phase 2 and 3 efficacy studies of cytotoxic, targeted, or immunotherapeutic agents in
clinical trials of solid tumors.

Drug Development Need

CT imaging technology has significantly improved over the past decades (1). The benefits of
imaging for diagnosis, staging, and re-staging cancer are now well established (2, 3). While
clinical outcomes remain the gold standard for assessing the value of new treatments, clinical
outcomes as an endpoint may not be feasible or optimal in some circumstances. For example, in
certain cancer types with a long natural history, it may take years to reach clinical outcome and
requires a large number of patients in the studies. Additionally the relationship of clinical
outcome to the experimental therapy can be confounded by subsequent therapies, making it
difficult to interpret true therapeutic effects.

Alternatively, imaging approaches, both qualitative impressions and quantitative analysis, have
been proposed to assess the serial changes in tumor burden as an indicator of response to
treatment. The current standard method to measure tumor response to therapy using computed
tomography (CT) remains Response Evaluation Criteria in Solid Tumors (RECIST), which is based
on unidimensional, linear measurements of tumor diameter in the axial plane (4). Because only
unidimensional linear measurements are assessed with RECIST, the much higher resolution data
offered by modern CT scanners or the advanced image segmentation and visualization methods
that can be used on these CT image data sets, available on many commercial workstations, are
not fully used (5). The rationale for volumetric approaches to assessing serial changes in tumor
burden is multi-factorial. First, most cancers may grow and regress irreqularly in three
dimensions. Measurements obtained in the axial plane fail to account for growth or regression in
the longitudinal axis, whereas volumetric measurements incorporate changes in all dimensions.




Secondly, changes in volume are less subject to either reader error or interscan variations. For
example, partial response (PR) using RECIST requires a greater than 30% decrease in tumor
diameter, which corresponds to 65% reduction in volume of tumor. If one assumes a 21 mm
diameter lesion (of 4850 mm? volume), PR would require that the tumor shrink to a diameter of
less than 15 mm, which would correspond to a decrease in volume all the way down to 1770
mm?®. The much greater magnitude of volumetric changes is less prone to measurement error
than changes in diameter, particularly if the lesions are irregularly shaped or spiculated. As a
result of the increased sensitivity and reproducibility, volumetry is likely to be more suited than
unidimensional measurements to identify early changes in patients undergoing treatment.
Another limitation of RECIST criteria beyond measurement precision is that it was designed for
the study of cytotoxic chemotherapies, before the realization of therapeutic success in targeted
and immunotherapeutic drugs and the unique radiographic features associated with these drug
classes.

Studies have shown that it is technically feasible to achieve less than 1% intra- and inter-rater
variability when analyzing well-demarcated tumors with simple geometric shapes on a single
image set (6). Results from "coffee break" test-retest studies have demonstrated high agreement
in volume measurements for pairs of images within subjects acquired after very short time
intervals, with 95% limits of relative measurement difference ranging from -12.1% to 13.4%, and
a mean relative difference of 0.7% (7). A more recent report of test-retest study in lung cancer
patients of the ACRIN 6678 trial using low-dose CT concurred with the previous findings and
showed a mean relative volume difference of —-0.4% + 10.5% (mean # SD), with 95% upper and
lower relative measurement difference limits of -21.0% and 20.3% (8). These findings suggest
that CT volumetry represents a sufficiently reproducible method in determining tumor burden,
and therefore can be relied upon as the basis for imaging biomarkers for predicting therapeutic
effects in phase 2 and phase 3 trials.

Since tumor volume change represents a downstream event of drug effects independent of drug
classes, tumor volume-based biomarkers , if qualified, are likely suitable to be broadly applied in
drug development programs of a wide range of solid tumor diseases and drug classes including
cytotoxic, targeted, and immunotherapeutic agents in phase 2 and 3 oncology clinical trials. A
more sensitive and precise tumor volume-based biomarker has the potential to require fewer
subjects for drug efficacy demonstration and to detect drug effects earlier, resulting in smaller
and shorter phase 2 or phase 3 trials to reduce the cost and to accelerate oncologic drug
development.




Biomarker Information

Biomarker Name, Source, Type and Description
Tumor Volume Change as an Imaging Biomarker Predicting Response to Cancer Therapy for
Patient Management and Oncologic Drug Development; DDT # (DDTBMQ000011)

Type of Biomarker (Check relevant type(s))

Molecular x | Radiologic/Imaging

Histologic Physiologic Characteristic

Other (please describe):

For molecular biomarkers, please provide a unique ID.
Not applicable

Rationale for Biomarker
Tumor volume measured by CT reflects tumor burden and can be measured quantitatively and
with high reproducibility over time.

Mechanistic rationale or biologic plausibility for the biomarker
Endpoints based on radiographic assessment of the change in tumor burden, such as objective

response rate (ORR) and time-to-disease progression (TTP), are frequently used in phase 2 trials
to screen for activity of anti-cancer agents. These endpoints have been proven to reasonably
predict future clinical outcomes in phase 3 trials in a range of solid cancer types, including
colorectal cancer, non-small-cell lung cancer, breast cancer, ovarian cancer and other cancers,
for both cytotoxic and targeted therapies (9-12). More recently in the immunotherapeutic
setting, immunotherapeutic drugs that conferred ORR advantages in early phase studies went on
to show prolonged survival at least in lung cancer and melanoma in phase 3 trials (13-15). These
findings suggest that there is a plausible link between tumor burden change and clinical
outcomes.

Tumor burden has historically been approximated by unidimensional or bidimensional
measurement on CT scans to determine response to treatment or disease progression since
volumes could not be easily or accurately measured. Technological advances in signal processing
and the engineering of multidetector computed tomography (MDCT) devices have resulted in the
ability to rapidly acquire high-resolution images, resulting in precise volumetric scanning of
anatomic regions. Volumetry is likely to be a substantially more sensitive technique for detecting
serial changes in tumor masses than reliance on measurements of lines representing tumor
diameters as defined by RECIST. As a result, volumetry may allow earlier and more accurate
assessment of clinical outcomes compared with unidimensional measurements used in RECIST.




Volumetry could also benefit patients who need alternative treatments when their diseases stop
responding to their current regimens.

Natural history of the disease indication and associated risk factors
We anticipate that the change in tumor burden as measured by CT volumetry can be a

pharmacodynamic/response marker in a phase 2 and phase 3 clinical trials in a range of solid
tumor diseases, including lung, melanoma, and colorectal and renal cancers treated by cytotoxic,
targeted and immunotherapeutic drugs.

The magnitude and duration of change in the biomarker required to demonstrate a clinically
meaningful effect/impact or outcome.
This proposal is to generate evidence to establish the magnitude and duration of change in the

biomarker required to demonstrate a clinically meaningful effect/impact on outcome. Our initial
hypothesis was to validate the volumetric equivalent of the uni-dimensional RECIST response
categories (eg. PD=20% 11D vs 73% 13D vs PR=30% 1D {, vs 66% \,3D) as the default
threshold assumptions for anatomical volume change in response to a broad range of therapies
where tumor shrinkage is the anticipated mechanism of action providing clinical benefit.
Secondarily we intended to examine alternative and optimal thresholds (cutpoints) for response
or progression based on correlation with clinical outcomes in retrospective analysis of
randomized controlled trials. The proposed pharmacodynamic/response markers based on both
approaches will be developed and validated within the CT-Vol PACT Project (See Section IX C
Ongoing Information Collection)

More recently we are exploring alternative methods of assessing the performance of both
unidimensional and volumetric tumor measurements using continuous variable analysis
methodologies, such as tumor growth/regression kinetic modeling, as potentially superior
methods of predicting outcome correlations compared to categorical imaging assessments.

Is there an established “baseline” for the biomarker in the target patient population compared to
healthy controls? Does another measure of disease progression track with changes in the
biomarker that are larger than the standard error in the longitudinal measures? Are baseline
measures different from baseline, i.e., is there a clinically validated cut-off or threshold for
change in the biomarker? If no, can the results of a patient cohort study be used to develop a
statistical model to establish cut-points or a threshold that may be clinically meaningful (see also
Section X. Knowledge Gaps in Biomarker Development).

The separation of the tumor from its surrounding anatomic structures is made possible by
differential radiodensities. In primary NSCLC lesions, Hounsfield units (HU) of the tumor (220 HU
in general) readily distinguish it from the airspace (-1000 HU) and lung parenchyma (-600 to
—-700 HU). In metastatic disease, differentiation of the lesion boundaries and volume within an
organ of comparable contrast and grey scale value may not be as apparent. Target lesions on CT
scans at each patient’s baseline study are selected per RECIST, and each lesion is delineated




V.

using segmentation software. The longest axial plane diameter (unidimensional measurement)
and the volume of a lesion can be automatically calculated by computer programs.

Tumor volume can be measured quantitatively with high reproducibility. Using a dataset of 32
NSCLC patients who were scanned twice during a short interval (within 15 minutes) on the same
scanner under a presumed no-change condition, the 95% limits of agreements for the computer-
aided volumetric measurements on two repeat scans were (-12.1%, 13.4%) (16) by three
readers, indicating that changes in tumor volume outside the limits represent true changes. In
another study using the same dataset, five readers were instructed to read the scans in a “locked
sequential read” manner, i.e., radiologists read the first time point scan, locked their
measurements, and then made measurements on the second time point scan while being
allowed to review their prior measurements on the first time point scan. Using this workflow,
which is more reflective of clinical trials practice, the mean percent difference (+ SD) when
pooled across both readers (five readers in total) and lesions was 7.4 + 44.2% (17). A recently
published report of a test-retest study in NSCLC cancer patients from the ACRIN 6678 trial using
low-dose CT showed a mean relative volume difference of -0.4% + 10.5% (mean + SD), with 95%
upper and lower relative measurement difference limits of —-21.0% and 20.3% (8). The above
limits of agreement are substantially narrower than the volumetric equivalent of the uni-
dimensional RECIST response categories (eqg. PD= 73% 13D vs PR= 66% \,3D), confirming that
true tumor volume changes occurred below these thresholds.

We are currently in the process of developing a statistical model to establish cut-points or
thresholds that are clinically meaningful. We are also developing continuous variable analysis
methodologies such as tumor growth/regression kinetic modeling that can predict clinical
outcomes (18). We have gathered CT images and clinical outcome data from phase 3 clinical
trials sponsored by pharmaceutical companies to support reqgulatory approval. These include
three NSCLC, two colorectal cancer, two renal cell cancer trials of targeted agents; and two
melanoma trials of immunotherapeutics, representing over 7,000 patients’ images (See Section
IX. Evaluation of Existing Biomarker Information: Summaries for details). Of these 10 total trials,
two are placebo-controlled studies, while eight use an active comparator to study the response
of the investigational drug candidates. We will divide the data into the training set and the
validation set. We will use the training dataset to develop statistical models to establish cut-
points/thresholds and to develop continuous variable methods that predict clinical outcomes;
these cut-points and continuous variables will be confirmed using the validation dataset.

Biomarker Measurement Information

. General Description of Biomarker Measurement

Measurement of the tumor volume on CT images should follow the consensus guidelines as
described in the QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) (19).




There are a variety of software packages available that are QIBA complaint, and people using
this biomarker could use any of those packages. Examples of the software are described in (20,
21).

B. Test/Assay Information
Indicate whether the biomarker test/assay is one or more of the following:

i Laboratory Developed Test (LDT) oYes VNo
ii. Research Use Only (RUO) oYesV No
iii. FDA Cleared/Approved. oYes o0 No V Don’t Know

If yes, provide 510(k)/PMA #:_
Multiple scanner vendors and software providers

iv. If the biomarker is qualified, will the test/assay be performed in a Clinical Laboratory
Improvement Amendments (CLIA)—certified laboratory?
oYesV No
V. Is the biomarker test currently under review by the Center for Devices and Radiological

Health or the Center for Biologics Evaluation and Research?
o Yes o0 No V Don’t Know

Vi. Is there a standard operating procedure (SOP) for sample collection and storage?
VvV Yes o No
Refer to QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) should

be followed (19)
vii. Is there a laboratory SOP for the test/assay methodology?
VYes o No
Refer to QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) should
be followed (19)

C. Biomarker Measurement
i. Quality Control

The general procedure described in QIBA Profile: CT Tumor Volume Change for Advanced Disease
(CTV-AD) should be followed (19).

Precision/reproducibility

In a test-retest study using a dataset of 32 NSCLC patients who were scanned twice during a 15
minute interval on the same scanner under a presumed no-change condition, the 95% limits of
agreements for the computer-aided volumetric measurements on two repeat scans were
(-12.1%, 13.4%) (16). In another study on the same dataset, the mean percent difference (+ SD)
when pooled across both readers (five readers in total) and lesions was 7.4 + 44.2% (17). A
recently published report of test-retest study in NSCLC cancer patients from the ACRIN 6678 trial
using low-dose CT showed a mean relative volume difference of -0.4% * 10.5%, with upper and
lower relative measurement difference limits of —21.0% and 20.3% (8). Other published studies




reported results within these ranges (22-28). Also see Section D. Additional Considerations for
Radiographic Biomarkers under Performance characteristics including sensitivity, specificity,
accuracy and agreement.

If cutpoint(s) are used, specify the cutpoint(s) and provide rationale for the cutpoints selected.

Our initial hypothesis was to validate the volumetric equivalent of the uni-dimensional RECIST
response categories (eg. PD=20% 11D vs 73% “1*3D vs PR=30% 1D \, vs 66% ,3D) as the
default threshold assumptions for anatomical volume change. Secondarily we intended to
examine alternative and optimal thresholds for response or progression based on correlation
with clinical outcomes in retrospective analysis of randomized controlled trials.

More recently we are exploring alternative methods of assessing the performance of both
unidimensional and volumetric tumor measurements using continuous variable analysis
methodologies as potentially superior method of predicting outcome correlations compared to
categorical imaging assessments. One example of such biomarkers on the continuous scale is the
rate of tumor growth/regression (18).

ii. Quality Assurance

Type of test: Tumor volume assessment based on CT imaging is classified as an imaging or
radiographic biomarker.

SOP: The general procedure described in QIBA Profile: CT Tumor Volume Change for Advanced
Disease (CTV-AD) should be followed (19).

Detailed description of the specialized software needed (e.q., automated digital image analysis

sothare).

Measurement of tumor volume requires three-dimensional segmentation software to separate
the tumor from the surrounding anatomic structures and to compute tumor volume. The
algorithms that have been evaluated in the QIBA studies ranged from fully automated
segmentation algorithms which do not allow any user intervention to semi-automated
segmentation algorithms which allow minimal input from the user. Semi-automated
segmentation algorithms were further divided into subgroups based on the allowable amount of
user input, ranging from those that only allow selection of a seed point(s) for the purpose of
initiating segmentation to those that allow various degrees of adjustment to parameters or/and
to image boundaries (20, 21). Once the radiologist is satisfied with the contour of the respective
tumor, the automated volume assessment tool calculates the volume of the tumor. As an
example, the following is an excerpt from the QIBA 1A study (29) briefly describing the workflow.
“The 3D volumetric measurements were made using a prototype proprietary semi-automated
tool (Oncocare Prototype, Siemens Corporate Research, Princeton, NJ), which included a lesion
segmentation component. The 3D measurement process was as follows: the reader (1) defined a




seed stroke across the lesion (i.e., a RECIST-like line across the perceived maximum diameter of
the lesion), (2) applied the segmentation tools, (3) evaluated the quality of the segmentation,
and (4) refined or added seeds strokes and reapplied the segmentation tool until satisfied with
the 3D nodule segmentation. The software then provided the estimate of nodule volume.”

A summary on the 12 tumor volume measurement algorithms in the QIBA 3A study can be found
in the Appendix of the publication (20), and is included as an attachment to this document

iii. Limits, Sources and Quantification of Measurement Error

The following table (Table 1) is extracted from QIBA Profile: CT Tumor Volume Change for
Advanced Disease (CTV-AD) (19). It summarizes major factors that affect volume measurement
precision, including the size of tumor, acquisition device, radiologist who performs tumor
measurement, and the analysis tool.

Table 1 Minimum Detectable Differences for Tumor Volume Changes (Informative)

Different Acquisition Device Same Acquisition Device
Tumor
Diameter
Different Same Different Same
Radiologist Radiologist Radiologist Radiologist
Different Same Different| Same Differentf  Same Different Same
Analysis Analysis Analysis | Analysis | Analysis| Analysis Analysis Analysis
Tool Tool Tool Tool Tool Tool Tool Tool
>50mm 43% 24% 43% 24% 37% 10% 37% 8%
35-49mm 67% 33% 65% 29% 62% 22% 60% 14%
10-34mm 139% 120% 80% 39% 136% 117% 75% 28%

Notes:

1. Acquisition Device actors being different means the scanner used at the two timepoints were different
models (from the same or different vendors). Two scanners with different serial numbers but of the same
model are considered to be the same Acquisition Device actor.

2. Precision is expressed here as the repeatability or reproducibility coefficient, depending on the column.

3. A measured change in tumor volume that exceeds the relevant precision value in the table indicates 95%
confidence in the presence of a true change.

4. Minimum detectable differences can be calculated from the following formula: 1.96 x sqrt(2 x wCV?),
where wCV is estimated from the square root of the sum of the variances from the applicable sources of
uncertainty (which makes the assumption that the variance components are additive, an assumption that
has not yet been tested).

5. The estimates of the sources of variation were derived from several (QIBA) groundwork studies, some of

which were performed on phantoms and some of which were performed on human subjects.




D. Additional Considerations for Radiographic Biomarkers

Image acquisition, analysis, and interpretation

For this qualification effort, the CT images are obtained from completed phase 3 trials conducted
by pharmaceutical companies to support drug regulatory approval. The acquisition conditions
are assumed to meet the industry and regulatory standards.

The CT images in DICOM format were segmented by a semi-automated software developed by
Drs. Binsheng Zhao and Larry Schwartz (Columbia University); the volume for measurable tumors
were calculated and the output is numeric values (16). These tumor volume values are used to
study the correlation of longitudinal tumor volume changes with clinical outcomes.

Assessment of uncertainty including repeatability, reproducibility (e.g., within site, across sites,
equipment model/manufacturer) and reader variability.

See Section IV C i. Biomarker Measurement Information; Biomarker Measurement; Quality
Control; and Performance characteristics including sensitivity, specificity, accuracy and
agreement in this section below.

Data to support proposed cutpoint(s) if imaging results are not reported as a continuous
variable.

See Ill C Biomarker Information; Rationale for Biomarker and IV C i. Biomarker Measurement
Information; Biomarker Measurement; Quality Control.

Performance characteristics including sensitivity, specificity, accuracy and agreement.

QIBA has organized several studies to quantify the bias and precision of tumor volume
measurement using CT scans of either an anthropomorphic thorax phantom or from test-retest
studies in lung cancer patients and in colorectal cancer patients. The ACRIN 6678 study
sponsored by FNIH also contributes to the understanding of tumor measurement precision in
lung cancer. The study results are summarized in Table 2.

Device imaging performance characteristics such as resolution, field of view, distortion, contrast,
depth of penetration, signal to noise ratio and other imaging parameters as necessary.

The performance characteristics for CT scanner that was used to generate the test-retest “coffee
break” dataset of 32 NSCLC patients for reproducibility study was described in (16), and are cited
below.

“CT scans were obtained with a 16—detector row (LightSpeed 16; GE Healthcare, Milwaukee,
Wis) or 64—detector row (VCT; GE Healthcare) scanner, both of which are routinely used at the
center. Parameters for the 16—detector row scanner were as follows: tube voltage, 120 kVp; tube
current, 299-441 mA; detector configuration, 16 detectors x 1.25-mm section gap; and pitch,
1.375:1. Parameters of the 64—detector row scanner were as follows: tube voltage, 120 kVp;
tube current, 298—351 mA; detector configuration, 64 detectors x 0.63-mm section gap; and
pitch, 0.984:1. The thoracic images were obtained without intravenous contrast material during
a breath hold. Since the second scan was considered as a separate scan, its field of view was set
given the patient's second scout image. Adjustment was allowed owing to the patient's position
in the scanner. Thin-section (1.25 mm) images were reconstructed with no overlap by using the
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lung convolution kernel and transferred to our research picture archiving and communication
system (PACS) server where Digital Imaging and Communications in Medicine (DICOM) images
are stored. These thin-section images were then used for both manual measurement and
semiautomated computation of tumor sizes.”

The performance characteristics for the CT scanners that were used to generate low dose CT
images in the multicenter trial (ACRIN protocol 6678; FDG-PET/CT as a Predictive Marker of
Tumor Response and Patient Outcome: Prospective Validation in Non-small Cell Lung Cancer) in
patients with advanced NSCLC treated with chemotherapy are summarized below. CT volumetric
data from this study were analyzed post hoc to produce the reproducibility results reported in
(8). The study was being conducted under the well-established policies and procedures of ACRIN
for protocol management, site qualification, data management, patient accrual, data and safety
monitoring, imaging quality assurance, and evaluation. The site/scanner credentialing and
quality control parameters for CT scans used for tumor volumetric measurements are
summarized in Table 3.

Algorithms used to interpret the image or data contained in the image. Please provide a full
description of these algorithms and validation data or validation plan to confirm the algorithms
function as intended.

Provide the name(s) and version(s) of the software package(s) to be used for image acquisition

and analysis

The semi-automated segmentation software developed by Drs. Binsheng Zhao and Larry
Schwartz (Columbia University) will be used to measure tumor volume on CT images for the
correlation analysis with clinical outcomes using data from randomized trials (See Section IX.
Evaluation of Existing Biomarker Information: Summaries for details). This CT segmentation
software has shown to measure tumor volume in lung cancer patients with high reproducibility
in a test-retest study; the mean relative difference was of 0.7%, and the 95% limits of
agreements on two repeat scans was (-12.1%, 13.4%) (16). This measurement precision is
comparable to the nine CT segmentation algorithms evaluated in the QIBA 3A(2) algorithm
challenge using the same patient dataset (20). The software was also evaluated along with nine
other algorithms from different sources in an algorithm challenge study to measure the volume
of synthetic nodule in an anthropomorphic phantom; it performed comparably with other
volume calculation algorithms in this setting (21).

The software developed by Columbia University Drs. Zhao and Schwartz is described in a
publication (16), and algorithms used in the QIBA 3A studies are described in the Appendix of a
publication (20). As stated in Section IV. A, there are a variety of software packages available
that are QIBA complaint, and people using this biomarker could use any of those packages.
Please referred to the two publications (20, 21) for examples of these software packages.
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Table 2 (A) Technical Performance Validation — Volume Measurement Bias and Precision in Phantom Studies

Study Description — Phantom

Summary Results

Status

QIBA 1A: Estimate the bias and
variability of volumetric
measurements of nodule images
by six readers. A total of 40
nodules collected from a single
scanner were measured.

Measurements were normalized to a 1D scale for comparison of measurement bias and
variance among 1D, 2D and 3D. Relative bias for 3D: -1.8%, -0.4%, —0.7%, -0.4%, and -1.6%
for 10-mm spherical, 20-mm spherical, 20-mm elliptical, 10-mm lobulated, and 10-mm
spiculated nodules compared to 1.4%, -0.1%, —26.5%, -7.8%, and —39.8% for 1D. The three-
dimensional measurements were significantly less biased than 1D for elliptical, lobulated, and
spiculated nodules. The relative standard deviations for 3D were 7.5%, 3.9%, 3.6%, 9.7%, and
8.3% compared to 5.7%, 2.6%, 20.3%, 5.3%, and 16.4% for 1D. Unidimensional sizing was
significantly less variable than 3D for the lobulated nodule and significantly more variable for
the ellipsoid and spiculated nodules.

Completed and
published (29)

QIBA 1C: Estimate the bias and
variability of volumetric
measurements of images collected
from six CT scanners. A total of
462 measurements were made

The overall percent error for all nodules (n=462) was —6.04+17.60% (mean+SD). The percent
error for nodules >10 mm (n=308) was —0.5949.57%, and -16.92+23.89% for nodules <10 mm.
Relative bias in pooling the 6 nodules (3 spherical; 3 spiculated) is within a 15% tolerance. On
individual nodules, scanner equivalence is found for the larger synthetic lesions (10 mm and 20
mm). Equivalence of the two imaging acquisition protocols supports ACRIN 6678. The study

Completed;
reported in the BD
submission to BQRT
09/30/2012, and as
a conference

(n=462=6 lesions x [5 scanners x 2 | demonstrates in larger lesions (>=10mm diameter) bias and variance can be approximately 15% | abstract (30)

CT protocols+1 scanner x 1 CT or less across lesion types, scanners and protocols; it confirms QIBA CT lesion size guidance.

protocols] x 7 readers).

QIBA 3A(1)-Pilot: Estimate the This set of images were provided to the participants for the purpose of training their CT Completed;

bias and variability of volumetric segmentation algorithms. The participants were also provided with nodules’ volume ground reported in the BD
measurements of nodule images truth values; they were required to record and submit their measured volume results. submission
collected from a single scanner. 09/30/2012.

This is a QIBA organized public
challenge. A total of 97 nodules
with varying size, shape, and
density were measured
volumetrically by each of the 12
segmentation algorithms.

The overall mean percent error (+ SD) of volumetric measurements was —1.46 % (£23.94%); the
percent error by the individual factors, i.e., nodule size, shape, density, and reconstruction slice
thickness, was 0.62% (£21.11%), —3.79% (+21.54%), —1.30% (£21.72%), and —1.34% (+24.02%),
respectively, across algorithms. The mean percent errors are below 1% with SDs below 11%
when technical conditions satisfy those described in the QIBA CT volumetry Profile.
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QIBA 3A(1)-Pivotal: Estimate the
bias and variability of volumetric

measurements of nodule images

collected from a single scanner.

This is the second part of the QIBA
organized public challenge. A total
of 408 nodules with varying size,
shape, density, and reconstruction
slice thickness were measured
volumetrically by each of the 10
semi-automatic segmentation
algorithms with varying degrees of
allowable post-segmentation
correction.

Ten of the twelve algorithms from the QIBA 3A(1)-Pilot project participated in this Pivotal study.

The overall mean percent error of volumetric measurements across nodule characteristics
(nodule size, shape, density, and reconstruction slice thickness) and algorithms was 1.04% [95%
Cl (0.06-2.13%)]. When only those nodules that satisfy the QIBA CT profile (density > -630 HU;
size 2 10 mm; non-irregular shaped; reconstruction slice thickness < 3 mm) were included in the
analysis, the overall percent error of volumetric measurements was reduced to —0.65% [95% ClI
(-1.66, 0.36%)].

Over all nodules meeting the QIBA Profile, the repeatability coefficient (RC) was 9.0% for two
measurements of nodule volume by the same algorithm; the between-algorithm reproducibility
coefficient (RDC) was 22.1% for measuring a nodule by different algorithms.

Algorithm type did not affect bias substantially; however, it was an important factor in
measurement precision. Algorithm precision was notably better as tumor size increased, worse
for irregularly shaped tumors, and on the average better for type 1 algorithms where post-
segmentation correction was not allowed. Over all nodules meeting the QIBA Profile, precision,
as measured by the repeatability coefficient, was 9.0% compared to 18.4% overall.

The study concluded that the results achieved in this study, using a heterogeneous set of
measurement algorithms, support QIBA quantitative performance claims in terms of volume
measurement repeatability for nodules meeting the QIBA Profile criteria.

Completed;
reported in the BD
submission
09/30/2012 and
also published in
(21)
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Table 2 (B) Technical Performance Validation — Volume Measurement Precision Evaluated with Clinical Patient Data

Study Description — Patient
Data

Summary Results

Status

QIBA 1B: Estimate the
test/retest measurement
variability of lesions from 32
non-small cell lung cancer
(NSCLC) patients who were
scanned twice within 15
minutes (“no change”
condition). Five readers
measured the volume
according to two different
reading schemes: (1) random
presentation of scans, i.e.,
independent reads, and (2)
locked, sequential read of
scans from the same lesion.

This work shows that variability within a sizing method may be influenced by the
reading paradigm. The 1D sizing method results do not change significantly or
substantially across reading paradigms. The means of percent difference were 2.75%
with 95% Cl [-2.34%, 7.83%] in the independent reading, and 2.52% with 95% ClI
[-0.28%, 5.33%] in the locked sequential reading. However, volume measurements do
change substantially and differences are lower for the locked sequential reading
paradigm, but this did not reach statistical significance (P = .067). In the summary
statistic for volume measurements, the means were 23.40% with 95% Cl [-2.36%,
52.34%] in the independent reading, and 7.42% with 95% Cl [-0.98%, 15.82%)] in the
locked sequential reading. The bias of measurements in this study cannot be assessed
as the true lesion size is unknown.

It should be noted, unlike the report by Petrick et al. (29) where 3D percent change is
normalized to a 1D scale to allow comparison, this study reported percent changes in
their original scales.

Completed, and
published (17)

QIBA 3A(2): Estimate the
test/retest measurement
variability of lesions from 32
NSCLC patients who were
scanned twice within 15
minutes (the same dataset as
1B described above). This study
is organized as a public
challenge. Intra-algorithm and
inter-algorithm variability was
analyzed for 12 diverse tumor

The approximate tumor diameters ranged from 8 to 65 mm. Intra-algorithm
repeatability ranged from 13% to 24% for nine of the 12 algorithms, with most
algorithms demonstrating improved repeatability as the tumor size increased. Change
in tumor volume can be measured with confidence to within £14% using any of these
nine algorithms on tumor sizes greater than 10 mm.

Completed, and
published (20)
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segmentation algorithms from
11 academic and commercial
participating members.

QIBA 3B: Inter- and intra-
reader variability of volumetric
measurement of lesions in
lungs, liver and/or lymph nodes
in subjects with metastatic
colorectal cancer.

Three readers measured each
scan volumetrically for
assessment of inter-reader
variability; two of the readers
repeated measurements for
assessment of intra-reader
variability.

Using RECIST, three radiologists selected target lesions and measured "uni" (maximal
diameter), "bi" (product of maximal diameter and maximal perpendicular diameter),
and "vol" (volume) on baseline and 6-week post-therapy scans in the following ways:
(i) each radiologist independently selected and measured target lesions and (ii) one
radiologist’s target lesions were blindly re-measured by the others. Variability in
relative change of tumor measurements was analyzed using linear mixed effects
models. The model-based estimate for limits of agreement was +1.96 times the
estimate of the within-patient SD, that is, the residual SD.

Of 198 target lesions total from 29 patients, 33% were selected by all three, 28% by
two, and 39% by one radiologist. With independent selection, the variability in
relative change of tumor measurements was 11% (uni), 19% (bi), and 22% (vol),
respectively. When measuring the same lesions, the corresponding numbers were
8%, 14%, and 12%.

Completed, and
published (31)

ACRIN 6678: test-retest
variability of volumetric
measurements in advanced
NSCLC subjects. The dataset of
34 patients from this study was
combined with that of 40
patients from a multicenter
Merck MK-0646-008 trail of a
comparable cohort.

Repeat scans of 71 primary tumors (1 primary tumor per patient) and 5 additional

lesions from low-dose CT images were analyzed. The mean anatomic volume was 52.4

cm? (median, 37.5 cm?; SD, 53.0 cm®). The repeatability of each metric was assessed
with Bland—Altman analysis by reporting the mean and SD of the differences between
the two measurements. The anatomic volume determination had a repeatability of
-0.4% + 10.5%, with upper and lower repeatability limits of +20.3% and -21.0%.

Completed, and
published (8)
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Table 3 Site/Scanner Credentialing and Quality Control Parameters for CT Scans used for Tumor Volumetric Measurements

GE Phillips SIEMENS TOSHIBA
Sensation
- TF Sensation 64
DICOM Ultra LS 16 VCT(64) Brlllla'nce Brll!lance Sensation 40 64 % 0.6 .
Parameter ) 16- 64- 16-slice/ 64 slice/0.5 40 x 0.6 Aquillon
Tag# 8-slice/ . . 16 (beam .
0.5 sec slice/ slice/0.5 0.5 sec sec 162075 (beam collimation 32 16-slice/0.5 sec
’ 0.5 sec sec 16 x 0.75 16 x 0.75 ’ collimation % 0.6)
20 x 0.6) )
Nominal
0018,0050 Reconstructed 1-1.5 mm 1-1.5mm 1-1.5 mm 1-1.5 mm
Slice Width?
Reconstructed
0020,1041 Interval® 0-20% overlap 0-20% overlap 0-20% overlap 0-20% overlap
0028,0030 | Voxel Size? 0.55-0.75 mm 0.55-0.75 mm 0.55-0.75 mm 0.55-0.75 mm
- Mo.tlon{Breathmg None None None None
Artifact
Intravenous
- Contrast Medial None None None None
X-ray Tube Current x Exposure X-ray Tube Current x
. Exposure Exposure .
Time Exposure Time
scanner- mAs , 135 1 95245 | 95-245 | 120-310 100-260 120-310 100-260 100-260 120-310
dependent (Regular-Large) 220
0010,0000 | KvP? 120 120 120 120
0010,1210 | Reconstruction STD B B30 FC10
Algorithm

Violation of values/value ranges disqualifies CT scan series.
2Violation of values/value ranges may not disqualify CT scan series (unless violation is excessive). Comment on lower or higher than recommended values (e.g.,
for KVP of 140 you may comment as to use similar KVP of 140 for the follow up of the same ca but try to follow the protocol for next individuals, i.e., using KVP
of 120 for the future cases.)
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VIII.
A.

IX.

A.

Assessment of Benefits and Risks

Anticipated Benefits

If the utility of this CT tumor volume-based biomarker can be confirmed as a highly reproducible
pharmacodynamic/response marker, it has the potential to facilitate oncologic drug
development by shortening phase 2 trials of investigational drugs and detecting clinical benefit
earlier in phase 3 investigations, resulting in reduction in clinical trial time and costs.

This biomarker can benefit patients with cancer who need to know as soon as possible whether
or not they are benefiting from new treatments. It will help patients seek alternatives sooner
once their therapeutic regimens become futile.

Anticipated Risks

False declaration of treatment response (false positive) by the biomarker may mislead the
physician to continue the ineffective treatment, patients to endure unnecessary toxicity and lose
the window of opportunity for potential alternative therapy.

False declaration of no response (false negative) may result in premature termination of an
effective treatment and its associated benefits.

Risk Mitigation Strategy

There are steps that can be implemented to reduce false positive and false negative
determination of patient response/progression. These include rigorous quality control steps in
image collection, using algorithms with high precision in tumor volume measurement, robust
statistical methodologies, and high quality of imaging and clinical data being used for biomarker
development. These specifications have been documented in the QIBA Profile (19).

Conclusions

We anticipate that this biomarker will have higher precision, and be more sensitive and specific
than the currently accepted RECIST-based endpoints in predicting phase 2 and phase 3 outcomes
in solid tumors. Therefore, the benefit and risk balance is in favor of this biomarker.

Evaluation of Existing Biomarker Information: Summaries

Pre-Clinical Information, as appropriate

Not applicable.
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B. Completed Clinical Information, as appropriate

Please refer to Table 2 (B) Technical Performance Validation — Volume Measurement Precision
Evaluated with Clinical Patient Data under Section D. Additional Considerations for Radiographic
Biomarkers.

Summary of Ongoing Information Collection/Analysis Efforts

To establish a systematic approach to develop and validate imaging-based biomarkers to
improve upon RECIST, the Foundation for the National Institutes of Health (FNIH) Biomarkers
Consortium initiated a collaborative research partnership entitled Vol-PACT (Volumetric CT for
Precision Analysis of Clinical Trial Results). Vol-PACT is collecting imaging data and associated
patient outcomes data from large and completed landmark phase 3 trials in several measurable
solid tumors (Table 4). These trials were sponsored by pharmaceutical companies; data of these
trials are of regulatory quality and have been reviewed by the FDA. The use of archived data is a
cost-effective approach, and eliminates the extensive resources and time needed to conduct
prospective trials for purposes of biomarker development and validation. The aim is to
retrospectively analyze these high quality data and comprehensively study biomarkers/metrics in
the context of unidimensional and volumetric tumor measurements in their ability to predict
clinical outcomes.

The CT images, which are collected centrally on most trials, are transferred from various imaging
core laboratories to an academic laboratory for tumor measurement. Next, images are re-
analyzed in a semi-automated fashion with computer-generated contouring to determine
unidimensional and volumetric measurements for each lesion at each time point. These imaging
measurement readouts are used to study the correlation of the proposed biomarkers with clinical
outcomes in order to develop pharmacodynamics/response biomarkers.

We have obtained access to both DICOM images and clinical metadata for three lung cancer
trials (Lux-Lung 1, Lux-Lung 3, Lux-Lung 6), three colorectal cancer trials (VELOUR, PRIME,
20020408), two renal cell cancer trials (VEG105192, COMPARZ), and two melanoma
immunotherapy trials (Keynote 002, Keynote 006)(Table 4).

Knowledge Gaps in Biomarker Development

List and describe any knowledge gaps, including any assumptions, that exist in the
application of the biomarker for the proposed COU

There is a strong rationale that the change in tumor burden reflects the disease status, therefore
it is plausible that a biomarker based on the change in tumor burden can predict for patient’s
response to cancer treatment. We have systematically studied the reproducibility of tumor
volume measurement and understand that ultimate evidence to support the COU requires
correlation of the biomarker with clinical outcomes. We have collected imaging and clinical
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metadata (Table 4), and are currently conducting retrospective analysis to validate the
biomarkers for the proposed COU.

List and describe the approach/tools you propose to use to fill in the above-named
gaps when evidence is unknown or uncertain, (i.e., statistical measures and models,
meta-analysis from other clinical trials).

See Section IX C. Summary of Ongoing Information Collection/Analysis Efforts.

Describe the status of other work currently underway and planned for the future
toward qualification of this biomarker for the proposed context of use.

See Section IX C. Summary of Ongoing Information Collection/Analysis Efforts.

We have obtained access to imaging data and associated patient outcomes data from large and

completed landmark phase 3 trials in several measurable solid tumors (Table 4). To our
knowledge, this is the largest collection of images and associated clinical data thus far for the

purpose of developing imaging-based biomarkers for drug development. Since the tumor burden

change is an indicator of disease status, we anticipate that this biomarker will have general
application in drug development programs in a range of solid tumor diseases, including lung
cancer, colorectal cancer, renal cell carcinoma, melanoma, and other cancer types.
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Table 4 Clinical Trial Data Collection

chemo

0.96), p=0.011

0.60), p<0.0001

underway

Uil Disease Drug Trial ID N Prlma.ry OS HR (95% Cl) PFS HR (95% Cl) Data Analysis Publication
Sponsor Endpoint
) FOLFIRI +/- 0.817(0.714,0.935), | 0.758(0.661, 0.869), data analysis
sanofi CRC aflibercept VELOUR 11226 05 p=0.0032 p=0.0007 underway (32)
GSK Pazopanib vs. 0.46 (0.34, 0.62), data analysis
/Novartis RCC placebo VEG105192 | 435 PFS 0.91(0.71, 1.16) 0<0.0001 underway (33, 34)
GSK | e | Pazopanbys. | oy oags [1110]  PES 0.91 (0.76, 1.08) 1.05 ( 0.90, 1.22) data analysis (35)
/Novartis sunitinib underway
FOLFOX +/- 0.83 (0.67, 1.02), 0.80 (0.66 to 0.97), data analysis
Amgen CRC panitumumab PRIME 1183 PFS p=0.072 p=0.02 underway (36)
Amgen | CRC BSC+/- 20020408 | 463 |  PFS 1.00 (0.82 to 1.22) 0.54 (0.4, 0.66), data analysis (37)
panitumumab p<0.0001 underway
- 1.08 (0.86, 1.35), 0.38 (0.31-0.48), data analysis
BI NSCLC | Afatinib vs. placebo| Lux-Lungl | 585 (0N 0=0.74 0<0.0001 underway (38)
Afatinib vs. .
Bl NSCLC pemetrexed + Lux-Lung3 | 345 PES 0.88 (0.66, 1.17), 0.58 (0.43,0.78), data analysis (39, 40)
. . p=0.39 p=0.001 underway
cisplatin
Afatinib vs. ;
BI NSCLC | gemcitabine+ | Lux-Lungé | 364 | PFS 0.93(0.72,1.22), 0.28(02,0.39), data analysis (40, 41)
. . p=0.61 p<0.0001 underway
cisplatin
Pembrolizumab vs e S(())gg(’)gw), 0.61(0.50,0.75), data analysis
Merck | Mel e * |Keynote 006| 834 | 0S, PFS == 0<0.0001; 0.61 (0.50, v (42)
Ipilimumab 0.68 (0.53, 0.86), 0.75), p<0.0001 underway
p=0.0008 /o) P,
Pembrolizumab vs 0.86 (0.67, 1.10), 0.58 (0.46, 0.73), data analysis
Merck Mel " |[Keynote 002| 540 | OS, PFS | p=0.117;0.74 (0.57, | p<0.0001; 0.47 (0.37, ¥ (43)
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Rationale and objectives: Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response.
Precision was evaluated and compared among semiautomated lung tumor volume measurement algorithms from clinical thoracic
computed tomography data sets. The results inform approaches and testing requirements for establishing conformance with the Quan-
titative Imaging Biomarker Alliance (QIBA) Computed Tomography Volumetry Profile.

Materials and Methods: Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-al-
gorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed
effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for
developers.

Results: Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demon-
strating improved repeatability as the tumor size increased. Inter-algorithm reproducibility was determined in three partitions and
was found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84%
when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equiv-
alent diameters greater than 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the
total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not ony in overall
volume but also in detail.

Conclusions: Nine of the 12 participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the
caveat that the present study was not designed to explicitly evaluate algorithm profile conformance. Change in tumor volume can
be measured with confidence to within £14% using any of these nine algorithms on tumor sizes greater than 10 mm. No partition of
the algorithms was able to meet the QIBA requirements for interchangeability down to 10 mm, although the partition comprising best per-

forming algorithms did meet this requirement for a tumor size of greater than approximately 40 mm.

Key Words: CT; volumetry; lung cancer; quantitative imaging; segmentation.
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ung tumor volume change assessed with computed to-

mography (CT) has potential as a quantitative imaging

biomarker to improve diagnosis, therapy planning, and
monitoring of treatment response (1,2). Tumor volume
change as a predictor of outcome has been of interest for
some time (3-5).

To establish confidence in algorithmic analysis for CT
volumetry as a rigorously defined assay useful for clinical
and research purposes, volume measurement algorithms
need to be characterized in terms of both bias and variability.
Measurement error on serial CT scans can be affected by a
number of interrelated factors, including imaging parame-
ters, tumor characteristics, and/or measurement procedures
(6-8). These effects must be understood and quantified. A
number of technical studies have been performed toward
this goal (9-32).

The Quantitative Imaging Biomarker Alliance (QIBA)
(33) has defined standard procedures for reliably measuring
lung tumor volume changes in a document called a profile.
The CT volumetry profile is based in part on the available
literature and on the “groundwork” studies conducted by
QIBA itself (34). Groundwork studies of algorithm perfor-
mance organized as public challenges have been conducted
under the moniker of “3A.” The first 3A study was conducted
to estimate intra-algorithm and inter-algorithm bias and vari-
ability using phantom data sets (Athelogou, PhD, manuscript
under review, 2015). Algorithms used by participating groups
were applied to CT scans of synthetic lung tumors in anthro-
pomorphic phantoms. Although such a study design was
effective for estimating bias because ground truth was known,
phantom studies are likely to underestimate the biological
variability typically seen in clinical data sets. More recently,
QIBA has undertaken studies on the analysis of clinical
data. The QIBA “1B” study was undertaken to compare
two reading paradigms, independent readings at both time
points versus locked sequential readings, using a test-retest
design (35). Readers in the QIBA 1B study used a single al-
gorithm. The present study, known as the “second” 3A, com-
bines the algorithm performance challenge approach
established by the first 3A study using the same clinical data
as were used in 1B. The goal of the present study was to quan-
tify the error when a tumor with no biological change in size
was imaged twice and each image was measured by the same
or multiple algorithms.

Intra-algorithm and inter-algorithm variability was
analyzed using data from 12 diverse tumor segmentation
algorithms from 12 academic and commercial participating
groups for measuring volume. The algorithms included
semiautomated algorithms with and without postsegmenta-
tion manual correction. The analysis of algorithm perfor-
mance conducted in this study complements the other
groundwork studies in establishing performance claims for
the QIBA Profile.

In the following section, we describe the statistical
methods and open-source informatics tool used to conduct
the study as a challenge problem. The estimated intra-
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algorithm repeatability and inter-algorithm reproducibility
are presented in Results section, which also describes a
comparison of the segmentation boundaries themselves for
the subset of algorithms where tumor segmentations were
submitted.

MATERIALS AND METHODS

Data collection

Thirty-one subjects with non-small cell lung cancer were
evaluated in a test-retest design. The cases were contributed
to the Reference Image Database to Evaluate Therapy
Response (RIDER)) database from Memorial Sloan Kettering
Cancer Center, acquired in a previously conducted study (36).
Each patient was scanned twice within a short period of time
(<15 minutes) on the same scanner and the image data were
reconstructed with thin sections (<1.5 mm). Because the
time interval between repeat scans is small, the actual volume
of the tumor is the same in each scan (a zero-change scenario).

CT scans were obtained with a 16-detector row (Light-
Speed 16; GE Healthcare, Milwaukee, Wisconsin) or
64-detector row (VCT; GE Healthcare) scanner. Parameters
for the 16-detector row scanner were as follows: peak voltage
across the x-ray tube, 120 kVp; tube current, 299—441 mA;
detector configuration, 16 detectors X 1.25-mm section
gap; and pitch, 1.375. Parameters for the 64-detector row
scanner were as follows: tube voltage, 120 kVp; tube current,
298-351 mA; detector configuration, 64 detectors X 0.63-
mm section gap; and pitch, 0.984. The thoracic images
were obtained without intravenous contrast material during
a breath hold. Because the second scan was considered as a
separate scan, its field of view was set given the patient’s
second scout image. Adjustment was allowed owing to the
patient’s position in the scanner. Thin-section (1.25 mm)
images were reconstructed with no overlap by using filtered
back projection with the lung convolution kernel and trans-
ferred to the research picture archiving and communication
system server where digital imaging and communications in
medicine images were stored.

One tumor per subject was selected for measurement by
the clinical staff at Memorial Sloan Kettering. Among them,
most were primary lung cancers but three were metastatic
tumors (used because the primary tumors were nonmeasure-
able, as defined by the Response Evaluation Criteria in Solid
Tumors criteria). The data set includes tumors that are distinct
and solitary as well as others with attachment to various struc-
tures including bronchus, chest wall, and mediastinum. The
approximate tumor diameters ranged from 8 to 65 mm, as
calculated by the equivalent diameter were a sphere to include
the same volume.

The shapes of the selected tumors ranged from simple and
isolated to complex and cavitated. To facilitate comparison
of results to the prior QIBA 1B study, the tumors were
further subdivided according to whether they met the
following “measurability” criteria defined in the profile:
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tumor margins were sufficiently conspicuous and geometri-
cally simple enough to be recognized on all images, and the
longest in-plane diameter of the tumor was 10 mm or greater
(see Fig 1).

Eleven groups from a diverse set of industry and academic
groups participated in the challenge by submitting results
from 12 algorithms (one group made two submissions). The
participating groups downloaded the images, including the
raw image data and location points. The location (“seed”)
points were defined to lie within the tumor margin. Groups
were allowed to select different or multiple seed point(s) for
their individual algorithms, provided they used the tumor
identification scheme provided. Some of the groups submit-
ted data from the algorithm without any postsegmentation
modifications (semiautomated without editing), others
submitted data with adjustments made to varying degrees by
areader (semiautomated with editing), and one group submit-
ted both. Each group then uploaded their results using an
open-source informatics tool called QI-Bench (37). To estab-
lish and maintain anonymity of participants, all communica-
tions were handled through the QIBA staft at Radiological
Society of North America (RSNA). The participants are as
follows (listed alphabetically rather than according to the
IDs used in reporting the results of the study): Fraunhofer
MEVIS, GE Healthcare, ICON Medical Imaging, KEOSYS,
MEDIAN Technologies, Mirada Medical, Perceptive Infor-
matics, Siemens AG, University of California, Los Angeles
(UCLA), University of Michigan, and Vital Images.

See the Appendix for detailed algorithm descriptions for
each of the participating groups.

Statistical methods

Estimation of variability. The repeatability coefficient (RC)
was used to characterize the intra-algorithm variability (6).
The RC was defined as

RC = 1.964/202 = 2.770,,

where 62 is the within-tumor variance. The range in which
two measurements on the same tumor were expected to fall
for 95% of replicated measurements was given by [—RC,
+RC] (38). In this study, we computed the within-tumor
variance, and thus RC based on the difference between the
test and retest measurements for each algorithm, respectively.

Two calculation methods were used, one using log trans-
formed data and the other a root mean square approach.
The root mean square approach proceeds by calculating the
square root of the mean of squared tumor-based RC values.
Additionally, the within-tumor coefficient of variability
(WCVira) Was calculated as a measure of precision for single
measurements (60). It was calculated in an analogous fashion
by dividing each tumor-based o2 by the square of the mean
of the two measurements and without use of the 2.77 factor.
The percent RC (%R C) for an algorithm was determined by
multiplying wCV,,;, by 2.77. In the logarithmic approach,

the %RC is determined by taking an inverse transform.
Both wCV,,;, and %R C are relative measures proportional
to the magnitude of the tumor size. We verified the equiva-
lence of these two methods in a manner described by Bland
(39), with the equivalence strongest when the percentage
metrics were small. Because we were interested in how the
metrics changed for differing tumor sizes, we plotted the per-
centage metrics as a function of tumor size.

The reproducibility coefficient (RDC), its percentage
counterpart percent RDC (WRDC), and wCVj,,., were
used to characterize inter-algorithm variability (6). The
RDC, similar to RC, was calculated from the variance across
different algorithm measurements of the same tumor (6). In
this study, [-RDC, +RDC] described the range within
which approximately 95% of the differences in measurements
between two algorithms lie. We reported the reproducibility
results in three partitions of algorithms, partitioned based on
the intra-algorithm repeatability results. One partition
included all algorithms minus the lowest performing algo-
rithm. Another partition included the set of algorithms with
%RC less than 30%. A third partition was formed by only
including those algorithms with a %RC less than 15%.

A linear mixed effects (LME) model using transformed data
was fitted to estimate the relative contributions of different
factors to the total variability. The dependent variable in the
model was the measured tumor volume. Volume estimation
is considered a fixed effect in this model. The independent
variables were tumor, algorithm, and tumor-by-algorithm
interactions. Model assumptions were evaluated with Q-Q
(quantile-quantile) and observed-versus-fitted plots.

Comparison of segmentation boundaries. Five groups provided
segmentation data in addition to tumor volume measure-
ments, four of which were compatible for analysis (the
data from the fifth was submitted with different orientation
and scaling). To compare algorithms’ segmentation bound-
aries, we produced a reference segmentation using the
simultaneous truth and performance level estimation (STA-
PLE) method (40) on three-dimensional (3D) volumes.
This method performs a voxelwise combination of an arbi-
trary number of input images, which in our case consisted
of the segmentations extracted by the four participant algo-
rithms. Each input segmentation to STAPLE was weighted
based on its “performance” as estimated by an expectation-
maximization algorithm, described in detail in Rohlfing
et al. (41). This algorithm used all input segmentations to
create “consensus” results according to the level of overlap
among input segmentations. We then compared each
individual segmentation result to this reference data. We
computed voxelwise accuracy, based on the number of vox-
els segmented with a particular algorithm compared to the
reference data by tabulating counts of true positives (TP,
where both the algorithm and the reference contained
that voxel), true negative (where neither the algorithm
nor the reference contained that voxel), false positive (FP,
where the algorithm contained the voxel but the reference
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Figure 1. Examples of tumors from our study. (a and b) Examples of tumors that were judged to have met the QIBA measurability criteria,
whereas (c) and (d) were not found to meet the criteria. Image (c) was excluded because it demonstrates a large attachment to other pulmonary
structures and (d) was excluded because it demonstrates a highly invasive structure where the boundary between tumor and nontumor is not
well demarcated. QIBA, Quantitative Imaging Biomarker Alliance. (Color version of figure is available online.)

did not), and false negative (FN, where the reference con-
tained the voxel but the algorithm did not). These were
used in the calculation of two spatial overlap measures,
the Jaccard index (42) and Serensen-Dice coefficients
(43,44) defined as follows:

TP

TP + FP + FN’
2 x TP

“2XxTP+FP+EN’

Jaccard = Sgrensen — Dice

The Jaccard index includes a penalty for FP voxels, that is,
when the candidate segmentation is larger than the reference
segmentation. The Serensen-Dice coefticient also penalizes
FPs, but penalizes more strongly segmentations that have
missed TPs. We computed and presented both types of overlap
metrics to allow easier and wider comparison to results from
other studies.

Excel was used for RC, wCV, and RDC estimation, the R.
statistical software was used for the mixed effects model, and
Matlab was used for overlap metrics.
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TABLE 1. Basic Descriptive Statistics for Measured Tumor
Volume

Equivalent Sphere

Metric Volume (mm?®) Diameter (mm)

Arithmetic mean 24,100 36

Geometric mean 8320 25

Median 9110 26

Range 160,000 67
RESULTS

Precision of volume measurements

The total number of possible readings was 744, with each of
12 participating groups submitting both test and retest read-
ings for each of 31 tumors. Of these, 740 were actually sub-
mitted, with the following cases missing:

e One group only submitted readings on 30 tumors (rather

than 31).
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TABLE 2. Intra-algorithm Repeatability Coefficient (RC) Results

34 Anomalous Readings Excluded

Using all 740 Readings All Tumors Pooled Small Large
Group RC (mm?) RC (mm?3) %RC WCVintra RC (mm?3) RC (mm?)
Group 02 7557 1871 13% 5% 141 1866
Group 03 14.060 13,568 100% 36% 1321 13,501
Group 04 1801 1830 14% 5% 175 1825
Group 05 3007 2177 14% 5% 245 2163
Group 06 3418 3472 20% 7% 160 3469
Group 07 3495 3551 20% 7% 210 3545
Group 08 2935 2982 13% 5% 147 2.979
Group 11 41,411 39,885 50% 18% 441 39,883
Group 12 43,101 37,868 48% 18% 601 37,863
Group 14 11,081 11,259 21% 7% 161 11,257
Group 15 2226 2261 24% 9% 321 2238
Group 10/16* 7522 7643 22% 8% 215 7639

*Volume results submitted under ID Group 16 and segmentation objects submitted under ID Group 10.

e One group only submitted test readings (without retest
readings) for two tumors.

Basic descriptive statistics on submitted measurements are
given in Table 1, based on the 740 submitted readings. The
distribution is skewed because of a very few large reading
values, where the mean is much higher than the median.

Detailed review of these 740 submitted readings exposed 34
presumably anomalous readings (leaving 706):

e The unpaired readings were judged anomalous because of
having no retest readings.

e Four test-retest reading pairs from three groups differed by
log-orders of magnitudes from the rest of the data, suggest-
ing data transcription errors.

e One tumor was particularly challenging for all groups, as
judged by the differences in volume measurements being
log-orders of magnitudes from each other (whereas other
tumors, even other ones that did not otherwise meet the
measurability criteria established by QIBA did not exhibit
this behavior).

Intra-algorithm repeatability analyses were performed and
presented here with and without the readings judged as anom-
alous. Inter-algorithm reproducibility was assessed with these
values excluded. These were removed from the analyses.

Intra-algorithm repeatability across test-retest repetitions within
groups. Repeatability results assessed separately for each group
are presented in Table 2. Tumors were judged to be “small” if
they had a volume of less than 4189 mm?, an equivalent diam-
eter of less than about 20 mm for a sphere, and “large” other-
wise (as judged by algorithms individually). Because the
algorithm measurements were not normally distributed and
did not have constant variance, a log-transformation was
applied, reshaping the distribution of the data into a usable
form. These summary metrics apply across the large range
of tumor volumes included in the study. Figure 2 depicts

how the percentage metrics, WCVj,r, and %RC changed
based on the difference between the two measurements for
differing tumor sizes, stratified by algorithm performance.
Moderately performing algorithms are plotted in the upper
panel. In general, these algorithms perform at levels less
than 20% R C over most of the range and would be generally
understood as being capable of conforming with QIBA
repeatability performance requirements. The lower panel de-
picts the results for the best performing algorithms, which not
only provide the best repeatability but could also be consid-
ered for interchangeability were they to be used in certain
clinical trial designs or clinical use cases.

Inter-algorithm reproducibility across groups. Three separate
reproducibility partitions were analyzed. One partition
included all groups except Group 3, which demonstrated
multiple discrepancies from the behavior exhibited by the
other algorithms and had a %R C greater than other groups.
Another partition included the set of groups that would be
considered to conform to QIBA’s requirements as judged by
a %RC less than 30%. A third partition was formed by only
including those algorithms with a %RC less than 15%.
Reproducibility results across all groups are presented in
Table 3. Figure 3 depicts how the percentage metrics changed
for differing tumor sizes.

Linear mixed effects model for estimating algorithm versus other
sources of error. Results of the LMEs are presented in
Figure 4, which illustrates the weights of the four different
variables on overall volume variability. The variables included
in the LME model are tumor, algorithms, and tumor-by-
algorithm interactions. Residual error relates to factors not
included in the model.

Tumor variation between patients dominates with 96% of
total variation, which is expected as this is the component
that is attributable to true differences in the object being
interaction  variance

measured.  Tumor-by-algorithm
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Figure 2. Results of intra-algorithm repeatability analysis plotted as
a function of measured tumor size. The line fits following exponential
functions. Fits for the least performing algorithms could not be made
given highly variable results from tumor to tumor. Upper panel shows
performance with fit lines for moderate performing algorithms, and
lower panel for best performing algorithms. The fit lines are truncated
where they would imply better performance than the sparse set of
points at high tumor volumes actually suggest. RC, repeatability co-
efficient; WCVinra, Within-tumor coefficient of variability.

comprises the next highest variance, accounting for 3% of the
variance, indicating that tumors were measured differently by
different algorithms, which is the primary reproducibility
result. Residual variance of 1% accounts for factors not attrib-
utable to the algorithm performance, for example, hardware
variations or scanning technique.

Stratified reproducibility analyses. Four other stratified analyses
of reproducibility were carried out, for various combinations
of the tumors outlined in Table 4. (For these analyses, definition
of small and large was judged based on the average volume es-
timate for a tumor across the algorithms and using the same
4189 mm” threshold as used in the repeatability analyses.)
Reesults for the stratified analyses are summarized in Table 5.
The reproducibility of volumetric measurements was better
for tumors meeting the QIBA Profile (Profile = yes) compared
to those tumors that did not (Profile = no). This was also re-
flected in the reduced ratio of algorithm/residual variance
for those two analyses. Reproducibility was better when edit-
ing was not allowed, indicated by smaller RDC and smaller
algorithm/residual variance in the factors model.
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TABLE 3. Inter-algorithm Reproducibility Coefficient (RDC)
Results

Partition RDC %RDC
All but Group 3 25,284 mm?® 84%
Conforming groups 16,057 mm?® 70%
Best performers 9290 mm?® 58%
Equiv. Diameter of Sphere (mm)
10 34 43 49 54 58 62 65
35% -
Inter-Algorithm Reproducibility .
08T I 1 i ] 80%
P — - 70%
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Figure 3. Results of inter-algorithm reproducibility analysis plotted
across tumor size range. Line fits follow exponential functions. The fit
lines are truncated where they would imply better performance than
the sparse set of points at high tumor volumes actually suggest.
RDC, reproducibility coefficient; WCVina, Within-tumor coefficient
of variability.

Analysis of segmentation boundaries

Figure 5 shows an example of a reference standard segmenta-
tion based on the STAPLE algorithm applied to the segmen-
tation results. A reference segmentation was created for each
test-retest repetition and each individual tumor. As indicated
in the Materials and Methods section, the reference segmen-
tations were formed using an expectation-maximization algo-
rithm applied to the four compatible submissions. Figure 6
shows an example slice for a single algorithm (Group 08) over-
lapping with the corresponding reference segmentation. Full
evaluation of individual segmentation methods is beyond the
scope of the present study, but the detailed maps are provided
to the groups who contributed segmentation boundaries for
their own analysis.

Merging and plotting of histograms by metric and group. Figure 7
illustrates the histograms of the results created for each group
and merged onto a plot that compares the relative segmentation
performance of each. The higher number of Serensen-Dice re-
sults greater than 0.8 compared to Jaccard results suggests that
oversegmentation (resulting in larger volume measurements)
may have been a larger issue than undersegmentation (relative
to the imperfect reference standard). Group 10/16 performs
best, Group 03 was the least performing algorithm (consistent
with its poor computed volume performance), and Groups 04
and 08 depend on the metric used.
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Figure 4. Results of LMEs for overall reproducibility analysis, illus-
trating the percent of total variation captured by each model factor.
LMEs, linear mixed effects.

TABLE 4. Number of Tumors Analyzed in Each Strata

Analysis Strata N
Overall All 31
Small 8
Large 23
Profile = yes All 20
Small 7
Large 13
Profile = no All 11
Small 0
Large 11
With editing All 31
Small 8
Large 23
Without editing All 31
Small 8
Large 23

Profile = yes or no indicates whether the tumor met the measur-
ability requirements as described previously. With/without editing
defines whether postsegmentation contours could be adjusted by
a user.

DISCUSSION

This study was setup to simulate actual practice in the field
versus what might be considered from a more controlled aca-
demic setting, consistent with QIBA’s role of engaging the
multiple stakeholders, notably industry, in the practice of
quantitative imaging biomarkers such as CT volumetry. In
this setting, the information identified in the Appendix is
similar to what would be available for methods that are used
in practice. Through studies such as ours, we document the
performance available, and through the profile writing effort,
we seek to identify and reduce sources of variable perfor-
mance where studies similar to the present one highlight vari-
ability. The goal was not to determine the best algorithm but

TABLE 5. Summary of Reproducibility Coefficient Results for
Stratified Subgroups of Tumors and Algorithms

Alg/Residual
RDC of Small RDC of Large Variance
Strata Tumors Tumors (All Tumors)
Combined 1290 mm?® 28,205 mm?® 31
Profile = yes 1290 mm? 6369 mm?® 2:1
Profile = no (None in 41,074 mm® 10:2
sample)

With editing 1343 mm® 26,760 mm?® 4:1
Without editing 1234 mm® 33,004 mm® 2:1

“Alg/Residual Variance” indicates the relative contributions of the
two factors to the total variability.

rather the range in performance across diverse algorithms.
This is important to the QIBA Profile because the profile de-
scribes the performance not of any one algorithm but of a
diverse group of algorithms.

Intra-algorithm %R C ranged from 13% (best performing)
to 100% (least performing), with most algorithms demon-
strating better percentage performance as the tumor size
increased. The four algorithms with the smallest R Cs (Groups
2, 4, 5, and 8) were self-identified as semiautomated without
editing, whereas the ones with the highest RCs tended to be
semiautomated with editing algorithms (Groups 3 and 11,
semiautomated with editing) as described in the Appendix.
Semiautomated with editing algorithms allow the clinician
to correct for egregious segmentation boundaries that can
occur when segmenting low-contrast, large, or complex tu-
mors, but this can also introduce the variability often observed
from individual perception. One interpretation of these re-
sults would be that poorly performing algorithms need editing
because of egregious results without it, but once an algorithm
is refined to avoid these then editing actually makes the results
inferior as they may be best left alone. The algorithms gener-
ally show a marked tendency to have smaller percentage met-
rics (less variability) for larger tumors, which is consistent with
the related literature findings (11,45,46). Algorithms were also
fairly consistent across tumor sizes, in that the algorithms with
the highest wCVs for small tumors also tended to have the
highest wCVs for large tumors. The data show some
differences; however, for example Group 8 has a lower
disparity in wCVs between small and large tumors
compared to the other best performers.

The RC and wCV results indicate good overall repeat-
ability performance for at least a subset of algorithms, possibly
suggesting that some algorithms may also have the potential to
be used interchangeably as tumor volume measurement tools
for use cases where it is not possible to use a single algorithm.
By itself, RC is not sufficient comparing algorithms to un-
known truth, motivating the reproducibility analysis, which
is a measure of the dispersion in values across algorithms. If
the multiple algorithms are individually repeatable but each
comes up with (widely) varying measurements, RDC is large
(poor) and the deemed

algorithms would not be
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Figure 5. Example of a reference truth segmentation (RIDER-1129164940, first repetition, Group 08).
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Figure 6. Example of a group’s result superimposed onto the reference. True positive voxels are rendered as light gray, false negative voxels
as dark gray, and false positive as medium gray. True negative pixels are displayed as reduced intensity background image (RIDER-

1129164940, first repetition, Group 08).

interchangeable. The only way for RDC to come out small is
if the algorithms’ measurements are similar among them, and
if both the test and retest measurements from each algorithm
are included in the calculation of RDC, then it may suffice as a
test of interchangeability, hence our approach. Previously re-
ported repeatability results are widely varied across projects
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and authors; our results demonstrate a range of results as expe-
rienced in practice to help account for some of these
differences.

The RDC and %RDC were determined in three parti-
tions: 58% for the four best performing groups, 70% for an
expanded set of algorithms on the basis of their intra-
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Figure 7. Merged histograms for each of three overlap metrics. The x-axis represents the relevant index value (0-1). The y-axis represents the
number of tumors with the corresponding index value. Results from four algorithms are plotted with separate colors but combined on each plot

to facilitate comparison.

algorithm repeatability being less than 30%, and 84% when all
groups except one that was excluded because of erratic
behavior. This analysis of the RDC values shows that across
all algorithms, the reproducibility performance was low and
that, in general, interchanging of all algorithms is not appro-
priate. This is not surprising because of the low repeatability
for some algorithms including Groups 3 and 11 among others.
When we evaluated the reproducibility for the subset of algo-
rithms with the best repeatability (eg, Groups 2, 4, 5, and 8),
we found that reproducibility improved to 7%. This provides
initial evidence that some tumor volume measurement tools
might be appropriate for interchangeable use across patient
scans acquired at different times. However, this appears to
be only possible for a small subset of the algorithms evaluated
in this study, and even with these only on tumors with equiv-
alent diameter exceeding 40 mm. For the other algorithms, or
for tumors less than 40 mm, care should be taken that the same
algorithm is applied at each subsequent time point to elimi-
nate inter-algorithm variability as part of the overall measure-
ment error.

The reproducibility results of Table 5 show that RDC is
lowest when algorithms were applied on tumors meeting
the measurability criteria defined in the profile as expected.
Editing helps performance on larger tumors but no editing
is better for small tumors. This may be intuitive, in that larger
tumors often include more complex structure, such as larger
vessel attachments, and more variation in structure within
the tumor whereas smaller tumors might be more easily
segmented without need for editing and actually more vari-
able if users try to do so.

Another consideration concerns the extent to which the al-
gorithm may be considered “the end of the line” with respect
to variability of the entire process of evaluating tumor size. Our
LME analysis showed that more than 96% of the variation is
associated with the tumor, leaving just 4% related to other fac-
tors. Of this remaining 4%, one-fifth to one-half of this vari-
ability comes from sources independent of the algorithms.
The ratio of the size of the effect because of algorithm (plus
algorithm-tumor interaction) versus the residual informs an
“error budget” that may be used for specifying allowable vari-
ability because of algorithm versus other parts of the processing
chain, so that the system as a whole meets the QIBA claim. On

the basis of this, using results summarized in Table 5, not more
than two-thirds of the overall variability claim of the system can
be allocated to analysis software if the overall system is to meet
the QIBA Profile claims. By this measure, conforming algo-
rithms are those with RC less than two-thirds of the overall
QIBA Profile claim of 30% or 20%. Eight of the 12 algorithms
assessed in this study met this criterion. If the scanner and
acquisition parameters are not controlled, demands on algo-
rithms would be much higher. Hence, the QIBA approach is
to define performance requirements as means to reduce this
variability, although it cannot be eliminated completely.

An additional consideration characterizing
comparing segmentation algorithms is the segmentation

in and
boundaries themselves. We used the Jaccard Index and
Serensen-Dice coefticient for this task. The Jaccard Index
and Serensen-Dice coefticient are consistent across Groups
4 and 8 indicating that the segmentations are generally consis-
tent in both volume and edge profiles for these high R C algo-
rithms. This provides stronger evidence that these two
algorithms, and potentially Group 5 as well, could be used
interchangeably when evaluating CT tumor progression.
Groups 3 and 10/16 did not agree with each other or with
Groups 4 and 8 in regard to the Jaccard Index and
Serensen-Dice coefficient indicating that they likely could
not be used interchangeably with any other algorithm and
may in fact have divergent performance.

The reference standard segmentation was based on the
STAPLE algorithm defined across all the four algorithms
that provided segmentation results (Groups 3, 4, 8, and 10/
16). This is the maximum likelihood segmentation for the tu-
mor based on the segmentations. It may be appealing to think
of the reference standard as an estimate for the borders of the
true tumor. However, this is generally not appropriate because
the segmentation algorithms likely oversegment or underseg-
ment the true tumor, globally or within local regions. Either
case would produce a bias in the true boundaries. Even with
this limitation, the reference standard can be useful when
comparing a set of algorithms because it will show which al-
gorithms have substantial deviation from the norm. This in-
formation 1is likely very helpful in determining which
subsets of algorithms can potentially be used interchangeably
as discussed previously.
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The greatest use of this work and public algorithm chal-
lenges in general from a group’s point of view or a company
seeking to commercialize analysis software for tumor volume-
try may be the performance of their algorithm compared to
other similar algorithms. Individualized reports inclusive of
raw data and intermediate analysis results have been provided
to participants in the challenge. The value of the results is
highest to those who contributed actual segmentation bound-
aries, given the ability to distinguish TPs and true negatives
from FPs and FNs at a level of granularity allowing algorithm
optimization. These data are instrumental to inform the defi-
nition of a performance standard for CT tumor volumetry al-
gorithms. Participating groups also benefit, in that algorithm
weaknesses are identified.

Our study has limitations. The degree and extent of editing
applied to semiautomated algorithms were not held constant
between replicates (test-retest measurements), which could
have contributed to the overall variability and associated mea-
sures of repeatability and reproducibility. Also, our analyses did
not account for differences in experience between algorithm
operators in terms of interacting with radiological findings or
in terms of familiarity/training with the software. Another
limitation stems from an explicit determination for this study
that workflow should not be constrained, but the related
QIBA 1B study suggests that workflow considerations are of
substantial importance. In this case, workflow refers to how
the repeat scans were processed. In our study, all the scans
were processed independently, whereas in part of the QIBA
1B study scans were process in a locked sequential fashion.
‘We had originally thought that semiautomated without edit-
ing algorithms (no postsegmentation correction) would not
differ in their performance based on workflow, but found
that this does not always hold true because ROI and seed
placements may be affected. Additionally, the data used in
this study were relatively limited, thus only an early version
of the QIBA Profile claim specification can be made.
Although the data contained an assortment of clinical cases,
they did not fully represent the claimed clinical context of
use for the corresponding QIBA Profile. Definitive reference
data sets that adequately represent the target patient popula-
tion according to formally assessed statistical criteria should
include patients representing a range of common comorbid-
ities, disease characteristics, and imaging settings (eg, sedated
vs nonsedated patients). Finally, the manner in which these
tests are run and the data collected has implications regarding
the interpretation and use of metrics computed and reported.
For example, execution of these tests by a trusted third party
on sequestered data sets may increase their use.
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APPENDIX. ALGORITHM DESCRIPTIONS

Eleven groups participated in the challenge by submitting
volume readings for 12 algorithms and five submitted seg-

Participating Group

mentation boundaries, four of which were compatible for
analysis. Algorithms from each participating group are
described subsequently.

Description/Workflow

Group 02 (volume readings
and segmentation boundaries®)

Moderate image/boundary
modification (on <50% of the tumors)

Group 03 (volume readings and
segmentation boundaries)

Editing not allowed

Group 04 (volume readings and
segmentation boundaries)

Limited image/boundary modification
(on <15% of the tumors)

Group 05 (volume readings)

Moderate editing allowed (on <50% of
the tumors)

Group 06 (volume readings)

Editing not allowed (uses only seed
points and ROI information)

Volumetric analysis was determined using a segmentation approach using a Z-score on
the highest conspicuity postcontrast volumetric image set

A cylinder is placed around the highest conspicuity slice and around all slices above and
below this slice in which the tumor is seen

A kernel defined within the region of interest (ROI) is then propagated to other slices using
connectivity algorithms. The search is constrained by the predefined cylinder to
accelerate the search algorithm

One-click user-seeded segmentation

Uses shape and boundary information to delineate the tumor

The workflow for segmenting lung tumors involves a single click at a seed point roughly
centered in the tumor

The algorithm uses the seed point in combination with a thresholded ROI to extract the
most probable shape of the tumor
Use a trained nonradiologist technician and trained radiologist

As the images would be of chest and the tumors would be in lung parenchyma, all the
volume assessments were made using a fixed lung window/level display setting of
200 HU (window) and —1400 HU (level)

Trained nonradiologist opens the images in and uses the tumor location to identify the
tumors on images

Trained nonradiologist outlines/ROls of the identified tumors using automated algorithms

Trained nonradiologist evaluates the quality of the segmentation and adjusts outlines with
additional semiautomated tools as necessary

Finally, that image data are submitted to trained radiologist for final assessment of out
lines/ROls. The trained radiologist evaluates the quality of the segmentation and adjusts
outlines with automated and semiautomated tools as necessary

Once trained radiologist is satisfied with all the outlines/ROls of the respective tumors, the
automated volume assessment tool is used to calculate volume as volume = (image
position interval 1 x area 1) + (image position interval 2 x area 2) ---+---+ (image position
interval n x arean)

The images with ROI is processed, recolored and converted in to .nii file
Modelization of the heat-flow between the inside and outside the tumor. On the basis of
intensity gradients, in 3D

User clicks on a tumor, or draws a diameter joining the boundaries of the
tumor => software computes a segmentation of the tumor, and displays its contours

User can then refine the segmentation by the means of a slider => software adjusts the
segmentation accordingly, and displays in real-time the new contours

If needed, user can manually edit any contour by drawing it

User finally validates the segmentation => software “locks” the segmentation and extracts
the statistics: volume, long axis, short axis, and all intensity-based numbers (average
value, standard deviation, and so forth)

This algorithm combines the image analysis techniques of region-based active contours
and level set approach in a unique way to measure tumor volumes. It may also detect
volume changes in part solid and ground glass opacity tumors

The user clicks and drags to define an elliptical/circle ROI to initiate the segmentation

The computer then carries out the segmentation, and tumor measurements are saved
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(Appendix continued)
Participating Group Description/Workflow
The algorithm is an edge-based segmentation method that uniquely combines the image
processing techniques of marker-controlled watershed and active contours
An operator initializes the algorithm by manually drawing a region of interest
encompassing the tumor on a single slice and then the watershed method generates an
initial surface of the tumor in three dimensions, which is refined by the active contours
The volume, maximum diameter, and maximum perpendicular diameter of a segmented
tumor are then calculated automatically
Group 07 (volume readings) An initialization sphere is drawn from the center of the mass, on the slice with its largest

boundaries, such that it covers the entire extent of the mass. The user determines the
center and radius in a single click-drag action, and this initialization circle imposes hard
constraints on the maximum boundaries of the 3D segmentation

Editing not allowed (uses only
seed points and ROl information)

The used algorithm is part of a commercial software package for multimodal oncology
treatment assessment and review. Thus, the workflow mimics the typical workflow a
user has with this tool:

Select the desired CT data set and load it into any review mode
Select the lung window level setting

Navigate to the tumor center using the pixel and slice locations
Locate the slice where the tumor has the greatest boundaries

Select the algorithm, and initialize the segmentation by clicking in the approximate center
of the mass and dragging the mouse to set the radius of the spherical ROI

The spherical ROI contains a fixed inner sphere and the outside sphere, which is set by the
mouse dragging motion. The radius is chosen such that the inner circle encompasses
most of the mass to be segmented, and the outer sphere can be used as a constraint to
prevent any leakage into the chest wall or heart if the mass is attached/abducting to
these organs

The computation takes a few seconds (single digit numbers) to compute the result. User
may retry the segmentation a few times if the result is unsatisfactory. With each try the
previous result is erased, and does not influence the result of preceding try. In this
experiment, the user has in overall three tries to get a satisfactory result

Once the segmentation has been determined, the user reads off the volume from the
region statistics, which are automatically computed and displayed as soon as the
segmentation has been defined. (The volume measurement algorithm counts all voxels
whose centroid lies within the segmented contour and multiplies this number with voxel
volume)

To document the segmentation result, save the segmentation as an RT-structure set to the
data repository

Group 08 (volume readings and Semiautomatic segmentation based on thresholds, growing region, and mathematical
segmentation boundaries) morphology processing

Moderate editing allowed (on <50% of Digital Imaging and Communications in Medicine (DICOM) images are downloaded and
the tumors) imported into a database. Image data are converted to a proprietary optimized format

before the insertion into the database. Tumors’ coordinate are downloaded and refor
matted by our data manager. Relying on a proprietary validation framework system,
landmarks are automatically inserted into the database

The software is allowed then to display the repeated images side by side with the correct
landmarks identifying the tumors to segment. The first repetition was edited as a single
image. The side-by-side display was available only for the repetition when the first scan
edit was locked

Three reviewers are involved, each in charge of segmenting approximately a third of the
data set. The data manager made available to the reviewers a commercial semiauto
mated algorithm dedicated to lung tumors. Another manual tool can be enabled if
semiautomatic segmentations were not fully satisfactory. The data manager recom
mended using different window level to better assess tumor boundary, pulmonary

(continued on next page)
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(Appendix continued)

Participating Group

Description/Workflow

Group 11 (volume readings)

Editing not allowed (uses only seed
points and ROI information)

Group 12 (volume readings)

Moderate editing allowed (on <50% of
the tumors)

window level being the major window level to refer to. The data manager recommended
correcting semiautomated segmentation as long as the segmentation was not fully
satisfactory. Once the whole data set segmented, an additional reviewer was involved to
check the whole coherency of the measurements: total number of tumors, no obvious
incoherency, correct recording of the data, and so forth

A complete report was extracted. The same validation framework system allowed auto
matic extraction of tumors’ mask as .mhd format. A third party software as 3D Slicer was
used to convert masks to Neuroimaging Informatics Technology Initiative (NIfTI) format

Method is completely automatic and consists of three steps. First, an ROl is extracted and
the tumor is classified as solid or subsolid. In the second step, a binary segmentation
mask is computed by an algorithm based on thresholding and morphologic
postprocessing, using slightly different procedures for the two classes. Finally, the
volume of the tumor is determined by adaptive volume averaging correction

Preprocessing: a stroke is generated from the given center and bounding box by
shortening the bounding box diameter to 40%

The segmentation is performed in a cubic ROI, whose edge length is twice the stroke
length. The ROI is smoothed with a 3 x 3 Gaussian filter and resampled to isotropic
voxels and a maximum size of 100 x 100 x 100 voxels. For detecting the tumor type, the
local maximum in a5 x 5 x 5 neighborhood of the ROI center is identified. If its value is
greater than —475 HU, the tumor is treated as solid, otherwise as subsolid

The ROI center is used as a seed point for region growing. The lower threshold is derived
from the 55% quantile of the histogram of the dilated stroke by applying an optimal
elliptic function yielding values between —780 and —450 HU. The resulting mask con
tains the complete tumor, but may also leak into adjacent vasculature or, in case of
juxtapleural tumors, into structures outside the lungs

To remove vessels, an adaptive opening is used, where the erosion threshold is chosen
such that the segmentation has no connection to the ROl boundary anymore. A slight
overdilation allows a final refinement of the mask. To avoid leakage outside the lungs, a
convex hull of the lung parenchyma is computed within a minimal elliptical region that is
fitted to the shape of the tumor. The convex hull is then used as a blocker for the
segmentation

Because of the limited spatial resolution of CT and partial volume effects, the volume of a
segmented tumor cannot be determined exactly by voxel counting. Instead, voxels in a
tube around the segmentation boundary are weighted according to their estimated
contribution to the tumor volume. The weight depends on the relation of a voxel’s value
to the typical tumor and parenchyma densities

We start with an automatic method (submitted Group 11) and correct results interactively if
necessary. The user draws partial contours, which are included in the segmentation in
the edited slice. Additionally, the correction is automatically propagated to a set of
neighboring slices by sampling the contour, matching points to the next slice, and
connecting them with a live-wire method

Interactive correction: our interactive correction tool provides an efficient way to fix seg
mentation results, which are mostly correct but need some refinement. The user draws
partial contours indicating the desired segmentations, which are then automatically p
ropagated into 3D. Seed points calculated from the user contour are moved to adjacent
slices by a block matching algorithm and the seed points are connected by a live-wire
algorithm. For the submission, correction was performed by two experienced
developers in consensus

Volumetry: the volumetry used for automatic results is integrated in the segmentation
algorithm. To ensure consistency after interactive correction, the change in the number
of voxels is computed and multiplied with the (partial-volume-corrected) volume of the
initial result
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(Appendix continued)

Participating Group

Description/Workflow

Group 14 (volume readings)

Editing not allowed (uses only seed
points and ROI information)

Group 15 (volume readings)

Moderate editing allowed (on <50% of
the tumors)

Group 10/16 (volume readings and
segmentation boundaries')

The system is fully automated after manual input of an approximate bounding box for the
tumor of interest. Within the bounding box, the system automatically processes the
images in three stages—preprocessing, initial segmentation, and 3D level set
segmentation

In the first stage, a set of smoothed images and a set of gradient images are obtained by
using 3D preprocessing techniques to the original CT images. Smoothing, anisotropic
diffusion, gradient filtering, and rank transform of the gradient magnitude are used to
obtain a set of edge images

In the second stage, based on attenuation, gradient, and location, a subset of pixels is
selected, which are relatively close to the center of the tumor and belong to smooth (low
gradient) areas. The pixels are selected within an ellipsoid that has axis lengths one-half
of those of the inscribed ellipsoid within the bounding box. This subset of pixels is
considered to be a statistical sample of the full population of pixels in the tumor. The
mean and standard deviation of the intensity values of the pixels belonging to the subset
are calculated. The preliminary tumor contour is obtained after thresholding and
includes the set of pixels falling within three SDs of the mean and with values greater
than the fixed background threshold. A morphologic dilation filter, a 3D flood fill
algorithm, and a morphologic erosion filter are used to the contour to connect the
nearby components and extract an initial segmentation surface. The size of the ellipsoid
and the remaining parameters are selected experimentally in a way that enables
segmentation of a variety of tumors, including necrotic tumors

In the third stage, the initial segmentation surface is propagated by using a 3D level set
method. Four level sets are applied sequentially to the initial contour. The first three level
sets are applied in 3D with a predefined schedule of parameters, and the last level set is
applied in 2D to every section of the resulting 3D segmentation to obtain the final con
tour. The first level set slightly expands and smoothes the initial contour. The second
level set pulls the contour toward the sharp edges, but at the same time, it expands
slightly in regions of low gradient. The third level set further draws the contour toward
the sharp edges. The 2D level set performs final refinement of the segmented contour on
every section

The software used is essentially a semiautomated contouring method. The user clicks on a
voxel located inside the tumor of interest and then drags a line to the outside the tumor
(to the background)

The voxels along that line are sampled and a histogram of intensities (Hounsfield Units) is
created

A statistical method is used to determine the threshold that best separates the two
distributions (tumor and background) in that histogram

Once that threshold is determined, the software uses a 3D (or if selected a 2D) seeded
region growing using the initial voxel selected as the point inside the tumor and the
threshold determined from the histogram analysis

The tool also provides several user editing tools such as adding and erasing voxels from
the contour, and so forth. The workflow description is as follows:

Each contour is automatically stored in a database linked to the experiment along with
meta data such as patient ID, contouring individual’s ID, and so forth. Each contoured
object has a unique ID that is linked to the series UID to maintain its identity

Once the contour is completed and accepted, the volume of the contoured object is
calculated. This is done essentially by counting the number of voxels within the
boundaries of the contoured object and multiplying that by the voxel size (as derived
from DICOM header data)

As the input for the algorithm, the user has to draw a stroke being favorably the largest
diameter in the axial orientation or click a point in the given lung tumor. Usually, the
decision to use a stroke or a single click point depends on the size of the tumor to be

(continued on next page)
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(Appendix continued)

Participating Group

Description/Workflow

Limited editing allowed (on <50% of
the tumors)

segmented (for bigger tumors, a stroke is preferable, whereas for small tumors, a single
click is sufficient)

In the next step, a volume of interest (VOI) around the tumor is estimated. In the case where
the algorithm has been initialized with stroke, the size of the VOI depends on the length
of the stroke

3D region growing is conducted in a VOI starting from seeds generated along the stroke or
around the click point, depending on the initialization

Adjacent structures of similar density (pleura, vessels) are separated by a set of inter
changing morphologic operations (erosion, dilation, convex hull, and binary
combination with region growing mask.)

Finally, a plausibility check between the resulting segmentation mask and the position of
the initial stroke or click point is conducted. If necessary, initial thresholds are read
justed and the whole procedure (steps 2-5) is repeated

For the case when the semiautomatic results are not satisfactory, the software provides
the possibility of correcting the results by drawing contours in selected slices and then
propagating the contours in an automatic manner onto the whole 3D segmentation. The
algorithm performs best optimally for the resolution up to 2 mm, although it still works
reasonably well for thicker slices such as 5 mm

Three groups (Groups 01, 09, and 13) initially applied but did not submit results.
*Alignment issues prevented inclusion in the segmentation boundary analysis.
*Volume results submitted under ID Group 16 and segmentation objects submitted under ID Group 10.
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