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I. Context of Use 
A. Biomarker Category 
pharmacodynamic/response 

B. Intended Use in Drug Development
 
As a primary endpoint for evaluating treatment efficacy/response.
 

C. Context of Use Statement 
Radiologic measurements of whole tumor volume are more precise (reproducible) than 

unidimensional measurements of tumor diameter. Therefore, longitudinal or serial changes in 

whole tumor volume during therapy can identify response earlier than corresponding 

unidimensional measurements, resulting in smaller, more efficient clinical trials. Tumor response 

or progression as determined by tumor volume can serve as the primary endpoint in well‐

controlled phase 2 and 3 efficacy studies of cytotoxic, targeted, or immunotherapeutic agents in 

clinical trials of solid tumors. 

II. Drug Development Need 

CT imaging technology has significantly improved over the past decades (1). The benefits of 

imaging for diagnosis, staging, and re‐staging cancer are now well established (2, 3). While 

clinical outcomes remain the gold standard for assessing the value of new treatments, clinical 

outcomes as an endpoint may not be feasible or optimal in some circumstances. For example, in 

certain cancer types with a long natural history, it may take years to reach clinical outcome and 

requires a large number of patients in the studies. Additionally the relationship of clinical 

outcome to the experimental therapy can be confounded by subsequent therapies, making it 

difficult to interpret true therapeutic effects. 

Alternatively, imaging approaches, both qualitative impressions and quantitative analysis, have 

been proposed to assess the serial changes in tumor burden as an indicator of response to 

treatment. The current standard method to measure tumor response to therapy using computed 

tomography (CT) remains Response Evaluation Criteria in Solid Tumors (RECIST), which is based 

on unidimensional, linear measurements of tumor diameter in the axial plane (4). Because only 

unidimensional linear measurements are assessed with RECIST, the much higher resolution data 

offered by modern CT scanners or the advanced image segmentation and visualization methods 

that can be used on these CT image data sets, available on many commercial workstations, are 

not fully used (5). The rationale for volumetric approaches to assessing serial changes in tumor 

burden is multi‐factorial. First, most cancers may grow and regress irregularly in three 

dimensions. Measurements obtained in the axial plane fail to account for growth or regression in 

the longitudinal axis, whereas volumetric measurements incorporate changes in all dimensions. 
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Secondly, changes in volume are less subject to either reader error or interscan variations. For 

example, partial response (PR) using RECIST requires a greater than 30% decrease in tumor 

diameter, which corresponds to 65% reduction in volume of tumor. If one assumes a 21 mm 

diameter lesion (of 4850 mm3 volume), PR would require that the tumor shrink to a diameter of 

less than 15 mm, which would correspond to a decrease in volume all the way down to 1770 

mm3. The much greater magnitude of volumetric changes is less prone to measurement error 

than changes in diameter, particularly if the lesions are irregularly shaped or spiculated. As a 

result of the increased sensitivity and reproducibility, volumetry is likely to be more suited than 

unidimensional measurements to identify early changes in patients undergoing treatment. 

Another limitation of RECIST criteria beyond measurement precision is that it was designed for 

the study of cytotoxic chemotherapies, before the realization of therapeutic success in targeted 

and immunotherapeutic drugs and the unique radiographic features associated with these drug 

classes. 

Studies have shown that it is technically feasible to achieve less than 1% intra‐ and inter‐rater 

variability when analyzing well‐demarcated tumors with simple geometric shapes on a single 

image set (6). Results from "coffee break" test‐retest studies have demonstrated high agreement 

in volume measurements for pairs of images within subjects acquired after very short time 

intervals, with 95% limits of relative measurement difference ranging from −12.1% to 13.4%, and 

a mean relative difference of 0.7% (7). A more recent report of test‐retest study in lung cancer 

patients of the ACRIN 6678 trial using low‐dose CT concurred with the previous findings and 

showed a mean relative volume difference of −0.4% ± 10.5% (mean ± SD), with 95% upper and 

lower relative measurement difference limits of −21.0% and 20.3% (8). These findings suggest 

that CT volumetry represents a sufficiently reproducible method in determining tumor burden, 

and therefore can be relied upon as the basis for imaging biomarkers for predicting therapeutic 

effects in phase 2 and phase 3 trials. 

Since tumor volume change represents a downstream event of drug effects independent of drug 

classes, tumor volume‐based biomarkers , if qualified, are likely suitable to be broadly applied in 

drug development programs of a wide range of solid tumor diseases and drug classes including 

cytotoxic, targeted, and immunotherapeutic agents in phase 2 and 3 oncology clinical trials. A 

more sensitive and precise tumor volume‐based biomarker has the potential to require fewer 

subjects for drug efficacy demonstration and to detect drug effects earlier, resulting in smaller 

and shorter phase 2 or phase 3 trials to reduce the cost and to accelerate oncologic drug 

development. 
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III. Biomarker Information 

A. Biomarker Name, Source, Type and Description 
Tumor Volume Change as an Imaging Biomarker Predicting Response to Cancer Therapy for 

Patient Management and Oncologic Drug Development; DDT # (DDTBMQ000011) 

Type of Biomarker (Check relevant type(s)) 
Molecular × Radiologic/Imaging 
Histologic Physiologic Characteristic 
Other (please describe): 

B. For molecular biomarkers, please provide a unique ID. 
Not applicable 

C. Rationale for Biomarker 
Tumor volume measured by CT reflects tumor burden and can be measured quantitatively and 

with high reproducibility over time. 

Mechanistic rationale or biologic plausibility for the biomarker 
Endpoints based on radiographic assessment of the change in tumor burden, such as objective 

response rate (ORR) and time‐to‐disease progression (TTP), are frequently used in phase 2 trials 

to screen for activity of anti‐cancer agents. These endpoints have been proven to reasonably 

predict future clinical outcomes in phase 3 trials in a range of solid cancer types, including 

colorectal cancer, non‐small‐cell lung cancer, breast cancer, ovarian cancer and other cancers, 

for both cytotoxic and targeted therapies (9‐12). More recently in the immunotherapeutic 

setting, immunotherapeutic drugs that conferred ORR advantages in early phase studies went on 

to show prolonged survival at least in lung cancer and melanoma in phase 3 trials (13‐15). These 

findings suggest that there is a plausible link between tumor burden change and clinical 

outcomes. 

Tumor burden has historically been approximated by unidimensional or bidimensional 

measurement on CT scans to determine response to treatment or disease progression since 

volumes could not be easily or accurately measured. Technological advances in signal processing 

and the engineering of multidetector computed tomography (MDCT) devices have resulted in the 

ability to rapidly acquire high‐resolution images, resulting in precise volumetric scanning of 

anatomic regions. Volumetry is likely to be a substantially more sensitive technique for detecting 

serial changes in tumor masses than reliance on measurements of lines representing tumor 

diameters as defined by RECIST. As a result, volumetry may allow earlier and more accurate 

assessment of clinical outcomes compared with unidimensional measurements used in RECIST. 
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Volumetry could also benefit patients who need alternative treatments when their diseases stop 

responding to their current regimens. 

Natural history of the disease indication and associated risk factors 
We anticipate that the change in tumor burden as measured by CT volumetry can be a 

pharmacodynamic/response marker in a phase 2 and phase 3 clinical trials in a range of solid 

tumor diseases, including lung, melanoma, and colorectal and renal cancers treated by cytotoxic, 

targeted and immunotherapeutic drugs. 

The magnitude and duration of change in the biomarker required to demonstrate a clinically 
meaningful effect/impact or outcome. 
This proposal is to generate evidence to establish the magnitude and duration of change in the 

biomarker required to demonstrate a clinically meaningful effect/impact on outcome. Our initial 

hypothesis was to validate the volumetric equivalent of the uni‐dimensional RECIST response 

categories (eg. PD= 20% ↑1D vs 73% ↑3D vs PR=30% 1D ↓ vs 66% ↓3D) as the default 

threshold assumptions for anatomical volume change in response to a broad range of therapies 

where tumor shrinkage is the anticipated mechanism of action providing clinical benefit. 

Secondarily we intended to examine alternative and optimal thresholds (cutpoints) for response 

or progression based on correlation with clinical outcomes in retrospective analysis of 

randomized controlled trials. The proposed pharmacodynamic/response markers based on both 

approaches will be developed and validated within the CT‐Vol PACT Project (See Section IX C 

Ongoing Information Collection) 

More recently we are exploring alternative methods of assessing the performance of both 

unidimensional and volumetric tumor measurements using continuous variable analysis 

methodologies, such as tumor growth/regression kinetic modeling, as potentially superior 

methods of predicting outcome correlations compared to categorical imaging assessments. 

Is there an established “baseline” for the biomarker in the target patient population compared to 
healthy controls? Does another measure of disease progression track with changes in the 
biomarker that are larger than the standard error in the longitudinal measures? Are baseline 
measures different from baseline, i.e., is there a clinically validated cut‐off or threshold for 
change in the biomarker? If no, can the results of a patient cohort study be used to develop a 
statistical model to establish cut‐points or a threshold that may be clinically meaningful (see also 
Section X. Knowledge Gaps in Biomarker Development). 

The separation of the tumor from its surrounding anatomic structures is made possible by 

differential radiodensities. In primary NSCLC lesions, Hounsfield units (HU) of the tumor (≥20 HU 

in general) readily distinguish it from the airspace (−1000 HU) and lung parenchyma (−600 to 

−700 HU). In metastatic disease, differentiation of the lesion boundaries and volume within an 

organ of comparable contrast and grey scale value may not be as apparent. Target lesions on CT 

scans at each patient’s baseline study are selected per RECIST, and each lesion is delineated 

5 



 
 

                   

                          

 

                           

                               

                         

                         

                           

                                 

                         

                         

                             

                             

                                 

                               

                               

                         

                       

                       

                

 

                             

                       

                     

                             

                     

                             

                     

                           

                           

                                

                           

                     

                       

 

       

           

                           

                            

using segmentation software. The longest axial plane diameter (unidimensional measurement) 

and the volume of a lesion can be automatically calculated by computer programs. 

Tumor volume can be measured quantitatively with high reproducibility. Using a dataset of 32 

NSCLC patients who were scanned twice during a short interval (within 15 minutes) on the same 

scanner under a presumed no‐change condition, the 95% limits of agreements for the computer‐

aided volumetric measurements on two repeat scans were (−12.1%, 13.4%) (16) by three 

readers, indicating that changes in tumor volume outside the limits represent true changes. In 

another study using the same dataset, five readers were instructed to read the scans in a “locked 

sequential read” manner, i.e., radiologists read the first time point scan, locked their 

measurements, and then made measurements on the second time point scan while being 

allowed to review their prior measurements on the first time point scan. Using this workflow, 

which is more reflective of clinical trials practice, the mean percent difference (± SD) when 

pooled across both readers (five readers in total) and lesions was 7.4 ± 44.2% (17). A recently 

published report of a test‐retest study in NSCLC cancer patients from the ACRIN 6678 trial using 

low‐dose CT showed a mean relative volume difference of −0.4% ± 10.5% (mean ± SD), with 95% 

upper and lower relative measurement difference limits of −21.0% and 20.3% (8). The above 

limits of agreement are substantially narrower than the volumetric equivalent of the uni‐

dimensional RECIST response categories (eg. PD= 73% ↑3D vs PR= 66% ↓3D), confirming that 

true tumor volume changes occurred below these thresholds. 

We are currently in the process of developing a statistical model to establish cut‐points or 

thresholds that are clinically meaningful. We are also developing continuous variable analysis 

methodologies such as tumor growth/regression kinetic modeling that can predict clinical 

outcomes (18). We have gathered CT images and clinical outcome data from phase 3 clinical 

trials sponsored by pharmaceutical companies to support regulatory approval. These include 

three NSCLC, two colorectal cancer, two renal cell cancer trials of targeted agents; and two 

melanoma trials of immunotherapeutics, representing over 7,000 patients’ images (See Section 

IX. Evaluation of Existing Biomarker Information: Summaries for details). Of these 10 total trials, 

two are placebo‐controlled studies, while eight use an active comparator to study the response 

of the investigational drug candidates. We will divide the data into the training set and the 

validation set. We will use the training dataset to develop statistical models to establish cut‐

points/thresholds and to develop continuous variable methods that predict clinical outcomes; 

these cut‐points and continuous variables will be confirmed using the validation dataset. 

IV. Biomarker Measurement Information 
A. General Description of Biomarker Measurement 

Measurement of the tumor volume on CT images should follow the consensus guidelines as 

described in the QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV‐AD) (19). 
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There are a variety of software packages available that are QIBA complaint, and people using 

this biomarker could use any of those packages. Examples of the software are described in (20, 

21). 

B. Test/Assay Information 
Indicate whether the biomarker test/assay is one or more of the following: 

i. Laboratory Developed Test (LDT)  ○ Yes √No 

ii. Research Use Only (RUO)  ○ Yes √ No 

iii. FDA Cleared/Approved.  ○ Yes ○ No √ Don’t Know 

If yes, provide 510(k)/PMA #:_ 

Multiple scanner vendors and software providers 

iv.	 If the biomarker is qualified, will the test/assay be performed in a Clinical Laboratory 
Improvement Amendments (CLIA)–certified laboratory? 

○ Yes √ No 
v.	 Is the biomarker test currently under review by the Center for Devices and Radiological 

Health or the Center for Biologics Evaluation and Research? 

○ Yes ○ No √ Don’t Know 

vi.	 Is there a standard operating procedure (SOP) for sample collection and storage? 
√ Yes ○ No 

Refer to QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV‐AD) should 

be followed (19) 

vii.	 Is there a laboratory SOP for the test/assay methodology? 

√ Yes ○ No 

Refer to QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV‐AD) should 

be followed (19) 

C. Biomarker Measurement 

i. Quality Control 

The general procedure described in QIBA Profile: CT Tumor Volume Change for Advanced Disease 

(CTV‐AD) should be followed (19). 

Precision/reproducibility 

In a test‐retest study using a dataset of 32 NSCLC patients who were scanned twice during a 15 

minute interval on the same scanner under a presumed no‐change condition, the 95% limits of 

agreements for the computer‐aided volumetric measurements on two repeat scans were 

(−12.1%, 13.4%) (16). In another study on the same dataset, the mean percent difference (± SD) 

when pooled across both readers (five readers in total) and lesions was 7.4 ± 44.2% (17). A 

recently published report of test‐retest study in NSCLC cancer patients from the ACRIN 6678 trial 

using low‐dose CT showed a mean relative volume difference of −0.4% ± 10.5%, with upper and 

lower relative measurement difference limits of −21.0% and 20.3% (8). Other published studies 

7 



 
 

                         

               

      

                           

                         

                         

                     

                       

                     

                         

                 

                     

                           

          

     

                               

    

                           

            

                       

 

                   

                         

                         

                     

                   

                         

                                 

                         

                               

                           

                               

                     

                       

                           

reported results within these ranges (22‐28). Also see Section D. Additional Considerations for 

Radiographic Biomarkers under Performance characteristics including sensitivity, specificity, 

accuracy and agreement. 

If cutpoint(s) are used, specify the cutpoint(s) and provide rationale for the cutpoints selected. 

Our initial hypothesis was to validate the volumetric equivalent of the uni‐dimensional RECIST 

response categories (eg. PD= 20% ↑1D vs 73% ↑3D vs PR=30% 1D ↓ vs 66% ↓3D) as the 

default threshold assumptions for anatomical volume change. Secondarily we intended to 

examine alternative and optimal thresholds for response or progression based on correlation 

with clinical outcomes in retrospective analysis of randomized controlled trials. 

More recently we are exploring alternative methods of assessing the performance of both 

unidimensional and volumetric tumor measurements using continuous variable analysis 

methodologies as potentially superior method of predicting outcome correlations compared to 

categorical imaging assessments. One example of such biomarkers on the continuous scale is the 

rate of tumor growth/regression (18). 

ii. Quality Assurance 

Type of test: Tumor volume assessment based on CT imaging is classified as an imaging or 

radiographic biomarker. 

SOP: The general procedure described in QIBA Profile: CT Tumor Volume Change for Advanced 

Disease (CTV‐AD) should be followed (19). 

Detailed description of the specialized software needed (e.g., automated digital image analysis 

software). 

Measurement of tumor volume requires three‐dimensional segmentation software to separate 

the tumor from the surrounding anatomic structures and to compute tumor volume. The 

algorithms that have been evaluated in the QIBA studies ranged from fully automated 

segmentation algorithms which do not allow any user intervention to semi‐automated 

segmentation algorithms which allow minimal input from the user. Semi‐automated 

segmentation algorithms were further divided into subgroups based on the allowable amount of 

user input, ranging from those that only allow selection of a seed point(s) for the purpose of 

initiating segmentation to those that allow various degrees of adjustment to parameters or/and 

to image boundaries (20, 21). Once the radiologist is satisfied with the contour of the respective 

tumor, the automated volume assessment tool calculates the volume of the tumor. As an 

example, the following is an excerpt from the QIBA 1A study (29) briefly describing the workflow. 

“The 3D volumetric measurements were made using a prototype proprietary semi‐automated 

tool (Oncocare Prototype, Siemens Corporate Research, Princeton, NJ), which included a lesion 

segmentation component. The 3D measurement process was as follows: the reader (1) defined a 
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seed stroke across the lesion (i.e., a RECIST‐like line across the perceived maximum diameter of 

the lesion), (2) applied the segmentation tools, (3) evaluated the quality of the segmentation, 

and (4) refined or added seeds strokes and reapplied the segmentation tool until satisfied with 

the 3D nodule segmentation. The software then provided the estimate of nodule volume.” 

A summary on the 12 tumor volume measurement algorithms in the QIBA 3A study can be found 

in the Appendix of the publication (20), and is included as an attachment to this document 

iii. Limits, Sources and Quantification of Measurement Error 

The following table (Table 1) is extracted from QIBA Profile: CT Tumor Volume Change for 

Advanced Disease (CTV‐AD) (19). It summarizes major factors that affect volume measurement 

precision, including the size of tumor, acquisition device, radiologist who performs tumor 

measurement, and the analysis tool. 

Table 1 Minimum Detectable Differences for Tumor Volume Changes (Informative) 

Tumor 
Diameter 

Different Acquisition Device Same Acquisition Device 

Different 

Radiologist 

Same 

Radiologist 

Different 

Radiologist 

Same 

Radiologist 

Different 
Analysis 
Tool 

Same 
Analysis 
Tool 

Different 
Analysis 
Tool 

Same 
Analysis 
Tool 

Different 
Analysis 
Tool 

Same 
Analysis 
Tool 

Different 
Analysis 
Tool 

Same 
Analysis 
Tool 

>50mm 43% 24% 43% 24% 37% 10% 37% 8% 

35‐49mm 67% 33% 65% 29% 62% 22% 60% 14% 

10‐34mm 139% 120% 80% 39% 136% 117% 75% 28% 

Notes: 
1.	 Acquisition Device actors being different means the scanner used at the two timepoints were different 

models (from the same or different vendors). Two scanners with different serial numbers but of the same 
model are considered to be the same Acquisition Device actor. 

2.	 Precision is expressed here as the repeatability or reproducibility coefficient, depending on the column. 
3.	 A measured change in tumor volume that exceeds the relevant precision value in the table indicates 95% 

confidence in the presence of a true change. 
4.	 Minimum detectable differences can be calculated from the following formula: 1.96 x sqrt(2 x wCV2), 

where wCV is estimated from the square root of the sum of the variances from the applicable sources of 
uncertainty (which makes the assumption that the variance components are additive, an assumption that 
has not yet been tested). 

5.	 The estimates of the sources of variation were derived from several (QIBA) groundwork studies, some of 
which were performed on phantoms and some of which were performed on human subjects. 
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D. Additional Considerations for Radiographic Biomarkers 

Image acquisition, analysis, and interpretation 
For this qualification effort, the CT images are obtained from completed phase 3 trials conducted 
by pharmaceutical companies to support drug regulatory approval. The acquisition conditions 
are assumed to meet the industry and regulatory standards. 

The CT images in DICOM format were segmented by a semi‐automated software developed by 
Drs. Binsheng Zhao and Larry Schwartz (Columbia University); the volume for measurable tumors 
were calculated and the output is numeric values (16). These tumor volume values are used to 
study the correlation of longitudinal tumor volume changes with clinical outcomes. 

Assessment of uncertainty including repeatability, reproducibility (e.g., within site, across sites, 
equipment model/manufacturer) and reader variability. 
See Section IV C i. Biomarker Measurement Information; Biomarker Measurement; Quality 
Control; and Performance characteristics including sensitivity, specificity, accuracy and 
agreement in this section below. 

Data to support proposed cutpoint(s) if imaging results are not reported as a continuous
 
variable.
 
See III C Biomarker Information; Rationale for Biomarker and IV C i. Biomarker Measurement 
Information; Biomarker Measurement; Quality Control. 

Performance characteristics including sensitivity, specificity, accuracy and agreement. 
QIBA has organized several studies to quantify the bias and precision of tumor volume 
measurement using CT scans of either an anthropomorphic thorax phantom or from test‐retest 
studies in lung cancer patients and in colorectal cancer patients. The ACRIN 6678 study 
sponsored by FNIH also contributes to the understanding of tumor measurement precision in 
lung cancer. The study results are summarized in Table 2. 

Device imaging performance characteristics such as resolution, field of view, distortion, contrast, 
depth of penetration, signal to noise ratio and other imaging parameters as necessary. 
The performance characteristics for CT scanner that was used to generate the test‐retest “coffee 
break” dataset of 32 NSCLC patients for reproducibility study was described in (16), and are cited 
below. 

“CT scans were obtained with a 16–detector row (LightSpeed 16; GE Healthcare, Milwaukee, 
Wis) or 64–detector row (VCT; GE Healthcare) scanner, both of which are routinely used at the 
center. Parameters for the 16–detector row scanner were as follows: tube voltage, 120 kVp; tube 
current, 299–441 mA; detector configuration, 16 detectors × 1.25‐mm section gap; and pitch, 
1.375:1. Parameters of the 64–detector row scanner were as follows: tube voltage, 120 kVp; 
tube current, 298–351 mA; detector configuration, 64 detectors × 0.63‐mm section gap; and 
pitch, 0.984:1. The thoracic images were obtained without intravenous contrast material during 
a breath hold. Since the second scan was considered as a separate scan, its field of view was set 
given the patient's second scout image. Adjustment was allowed owing to the patient's position 
in the scanner. Thin‐section (1.25 mm) images were reconstructed with no overlap by using the 
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lung convolution kernel and transferred to our research picture archiving and communication 
system (PACS) server where Digital Imaging and Communications in Medicine (DICOM) images 
are stored. These thin‐section images were then used for both manual measurement and 
semiautomated computation of tumor sizes.” 

The performance characteristics for the CT scanners that were used to generate low dose CT 
images in the multicenter trial (ACRIN protocol 6678; FDG‐PET/CT as a Predictive Marker of 
Tumor Response and Patient Outcome: Prospective Validation in Non‐small Cell Lung Cancer) in 
patients with advanced NSCLC treated with chemotherapy are summarized below. CT volumetric 
data from this study were analyzed post hoc to produce the reproducibility results reported in 
(8). The study was being conducted under the well‐established policies and procedures of ACRIN 
for protocol management, site qualification, data management, patient accrual, data and safety 
monitoring, imaging quality assurance, and evaluation. The site/scanner credentialing and 
quality control parameters for CT scans used for tumor volumetric measurements are 
summarized in Table 3. 

Algorithms used to interpret the image or data contained in the image. Please provide a full 
description of these algorithms and validation data or validation plan to confirm the algorithms 
function as intended. 
Provide the name(s) and version(s) of the software package(s) to be used for image acquisition 
and analysis 

The semi‐automated segmentation software developed by Drs. Binsheng Zhao and Larry 

Schwartz (Columbia University) will be used to measure tumor volume on CT images for the 

correlation analysis with clinical outcomes using data from randomized trials (See Section IX. 

Evaluation of Existing Biomarker Information: Summaries for details). This CT segmentation 

software has shown to measure tumor volume in lung cancer patients with high reproducibility 

in a test‐retest study; the mean relative difference was of 0.7%, and the 95% limits of 

agreements on two repeat scans was (−12.1%, 13.4%) (16). This measurement precision is 

comparable to the nine CT segmentation algorithms evaluated in the QIBA 3A(2) algorithm 

challenge using the same patient dataset (20). The software was also evaluated along with nine 

other algorithms from different sources in an algorithm challenge study to measure the volume 

of synthetic nodule in an anthropomorphic phantom; it performed comparably with other 

volume calculation algorithms in this setting (21). 

The software developed by Columbia University Drs. Zhao and Schwartz is described in a 

publication (16), and algorithms used in the QIBA 3A studies are described in the Appendix of a 

publication (20). As stated in Section IV. A, there are a variety of software packages available 

that are QIBA complaint, and people using this biomarker could use any of those packages. 

Please referred to the two publications (20, 21) for examples of these software packages. 
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Table 2 (A) Technical Performance Validation – Volume Measurement Bias and Precision in Phantom Studies 

Study Description – Phantom Summary Results Status 

QIBA 1A: Estimate the bias and Measurements were normalized to a 1D scale for comparison of measurement bias and Completed and 
variability of volumetric variance among 1D, 2D and 3D. Relative bias for 3D: −1.8%, −0.4%, −0.7%, −0.4%, and −1.6% published (29) 
measurements of nodule images for 10‐mm spherical, 20‐mm spherical, 20‐mm elliptical, 10‐mm lobulated, and 10‐mm 
by six readers. A total of 40 spiculated nodules compared to 1.4%, −0.1%, −26.5%, −7.8%, and −39.8% for 1D. The three‐
nodules collected from a single dimensional measurements were significantly less biased than 1D for elliptical, lobulated, and 
scanner were measured. spiculated nodules. The relative standard deviations for 3D were 7.5%, 3.9%, 3.6%, 9.7%, and 

8.3% compared to 5.7%, 2.6%, 20.3%, 5.3%, and 16.4% for 1D. Unidimensional sizing was 
significantly less variable than 3D for the lobulated nodule and significantly more variable for 
the ellipsoid and spiculated nodules. 

QIBA 1C: Estimate the bias and 
variability of volumetric 
measurements of images collected 
from six CT scanners. A total of 
462 measurements were made 
(n=462=6 lesions × [5 scanners × 2 
CT protocols+1 scanner × 1 CT 
protocols] × 7 readers). 

The overall percent error for all nodules (n=462) was −6.04±17.60% (mean±SD). The percent 
error for nodules 10 mm (n=308) was –0.59±9.57%, and −16.92±23.89% for nodules <10 mm. 
Relative bias in pooling the 6 nodules (3 spherical; 3 spiculated) is within a 15% tolerance. On 
individual nodules, scanner equivalence is found for the larger synthetic lesions (10 mm and 20 
mm). Equivalence of the two imaging acquisition protocols supports ACRIN 6678. The study 
demonstrates in larger lesions (>=10mm diameter) bias and variance can be approximately 15% 
or less across lesion types, scanners and protocols; it confirms QIBA CT lesion size guidance. 

Completed; 
reported in the BD 
submission to BQRT 
09/30/2012, and as 
a conference 
abstract (30) 

QIBA 3A(1)–Pilot: Estimate the 
bias and variability of volumetric 
measurements of nodule images 
collected from a single scanner. 

This is a QIBA organized public 
challenge. A total of 97 nodules 
with varying size, shape, and 
density were measured 
volumetrically by each of the 12 
segmentation algorithms. 

This set of images were provided to the participants for the purpose of training their CT 
segmentation algorithms. The participants were also provided with nodules’ volume ground 
truth values; they were required to record and submit their measured volume results. 

The overall mean percent error (± SD) of volumetric measurements was –1.46 % (±23.94%); the 
percent error by the individual factors, i.e., nodule size, shape, density, and reconstruction slice 
thickness, was 0.62% (±21.11%), –3.79% (±21.54%), –1.30% (±21.72%), and –1.34% (±24.02%), 
respectively, across algorithms. The mean percent errors are below 1% with SDs below 11% 
when technical conditions satisfy those described in the QIBA CT volumetry Profile. 

Completed; 
reported in the BD 
submission 
09/30/2012. 

12 



 
 

       
         

       
         

 
               

         
           
       
       

           
   

         
   
   

 

                             
 
                     
                         

                             
                           
                           
    

 
                             

                     
                      

 
                           
                       

                           
                         

                       
 
                             

                     
                 

 
       
 
   

     
 

 
 
 
 

 
  

QIBA 3A(1)–Pivotal: Estimate the 
bias and variability of volumetric 
measurements of nodule images 
collected from a single scanner. 

This is the second part of the QIBA 
organized public challenge. A total 
of 408 nodules with varying size, 
shape, density, and reconstruction 
slice thickness were measured 
volumetrically by each of the 10 
semi‐automatic segmentation 
algorithms with varying degrees of 
allowable post‐segmentation 
correction. 

Ten of the twelve algorithms from the QIBA 3A(1)‐Pilot project participated in this Pivotal study. 

The overall mean percent error of volumetric measurements across nodule characteristics 
(nodule size, shape, density, and reconstruction slice thickness) and algorithms was 1.04% [95% 
CI (0.06–2.13%)]. When only those nodules that satisfy the QIBA CT profile (density > −630 HU; 
size ≥ 10 mm; non‐irregular shaped; reconstruction slice thickness < 3 mm) were included in the 
analysis, the overall percent error of volumetric measurements was reduced to –0.65% [95% CI 
(–1.66, 0.36%)]. 

Over all nodules meeting the QIBA Profile, the repeatability coefficient (RC) was 9.0% for two 
measurements of nodule volume by the same algorithm; the between‐algorithm reproducibility 
coefficient (RDC) was 22.1% for measuring a nodule by different algorithms. 

Algorithm type did not affect bias substantially; however, it was an important factor in 
measurement precision. Algorithm precision was notably better as tumor size increased, worse 
for irregularly shaped tumors, and on the average better for type 1 algorithms where post‐
segmentation correction was not allowed. Over all nodules meeting the QIBA Profile, precision, 
as measured by the repeatability coefficient, was 9.0% compared to 18.4% overall. 

The study concluded that the results achieved in this study, using a heterogeneous set of 
measurement algorithms, support QIBA quantitative performance claims in terms of volume 
measurement repeatability for nodules meeting the QIBA Profile criteria. 

Completed; 
reported in the BD 
submission 
09/30/2012 and 
also published in 
(21) 
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Table 2 (B) Technical Performance Validation – Volume Measurement Precision Evaluated with Clinical Patient Data 

Study Description – Patient 
Data 

Summary Results Status 

QIBA 1B: Estimate the This work shows that variability within a sizing method may be influenced by the Completed, and 
test/retest measurement reading paradigm. The 1D sizing method results do not change significantly or published (17) 
variability of lesions from 32 substantially across reading paradigms. The means of percent difference were 2.75% 
non‐small cell lung cancer with 95% CI [−2.34%, 7.83%] in the independent reading, and 2.52% with 95% CI 
(NSCLC) patients who were [−0.28%, 5.33%] in the locked sequenƟal reading. However, volume measurements do 
scanned twice within 15 change substantially and differences are lower for the locked sequential reading 
minutes (“no change” paradigm, but this did not reach statistical significance (P = .067). In the summary 
condition). Five readers statistic for volume measurements, the means were 23.40% with 95% CI [−2.36%, 
measured the volume 52.34%] in the independent reading, and 7.42% with 95% CI [−0.98%, 15.82%] in the 
according to two different locked sequential reading. The bias of measurements in this study cannot be assessed 
reading schemes: (1) random as the true lesion size is unknown. 
presentation of scans, i.e., 
independent reads, and (2) It should be noted, unlike the report by Petrick et al. (29) where 3D percent change is 
locked, sequential read of normalized to a 1D scale to allow comparison, this study reported percent changes in 
scans from the same lesion. their original scales. 

QIBA 3A(2): Estimate the 
test/retest measurement 
variability of lesions from 32 
NSCLC patients who were 
scanned twice within 15 
minutes (the same dataset as 
1B described above). This study 
is organized as a public 
challenge. Intra‐algorithm and 
inter‐algorithm variability was 
analyzed for 12 diverse tumor 

The approximate tumor diameters ranged from 8 to 65 mm. Intra‐algorithm 
repeatability ranged from 13% to 24% for nine of the 12 algorithms, with most 
algorithms demonstrating improved repeatability as the tumor size increased. Change 
in tumor volume can be measured with confidence to within ±14% using any of these 
nine algorithms on tumor sizes greater than 10 mm. 

Completed, and 
published (20) 
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segmentation algorithms from 
11 academic and commercial 
participating members. 
QIBA 3B: Inter‐ and intra‐
reader variability of volumetric 
measurement of lesions in 
lungs, liver and/or lymph nodes 
in subjects with metastatic 
colorectal cancer. 

Three readers measured each 
scan volumetrically for 
assessment of inter‐reader 
variability; two of the readers 
repeated measurements for 
assessment of intra‐reader 
variability. 

Using RECIST, three radiologists selected target lesions and measured "uni" (maximal 
diameter), "bi" (product of maximal diameter and maximal perpendicular diameter), 
and "vol" (volume) on baseline and 6‐week post‐therapy scans in the following ways: 
(i) each radiologist independently selected and measured target lesions and (ii) one 
radiologist’s target lesions were blindly re‐measured by the others. Variability in 
relative change of tumor measurements was analyzed using linear mixed effects 
models. The model‐based estimate for limits of agreement was ±1.96 times the 
estimate of the within‐patient SD, that is, the residual SD. 

Of 198 target lesions total from 29 patients, 33% were selected by all three, 28% by 
two, and 39% by one radiologist. With independent selection, the variability in 
relative change of tumor measurements was 11% (uni), 19% (bi), and 22% (vol), 
respectively. When measuring the same lesions, the corresponding numbers were 
8%, 14%, and 12%. 

Completed, and 
published (31) 

ACRIN 6678: test‐retest 
variability of volumetric 
measurements in advanced 
NSCLC subjects. The dataset of 
34 patients from this study was 
combined with that of 40 
patients from a multicenter 
Merck MK‐0646‐008 trail of a 
comparable cohort. 

Repeat scans of 71 primary tumors (1 primary tumor per patient) and 5 additional 
lesions from low‐dose CT images were analyzed. The mean anatomic volume was 52.4 
cm3 (median, 37.5 cm3; SD, 53.0 cm3). The repeatability of each metric was assessed 
with Bland–Altman analysis by reporting the mean and SD of the differences between 
the two measurements. The anatomic volume determination had a repeatability of 
−0.4% ± 10.5%, with upper and lower repeatability limits of +20.3% and −21.0%. 

Completed, and 
published (8) 
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Table 3 Site/Scanner Credentialing and Quality Control Parameters for CT Scans used for Tumor Volumetric Measurements 

DICOM 
Tag # 

Parameter 

GE Phillips SIEMENS TOSHIBA 

Ultra 
8‐slice/ 
0.5 sec 

LS 16 
16‐
slice/ 
0.5 sec 

VCT(64) 
64‐

slice/0.5 
sec 

Brilliance 
16‐slice/ 
0.5 sec 
16 x 0.75 

Brilliance 
64 slice/0.5 

sec 
16  0.75 

Sensation 
16 

16  0.75 

Sensation 
40 

40  0.6 
(beam 

collimation 
20  0.6) 

Sensation 64 
64  0.6 
(beam 

collimation 32 
 0.6) 

Aquillon 
16‐slice/0.5 sec 

0018,0050 
Nominal 
Reconstructed 
Slice Width1 

1–1.5 mm 1–1.5 mm 1–1.5 mm 1–1.5 mm 

0020,1041 
Reconstructed 
Interval1 0–20% overlap 0–20% overlap 0–20% overlap 0–20% overlap 

0028,0030 Voxel Size1 0.55–0.75 mm 0.55–0.75 mm 0.55–0.75 mm 0.55–0.75 mm 

– 
Motion/Breathing 
Artifact1 None None None None 

– 
Intravenous 
Contrast Media1 None None None None 

X‐ray Tube Current  Exposure 
Time 

Exposure Exposure 
X‐ray Tube Current  

Exposure Time 
Scanner‐
dependent 

mAs 
(Regular‐Large)2 

135– 
220 

95–245 95–245 120–310 100–260 120–310 100–260 100–260 120–310 

0010,0000 KVP2 120 120 120 120 

0010,1210 
Reconstruction 
Algorithm2 STD B B30 FC10 

1Violation of values/value ranges disqualifies CT scan series.
 
2Violation of values/value ranges may not disqualify CT scan series (unless violation is excessive). Comment on lower or higher than recommended values (e.g.,
 

for KVP of 140 you may comment as to use similar KVP of 140 for the follow up of the same ca but try to follow the protocol for next individuals, i.e., using KVP
 

of 120 for the future cases.)
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VIII. Assessment of Benefits and Risks 
A. Anticipated Benefits 

If the utility of this CT tumor volume‐based biomarker can be confirmed as a highly reproducible 

pharmacodynamic/response marker, it has the potential to facilitate oncologic drug 

development by shortening phase 2 trials of investigational drugs and detecting clinical benefit 

earlier in phase 3 investigations, resulting in reduction in clinical trial time and costs. 

This biomarker can benefit patients with cancer who need to know as soon as possible whether 

or not they are benefiting from new treatments. It will help patients seek alternatives sooner 

once their therapeutic regimens become futile. 

B. Anticipated Risks 

False declaration of treatment response (false positive) by the biomarker may mislead the 
physician to continue the ineffective treatment, patients to endure unnecessary toxicity and lose 
the window of opportunity for potential alternative therapy. 

False declaration of no response (false negative) may result in premature termination of an 
effective treatment and its associated benefits. 

C. Risk Mitigation Strategy 
There are steps that can be implemented to reduce false positive and false negative 

determination of patient response/progression. These include rigorous quality control steps in 

image collection, using algorithms with high precision in tumor volume measurement, robust 

statistical methodologies, and high quality of imaging and clinical data being used for biomarker 

development. These specifications have been documented in the QIBA Profile (19). 

D. Conclusions 
We anticipate that this biomarker will have higher precision, and be more sensitive and specific 
than the currently accepted RECIST‐based endpoints in predicting phase 2 and phase 3 outcomes 
in solid tumors. Therefore, the benefit and risk balance is in favor of this biomarker. 

IX. Evaluation of Existing Biomarker Information: Summaries 

A. Pre‐Clinical Information, as appropriate 

Not applicable. 
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B.	 Completed Clinical Information, as appropriate 

Please refer to Table 2 (B) Technical Performance Validation – Volume Measurement Precision 

Evaluated with Clinical Patient Data under Section D. Additional Considerations for Radiographic 

Biomarkers. 

C.	 Summary of Ongoing Information Collection/Analysis Efforts 

To establish a systematic approach to develop and validate imaging‐based biomarkers to 

improve upon RECIST, the Foundation for the National Institutes of Health (FNIH) Biomarkers 

Consortium initiated a collaborative research partnership entitled Vol‐PACT (Volumetric CT for 

Precision Analysis of Clinical Trial Results). Vol‐PACT is collecting imaging data and associated 

patient outcomes data from large and completed landmark phase 3 trials in several measurable 

solid tumors (Table 4). These trials were sponsored by pharmaceutical companies; data of these 

trials are of regulatory quality and have been reviewed by the FDA. The use of archived data is a 

cost‐effective approach, and eliminates the extensive resources and time needed to conduct 

prospective trials for purposes of biomarker development and validation. The aim is to 

retrospectively analyze these high quality data and comprehensively study biomarkers/metrics in 

the context of unidimensional and volumetric tumor measurements in their ability to predict 

clinical outcomes. 

The CT images, which are collected centrally on most trials, are transferred from various imaging 

core laboratories to an academic laboratory for tumor measurement. Next, images are re‐

analyzed in a semi‐automated fashion with computer‐generated contouring to determine 

unidimensional and volumetric measurements for each lesion at each time point. These imaging 

measurement readouts are used to study the correlation of the proposed biomarkers with clinical 

outcomes in order to develop pharmacodynamics/response biomarkers. 

We have obtained access to both DICOM images and clinical metadata for three lung cancer 

trials (Lux‐Lung 1, Lux‐Lung 3, Lux‐Lung 6), three colorectal cancer trials (VELOUR, PRIME, 

20020408), two renal cell cancer trials (VEG105192, COMPARZ), and two melanoma 

immunotherapy trials (Keynote 002, Keynote 006)(Table 4). 

X. Knowledge Gaps in Biomarker Development 

A.	 List and describe any knowledge gaps, including any assumptions, that exist in the
 

application of the biomarker for the proposed COU
 

There is a strong rationale that the change in tumor burden reflects the disease status, therefore 

it is plausible that a biomarker based on the change in tumor burden can predict for patient’s 

response to cancer treatment. We have systematically studied the reproducibility of tumor 

volume measurement and understand that ultimate evidence to support the COU requires 

correlation of the biomarker with clinical outcomes. We have collected imaging and clinical 
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metadata (Table 4), and are currently conducting retrospective analysis to validate the
 

biomarkers for the proposed COU.
 

B.	 List and describe the approach/tools you propose to use to fill in the above‐named 

gaps when evidence is unknown or uncertain, (i.e., statistical measures and models, 

meta‐analysis from other clinical trials). 

See Section IX C. Summary of Ongoing Information Collection/Analysis Efforts. 

C.	 Describe the status of other work currently underway and planned for the future 

toward qualification of this biomarker for the proposed context of use. 

See Section IX C. Summary of Ongoing Information Collection/Analysis Efforts. 

We have obtained access to imaging data and associated patient outcomes data from large and 

completed landmark phase 3 trials in several measurable solid tumors (Table 4). To our 

knowledge, this is the largest collection of images and associated clinical data thus far for the 

purpose of developing imaging‐based biomarkers for drug development. Since the tumor burden 

change is an indicator of disease status, we anticipate that this biomarker will have general 

application in drug development programs in a range of solid tumor diseases, including lung 

cancer, colorectal cancer, renal cell carcinoma, melanoma, and other cancer types. 
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Table 4 Clinical Trial Data Collection 

Trial 
Sponsor 

Disease Drug Trial ID N 
Primary 
Endpoint 

OS HR (95% CI) PFS HR (95% CI) Data Analysis Publication 

Sanofi CRC 
FOLFIRI +/‐
aflibercept 

VELOUR 1226 OS 
0.817 (0.714, 0.935), 

p=0.0032 
0.758 (0.661, 0.869), 

p=0.0007 
data analysis 
underway 

(32) 

GSK 
/Novartis 

RCC 
Pazopanib vs. 

placebo 
VEG105192 435 PFS 0.91 (0.71, 1.16) 

0.46 (0.34, 0.62), 
p<0.0001 

data analysis 
underway 

(33, 34) 

GSK 
/Novartis 

RCC 
Pazopanib vs. 
sunitinib 

COMPARZ 1110 PFS 0.91 (0.76, 1.08) 1.05 ( 0.90, 1.22) 
data analysis 
underway 

(35) 

Amgen CRC 
FOLFOX +/‐

panitumumab 
PRIME 1183 PFS 

0.83 (0.67, 1.02), 
p=0.072 

0.80 (0.66 to 0.97), 
p=0.02 

data analysis 
underway 

(36) 

Amgen CRC 
BSC+/‐

panitumumab 
20020408 463 PFS 1.00 (0.82 to 1.22) 

0.54 (0.44, 0.66), 
p<0.0001 

data analysis 
underway 

(37) 

BI NSCLC Afatinib vs. placebo Lux‐Lung1 585 OS 
1.08 (0.86, 1.35), 

p=0.74 
0.38 (0.31‐0.48), 

p<0.0001 
data analysis 
underway 

(38) 

BI NSCLC 
Afatinib vs. 

pemetrexed + 
cisplatin 

Lux‐Lung3 345 PFS 
0.88 (0.66, 1.17), 

p=0.39 
0.58 (0.43, 0.78), 

p=0.001 
data analysis 
underway 

(39, 40) 

BI NSCLC 
Afatinib vs. 

gemcitabine + 
cisplatin 

Lux‐Lung6 364 PFS 
0.93 (0.72, 1.22), 

p=0.61 
0.28 (0.2, 0.39), 

p<0.0001 
data analysis 
underway 

(40, 41) 

Merck Mel 
Pembrolizumab vs. 

Ipilimumab 
Keynote 006 834 OS, PFS 

0.68 ( 0.53, 0.87), 
p=0.0009; 

0.68 (0.53, 0.86), 
p=0.0008 

0.61 (0.50, 0.75), 
p<0.0001; 0.61 (0.50, 

0.75), p<0.0001 

data analysis 
underway 

(42) 

Merck Mel 
Pembrolizumab vs. 

chemo 
Keynote 002 540 OS, PFS 

0.86 (0.67, 1.10), 
p=0.117; 0.74 (0.57, 

0.96), p=0.011 

0.58 (0.46, 0.73), 
p<0.0001; 0.47 (0.37, 

0.60), p<0.0001 

data analysis 
underway 

(43) 
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Rationale and objectives: Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response.
Precision was evaluated and compared among semiautomated lung tumor volume measurement algorithms from clinical thoracic

computed tomography data sets. The results inform approaches and testing requirements for establishing conformance with the Quan-

titative Imaging Biomarker Alliance (QIBA) Computed Tomography Volumetry Profile.

Materials andMethods: Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-al-

gorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed

effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for

developers.

Results: Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demon-

strating improved repeatability as the tumor size increased. Inter-algorithm reproducibility was determined in three partitions and

was found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84%
when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equiv-
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Conclusions: Nine of the 12 participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the
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be measured with confidence to within �14% using any of these nine algorithms on tumor sizes greater than 10 mm. No partition of
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forming algorithms did meet this requirement for a tumor size of greater than approximately 40 mm.
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L
ung tumor volume change assessed with computed to-

mography (CT) has potential as a quantitative imaging

biomarker to improve diagnosis, therapy planning, and

monitoring of treatment response (1,2). Tumor volume

change as a predictor of outcome has been of interest for

some time (3–5).

To establish confidence in algorithmic analysis for CT

volumetry as a rigorously defined assay useful for clinical

and research purposes, volume measurement algorithms

need to be characterized in terms of both bias and variability.

Measurement error on serial CT scans can be affected by a

number of interrelated factors, including imaging parame-

ters, tumor characteristics, and/or measurement procedures

(6–8). These effects must be understood and quantified. A

number of technical studies have been performed toward

this goal (9–32).

The Quantitative Imaging Biomarker Alliance (QIBA)

(33) has defined standard procedures for reliably measuring

lung tumor volume changes in a document called a profile.

The CT volumetry profile is based in part on the available

literature and on the ‘‘groundwork’’ studies conducted by

QIBA itself (34). Groundwork studies of algorithm perfor-

mance organized as public challenges have been conducted

under the moniker of ‘‘3A.’’ The first 3A study was conducted

to estimate intra-algorithm and inter-algorithm bias and vari-

ability using phantom data sets (Athelogou, PhD, manuscript

under review, 2015). Algorithms used by participating groups

were applied to CT scans of synthetic lung tumors in anthro-

pomorphic phantoms. Although such a study design was

effective for estimating bias because ground truth was known,

phantom studies are likely to underestimate the biological

variability typically seen in clinical data sets. More recently,

QIBA has undertaken studies on the analysis of clinical

data. The QIBA ‘‘1B’’ study was undertaken to compare

two reading paradigms, independent readings at both time

points versus locked sequential readings, using a test-retest

design (35). Readers in the QIBA 1B study used a single al-

gorithm. The present study, known as the ‘‘second’’ 3A, com-

bines the algorithm performance challenge approach

established by the first 3A study using the same clinical data

as were used in 1B. The goal of the present study was to quan-

tify the error when a tumor with no biological change in size

was imaged twice and each image was measured by the same

or multiple algorithms.

Intra-algorithm and inter-algorithm variability was

analyzed using data from 12 diverse tumor segmentation

algorithms from 12 academic and commercial participating

groups for measuring volume. The algorithms included

semiautomated algorithms with and without postsegmenta-

tion manual correction. The analysis of algorithm perfor-

mance conducted in this study complements the other

groundwork studies in establishing performance claims for

the QIBA Profile.

In the following section, we describe the statistical

methods and open-source informatics tool used to conduct

the study as a challenge problem. The estimated intra-
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algorithm repeatability and inter-algorithm reproducibility

are presented in Results section, which also describes a

comparison of the segmentation boundaries themselves for

the subset of algorithms where tumor segmentations were

submitted.
MATERIALS AND METHODS

Data collection

Thirty-one subjects with non-small cell lung cancer were

evaluated in a test-retest design. The cases were contributed

to the Reference Image Database to Evaluate Therapy

Response (RIDER) database fromMemorial Sloan Kettering

Cancer Center, acquired in a previously conducted study (36).

Each patient was scanned twice within a short period of time

(<15 minutes) on the same scanner and the image data were

reconstructed with thin sections (<1.5 mm). Because the

time interval between repeat scans is small, the actual volume

of the tumor is the same in each scan (a zero-change scenario).

CT scans were obtained with a 16-detector row (Light-

Speed 16; GE Healthcare, Milwaukee, Wisconsin) or

64-detector row (VCT; GE Healthcare) scanner. Parameters

for the 16-detector row scanner were as follows: peak voltage

across the x-ray tube, 120 kVp; tube current, 299–441 mA;

detector configuration, 16 detectors � 1.25-mm section

gap; and pitch, 1.375. Parameters for the 64-detector row

scanner were as follows: tube voltage, 120 kVp; tube current,

298–351 mA; detector configuration, 64 detectors � 0.63-

mm section gap; and pitch, 0.984. The thoracic images

were obtained without intravenous contrast material during

a breath hold. Because the second scan was considered as a

separate scan, its field of view was set given the patient’s

second scout image. Adjustment was allowed owing to the

patient’s position in the scanner. Thin-section (1.25 mm)

images were reconstructed with no overlap by using filtered

back projection with the lung convolution kernel and trans-

ferred to the research picture archiving and communication

system server where digital imaging and communications in

medicine images were stored.

One tumor per subject was selected for measurement by

the clinical staff at Memorial Sloan Kettering. Among them,

most were primary lung cancers but three were metastatic

tumors (used because the primary tumors were nonmeasure-

able, as defined by the Response Evaluation Criteria in Solid

Tumors criteria). The data set includes tumors that are distinct

and solitary as well as others with attachment to various struc-

tures including bronchus, chest wall, and mediastinum. The

approximate tumor diameters ranged from 8 to 65 mm, as

calculated by the equivalent diameter were a sphere to include

the same volume.

The shapes of the selected tumors ranged from simple and

isolated to complex and cavitated. To facilitate comparison

of results to the prior QIBA 1B study, the tumors were

further subdivided according to whether they met the

following ‘‘measurability’’ criteria defined in the profile:
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tumor margins were sufficiently conspicuous and geometri-

cally simple enough to be recognized on all images, and the

longest in-plane diameter of the tumor was 10 mm or greater

(see Fig 1).

Eleven groups from a diverse set of industry and academic

groups participated in the challenge by submitting results

from 12 algorithms (one group made two submissions). The

participating groups downloaded the images, including the

raw image data and location points. The location (‘‘seed’’)

points were defined to lie within the tumor margin. Groups

were allowed to select different or multiple seed point(s) for

their individual algorithms, provided they used the tumor

identification scheme provided. Some of the groups submit-

ted data from the algorithm without any postsegmentation

modifications (semiautomated without editing), others

submitted data with adjustments made to varying degrees by

a reader (semiautomated with editing), and one group submit-

ted both. Each group then uploaded their results using an

open-source informatics tool called QI-Bench (37). To estab-

lish and maintain anonymity of participants, all communica-

tions were handled through the QIBA staff at Radiological

Society of North America (RSNA). The participants are as

follows (listed alphabetically rather than according to the

IDs used in reporting the results of the study): Fraunhofer

MEVIS, GE Healthcare, ICONMedical Imaging, KEOSYS,

MEDIAN Technologies, Mirada Medical, Perceptive Infor-

matics, Siemens AG, University of California, Los Angeles

(UCLA), University of Michigan, and Vital Images.

See the Appendix for detailed algorithm descriptions for

each of the participating groups.
Statistical methods

Estimation of variability. The repeatability coefficient (RC)

was used to characterize the intra-algorithm variability (6).

The RC was defined as

RC ¼ 1:96
ffiffiffiffiffiffiffi
2s2

ε

p ¼ 2:77s
ε
;

where s2
ε
is the within-tumor variance. The range in which

two measurements on the same tumor were expected to fall

for 95% of replicated measurements was given by [�RC,

+RC] (38). In this study, we computed the within-tumor

variance, and thus RC based on the difference between the

test and retest measurements for each algorithm, respectively.

Two calculation methods were used, one using log trans-

formed data and the other a root mean square approach.

The root mean square approach proceeds by calculating the

square root of the mean of squared tumor-based RC values.

Additionally, the within-tumor coefficient of variability

(wCVintra) was calculated as a measure of precision for single

measurements (6). It was calculated in an analogous fashion

by dividing each tumor-based s2
ε
by the square of the mean

of the two measurements and without use of the 2.77 factor.

The percent RC (%RC) for an algorithm was determined by

multiplying wCVintra by 2.77. In the logarithmic approach,
the %RC is determined by taking an inverse transform.

Both wCVintra and %RC are relative measures proportional

to the magnitude of the tumor size. We verified the equiva-

lence of these two methods in a manner described by Bland

(39), with the equivalence strongest when the percentage

metrics were small. Because we were interested in how the

metrics changed for differing tumor sizes, we plotted the per-

centage metrics as a function of tumor size.

The reproducibility coefficient (RDC), its percentage

counterpart percent RDC (%RDC), and wCVinter were

used to characterize inter-algorithm variability (6). The

RDC, similar to RC, was calculated from the variance across

different algorithm measurements of the same tumor (6). In

this study, [�RDC, +RDC] described the range within

which approximately 95% of the differences in measurements

between two algorithms lie. We reported the reproducibility

results in three partitions of algorithms, partitioned based on

the intra-algorithm repeatability results. One partition

included all algorithms minus the lowest performing algo-

rithm. Another partition included the set of algorithms with

%RC less than 30%. A third partition was formed by only

including those algorithms with a %RC less than 15%.

A linear mixed effects (LME) model using transformed data

was fitted to estimate the relative contributions of different

factors to the total variability. The dependent variable in the

model was the measured tumor volume. Volume estimation

is considered a fixed effect in this model. The independent

variables were tumor, algorithm, and tumor-by-algorithm

interactions. Model assumptions were evaluated with Q-Q

(quantile-quantile) and observed-versus-fitted plots.

Comparison of segmentation boundaries. Five groups provided

segmentation data in addition to tumor volume measure-

ments, four of which were compatible for analysis (the

data from the fifth was submitted with different orientation

and scaling). To compare algorithms’ segmentation bound-

aries, we produced a reference segmentation using the

simultaneous truth and performance level estimation (STA-

PLE) method (40) on three-dimensional (3D) volumes.

This method performs a voxelwise combination of an arbi-

trary number of input images, which in our case consisted

of the segmentations extracted by the four participant algo-

rithms. Each input segmentation to STAPLE was weighted

based on its ‘‘performance’’ as estimated by an expectation-

maximization algorithm, described in detail in Rohlfing

et al. (41). This algorithm used all input segmentations to

create ‘‘consensus’’ results according to the level of overlap

among input segmentations. We then compared each

individual segmentation result to this reference data. We

computed voxelwise accuracy, based on the number of vox-

els segmented with a particular algorithm compared to the

reference data by tabulating counts of true positives (TP,

where both the algorithm and the reference contained

that voxel), true negative (where neither the algorithm

nor the reference contained that voxel), false positive (FP,

where the algorithm contained the voxel but the reference
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TABLE 1. Basic Descriptive Statistics for Measured Tumor
Volume

Metric Volume (mm3)

Equivalent Sphere

Diameter (mm)

Arithmetic mean 24,100 36

Geometric mean 8320 25

Median 9110 26

Range 160,000 67

Figure 1. Examples of tumors from our study. (a and b) Examples of tumors that were judged to have met the QIBA measurability criteria,

whereas (c) and (d)were not found tomeet the criteria. Image (c)was excluded because it demonstrates a large attachment to other pulmonary

structures and (d) was excluded because it demonstrates a highly invasive structure where the boundary between tumor and nontumor is not

well demarcated. QIBA, Quantitative Imaging Biomarker Alliance. (Color version of figure is available online.)
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did not), and false negative (FN, where the reference con-

tained the voxel but the algorithm did not). These were

used in the calculation of two spatial overlap measures,

the Jaccard index (42) and Sørensen-Dice coefficients

(43,44) defined as follows:

Jaccard ¼ TP

TPþ FPþ FN
; S�rensen�Dice

¼ 2� TP

2� TPþ FPþ FN
:

The Jaccard index includes a penalty for FP voxels, that is,

when the candidate segmentation is larger than the reference

segmentation. The Sørensen-Dice coefficient also penalizes

FPs, but penalizes more strongly segmentations that have

missed TPs.We computed and presented both types of overlap

metrics to allow easier and wider comparison to results from

other studies.

Excel was used for RC, wCV, and RDC estimation, the R

statistical software was used for the mixed effects model, and

Matlab was used for overlap metrics.
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RESULTS

Precision of volume measurements

The total number of possible readings was 744, with each of

12 participating groups submitting both test and retest read-

ings for each of 31 tumors. Of these, 740 were actually sub-

mitted, with the following cases missing:

� One group only submitted readings on 30 tumors (rather

than 31).



TABLE 2. Intra-algorithm Repeatability Coefficient (RC) Results

Group

Using all 740 Readings

34 Anomalous Readings Excluded

All Tumors Pooled Small Large

RC (mm3) RC (mm3) %RC wCVintra RC (mm3) RC (mm3)

Group 02 7557 1871 13% 5% 141 1866

Group 03 14.060 13,568 100% 36% 1321 13,501

Group 04 1801 1830 14% 5% 175 1825

Group 05 3007 2177 14% 5% 245 2163

Group 06 3418 3472 20% 7% 160 3469

Group 07 3495 3551 20% 7% 210 3545

Group 08 2935 2982 13% 5% 147 2.979

Group 11 41,411 39,885 50% 18% 441 39,883

Group 12 43,101 37,868 48% 18% 601 37,863

Group 14 11,081 11,259 21% 7% 161 11,257

Group 15 2226 2261 24% 9% 321 2238

Group 10/16* 7522 7643 22% 8% 215 7639

*Volume results submitted under ID Group 16 and segmentation objects submitted under ID Group 10.
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� One group only submitted test readings (without retest

readings) for two tumors.

Basic descriptive statistics on submitted measurements are

given in Table 1, based on the 740 submitted readings. The

distribution is skewed because of a very few large reading

values, where the mean is much higher than the median.

Detailed reviewof these 740 submitted readings exposed 34

presumably anomalous readings (leaving 706):

� The unpaired readings were judged anomalous because of

having no retest readings.

� Four test-retest reading pairs from three groups differed by

log-orders of magnitudes from the rest of the data, suggest-

ing data transcription errors.

� One tumor was particularly challenging for all groups, as

judged by the differences in volume measurements being

log-orders of magnitudes from each other (whereas other

tumors, even other ones that did not otherwise meet the

measurability criteria established by QIBA did not exhibit

this behavior).

Intra-algorithm repeatability analyses were performed and

presented here with and without the readings judged as anom-

alous. Inter-algorithm reproducibility was assessed with these

values excluded. These were removed from the analyses.

Intra-algorithm repeatability across test-retest repetitions within
groups. Repeatability results assessed separately for each group

are presented in Table 2. Tumors were judged to be ‘‘small’’ if

they had a volume of less than 4189 mm3, an equivalent diam-

eter of less than about 20 mm for a sphere, and ‘‘large’’ other-

wise (as judged by algorithms individually). Because the

algorithm measurements were not normally distributed and

did not have constant variance, a log-transformation was

applied, reshaping the distribution of the data into a usable

form. These summary metrics apply across the large range

of tumor volumes included in the study. Figure 2 depicts
how the percentage metrics, wCVinter, and %RC changed

based on the difference between the two measurements for

differing tumor sizes, stratified by algorithm performance.

Moderately performing algorithms are plotted in the upper

panel. In general, these algorithms perform at levels less

than 20% RC over most of the range and would be generally

understood as being capable of conforming with QIBA

repeatability performance requirements. The lower panel de-

picts the results for the best performing algorithms, which not

only provide the best repeatability but could also be consid-

ered for interchangeability were they to be used in certain

clinical trial designs or clinical use cases.

Inter-algorithm reproducibility across groups. Three separate

reproducibility partitions were analyzed. One partition

included all groups except Group 3, which demonstrated

multiple discrepancies from the behavior exhibited by the

other algorithms and had a %RC greater than other groups.

Another partition included the set of groups that would be

considered to conform to QIBA’s requirements as judged by

a %RC less than 30%. A third partition was formed by only

including those algorithms with a %RC less than 15%.

Reproducibility results across all groups are presented in

Table 3. Figure 3 depicts how the percentage metrics changed

for differing tumor sizes.

Linear mixed effects model for estimating algorithm versus other
sources of error. Results of the LMEs are presented in

Figure 4, which illustrates the weights of the four different

variables on overall volume variability. The variables included

in the LME model are tumor, algorithms, and tumor-by-

algorithm interactions. Residual error relates to factors not

included in the model.

Tumor variation between patients dominates with 96% of

total variation, which is expected as this is the component

that is attributable to true differences in the object being

measured. Tumor-by-algorithm interaction variance
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Figure 2. Results of intra-algorithm repeatability analysis plotted as

a function of measured tumor size. The line fits following exponential

functions. Fits for the least performing algorithms could not be made
given highly variable results from tumor to tumor.Upper panel shows

performance with fit lines for moderate performing algorithms, and

lower panel for best performing algorithms. The fit lines are truncated
where they would imply better performance than the sparse set of

points at high tumor volumes actually suggest. RC, repeatability co-

efficient; wCVintra, within-tumor coefficient of variability.

TABLE 3. Inter-algorithm Reproducibility Coefficient (RDC)
Results

Partition RDC %RDC

All but Group 3 25,284 mm3 84%

Conforming groups 16,057 mm3 70%

Best performers 9290 mm3 58%

Figure 3. Results of inter-algorithm reproducibility analysis plotted
across tumor size range. Line fits follow exponential functions. The fit

lines are truncated where they would imply better performance than

the sparse set of points at high tumor volumes actually suggest.

RDC, reproducibility coefficient; wCVintra, within-tumor coefficient
of variability.
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comprises the next highest variance, accounting for 3% of the

variance, indicating that tumors were measured differently by

different algorithms, which is the primary reproducibility

result. Residual variance of 1% accounts for factors not attrib-

utable to the algorithm performance, for example, hardware

variations or scanning technique.

Stratified reproducibility analyses. Four other stratified analyses

of reproducibility were carried out, for various combinations

of the tumors outlined inTable 4. (For these analyses, definition

of small and large was judged based on the average volume es-

timate for a tumor across the algorithms and using the same

4189 mm3 threshold as used in the repeatability analyses.)

Results for the stratified analyses are summarized in Table 5.

The reproducibility of volumetric measurements was better

for tumors meeting the QIBA Profile (Profile = yes) compared

to those tumors that did not (Profile = no). This was also re-

flected in the reduced ratio of algorithm/residual variance

for those two analyses. Reproducibility was better when edit-

ing was not allowed, indicated by smaller RDC and smaller

algorithm/residual variance in the factors model.
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Analysis of segmentation boundaries

Figure 5 shows an example of a reference standard segmenta-

tion based on the STAPLE algorithm applied to the segmen-

tation results. A reference segmentation was created for each

test-retest repetition and each individual tumor. As indicated

in the Materials and Methods section, the reference segmen-

tations were formed using an expectation-maximization algo-

rithm applied to the four compatible submissions. Figure 6

shows an example slice for a single algorithm (Group 08) over-

lapping with the corresponding reference segmentation. Full

evaluation of individual segmentation methods is beyond the

scope of the present study, but the detailed maps are provided

to the groups who contributed segmentation boundaries for

their own analysis.

Merging and plotting of histograms by metric and group. Figure 7
illustrates the histograms of the results created for each group

andmerged onto a plot that compares the relative segmentation

performance of each. The higher number of Sørensen-Dice re-

sults greater than 0.8 compared to Jaccard results suggests that

oversegmentation (resulting in larger volume measurements)

may have been a larger issue than undersegmentation (relative

to the imperfect reference standard). Group 10/16 performs

best, Group 03 was the least performing algorithm (consistent

with its poor computed volume performance), and Groups 04

and 08 depend on the metric used.



Figure 4. Results of LMEs for overall reproducibility analysis, illus-

trating the percent of total variation captured by each model factor.
LMEs, linear mixed effects.

TABLE 4. Number of Tumors Analyzed in Each Strata

Analysis Strata N

Overall All 31

Small 8

Large 23

Profile = yes All 20

Small 7

Large 13

Profile = no All 11

Small 0

Large 11

With editing All 31

Small 8

Large 23

Without editing All 31

Small 8

Large 23

Profile = yes or no indicates whether the tumor met the measur-

ability requirements as described previously. With/without editing

defines whether postsegmentation contours could be adjusted by

a user.

TABLE 5. Summary of Reproducibility Coefficient Results for
Stratified Subgroups of Tumors and Algorithms

Strata

RDC of Small

Tumors

RDC of Large

Tumors

Alg/Residual

Variance

(All Tumors)

Combined 1290 mm3 28,205 mm3 3:1

Profile = yes 1290 mm3 6369 mm3 2:1

Profile = no (None in

sample)

41,074 mm3 10:2

With editing 1343 mm3 26,760 mm3 4:1

Without editing 1234 mm3 33,004 mm3 2:1

‘‘Alg/Residual Variance’’ indicates the relative contributions of the

two factors to the total variability.
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DISCUSSION

This study was setup to simulate actual practice in the field

versus what might be considered from a more controlled aca-

demic setting, consistent with QIBA’s role of engaging the

multiple stakeholders, notably industry, in the practice of

quantitative imaging biomarkers such as CT volumetry. In

this setting, the information identified in the Appendix is

similar to what would be available for methods that are used

in practice. Through studies such as ours, we document the

performance available, and through the profile writing effort,

we seek to identify and reduce sources of variable perfor-

mance where studies similar to the present one highlight vari-

ability. The goal was not to determine the best algorithm but
rather the range in performance across diverse algorithms.

This is important to the QIBA Profile because the profile de-

scribes the performance not of any one algorithm but of a

diverse group of algorithms.

Intra-algorithm %RC ranged from 13% (best performing)

to 100% (least performing), with most algorithms demon-

strating better percentage performance as the tumor size

increased. The four algorithms with the smallest RCs (Groups

2, 4, 5, and 8) were self-identified as semiautomated without

editing, whereas the ones with the highest RCs tended to be

semiautomated with editing algorithms (Groups 3 and 11,

semiautomated with editing) as described in the Appendix.

Semiautomated with editing algorithms allow the clinician

to correct for egregious segmentation boundaries that can

occur when segmenting low-contrast, large, or complex tu-

mors, but this can also introduce the variability often observed

from individual perception. One interpretation of these re-

sults would be that poorly performing algorithms need editing

because of egregious results without it, but once an algorithm

is refined to avoid these then editing actually makes the results

inferior as they may be best left alone. The algorithms gener-

ally show a marked tendency to have smaller percentage met-

rics (less variability) for larger tumors, which is consistent with

the related literature findings (11,45,46). Algorithms were also

fairly consistent across tumor sizes, in that the algorithms with

the highest wCVs for small tumors also tended to have the

highest wCVs for large tumors. The data show some

differences; however, for example Group 8 has a lower

disparity in wCVs between small and large tumors

compared to the other best performers.

The RC and wCV results indicate good overall repeat-

ability performance for at least a subset of algorithms, possibly

suggesting that some algorithms may also have the potential to

be used interchangeably as tumor volume measurement tools

for use cases where it is not possible to use a single algorithm.

By itself, RC is not sufficient comparing algorithms to un-

known truth, motivating the reproducibility analysis, which

is a measure of the dispersion in values across algorithms. If

the multiple algorithms are individually repeatable but each

comes up with (widely) varying measurements, RDC is large

(poor) and the algorithms would not be deemed
1399



Figure 5. Example of a reference truth segmentation (RIDER-1129164940, first repetition, Group 08).

Figure 6. Example of a group’s result superimposed onto the reference. True positive voxels are rendered as light gray, false negative voxels

as dark gray, and false positive as medium gray. True negative pixels are displayed as reduced intensity background image (RIDER-

1129164940, first repetition, Group 08).
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interchangeable. The only way for RDC to come out small is

if the algorithms’ measurements are similar among them, and

if both the test and retest measurements from each algorithm

are included in the calculation of RDC, then it may suffice as a

test of interchangeability, hence our approach. Previously re-

ported repeatability results are widely varied across projects
1400
and authors; our results demonstrate a range of results as expe-

rienced in practice to help account for some of these

differences.

The RDC and %RDC were determined in three parti-

tions: 58% for the four best performing groups, 70% for an

expanded set of algorithms on the basis of their intra-



Figure 7. Merged histograms for each of three overlapmetrics. The x-axis represents the relevant index value (0–1). The y-axis represents the

number of tumors with the corresponding index value. Results from four algorithms are plotted with separate colors but combined on each plot

to facilitate comparison.
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algorithm repeatability being less than 30%, and 84% when all

groups except one that was excluded because of erratic

behavior. This analysis of the RDC values shows that across

all algorithms, the reproducibility performance was low and

that, in general, interchanging of all algorithms is not appro-

priate. This is not surprising because of the low repeatability

for some algorithms including Groups 3 and 11 among others.

When we evaluated the reproducibility for the subset of algo-

rithms with the best repeatability (eg, Groups 2, 4, 5, and 8),

we found that reproducibility improved to 7%. This provides

initial evidence that some tumor volume measurement tools

might be appropriate for interchangeable use across patient

scans acquired at different times. However, this appears to

be only possible for a small subset of the algorithms evaluated

in this study, and even with these only on tumors with equiv-

alent diameter exceeding 40 mm. For the other algorithms, or

for tumors less than 40 mm, care should be taken that the same

algorithm is applied at each subsequent time point to elimi-

nate inter-algorithm variability as part of the overall measure-

ment error.

The reproducibility results of Table 5 show that RDC is

lowest when algorithms were applied on tumors meeting

the measurability criteria defined in the profile as expected.

Editing helps performance on larger tumors but no editing

is better for small tumors. This may be intuitive, in that larger

tumors often include more complex structure, such as larger

vessel attachments, and more variation in structure within

the tumor whereas smaller tumors might be more easily

segmented without need for editing and actually more vari-

able if users try to do so.

Another consideration concerns the extent to which the al-

gorithm may be considered ‘‘the end of the line’’ with respect

to variability of the entire process of evaluating tumor size. Our

LME analysis showed that more than 96% of the variation is

associated with the tumor, leaving just 4% related to other fac-

tors. Of this remaining 4%, one-fifth to one-half of this vari-

ability comes from sources independent of the algorithms.

The ratio of the size of the effect because of algorithm (plus

algorithm-tumor interaction) versus the residual informs an

‘‘error budget’’ that may be used for specifying allowable vari-

ability because of algorithm versus other parts of the processing

chain, so that the system as a whole meets the QIBA claim. On
the basis of this, using results summarized in Table 5, not more

than two-thirds of the overall variability claim of the system can

be allocated to analysis software if the overall system is to meet

the QIBA Profile claims. By this measure, conforming algo-

rithms are those with RC less than two-thirds of the overall

QIBA Profile claim of 30% or 20%. Eight of the 12 algorithms

assessed in this study met this criterion. If the scanner and

acquisition parameters are not controlled, demands on algo-

rithms would be much higher. Hence, the QIBA approach is

to define performance requirements as means to reduce this

variability, although it cannot be eliminated completely.

An additional consideration in characterizing and

comparing segmentation algorithms is the segmentation

boundaries themselves. We used the Jaccard Index and

Sørensen-Dice coefficient for this task. The Jaccard Index

and Sørensen-Dice coefficient are consistent across Groups

4 and 8 indicating that the segmentations are generally consis-

tent in both volume and edge profiles for these high RC algo-

rithms. This provides stronger evidence that these two

algorithms, and potentially Group 5 as well, could be used

interchangeably when evaluating CT tumor progression.

Groups 3 and 10/16 did not agree with each other or with

Groups 4 and 8 in regard to the Jaccard Index and

Sørensen-Dice coefficient indicating that they likely could

not be used interchangeably with any other algorithm and

may in fact have divergent performance.

The reference standard segmentation was based on the

STAPLE algorithm defined across all the four algorithms

that provided segmentation results (Groups 3, 4, 8, and 10/

16). This is the maximum likelihood segmentation for the tu-

mor based on the segmentations. It may be appealing to think

of the reference standard as an estimate for the borders of the

true tumor. However, this is generally not appropriate because

the segmentation algorithms likely oversegment or underseg-

ment the true tumor, globally or within local regions. Either

case would produce a bias in the true boundaries. Even with

this limitation, the reference standard can be useful when

comparing a set of algorithms because it will show which al-

gorithms have substantial deviation from the norm. This in-

formation is likely very helpful in determining which

subsets of algorithms can potentially be used interchangeably

as discussed previously.
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The greatest use of this work and public algorithm chal-

lenges in general from a group’s point of view or a company

seeking to commercialize analysis software for tumor volume-

try may be the performance of their algorithm compared to

other similar algorithms. Individualized reports inclusive of

raw data and intermediate analysis results have been provided

to participants in the challenge. The value of the results is

highest to those who contributed actual segmentation bound-

aries, given the ability to distinguish TPs and true negatives

from FPs and FNs at a level of granularity allowing algorithm

optimization. These data are instrumental to inform the defi-

nition of a performance standard for CT tumor volumetry al-

gorithms. Participating groups also benefit, in that algorithm

weaknesses are identified.

Our study has limitations. The degree and extent of editing

applied to semiautomated algorithms were not held constant

between replicates (test-retest measurements), which could

have contributed to the overall variability and associated mea-

sures of repeatability and reproducibility. Also, our analyses did

not account for differences in experience between algorithm

operators in terms of interacting with radiological findings or

in terms of familiarity/training with the software. Another

limitation stems from an explicit determination for this study

that workflow should not be constrained, but the related

QIBA 1B study suggests that workflow considerations are of

substantial importance. In this case, workflow refers to how

the repeat scans were processed. In our study, all the scans

were processed independently, whereas in part of the QIBA

1B study scans were process in a locked sequential fashion.

We had originally thought that semiautomated without edit-

ing algorithms (no postsegmentation correction) would not

differ in their performance based on workflow, but found

that this does not always hold true because ROI and seed

placements may be affected. Additionally, the data used in

this study were relatively limited, thus only an early version

of the QIBA Profile claim specification can be made.

Although the data contained an assortment of clinical cases,

they did not fully represent the claimed clinical context of

use for the corresponding QIBA Profile. Definitive reference

data sets that adequately represent the target patient popula-

tion according to formally assessed statistical criteria should

include patients representing a range of common comorbid-

ities, disease characteristics, and imaging settings (eg, sedated

vs nonsedated patients). Finally, the manner in which these

tests are run and the data collected has implications regarding

the interpretation and use of metrics computed and reported.

For example, execution of these tests by a trusted third party

on sequestered data sets may increase their use.
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APPENDIX. ALGORITHM DESCRIPTIONS

Eleven groups participated in the challenge by submitting

volume readings for 12 algorithms and five submitted seg-
Participating Group

Group 02 (volume readings

and segmentation boundaries*)

Moderate image/boundary

modification (on <50% of the tumors)

Volumetric analysis was

the highest conspicuit

A cylinder is placed arou

below this slice in whi

A kernel defined within th

connectivity algorithm

accelerate the search

Group 03 (volume readings and

segmentation boundaries)

Editing not allowed

One-click user-seeded s

Uses shape and bounda

The workflow for segme

centered in the tumor

The algorithm uses the s

most probable shape

Group 04 (volume readings and

segmentation boundaries)

Limited image/boundary modification

(on <15% of the tumors)

Use a trained nonradiolo

As the images would be

volume assessments w

200 HU (window) and

Trained nonradiologist o

tumors on images

Trained nonradiologist o

Trained nonradiologist ev

additional semiautoma

Finally, that image data a

lines/ROIs. The trained

outlines with automate

Once trained radiologist

automated volume ass

position interval 1� ar

interval n � area n)

The images with ROI is p

Group 05 (volume readings)

Moderate editing allowed (on <50% of

the tumors)

Modelization of the heat

intensity gradients, in

User clicks on a tumor, o

tumor => software com

User can then refine the

segmentation accordin

If needed, user can man

User finally validates the

the statistics: volume,

value, standard deviat

Group 06 (volume readings)

Editing not allowed (uses only seed

points and ROI information)

This algorithm combines

and level set approach

volume changes in pa

The user clicks and drag

The computer then carri

1404
mentation boundaries, four of which were compatible for

analysis. Algorithms from each participating group are

described subsequently.
Description/Workflow

determined using a segmentation approach using a Z-score on

y postcontrast volumetric image set

nd the highest conspicuity slice and around all slices above and

ch the tumor is seen

e region of interest (ROI) is then propagated to other slices using

s. The search is constrained by the predefined cylinder to

algorithm

egmentation

ry information to delineate the tumor

nting lung tumors involves a single click at a seed point roughly

eed point in combination with a thresholded ROI to extract the

of the tumor

gist technician and trained radiologist

of chest and the tumors would be in lung parenchyma, all the

ere made using a fixed lung window/level display setting of

�1400 HU (level)

pens the images in and uses the tumor location to identify the

utlines/ROIs of the identified tumors using automated algorithms

aluates the quality of the segmentation and adjusts outlines with

ted tools as necessary

re submitted to trained radiologist for final assessment of out

radiologist evaluates the quality of the segmentation and adjusts

d and semiautomated tools as necessary

is satisfiedwith all the outlines/ROIs of the respective tumors, the

essment tool is used to calculate volume as volume = (image

ea 1) + (image position interval 2� area 2)/+/+ (image position

rocessed, recolored and converted in to .nii file

-flow between the inside and outside the tumor. On the basis of

3D

r draws a diameter joining the boundaries of the

putes a segmentation of the tumor, and displays its contours

segmentation by the means of a slider => software adjusts the

gly, and displays in real-time the new contours

ually edit any contour by drawing it

segmentation => software ‘‘locks’’ the segmentation and extracts

long axis, short axis, and all intensity-based numbers (average

ion, and so forth)

the image analysis techniques of region-based active contours

in a unique way to measure tumor volumes. It may also detect

rt solid and ground glass opacity tumors

s to define an elliptical/circle ROI to initiate the segmentation

es out the segmentation, and tumor measurements are saved



(Appendix continued)

Participating Group Description/Workflow

The algorithm is an edge-based segmentation method that uniquely combines the image

processing techniques of marker-controlled watershed and active contours

An operator initializes the algorithm by manually drawing a region of interest

encompassing the tumor on a single slice and then the watershed method generates an

initial surface of the tumor in three dimensions, which is refined by the active contours

The volume, maximum diameter, and maximum perpendicular diameter of a segmented

tumor are then calculated automatically

Group 07 (volume readings)

Editing not allowed (uses only

seed points and ROI information)

An initialization sphere is drawn from the center of the mass, on the slice with its largest

boundaries, such that it covers the entire extent of the mass. The user determines the

center and radius in a single click-drag action, and this initialization circle imposes hard

constraints on the maximum boundaries of the 3D segmentation

The used algorithm is part of a commercial software package for multimodal oncology

treatment assessment and review. Thus, the workflow mimics the typical workflow a

user has with this tool:

Select the desired CT data set and load it into any review mode

Select the lung window level setting

Navigate to the tumor center using the pixel and slice locations

Locate the slice where the tumor has the greatest boundaries

Select the algorithm, and initialize the segmentation by clicking in the approximate center

of the mass and dragging the mouse to set the radius of the spherical ROI

The spherical ROI contains a fixed inner sphere and the outside sphere, which is set by the

mouse dragging motion. The radius is chosen such that the inner circle encompasses

most of the mass to be segmented, and the outer sphere can be used as a constraint to

prevent any leakage into the chest wall or heart if the mass is attached/abducting to

these organs

The computation takes a few seconds (single digit numbers) to compute the result. User

may retry the segmentation a few times if the result is unsatisfactory. With each try the

previous result is erased, and does not influence the result of preceding try. In this

experiment, the user has in overall three tries to get a satisfactory result

Once the segmentation has been determined, the user reads off the volume from the

region statistics, which are automatically computed and displayed as soon as the

segmentation has been defined. (The volume measurement algorithm counts all voxels

whose centroid lies within the segmented contour andmultiplies this number with voxel

volume)

To document the segmentation result, save the segmentation as anRT-structure set to the

data repository

Group 08 (volume readings and

segmentation boundaries)

Moderate editing allowed (on <50% of

the tumors)

Semiautomatic segmentation based on thresholds, growing region, and mathematical

morphology processing

Digital Imaging and Communications in Medicine (DICOM) images are downloaded and

imported into a database. Image data are converted to a proprietary optimized format

before the insertion into the database. Tumors’ coordinate are downloaded and refor

matted by our data manager. Relying on a proprietary validation framework system,

landmarks are automatically inserted into the database

The software is allowed then to display the repeated images side by side with the correct

landmarks identifying the tumors to segment. The first repetition was edited as a single

image. The side-by-side display was available only for the repetition when the first scan

edit was locked

Three reviewers are involved, each in charge of segmenting approximately a third of the

data set. The data manager made available to the reviewers a commercial semiauto

mated algorithm dedicated to lung tumors. Another manual tool can be enabled if

semiautomatic segmentations were not fully satisfactory. The data manager recom

mended using different window level to better assess tumor boundary, pulmonary

(continued on next page)
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(Appendix continued)

Participating Group Description/Workflow

window level being themajor window level to refer to. The data manager recommended

correcting semiautomated segmentation as long as the segmentation was not fully

satisfactory. Once thewhole data set segmented, an additional reviewerwas involved to

check the whole coherency of the measurements: total number of tumors, no obvious

incoherency, correct recording of the data, and so forth

A complete report was extracted. The same validation framework system allowed auto

matic extraction of tumors’mask as .mhd format. A third party software as 3DSlicer was

used to convert masks to Neuroimaging Informatics Technology Initiative (NIfTI) format

Group 11 (volume readings)

Editing not allowed (uses only seed

points and ROI information)

Method is completely automatic and consists of three steps. First, an ROI is extracted and

the tumor is classified as solid or subsolid. In the second step, a binary segmentation

mask is computed by an algorithm based on thresholding and morphologic

postprocessing, using slightly different procedures for the two classes. Finally, the

volume of the tumor is determined by adaptive volume averaging correction

Preprocessing: a stroke is generated from the given center and bounding box by

shortening the bounding box diameter to 40%

The segmentation is performed in a cubic ROI, whose edge length is twice the stroke

length. The ROI is smoothed with a 3 � 3 Gaussian filter and resampled to isotropic

voxels and amaximum size of 100� 100� 100 voxels. For detecting the tumor type, the

local maximum in a 5 � 5 � 5 neighborhood of the ROI center is identified. If its value is

greater than �475 HU, the tumor is treated as solid, otherwise as subsolid

The ROI center is used as a seed point for region growing. The lower threshold is derived

from the 55% quantile of the histogram of the dilated stroke by applying an optimal

elliptic function yielding values between �780 and �450 HU. The resulting mask con

tains the complete tumor, but may also leak into adjacent vasculature or, in case of

juxtapleural tumors, into structures outside the lungs

To remove vessels, an adaptive opening is used, where the erosion threshold is chosen

such that the segmentation has no connection to the ROI boundary anymore. A slight

overdilation allows a final refinement of the mask. To avoid leakage outside the lungs, a

convex hull of the lung parenchyma is computed within a minimal elliptical region that is

fitted to the shape of the tumor. The convex hull is then used as a blocker for the

segmentation

Because of the limited spatial resolution of CT and partial volume effects, the volume of a

segmented tumor cannot be determined exactly by voxel counting. Instead, voxels in a

tube around the segmentation boundary are weighted according to their estimated

contribution to the tumor volume. The weight depends on the relation of a voxel’s value

to the typical tumor and parenchyma densities

Group 12 (volume readings)

Moderate editing allowed (on <50% of

the tumors)

We start with an automaticmethod (submittedGroup 11) and correct results interactively if

necessary. The user draws partial contours, which are included in the segmentation in

the edited slice. Additionally, the correction is automatically propagated to a set of

neighboring slices by sampling the contour, matching points to the next slice, and

connecting them with a live-wire method

Interactive correction: our interactive correction tool provides an efficient way to fix seg

mentation results, which are mostly correct but need some refinement. The user draws

partial contours indicating the desired segmentations, which are then automatically p

ropagated into 3D. Seed points calculated from the user contour are moved to adjacent

slices by a block matching algorithm and the seed points are connected by a live-wire

algorithm. For the submission, correction was performed by two experienced

developers in consensus

Volumetry: the volumetry used for automatic results is integrated in the segmentation

algorithm. To ensure consistency after interactive correction, the change in the number

of voxels is computed and multiplied with the (partial-volume-corrected) volume of the

initial result
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(Appendix continued)

Participating Group Description/Workflow

Group 14 (volume readings)

Editing not allowed (uses only seed

points and ROI information)

The system is fully automated after manual input of an approximate bounding box for the

tumor of interest. Within the bounding box, the system automatically processes the

images in three stages—preprocessing, initial segmentation, and 3D level set

segmentation

In the first stage, a set of smoothed images and a set of gradient images are obtained by

using 3D preprocessing techniques to the original CT images. Smoothing, anisotropic

diffusion, gradient filtering, and rank transform of the gradient magnitude are used to

obtain a set of edge images

In the second stage, based on attenuation, gradient, and location, a subset of pixels is

selected, which are relatively close to the center of the tumor and belong to smooth (low

gradient) areas. The pixels are selectedwithin an ellipsoid that has axis lengths one-half

of those of the inscribed ellipsoid within the bounding box. This subset of pixels is

considered to be a statistical sample of the full population of pixels in the tumor. The

mean and standard deviation of the intensity values of the pixels belonging to the subset

are calculated. The preliminary tumor contour is obtained after thresholding and

includes the set of pixels falling within three SDs of the mean and with values greater

than the fixed background threshold. A morphologic dilation filter, a 3D flood fill

algorithm, and a morphologic erosion filter are used to the contour to connect the

nearby components and extract an initial segmentation surface. The size of the ellipsoid

and the remaining parameters are selected experimentally in a way that enables

segmentation of a variety of tumors, including necrotic tumors

In the third stage, the initial segmentation surface is propagated by using a 3D level set

method. Four level sets are applied sequentially to the initial contour. The first three level

sets are applied in 3D with a predefined schedule of parameters, and the last level set is

applied in 2D to every section of the resulting 3D segmentation to obtain the final con

tour. The first level set slightly expands and smoothes the initial contour. The second

level set pulls the contour toward the sharp edges, but at the same time, it expands

slightly in regions of low gradient. The third level set further draws the contour toward

the sharp edges. The 2D level set performs final refinement of the segmented contour on

every section

Group 15 (volume readings)

Moderate editing allowed (on <50% of

the tumors)

The software used is essentially a semiautomated contouringmethod. The user clicks on a

voxel located inside the tumor of interest and then drags a line to the outside the tumor

(to the background)

The voxels along that line are sampled and a histogram of intensities (Hounsfield Units) is

created

A statistical method is used to determine the threshold that best separates the two

distributions (tumor and background) in that histogram

Once that threshold is determined, the software uses a 3D (or if selected a 2D) seeded

region growing using the initial voxel selected as the point inside the tumor and the

threshold determined from the histogram analysis

The tool also provides several user editing tools such as adding and erasing voxels from

the contour, and so forth. The workflow description is as follows:

Each contour is automatically stored in a database linked to the experiment along with

meta data such as patient ID, contouring individual’s ID, and so forth. Each contoured

object has a unique ID that is linked to the series UID to maintain its identity

Once the contour is completed and accepted, the volume of the contoured object is

calculated. This is done essentially by counting the number of voxels within the

boundaries of the contoured object and multiplying that by the voxel size (as derived

from DICOM header data)

Group 10/16 (volume readings and

segmentation boundariesy)
As the input for the algorithm, the user has to draw a stroke being favorably the largest

diameter in the axial orientation or click a point in the given lung tumor. Usually, the

decision to use a stroke or a single click point depends on the size of the tumor to be

(continued on next page)

Academic Radiology, Vol 22, No 11, November 2015 INTER-METHOD PERFORMANCE STUDY OF TUMOR VOLUMETRY

1407



(Appendix continued)

Participating Group Description/Workflow

Limited editing allowed (on <50% of

the tumors)

segmented (for bigger tumors, a stroke is preferable, whereas for small tumors, a single

click is sufficient)

In the next step, a volumeof interest (VOI) around the tumor is estimated. In the casewhere

the algorithm has been initialized with stroke, the size of the VOI depends on the length

of the stroke

3D region growing is conducted in a VOI starting from seeds generated along the stroke or

around the click point, depending on the initialization

Adjacent structures of similar density (pleura, vessels) are separated by a set of inter

changing morphologic operations (erosion, dilation, convex hull, and binary

combination with region growing mask.)

Finally, a plausibility check between the resulting segmentation mask and the position of

the initial stroke or click point is conducted. If necessary, initial thresholds are read

justed and the whole procedure (steps 2–5) is repeated

For the case when the semiautomatic results are not satisfactory, the software provides

the possibility of correcting the results by drawing contours in selected slices and then

propagating the contours in an automatic manner onto the whole 3D segmentation. The

algorithm performs best optimally for the resolution up to 2 mm, although it still works

reasonably well for thicker slices such as 5 mm

Three groups (Groups 01, 09, and 13) initially applied but did not submit results.

*Alignment issues prevented inclusion in the segmentation boundary analysis.
yVolume results submitted under ID Group 16 and segmentation objects submitted under ID Group 10.
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