

BIOMARKER QUALIFICATION LETTER OF INTENT (LOI)

COMMENTS: The following information will be made publicly available as per the 21st Century Cures Act

Biomarker Project Information

Biomarker: Lipoarabinomannan (LAM) concentration with other microbiological measurements.

Therapeutic area: Pulmonary disease, specifically Tuberculosis (TB).

Patient Population: Adult patients with TB infection.

Administrative Information

Name of Organization: Critical Path Institute, 1730 East River Road, Tucson, AZ 85718, Phone: 520-547-3440

Website: www.c-path.org

Primary Point of Contact: Martha Brumfield, 1730 East River Road, Tucson, AZ 85718, Phone: 520-547-3440,

Email: mbrumfield@c-path.org

Alternate Point of Contact: Ms. Alicia Chou, 1730 East River Road, Tucson, AZ 85718, Phone: 520-775-2375,

Email: achou@c-path.org

Submission Date: June 23, 2017 with no concurrent EMA biomarker submissions.

Drug Development Need

Current measurements of efficacy in TB drug development are based on culture, using either solid or liquid media. The first evidence of efficacy is usually obtained in early bactericidal activity (EBA) trials, which require quantitative culture (changes of colony forming unit counts on solid media). However, 4-6 weeks are needed to obtain quantitative culture on solid media, and the process is extremely labor and resource intensive. EBA trials are currently only performed in a very limited number of laboratories. Later phase 2 trial designs, which may range from 8 to 24 weeks in duration, focus on the proportion of sputum culture conversion (SCC) or the time to SCC on solid and/or liquid media (MGIT culture). The determination of SCC requires 6-8 weeks, therefore, causing a significant delay in obtaining efficacy results. The lack of a real-time assessment of efficacy prohibits accelerated and novel approaches to TB drug development.

A biomarker that can quantitate bacterial load during treatment in real time is likely to greatly improve TB drug development. If the real-time determination of LAM dynamic changes in sputum is shown to be equivalent to bacterial load dynamic changes measured by quantitative sputum culture, the sputum LAM could be used as a real-time decision-making tool in adaptive clinical designs of new TB treatment regimens.

- **Additional improvement by the proposed biomarker upon currently used standards:** Sputum LAM is a promising pharmacodynamic/response biomarker: LAM concentrations measured by the LAM ELISA correlate well with quantitative culture results, and results from the LAM-ELISA can be obtained in 5 hours.
- **Description of limitations for use of the proposed biomarker:** One limitation of the LAM ELISA is its lower

BIOMARKER QUALIFICATION LETTER OF INTENT (LOI)

sensitivity, compared to that of MGIT culture. However, the LAM ELISA has a sensitivity similar to that of solid media based culture, with solid media cited in regulatory guidance as suitable for assessing sputum culture conversion as an endpoint in clinical trials. Additionally, specimens with LAM below the detection limit but still MGIT culture positive likely have very low bacterial load. Therefore, when considered with LAM prior to the start of the treatment, LAM dynamic changes can provide an estimate of treatment response. An additional limitation is that the LAM antibodies may not be MTB specific, and the LAM ELISA may detect non-tuberculosis mycobacteria (NTM). However, sensitivity of detecting NTM is much lower than for MTB. In a TB drug development clinical trial setting, subjects infected with NTMs (determined by other available tests) can be excluded from data analysis.

- **Is there potential use of the biomarker across multiple drug development programs?** Yes.
- **The biomarker is a composite biomarker (made up of several individual biomarkers combined in a stated algorithm to reach a single interpretive readout):** No
- **Therapeutic area:** Infectious disease

Biomarker Information

- **Biomarker name (for molecular biomarkers, please provide a unique ID) and type**
(Molecular/Image/Anatomic, etc.): Lipoarabinomannan (LAM) in sputum is a molecular biomarker.
- **Biomarker description:** LAM is a major component of mycobacterium cell wall comprising up to 1.5% of total bacterial weight and thus is a major antigen of Mycobacterium tuberculosis (MTB) bacilli.
- **Biomarker Category:** Pharmacodynamic/Response
- **Biological rationale (underlying biological process):** The LAM ELISA measures the concentration of LAM in sputum. LAM is a major component of mycobacterium cell wall comprising up to 1.5% of total bacterial weight and thus is a major antigen of Mycobacterium tuberculosis (MTB) bacilli. Sputum coughed up from the lungs of pulmonary TB patients is used as the specimen for this test. The change in the concentration of LAM in sputum likely reflects the change of bacterial number in the lung lesion(s), as LAM concentration correlates with quantitative sputum culture.
- **Is this a composite biomarker?** No.

Context of Use

- **Proposed Context of Use (COU) Statement:**
The LAM (lipoarabinomannan) biomarker will be used for quantitative measurement of bacterial load in sputum. A decrease of LAM in sputum reflects the reduction of bacterial load in the lung. This biomarker should be considered with other microbiological measurements, such as culture, as a real-time evaluation of treatment response in clinical trials of patients with pulmonary tuberculosis.
- **Conditions for Qualified Use Include:**

BIOMARKER QUALIFICATION LETTER OF INTENT (LOI)

- 1) An analytically validated LAM ELISA immunoassay should be used for the measurement of LAM in sputum,
- 2) Patient population is adult patients in clinical trials of drugs/regimens for treatment of pulmonary tuberculosis,
- 3) A sputum specimen is required to ensure the accurate measurement of bacterial load in the lung. Contamination of sputum with other bacteria should not impact the measurement of LAM,
- 4) It is proposed that this biomarker will be used in all phases of clinical testing to provide real time measurement of treatment response and facilitate adaptive clinical trial designs for testing new TB treatment regimens.

- **Drug Development Space for Biomarker Use:**
 - Early-phase clinical trials (e.g., Phase I or II)
 - Late-phase clinical trials (Phase III or post-marketing)

Biomarker Measurement (Analytical)

- **General description of what aspect of the biomarker is being measured and by what methodology:** The biomarker is LAM concentration in sputum. It is measured by an immunoassay using monoclonal antibodies against LAM. The available test, the LAM ELISA, uses the format of an enzyme-linked immunosorbent assay (ELISA). Second generation immunoassays with faster turn-around-time and larger dynamic range using the same antibodies are being developed. Sputum specimens are used for this test.
- **The biomarker test/assay is available for public use?** Yes.
- **The biomarker assay/test is cleared/approved or under review within the FDA Center for Devices and Radiological Health?** No.
- **The biomarker assay/test will be performed in a Clinical Laboratory Improvement Amendments (CLIA) certified laboratory?** No.
- **A standard operating procedure (SOP) exists for sample collection, storage and test/assay methodology?** Yes.
- **A laboratory SOP exists for the assay/methodology?** Yes.
- **Performance characteristics are available for the biomarker assay/tests (sensitivity, specificity, accuracy and precision)?** Yes.
- **Information about the specific technical platform?** Not applicable.
- **An analytical validation plan or data exist (e.g., sensitivity, specificity, accuracy, and/or precision of the assay or method)?** Yes.

Biomarker Measurement (Clinical)

Biomarker study and data considerations;

BIOMARKER QUALIFICATION LETTER OF INTENT (LOI)

- **Clinical study data supporting the biomarker:** Yes.
- **Non-clinical study data supporting the biomarker:** Yes.
- **Type(s) of data available to support the proposed COU of the biomarker:** Retrospective data, prospective data, randomized controlled trials data, and non-clinical data.
- **Planned future studies:** Yes.
- **Statistician participating in biomarker qualification effort:** Yes.
- **Previous Qualification/Scientific advice received:** Critical Path Innovation Meeting on March 3, 2017, and informal discussions with EMA have occurred.

Biomarker Qualification Letter of Intent (LOI)

References:

- 1 FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Administration (US); 2016. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK326791/>. Co-published by National Institutes of Health (US), Bethesda (MD).
- 2 A van Deun. What is the role of mycobacterial culture in diagnosis and case definition? Toman's Tuberculosis: case detection, treatment, and monitoring-questions and answers, 2nd edition, World Health Organization, Geneva, 2004.
- 3 Wallis RS, Maeurer M, Mwaba P, Chakaya J, Rustomjee R, Migliori GB, et al. Tuberculosis-advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. *Lancet Infect Dis* 2016; 16: e34-36.
- 4 Guidance for Industry: Pulmonary tuberculosis: Developing drugs for treatment. FDA, 2013. 23
- 5 Addendum to the 'guideline on the evaluation of medicinal products indicated for treatment of bacterial infections' to address the clinical development of new agents to treat disease due to *Mycobacterium tuberculosis*. EMA, 2016.
- 6 Hunter SW, Gaylord H, Brennan PJ. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. *J Biol Chem*. 1986;261:12345-51.
- 7 Otsuka Study Report. Evaluation of Lipoarabinomannan Content in Sputum, Blood, and Urine Specimens from Tuberculosis Patients using LAM Detection System - Stage 2. 2016.
- 8 Diacon AH, Maritz JS, Venter A, Van Helden PD, Dawson R, Donald PR. Time to liquid culture positivity can substitute for colony counting on agar plates in early bactericidal activity studies of antituberculosis agents. *Clin Microbiol Infect*. 2012;18(7):711-717. doi:10.1111/j.1469-0691.2011.03626.x.
- 9 Bark CM, Gitta P, Ogwang S, et al. Comparison of time to positive and colony counting in an early bactericidal activity study of anti-tuberculosis treatment. *Int J Tuberc Lung Dis*. 2013;17(11):1448-1451. doi:10.5588/ijtld.13.0063.
- 10 Barr DA, Kamdolozi M, Nishihara Y, et al. Serial image analysis of *Mycobacterium tuberculosis* colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB. *Tuberculosis*. 2016;98:110-115. doi:10.1016/j.tube.2016.03.001.
- 11 Bowness R, Boeree MJ, Aarnoutse R, et al. The relationship between *Mycobacterium tuberculosis* MGIT time to positivity and CFU in sputum samples demonstrates changing bacterial phenotypes potentially reflecting the impact of chemotherapy on critical sub-populations. *J Antimicrob Chemother*. 2015;70(2):448-455. doi:10.1093/jac/dku415.
- 12 Otsuka Study Report. Investigational study using LAM-specific antibodies to detect *Mycobacterium tuberculosis* in sputum. 2013.
- 13 Otsuka Study Report. Evaluation of LAM-ELISA test for the detection of *Mycobacterium tuberculosis* in sputum specimens of adult pulmonary TB suspects: comparison with AFB smear microscopy, Lowenstein-Jensen medium, the BACTEC MGIT 960 culture, and Xpert MTB/RIF. 2016.
- 14 Otsuka Study Report. Evaluation of LAM-ELISA on diagnosis of TB on sputum specimens provided by the Foundation for Innovative New Diagnostics (FIND). 2016.
- 15 CE marking reference: TB LAM ELISA "Otsuka", Otsuka Pharmaceutical Co., Ltd., MT Promedt Consulting GmbH, IVD, CE, REF 653051. 2017
- 16 Turnbull WB, Shimizu KH, Chatterjee D, Homans SW, Treumann A. Identification of the 5-methylthiopentosyl substituent in *Mycobacterium tuberculosis* lipoarabinomannan. *Angew Chemie - Int Ed*. 2004;43(30):3918-3922. doi:10.1002/anie.200454119.
- 17 WHO Policy Guidance. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis. WHO. 2016; 1.
- 18 Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. *N Engl J Med*. 2010;363(11):1005-1015. doi:10.1056/NEJMoa0907847.

BIOMARKER QUALIFICATION LETTER OF INTENT (LOI)

19 Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. *Epidemiology*. 2005;16(1):73-81.
doi:10.1097/01.ede.0000147512.81966.ba.

20 Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. *Int J Tuberc Lung Dis* 2011;15(7):949–54.

21 Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. *Lancet Respir Med*. 2013;1(6):462-470.
doi:10.1016/S2213-2600(13)70119-X