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Outline 
• Association versus causation 
• Causal inference using observational data  

– The counterfactual 
– Strategies to control for secular trends, or 

confounding by calendar time 
– Hill’s principles of causal inference 
– Aggregate vs. individual level effects 

 



3 

Causal Inference 
 Association = Causation 

 

Reasons for Non-Causal Associations 

Random Error Systematic Error 

Chance 
associations 

Selection 
bias 

Information 
bias Confounding 

• An observed association (“correlation”) may be causal:   
A caused B  

where B is some change in the outcome of interest—e.g., a 
decrease in fatal opioid overdoses 
 
• May also be non-causal: 
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The Counterfactual 
• Hypothetical scenario in which no abuse-

deterrent properties but all else is the same 
(no confounding) 

• Is abuse of the product meaningfully lower 
than it would have been without abuse-
deterrent properties? 

• Counterfactual is not real/observable: How do 
we best approximate it to answer this 
question and determine the effect of the ADF? 
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Pre-post Reformulation 
Comparison of Means: 
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• Uses pre-period mean abuse rate to approximate the 
counterfactual (what post-period rate would have been 
if drug had not been reformulated) 
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Secular Trends: 
Confounding by calendar time 

• Secular trends can confound pre-post analyses 
– Law enforcement (“pill mill” crackdowns, etc.) 
– Changing  opioid prescribing practices due to guidelines, 

PDMP use, legislation, etc. 
– Increasing heroin availability and use 

• May vary geographically 
• These factors are typically difficult to measure—

exception is estimated prescription volume, which we 
can adjust for  

 
(Confounding will also be discussed in tomorrow’s session on 
designs that assess exposure and outcome in the same 
individuals over time) 
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Using a comparator to approximate the 
counterfactual 
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• Difference-in-differences means analysis 
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= effect of 
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More on Comparison of Means 
Analyses and Secular Trends 
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More on Comparison of Means Analyses 
and Secular Trends 
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Comparison of Means Analyses 
Duration of Pre- and Post-periods 

 
 
 

Time periods 

Ab
us

e 
ra

te
s 

Drug 
reformulated 

Pre-period  
A mean 

Post-period C 
mean 

Post-period 
D mean 

Pre-period B 
mean 

Pre-period B Post-period D 

Pre-period A Post-period C 

  



11 

Interrupted Time Series (ITS) 
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• Assumptions: 
• Pre-period trend would have continued unchanged 

without intervention 
• No effects of concurrent interventions 
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Interrupted Time Series (ITS) 
Adding a comparator 
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• Look for difference-in-differences in slope, intercept: Now 
changes in comparator approximate the counterfactual 

• Assumes any concurrent interventions would affect both drugs 
similarly 

Changes in 
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scenario 
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Challenges with Comparators 
• Ideal comparator 

– Similar to index drug in 
• Indications 
• Pharmacology 
• Baseline abuse trends and patterns (e.g. route) 

– Relatively large, stable prescription volume 
– Expect similar effect from concurrent 

interventions (e.g., pill mill crackdowns, 
guidelines, payer initiatives) 
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Challenges with Comparators 
• Typically no ideal comparator exists 
• Use multiple comparators? 

– Complicates interpretation, causal inference 
– Need to pre-specify primary comparator(s) 
– Others help characterize “abuse landscape” 

• Use composite comparators? 
– Composition can change over time 
– Drugs with largest market share drive composite 
– Stratification/weighting techniques? 
– May mask meaningful individual differences  
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Putting it all together: 
Hill’s Principles of Causal Inference 

• Temporality 
• Strength of association 
• Consistency  
• Specificity 
• Biological gradient 
• Plausibility 
• Alternative explanations 
• Experimental evidence  
• Analogy (consistency with other knowledge) 

*Sir Austin Bradford Hill: The Environment and Disease: Association or Causation? President’s Address, 
Section of Occupational Medicine of the Royal Society of Medicine, January 14, 1965 
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Aggregate effects vs. reduction in 
individual risk 

• Inferences made from observed associations at the 
aggregate (ecologic) level may not be valid at the 
individual level  

• If ADF reduces aggregate abuse rates in the 
population over time, what does this tell us about 
the risk of an individual exposed to the product 
1. Going on to abuse it—orally/non-orally? 
2. Transitioning from one route to another? 
3. Developing an opioid use disorder (becoming addicted)? 
4. Overdosing/dying? 
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Discussion Questions 
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Questions for Discussion 

1. How do we best synthesize findings 
from means and ITS analyses in 
evaluating whether an ADF has resulted 
in a meaningful reduction in abuse? 
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Questions for Discussion 

2. How can we overcome some of the 
challenges associated with using 
comparators to approximate the 
counterfactual in ecologic time series 
studies? 
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Questions for Discussion 

3. What are some potential alternative 
analytic approaches to evaluate the 
effect of an ADF using the currently 
available data sources, particularly for 
products without a recent non-ADF 
precursor? 
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Questions for Discussion 

4. What can we reasonably infer from 
aggregate changes in abuse rates about 
an ADF’s effect on the risk of abuse (or 
abuse via a specific route) for an 
individual exposed to the product? 
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