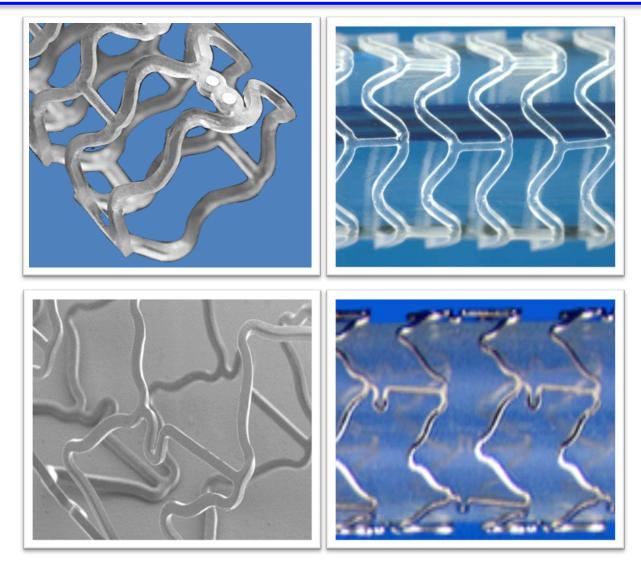
Absorb GT1[™] Bioresorbable Vascular Scaffold (BVS) System

March 15, 2016

Abbott Vascular

Circulatory System Devices Panel

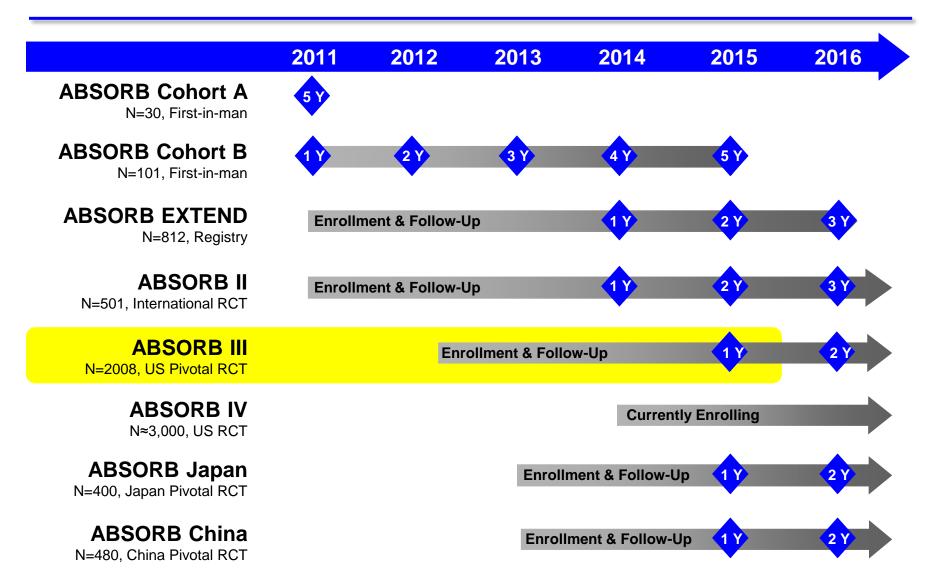
Absorb GT1[™] Bioresorbable Vascular Scaffold (BVS) System


Chuck A. Simonton, MD, FACC, FSCAI Chief Medical Officer Divisional Vice President Abbott Vascular

Absorb: 1st Completely Bioresorbable DES, Built upon Xience Technology

Material / Design		Xience	Absorb
Drug / Elution	AN AN	Everolimus	
Stent / Scaffold Design		MULTI-LINK Design	
Delivery System		MULTI-LINK SDS	
Stent / Scaffold Material		Cobalt Chromium	Poly (L-lactide)
Coating Material		Fluorinated Copolymer	Poly (DL-lactide)

Absorb and Xience Have Similar Implant Designs


Absorb

Xience

Absorb Uses Same Delivery Technique as Drug-Eluting and Bare Metal Stents

Absorb Clinical Program

Absorb Worldwide Commercial Usage: Over 125,000 Patients Treated

CO-7

Over 125,000 patients treated to date in over 100 countries

What We Will Demonstrate Today

- ABSORB III met pre-specified primary endpoint demonstrating reasonable assurance of safety and effectiveness
- Met FDA regulatory standards for DES approval
- Absorb is appropriate treatment option for patients who require PCI therapy and do not want permanent implant

Absorb: Proposed Indication for Use

The Absorb GT1 Bioresorbable Vascular Scaffold (BVS) is a temporary scaffold that will fully resorb over time and is indicated for improving coronary luminal diameter in patients with ischemic heart disease due to *de novo* native coronary artery lesions (length \leq 24 mm) with a reference vessel diameter of \geq 2.5 mm and \leq 3.75 mm

CO-10

Agenda

Technology Overview & Design Rationale	Chuck Simonton, MD Abbott Vascular	
ABSORB III Trial Design	Dean J. Kereiakes, MD The Christ Hospital Heart and Vascular Center	
ABSORB III Results: Safety & Effectiveness		
Absorb Long-term Data	Gregg W. Stone, MD Columbia University	
High Level Summary: Benefit-Risk Analysis		
Sponsor Commitments	Chuck Simonton, MD Abbott Vascular	
Clinical Perspective	Mitchell W. Krucoff, MD Duke University	

Additional Experts

Non-Abbott Vascular

Stephen Ellis, MD

Director of Interventional Cardiology Senior Academic Officer Sydell and Arnold Miller Family Heart & Vascular Institute, Cleveland Clinic

Christoph Kurt Naber, MD Assoc. Professor of Medicine

Director of Department of Cardiology and Angiology, Contilla Heart and Vascular Center Essen Germany

Stuart Pocock, PhD Professor of Medical Statistics London School of Hygiene and Tropical Medicine

Jeffrey J. Popma, MD Director, Interventional Cardiology Clinical Services Beth Israel Deaconess Medical Center Professor of Medicine, Harvard Medical School

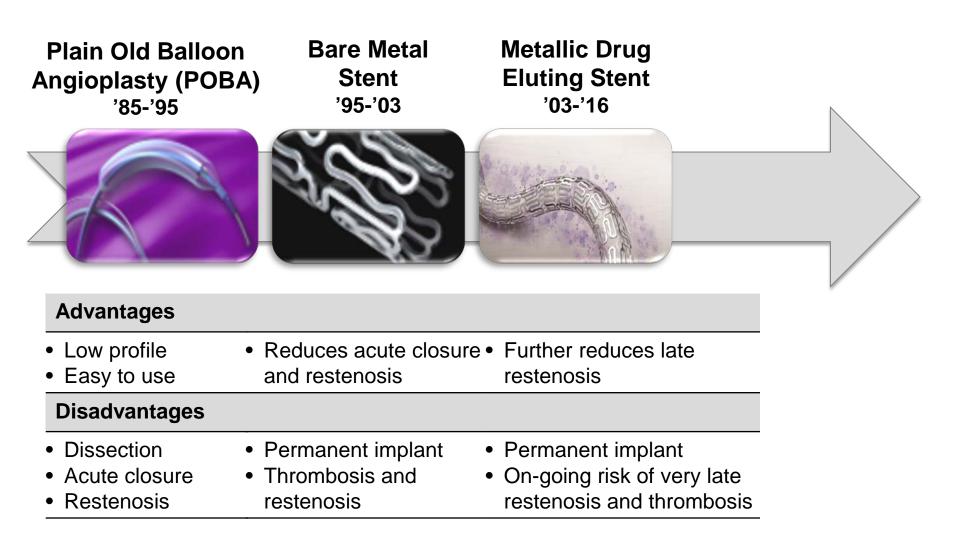
Abbott Vascular

 Laura Perkins, PhD, DVM, DACVP

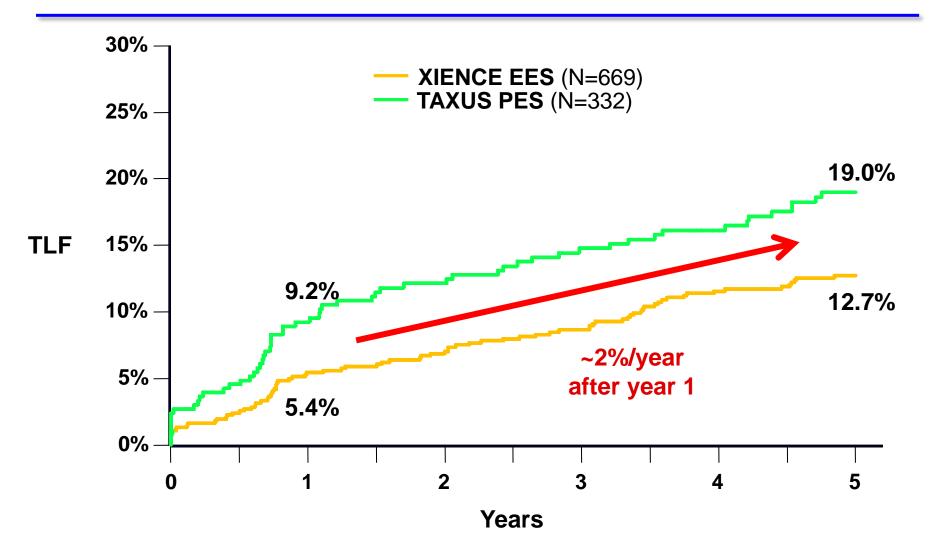
Research Scientist Preclinical Research and Biocompatibility

- Richard Rapoza, PhD Divisional Vice President Research & Development
- Zhen Zhang, PhD Associate Director Worldwide Biometrics

Technology Overview & Design Rationale


Chuck Simonton, MD, FACC, FSCAI

Chief Medical Officer


Divisional Vice President

Abbott Vascular

Evolution of Percutaneous Coronary Intervention (PCI) Treatments

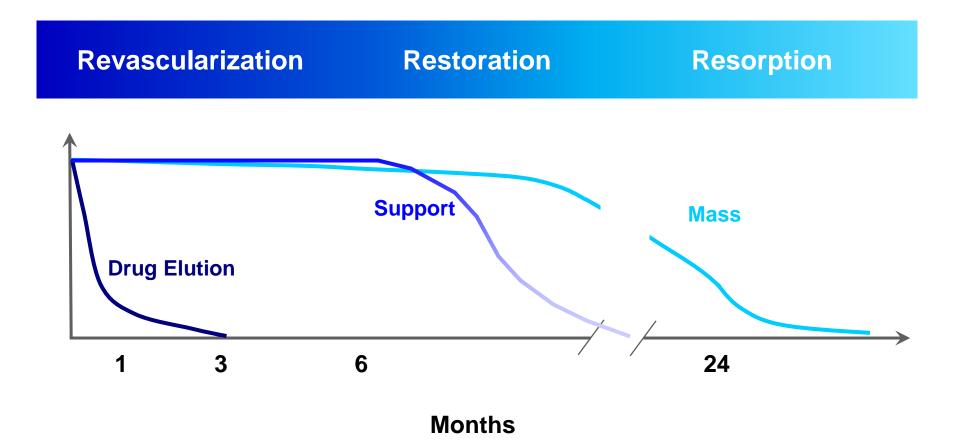
SPIRIT III: TLF to 5 Years

Gada H et al. (2013); TLF = cardiac death, target vessel MI, or ischemic-driven TLR

Limitations of Permanent Metallic Drug-Eluting Stents

- Permanently covers side branches, limiting access
- Prevents insertion of bypass grafts
- Multiple stent layers reduce vessel diameter
- Commits patient to life-long implant for treatment of temporary problem
 - Many patients and physicians wish to avoid permanent implant

Evolution of Percutaneous Coronary Intervention (PCI) Treatments


Advantages

 Reduction in long-term events due to no permanent implant

Absorb Design Objectives

- Achieve similar results as metallic DES within 1st year
- Allow for more normal vessel recovery and healing (over time with resorption)
- Provide physicians with option to treat patients without a permanent implant

Phases of Absorb Functionality

Absorb Performance: Characteristics Similar to Xience

REVASCULARIZATION

Acute recoil

Radial strength

Everolimus elution and pharmacokinetics

Low and acceptable thrombogenicity

Healing (endothelialization)

Absorb Performance: Characteristics Unique to Absorb

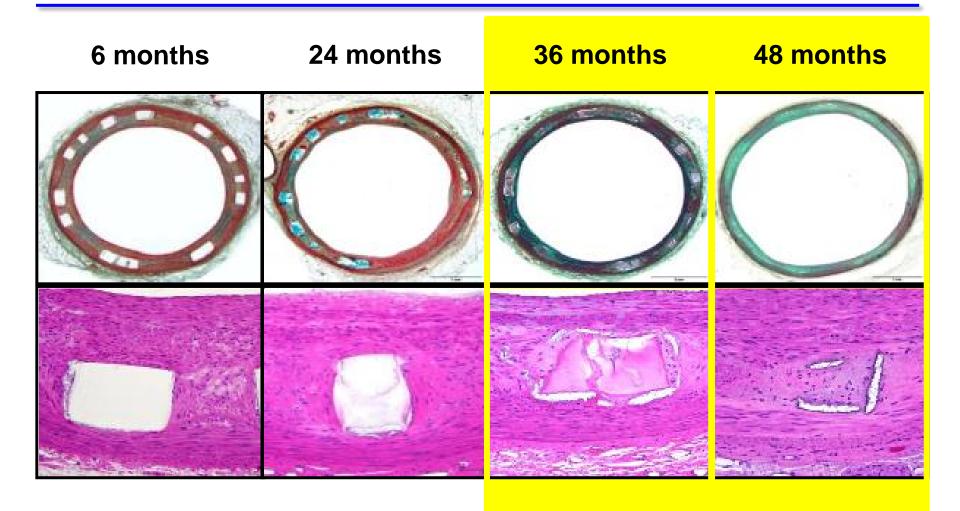
RESTORATION

Gradual loss of radial strength after 6 months

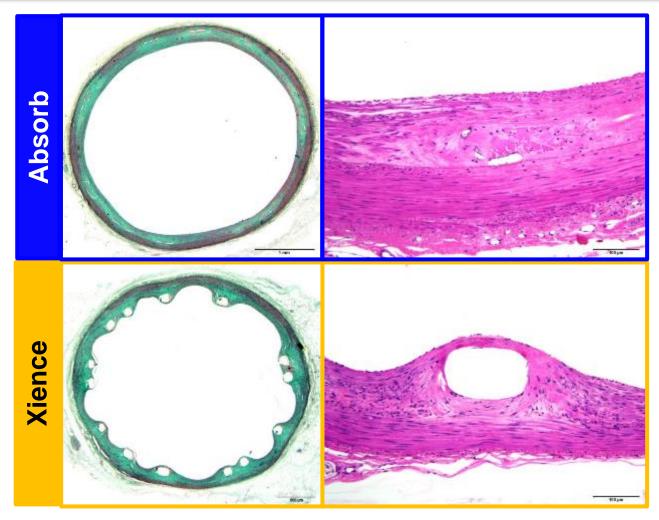
Return of pulsatility and vasomotion

Lumen enlargement over time¹

RESORPTION

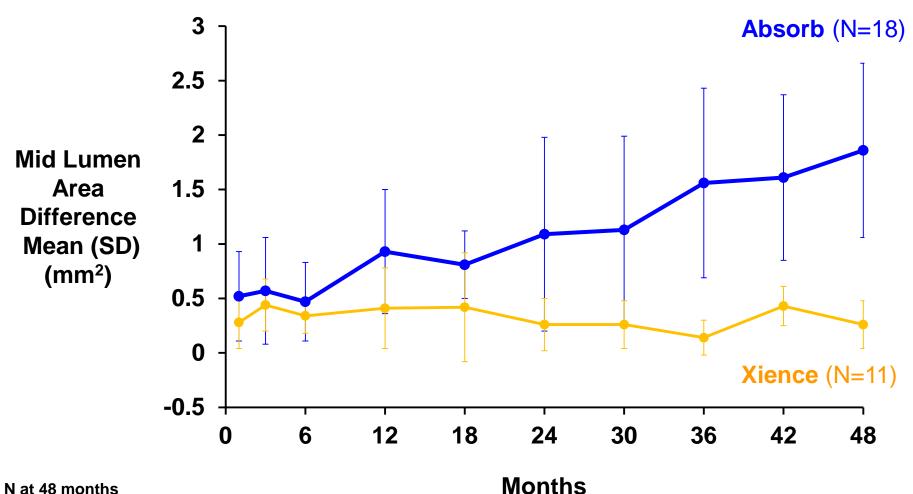

Complete scaffold resorption¹

1. Otsuka, F., et al. (2014). Circ Cardiovasc Interv 7: 330-342


Preclinical Evidence

- 1. Complete Resorption
- 2. Recovery of Vessel Function
- 3. Lumen Enlargement

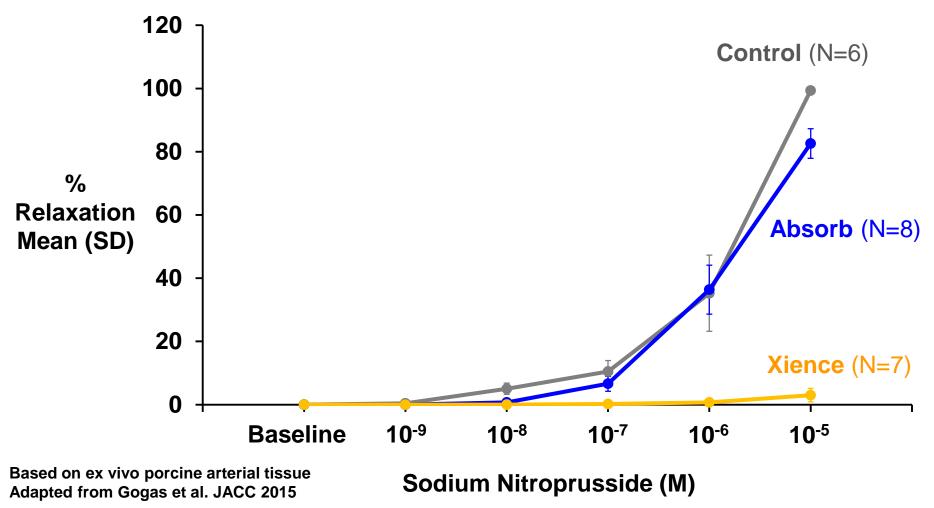
Full Bioresorption of Scaffold: Porcine Histology



Absorb Struts Replaced by Tissue: Porcine Histology through 48 Months

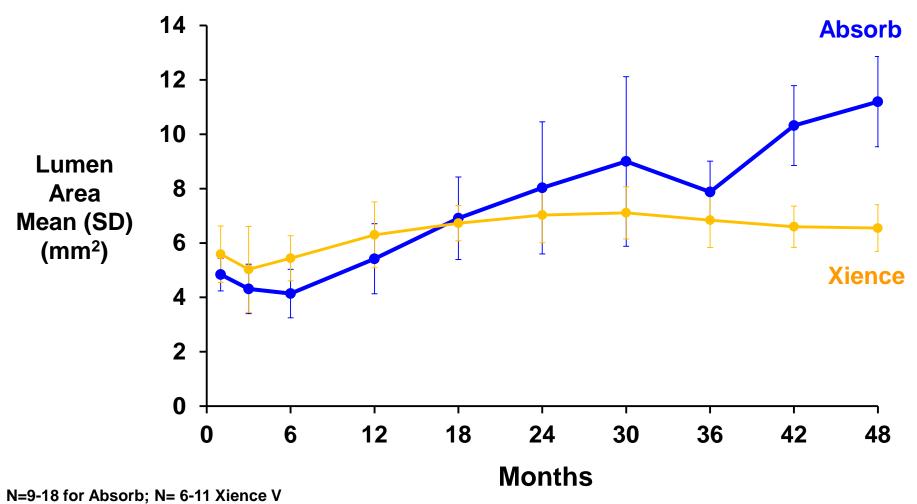
Representative photomicrographs of porcine coronary arteries 48 months post-implant, 2x Movat's pentachrome and 20x HE

Increase of Pulsatility Over Time: Porcine Data



N at 48 months

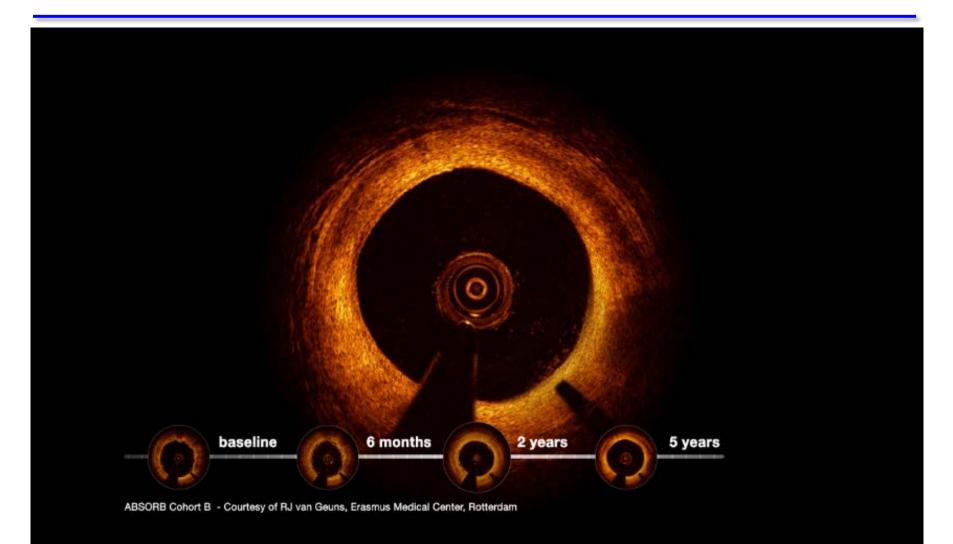
Lane et al. J Am Coll Cardiol Intv. 2014;7(6):688-695


Pulsatility defined as difference in change in mean lumen diameter of implanted region between end-diastole and -systole

Restored Vasomotion with Absorb at 2 Years: Porcine Data

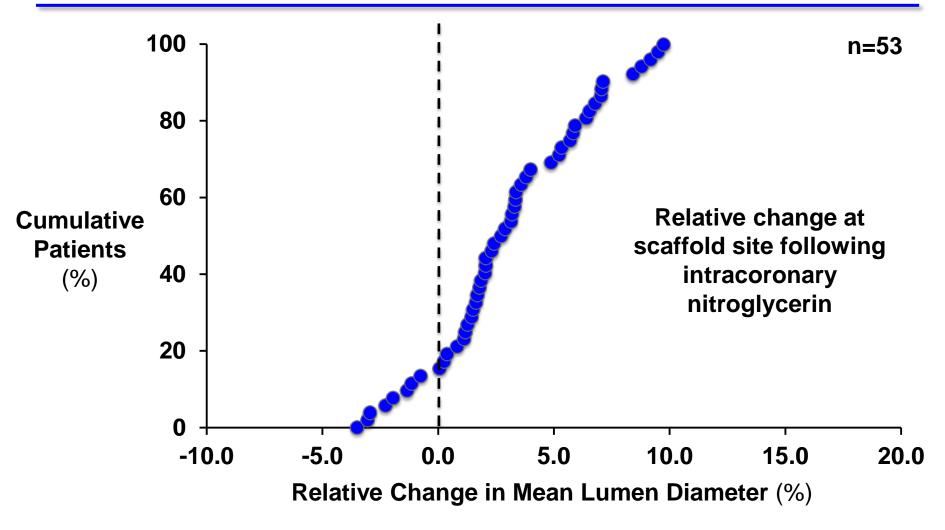
Data/analysis not submitted or reviewed by FDA

Late Lumen Enlargement of Absorb Arteries: Porcine IVUS Data

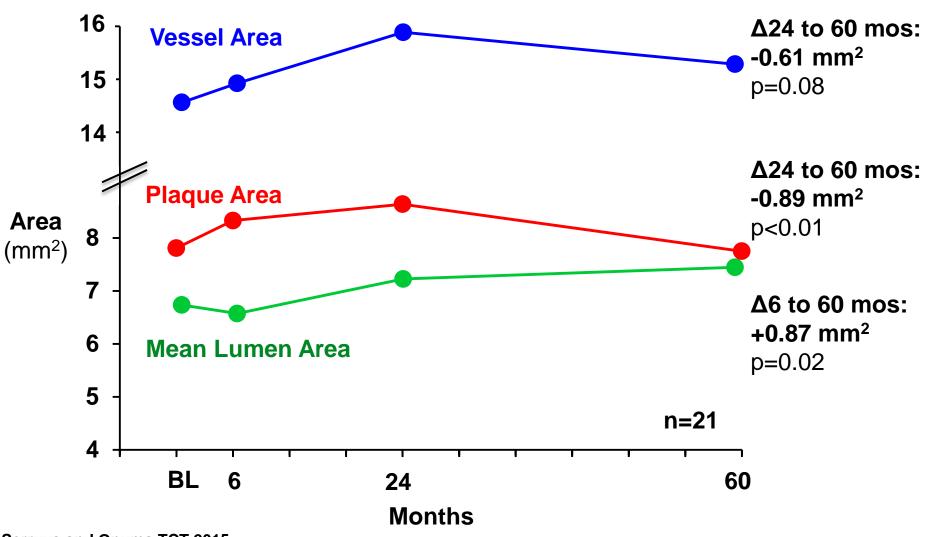

Lane et al. J Am Coll Cardiol Intv. 2014;7(6):688-695

Early Human Studies: ABSORB Cohort B

- 1. Complete Resorption
- 2. Recovery of Vessel Function
- 3. Lumen Enlargement

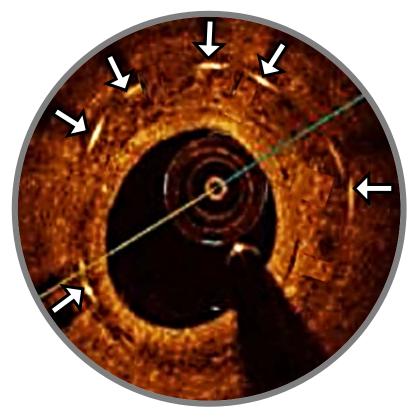

Full Scaffold Resorption and Lumen Preservation at Long-Term Follow-Up

CO-28


Data/analysis not submitted or reviewed by FDA

Restored Vasomotion at 5 Years in ABSORB Cohort B

Adapted from Serruys and Onuma TCT 2015 Relative change = 100 x (mean LD post Nit-mean LD pre Nit) / mean LD pre Nit


Lumen Preservation Over 5 Years in ABSORB Cohort B

Serruys and Onuma TCT 2015

Metallic DES vs. Absorb: Representative Human Images at 5 Years

Absorb²

Summary

- Absorb represents logical step in PCI evolution
- Absorb provides similar mechanical support as Xience with additional novel properties
- Preclinical evidence demonstrates
 - Complete resorption
 - Recovery of vessel function
 - Lumen enlargement
- Previous clinical studies support preclinical findings in human patients

ABSORB III Trial Design

Dean J Kereiakes, MD, FACC, FSCAI The Christ Hospital Heart and Vascular Center

Cincinnati, OH

Trial Objective

 To demonstrate Absorb is comparable (i.e. non-inferior within an acceptable margin) to DES (Xience) at 1 year

ABSORB III Trial Designed Using FDA Guidance

- 1. Non-inferiority (NI) design to demonstrate Absorb is non-inferior to FDA-approved DES
- 2. Use of Target Lesion Failure (TLF) as primary outcome measure to evaluate a combination of safety and effectiveness at 1 year
- 3. NI margin for statistical analysis based on current FDA guidance on NI clinical trials

CO-36

Trial Design

- Prospective, single-blind, multi-center RCT
- 193 sites
- Randomized 2:1
 - Absorb N=1322
 - Xience N=686
- Xience chosen as comparator because it is among the best-in-class for clinical outcomes

Available Device Sizes in ABSORB III

	Diameters (mm)	Lengths (mm)
Absorb ¹	2.5, 3.0, 3.5	8, 12, 18, 28
Xience ²	2.5, 2.75, 3.0, 3.25, 3.5, 4.0	8, 12, 15, 18, 23, 28

1. Both 8 and 12 mm lengths were available for 2.5 and 3.0 mm diameter; 8 mm length not available for 3.5 mm diameter 2. Xience family of stents: XIENCE V, XIENCE PRIME, and XIENCE Xpedition

Composite Primary Endpoint: Safety and Effectiveness

TLF at 1 Year (Intention-to-Treat):

- 1. Cardiac death
 - Any death suspected to be cardiac in nature

2. MI attributable to target vessel (TV-MI)

 Peri-procedural: CK-MB > 5x ULN w/in 48 hours from index procedure

Spontaneous: Troponin or CK-MB > ULN plus evidence of ischemia

- 3. Ischemia-driven target lesion revascularization (ID-TLR)
 - Any repeat PCI of target lesion or CABG of target vessel with evidence of ischemia

CO-38

Safety

Effectiveness

Analysis Populations

Intention-to-Treat (ITT) Primary Analysis Population

 All patients in study at randomization. Analyzed in group they were randomized to, regardless of treatment actually received

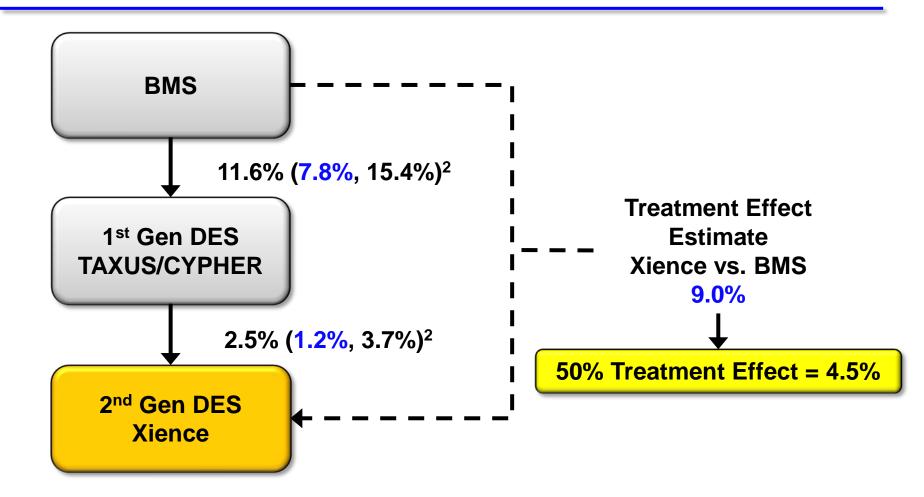
Per-Treatment Evaluable (PTE)

 Patients who received only study device(s) (Absorb or Xience) at target lesion, excluding those with specific protocol deviations

As-Treated (AT)

 Analyses based on treatment (Absorb or Xience) actually received

Key Patient Eligibility


- \geq 18 years old
- Evidence of myocardial ischemia (stable, unstable and postinfarct angina or silent ischemia)
- No elevation in CK-MB
- 1 or 2 de novo target lesions in up to 2 native coronary arteries (max 1 lesion per artery)
- Diameter stenosis (DS)
 - \geq 50% and < 100% with a TIMI flow of \geq 1
 - If < 70%, patient must have abnormal functional test, (including FFR ≤ 0.80), unstable or post-infarct angina
- Reference vessel diameter (visual estimation at site)
 - \geq 2.50 mm and \leq 3.75 mm and lesion length \leq 24 mm

Statistical Design

Non-inferiority analysis for TLF at 1 year (ITT population) with following assumptions:

- 1-Year TLF rate of 7%
 - Based on similar patients from SPIRIT IV (N=2051)
 - TV-MI adjusted according to ABSORB III MI definition
- Non-inferiority margin of 4.5%
 - "Putative placebo", preserving ≥ 50% of treatment effect of Xience vs. BMS
- One-sided alpha of 0.025
- 2000 subjects \rightarrow 96% power

Derivation of NI Margin Based on Meta-analysis¹ of Historical Trials

- 1. Random effect meta-analysis (Dersimonian and Laird method)
- 2. Two-sided 90% confidence interval

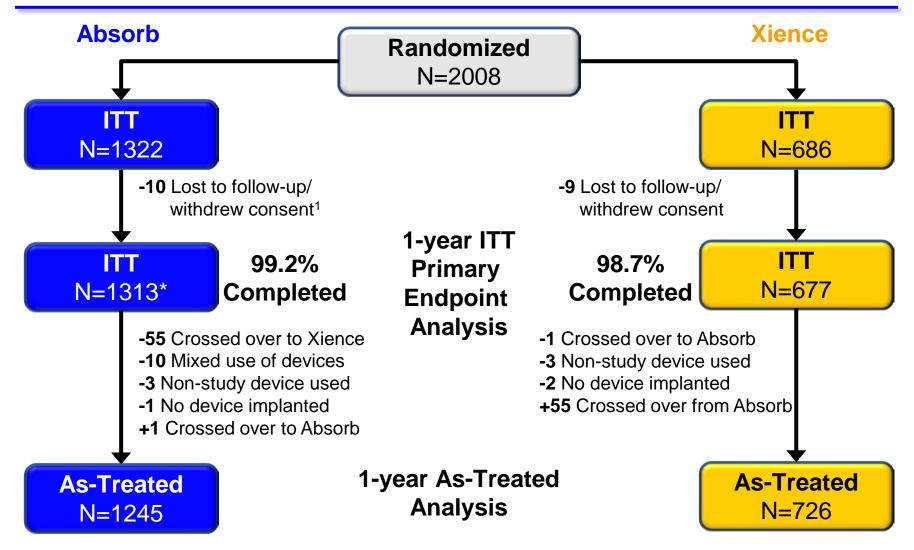
Powered Secondary Endpoints

- Test hypothesis that Absorb may reduce:
 - 1. Angina at 1 year
 - First AE resulting in diagnosis of angina
 - Excludes angina following index procedure, not to exceed 7 days
 - 2. All revascularization at 1 year
 - 3. Ischemia-driven target vessel revascularization (ID-TVR) at 1 year

Other Secondary Endpoints

- Major adverse cardiac events (MACE)
 - Cardiac death, MI, ID-TLR
- Target vessel failure (TVF)
 - Cardiac death, MI, ID-TLR, ID-TVR (non-target lesion)
- Death, MI, all revascularization
- Cardiac death/MI
- Stent or scaffold thrombosis (ST)
 - ARC definite/probable

Trial Management


Angiographic Core Laboratory

- Director: Dr. Jeff Popma
 Beth Israel Deaconess Medical Center
 Angiographic Core Laboratories, Boston, MA
- Clinical Events Committee
 - Director: Dr. Steven Marx Cardiovascular Research Foundation New York, NY
- Data Safety Monitoring Board
 - Chairman: Dr. Robert N. Piana
 Vanderbilt University Medical Center Nashville, TN

ABSORB III Results: Safety & Effectiveness

Gregg W Stone, MD Columbia University Medical Center The Cardiovascular Research Foundation New York, NY

Clinical Follow-up ~99% for Both Absorb and Xience Arms

1. One of the six withdrawals had an event and therefore was included in the 1-year follow-up

Baseline Characteristics: Similar Between Absorb and Xience Groups

Characteristic	Absorb N=1322	Xience N=686
Age (mean)	63.5 ± 10.6	63.6 ± 10.3
Male	70.7%	70.1%
Diabetes	31.5%	32.7%
Current tobacco use	21.3%	20.7%
Hypertension	84.9%	85.0%
Dyslipidemia	86.2%	86.3%
Prior MI	21.5%	22.0%
Clinical presentation		
Stable CAD	70.3%	72.9%
Recent ACS or MI	29.7%	27.1%

Ellis SG et al. N Engl J Med. 2015;373:1905-15

Similar Vessel & Lesion Characteristics Between Groups

Characteristic	Absorb N=1322 L=1385	Xience N=686 L=713
Target Vessel		
Left anterior descending	44.5%	42.2%
Right coronary artery	29.2%	27.2%
Left circumflex or ramus	26.2%	30.6%
ACC/AHA Lesion Class B2/C	68.7%	72.5%
Pre-Procedure QCA		
Lesion length, mm	12.6 ± 5.4	13.1 ± 5.8
Reference vessel diameter, mm	2.67 ± 0.45	2.65 ± 0.46
Minimal lumen diameter, mm	0.92 ± 0.37	0.90 ± 0.34
%DS	65.3 ± 12.5	65.9 ± 11.7

N = Patients; L = Lesions; Ellis SG et al. N Engl J Med. 2015;373:1905-15

Peri-procedural Antiplatelet Agent and Anticoagulation Use

	Absorb N=1322 %	Xience N=686 %	p-value
Aspirin	99.3	99.3	1.00
P2Y12 inhibitor loading	99.0	98.8	0.70
Clopidogrel	62.6	64.7	0.34
Prasugrel or ticagrelor	36.5	34.4	0.34
Bivalirudin	60.7	58.7	0.39
Glycoprotein IIb/IIIa inhibitor	10.1	12.4	0.11

Procedure (I)

Characteristic	Absorb N=1322 L=1385	Xience N=686 L=713	p-value
Total device length, mm	20.5 ± 7.2	20.7 ± 9.0	0.56
Post-dilatation	64.8%	49.9%	<0.0001
Max device diameter, mm	3.18 ± 0.43	3.12 ± 0.45	0.007
Max balloon pressure, atm	15.4 ± 3.0	15.4 ± 3.2	0.83
Intravascular imaging guidance	11.2%	10.8%	0.81

Procedure (II)

Characteristic	Absorb N=1322 L=1385	Xience N=686 L=713	p-value
Final Results (QCA)			
Reference vessel diameter, mm	2.70 ± 0.45	2.68 ± 0.47	0.33
In-device			
Acute gain, mm	1.45 ± 0.45	1.59 ± 0.44	<0.0001
Minimal lumen diameter, mm	2.37 ± 0.40	2.49 ± 0.40	<0.0001
% Diameter stenosis	11.6 ± 8.8	6.4 ± 8.9	<0.0001
In-segment			
Acute gain, mm	1.23 ± 0.46	1.24 ± 0.44	0.50
Minimal lumen diameter, mm	2.15 ± 0.41	2.14 ± 0.43	0.58
% Diameter stenosis	20.0 ± 7.9	19.8 ± 8.2	0.55

N = Patients; L = Lesions; Ellis SG et al. N Engl J Med. 2015;373:1905-15

Acute Success

	Absorb N=1322 L=1385	Xience N=686 L=713	p-value
Device Success (per lesion)	94.3%	99.3%	<0.0001
Procedural Success (per patient)	94.6%	96.2%	0.12

• Device Success (lesion basis)

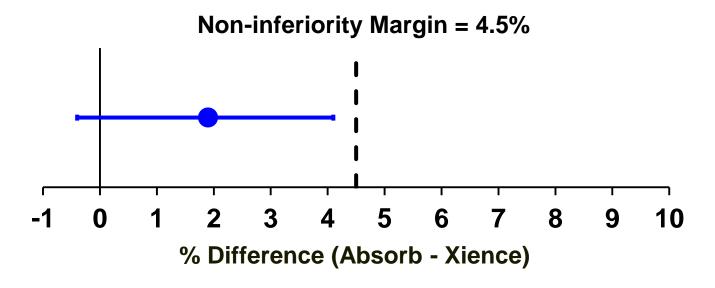
- Successful delivery and deployment of study scaffold/stent at intended target lesion
- Successful withdrawal of delivery system and final in-scaffold/stent DS <30% (QCA)


• Procedure Success (patient basis)

- Successful delivery and deployment of at least one study scaffold/stent at intended target lesion
- Successful withdrawal of delivery system and final in-scaffold/stent DS <30% (QCA)
- No in-hospital (maximum 7 days) TLF

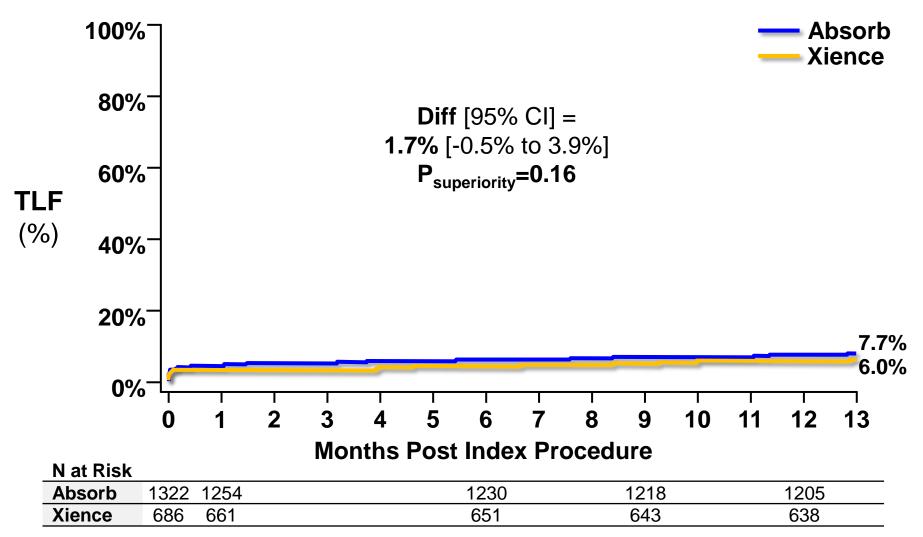
N = Patients; L = Lesions; Ellis SG et al. N Engl J Med. 2015;373:1905-15

ABSORB III Met Primary Endpoint: Non-Inferior to Xience in 1-Year TLF (ITT)


ITT Population	n / N	%	Difference (95% Cl)	P _{NI}
Absorb	102 / 1313	7.8	1.7	0.007
Xience	41 / 677	6.1	(-0.5 , 3.9)	0.007

Ellis SG et al. N Engl J Med. 2015;373:1905-15

Non-inferiority for 1-Year TLF Also Met in As-Treated Population


As-Treated Population	n / N	%	Difference (95% Cl)	P _{NI}
Absorb	99 / 1245	8.0	1.9	0.04
Xience	44 / 726	6.1	(-0.4, 4.1)	0.01

Ellis SG et al. N Engl J Med. 2015;373:1905-15

ABSORB III Met Primary Endpoint: Non-Inferior to Xience in 1-Year TLF (ITT)

CO-56

Adapted from Ellis SG et al. N Engl J Med. 2015;373:1905-15

No Statistically Significant Interactions in TLF Across All Subgroups (ITT)

	Absorb	Xience		Relative Risk	p-value
Subgroup	N=1313	N=677		(95% CI)	(interaction)
Age ≥64	8.1%	5.9%	Ч <mark>О</mark> Ч	1.37 (0.84-2.23)	0.69
Age <64	7.4%	6.2%	H <mark>o</mark> -1	1.19 (0.72-1.97)	0.09
Female	8.5%	7.4%	н <mark>р</mark> н	1.16 (0.64-2.08)	0.68
Male	7.4%	5.5%	+- +	1.36 (0.88-2.10)	0.00
Diabetes	10.7%	9.1%	н <mark>р</mark> н	1.18 (0.71-1.95)	0.68
No Diabetes	6.3%	4.6%	+ -	1.38 (0.85-2.24)	0.00
Unstable Angina/Recent MI	6.5%	6.6%	⊢ ∳ -i	0.98 (0.50-1.90)	0.25
Stable CAD	8.3%	5.8%	1 0 -1	1.42 (0.94-2.15)	0.35
Single Lesion Treated	7.7%	5.8%	ł	1.32 (0.92-1.89)	0.50
Dual Lesion Treated	9.4%	11.5%		0.81 (0.22-3.01)	0.50
Clopidogrel	8.0%	6.8%	μ <mark>ο</mark> μ	1.17 (0.77-1.78)	0.42
Prasugrel or Ticagrelor	7.1%	4.3%	÷ чт•	1.63 (0.82-3.25)	0.43
ACC/AHA Class A or B1	6.8%	2.2%	└──	3.05 (1.08-8.60)	0.07
ACC/AHA Class B2 or C	8.2%	7.5%	ι μ <mark>ν</mark> μ	1.10 (0.75-1.61)	0.07
Lesion Length < 11.75 mm	7.9%	4.8%	⊢ •	1.64 (0.95-2.83)	0.23
Lesion Length ≥ 11.75 mm	7.7%	7.3%	н <mark>ф</mark> и	1.06 (0.67-1.67)	0.23
Vessel Diameter < 2.63 mm	9.8%	7.8%	н <mark>о</mark> н	1.27 (0.82-1.94)	0.00
Vessel Diameter ≥ 2.63 mm	5.7%	4.3%	<mark>⊢</mark>	1.34 (0.73-2.44)	0.90
		0.1		0	
Ellis SG et al. N Engl J Med. 2015;373:1905-15 Favors Absorb ← → Favors Xience					

Components of the Primary Endpoint (ITT): Hierarchical

	Absorb N=1313 %	Xience N=677 %	_ p-value (difference)
Target Lesion Failure	7.8	6.1	0.16
Cardiac Death	0.6	0.1	0.29
Τν-ΜΙ	6.0	4.6	0.18
ID-TLR	1.1	1.3	0.72

TV-MI = target vessel myocardial infarction; ID-TLR = ischemia-driven target lesion revascularization Ellis SG et al. N Engl J Med. 2015;373:1905-15

Co-59 Components of the Primary Endpoint (ITT): Non-hierarchical

	Absorb N=1313 %	Xience N=677 %	_ p-value (difference)
Target Lesion Failure	7.8	6.1	0.16
Cardiac Death	0.6	0.1	0.29
Τν-ΜΙ	6.0	4.6	0.18
ID-TLR	3.0	2.5	0.50

TV-MI = target vessel myocardial infarction; ID-TLR = ischemia-driven target lesion revascularization Ellis SG et al. N Engl J Med. 2015;373:1905-15

Peri-Procedural MI Similar in Both Groups (ITT)

CK-MB	Absorb N=1313 %	Xience N=677 %	Difference	p-value
>3x ULN	6.8	6.6	0.2	0.89
>5x ULN (per protocol)	3.0	2.8	0.3	0.75
>8x ULN	1.3	1.3	0.0	0.96
>10x ULN	0.9	1.2	-0.3	0.58
CK-MB > 10x ULN or 5x ULN with Q waves ¹	0.9	1.2	-0.3	0.58

1. SCAI Definition of Clinically Relevant MI. Moussa et al. JACC 2013;62:1563-70 Ellis SG et al. N Engl J Med. 2015;373:1905-15

Stent/Scaffold Thrombosis (ITT)

Cumulative Through 1 Year	Absorb N=1313 %	Xience N=677 %	p-value
Definite/Probable	1.54	0.74	0.13
0-30 days (early)*	1.06	0.73	0.46
>30 days - 1 year (late)	0.46	0.00	0.10
Definite*	1.38	0.74	0.21
Probable	0.15	0.00	0.55

*One early definite ST by ITT in Absorb arm was from implanted Xience stent

Stent Thrombosis Network Meta-Analysis (49 RCTs; 50,844 Patients)

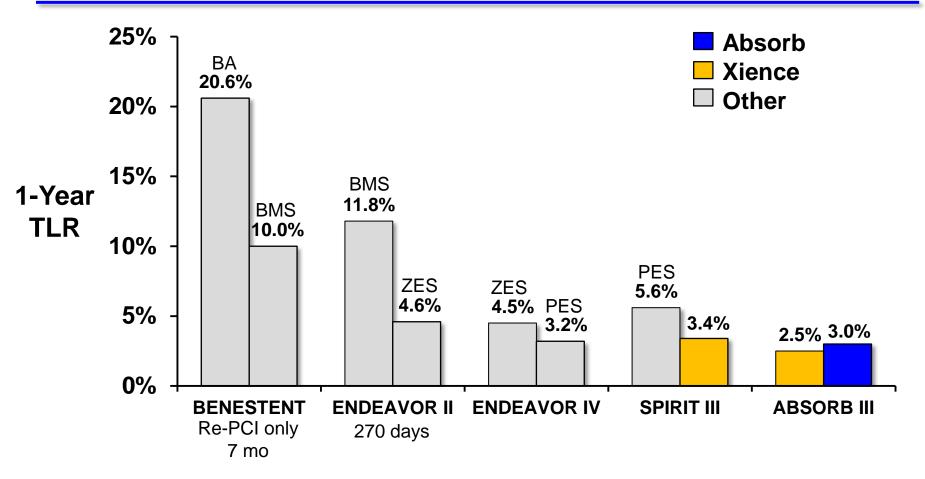
1-year Definite Stent Thrombosis		Odds Ratio (95% CI)	
Bare Metal Stent vs. Xience	⊢ ⊷	4.35 (2.44, 7.69)	
Paclitaxel Eluting Stent (ES) vs. Xience	⊢ ⊷	3.57 (2.08, 6.25)	
Sirolimus ES vs. Xience	- 	2.44 (1.43, 4.17)	
Resolute-Zotorolimus ES vs. Xience	¦	→ 7.14 (2.13, 33.33)	
Endeavor-Zotorolimus ES vs. Xience		4.76 (2.27, 10.00)	
	1 		
0.01 0.1	1 10	100	
Favors Other Stent $\leftarrow \rightarrow$ Favors Xience			

Data/analysis not submitted or reviewed by FDA

Palmerini T et al. Lancet 2012;379:1393-402

Stent Thrombosis Network Meta-Analysis (49 RCTs; 50,844 Patients) + ABSORB III

1-year Definite Stent Thrombosis	_	Odds Ratio (95% CI)	
Bare Metal Stent vs. Xience		4.35 (2.44, 7.69)	
Paclitaxel Eluting Stent (ES) vs. Xience		3.57 (2.08, 6.25)	
Sirolimus ES vs. Xience		2.44 (1.43, 4.17)	
Resolute-Zotorolimus ES vs. Xience	¦	→ 7.14 (2.13, 33.33)	
Endeavor-Zotorolimus ES vs. Xience		4.76 (2.27, 10.00)	
Absorb vs. Xience (ABSORB III)	, 	2.11 (0.92, 4.84)	
0.01 0.1 1 10 100 Favors Other Stent $\leftarrow \rightarrow$ Favors Xience			


Data/analysis not submitted or reviewed by FDA

Palmerini T et al. Lancet 2012;379:1393-402

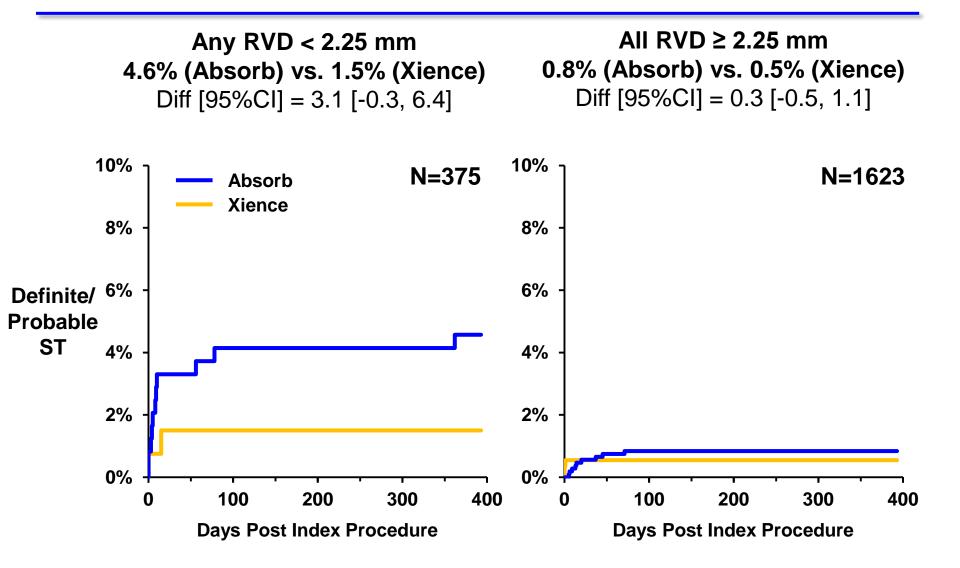
Powered Secondary Endpoints: 1-Year Revascularization and Angina

	Absorb N=1313	Xience N=677	
ITT Population	%	%	p-value
Angina	18.3	18.4	0.93
All Revascularization	9.1	8.1	
ID-TVR	5.0	3.7	

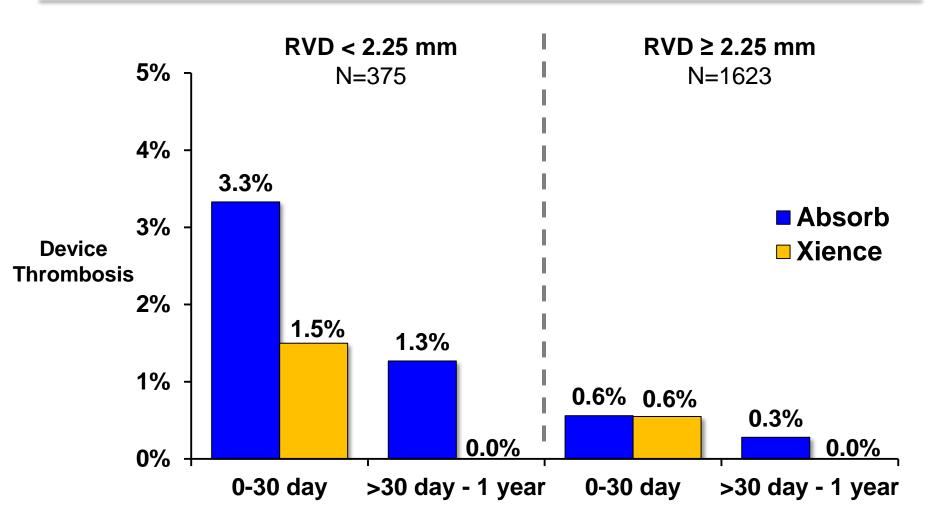
Efficacy of Absorb Preserves DES Treatment Effect

Data/analysis not submitted or reviewed by FDA

Serruys et al. NEJM 1994; Fajadet et al. Circulation 2006; Leon et al. JACC 2010; Stone et al. JAMA 2008 BA: balloon angioplasty; BMS: bare metal stents; ZES: zotarolimus eluting stent; PES: paclitaxel eluting stents; EES: everolimus eluting stents; BVS: Absorb bioresorbable vascular scaffold

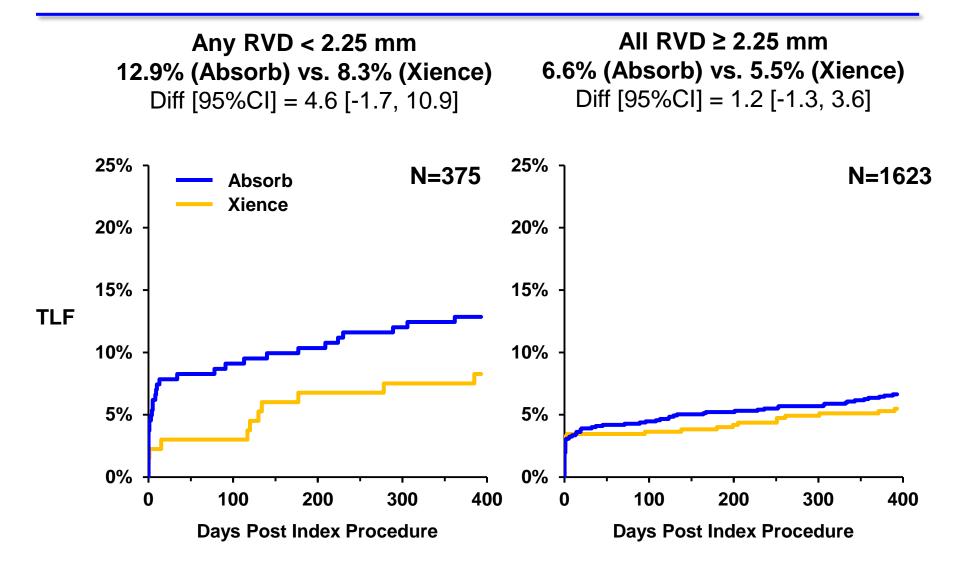

ABSORB III Summary: Safety and Effectiveness

- Absorb met pre-specified criteria for noninferiority vs. Xience for TLF at 1 year
- There were no significant 1-year differences between Absorb and Xience in the safety endpoints of:
 - All-cause or cardiac mortality
 - Peri-procedural MI, TV-MI or all MI
 - Device thrombosis
- Absorb was highly effective, with similar rates of ID-TLR as Xience

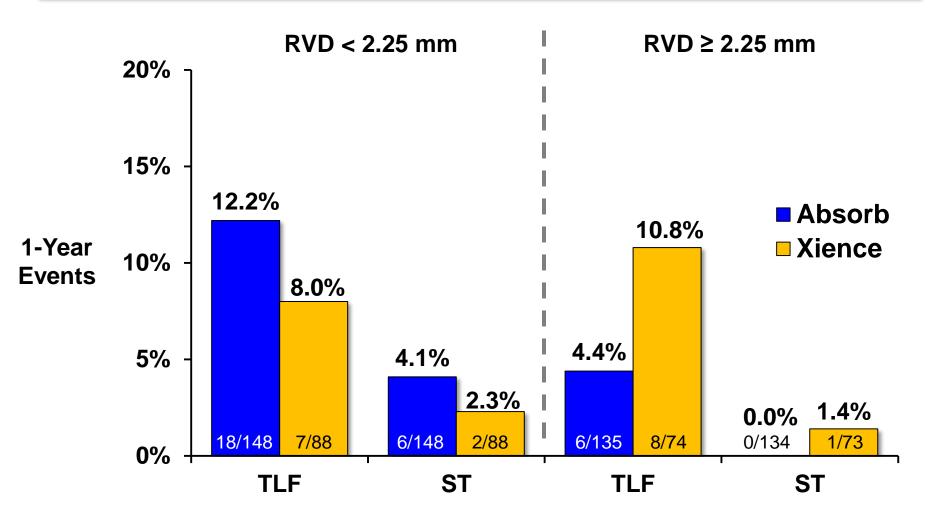

Outcomes by Vessel Size

- At the request of FDA, we performed additional analyses to identify possible correlates of the nonsignificant difference in device thrombosis
- Given the thicker struts of Absorb, a biologically relevant analysis was to examine outcomes in smaller vessels
- The smallest vessel diameter intended for inclusion in ABSORB III was 2.5 mm by visual assessment, which correlates with a reference vessel diameter (RVD) of ~2.25 mm by QCA

1-Year Device Thrombosis by Vessel Size: Any RVD < 2.25 mm vs. all RVD ≥ 2.25 mm

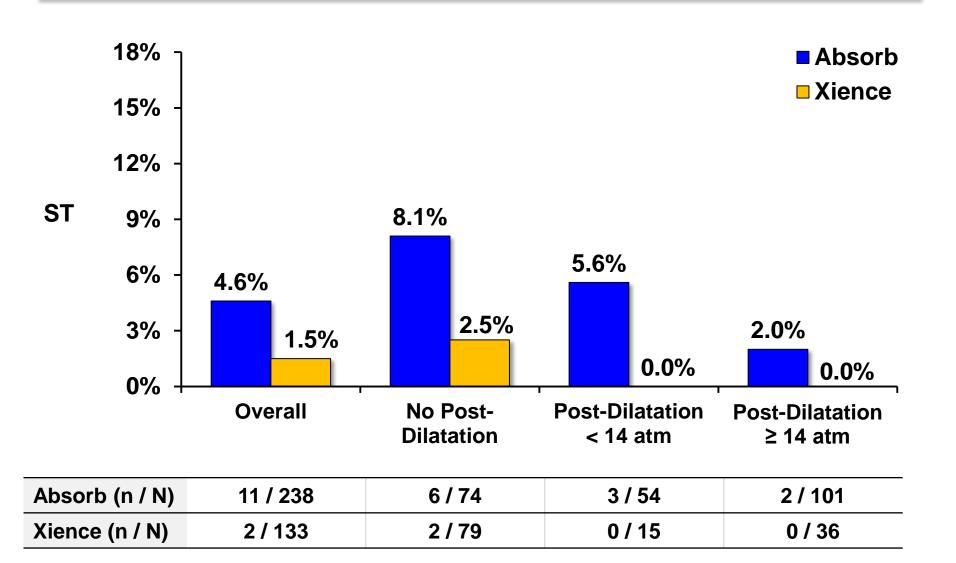


Device Thrombosis by Timing and Vessel Size



Data/analysis not submitted or reviewed by FDA

1-Year TLF by Vessel Size: Any RVD < 2.25 mm vs. All RVD ≥ 2.25 mm



Events by QCA RVD (2.5 mm Device Only, As-Treated Population)

Data/analysis not submitted or reviewed by FDA

Impact of Post-Dilatation and Pressure in Small Vessels (< 2.25 mm) on 1-Year ST

ABSORB III Diabetic: Overall and Stratified by RVD

	Overall DM		< 2.25 mm		≥ 2.25 mm	
1-Year Data	Absorb N=416	Xience N=224	Absorb N=88	Xience N=45	Absorb N=325	Xience N=177
TLF	10.7%	9.1%	23.9%	15.6%	7.2%	7.5%
Cardiac Death	0.5%	0.0%	1.1%	0.0%	0.3%	0.0%
Τ٧-ΜΙ	9.0%	7.3%	19.3%	8.9%	6.2%	6.9%
ID-TLR	5.6%	3.6%	13.6%	13.3%	3.4%	1.1%
ST (def/prob)	3.2%	1.4%	10.6%	4.4%	1.3%	0.6%

No significant p-values

Primary Endpoint Results (RVD ≥ 2.25 mm)

RVD ≥ 2.25 mm	Absorb N=1074	Xience N=549	Difference [95% CI]	p-value
TLF	6.7%	5.5%	1.1%¹ [-1.5%, 3.4%]	0.38
Cardiac Death	0.6%	0.2%	0.4% [-0.5%, 1.1%]	0.43
TV-MI	5.2%	4.6%	0.5%² [-1.9%, 2.6%]	0.64
ID-TLR	2.2%	1.5%	0.8% ³ [-0.8%, 2.1%]	0.29
ST (def/prob)	0.9%	0.6%	0.3% [-0.8%, 1.1%]	0.76

- 1. Absorb = 6.65%, Xience = 5.54%, difference = 1.12%
- 2. Absorb = 5.15%; Xience = 4.61%, difference = 0.54%
- 3. Absorb = 2.249%; Xience = 1.476%, difference = 0.773%

ABSORB III Summary: Vessel Size Considerations

- Compared to the thin strut Xience metallic DES, the thicker strut Absorb had similar outcomes in coronary arteries with QCA RVD
 ≥ 2.25 mm (those intended for treatment, including diabetic patients)
 - In contrast, 1 year event rates with Absorb may be higher in truly very small vessels

ABSORB III Trial: Conclusions

- Primary endpoint was met: Absorb was noninferior to Xience for the composite safety and effectiveness endpoint of TLF at 1 year in ITT study population
- These results improved further when Absorb was used in appropriately sized vessels

ABSORB III Trial: Perspectives

- The 1-year results with this first-in-class device may be enhanced by better operator technique (e.g.,appropriate lesion preparation, device sizing, more frequent postdilatation, use of intravascular imaging, etc.), the importance of which only became evident after trial enrollment
- The comparable overall outcomes between Absorb and Xience at 1 year sets the stage for the benefits of Absorb in restoring normal coronary physiology and adaptive vascular responses to translate into improved long-term clinical outcomes, a hypothesis being tested in the ABSORB IV trial (results expected in 2020)

Absorb Long-term Data

Absorb Long-Term Clinical Outcomes

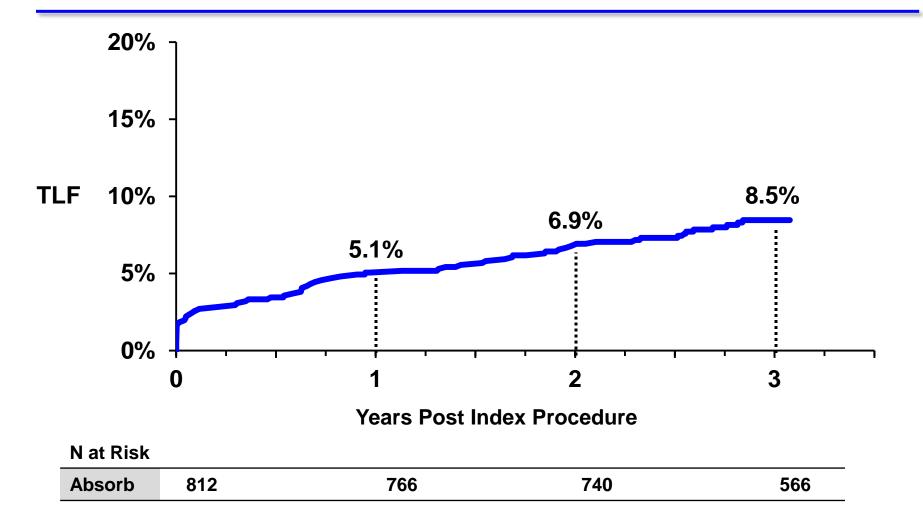
- Absorb studies with 2-year follow-up
 - ABSORB Cohort B
 - ABSORB EXTEND
 - ABSORB II
- Absorb studies with longer follow-up
 - ABSORB EXTEND 3 years
 - ABSORB Cohort B 5 years

FDA has reviewed Cohort B data through 5 years FDA has not reviewed EXTEND data beyond 2 years

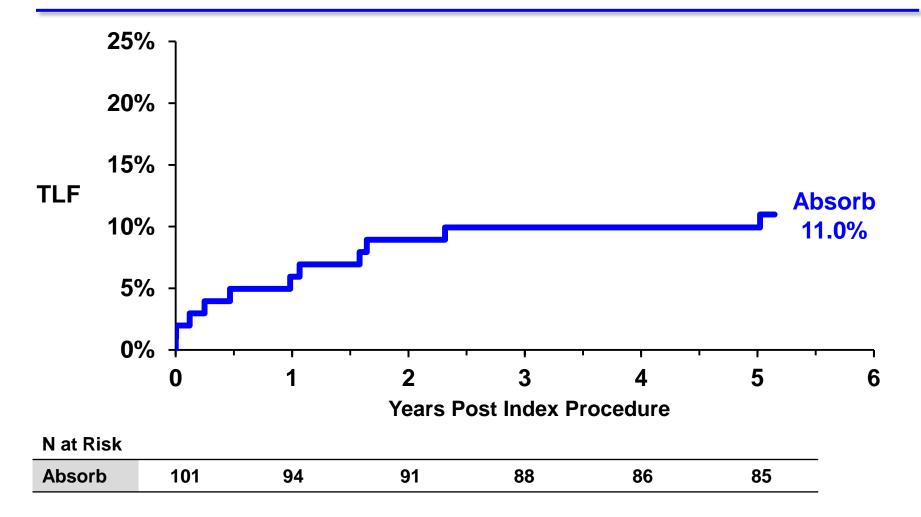
Studies with Complete 2-Year Absorb Data

N=Absorb Patients	ABSORB Cohort B N=101	ABSORB EXTEND N=812	ABSORB II N=335	
N (1 year)	101	811	329	
N (2 year)	100	807	328	
# of Sites	12	56	46	
Treatment	Up to 2 <i>de novo</i> lesions in different epicardial vessels			
Trial Oversight	CEC; DSMB; Core Lab for Angio, IVUS, and OCT; Monitoring			

Approximate 2% Increment in TLF in Absorb from 1 to 2 Years


Study	Ν	Year 1	Year 2	Difference [95% Cl]
Cohort B	101	6.9%	9.0%	2.1% [-5.41, 9.55]
ABSORB Extend	812	5.1%	6.9%	1.9% [-0.43, 4.20]
ABSORB II	335	4.8%	7.0%	2.2% [-1.42, 5.78]
Pooled	1248	5.1%	7.1%	2.0% [0.09, 3.87]
SPIRIT III (Xience)	669	5.5%	7.5%	2.0% [-0.69, 4.66]

Approximate 0.5% Increment in ST (Def/Prob) in Absorb from 1 to 2 Years


CO-82

Study	Ν	Year 1	Year 2	Difference [95% Cl]
Cohort B	101	0.0%	0.0%	0.0% [0.00, 0.00]
ABSORB Extend	812	1.0%	1.5%	0.5% [-0.57, 1.60]
ABSORB II	335	0.9%	1.5%	0.6% [-1.06, 2.31]
Pooled	1248	0.9%	1.4%	0.5% [-0.34, 1.34]
SPIRIT III (Xience)	669	0.9%	1.3%	0.4% [-0.80, 1.49]

Absorb EXTEND Data Beyond 2 Years

Absorb Cohort B through 5 Years

Cohorts B1 and B2; Scaffold size: 3.0x18 mm Adapted from Serruys et al. J Am Coll Cardiol 2016;67:766–76

ABSORB Cohort B: 5 Year Clinical Data

	1 Year N=101 %	2 Years N=100 %	3 Years N=100 %	4 Years N=100 %	5 Years N=100 %
TLF	6.9	9.0	10.0	10.0	11.0
Cardiac Death	0.0	0.0	0.0	0.0	0.0
TV-MI	3.0	3.0	3.0	3.0	3.0
ID-TLR	4.0	6.0	7.0	7.0	8.0
ST (ARC def/prob)	0.0	0.0	0.0	0.0	0.0

Conclusion: Absorb Events Similar to Xience from 1 to 2 Years

- Incremental rates of TLF and ST between 1 and 2 years were low and similar for Absorb and Xience across 3 trials
 - Cohort B, EXTEND, ABSORB II (N=1248)
- Current results suggest that relatively few events accrue in Absorb-treated patients after 2 years

High Level Summary: Benefit-Risk Analysis

Conclusions: Safety

- In the present 2,008 patient randomized trial, there were no significant differences in any of the major safety endpoints between Absorb and Xience
 - Despite the fact that most operators had never previously used Absorb
- Absorb and Xience had very similar and low rates of adverse events when used in appropriately sized vessels

Conclusions: Effectiveness

The rate of ischemic TLR after Absorb was nearly identical to Xience, and was consistent with the expected efficacy from a current generation, potent DES

Conclusions: Balance of Benefit vs. Risk

Benefits:

- Absorb has been demonstrated to be a safe and effective antiproliferative device for PCI
- These outcomes are achieved with a device that completely resorbs, thus avoiding the chronic issues inherent in a permanent metallic DES, including jailing side branches, eliminating late surgical options, and requiring multiple stent layers

Risks:

- Using Absorb in very small vessels (QCA RVD <2.25 mm)
 - Addressed through appropriate labeling and physician education / training

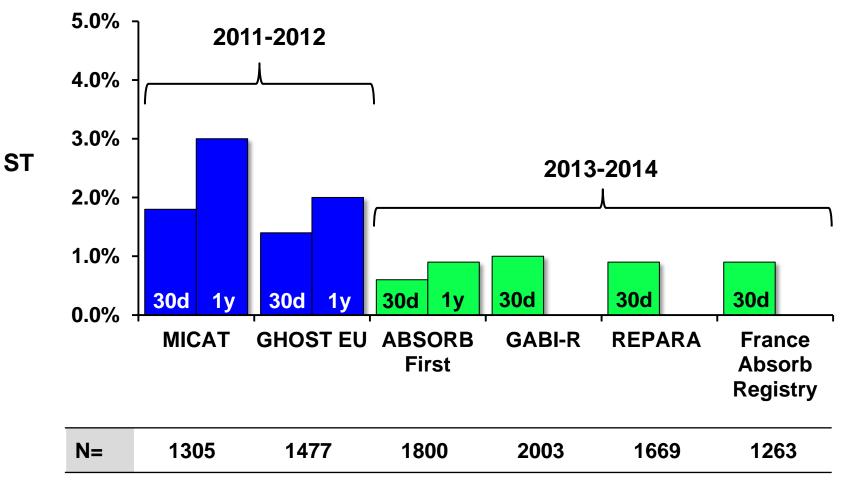
Sponsor Commitments

Chuck Simonton, MD, FACC, FSCAI

Chief Medical Officer

Divisional Vice President

Abbott Vascular

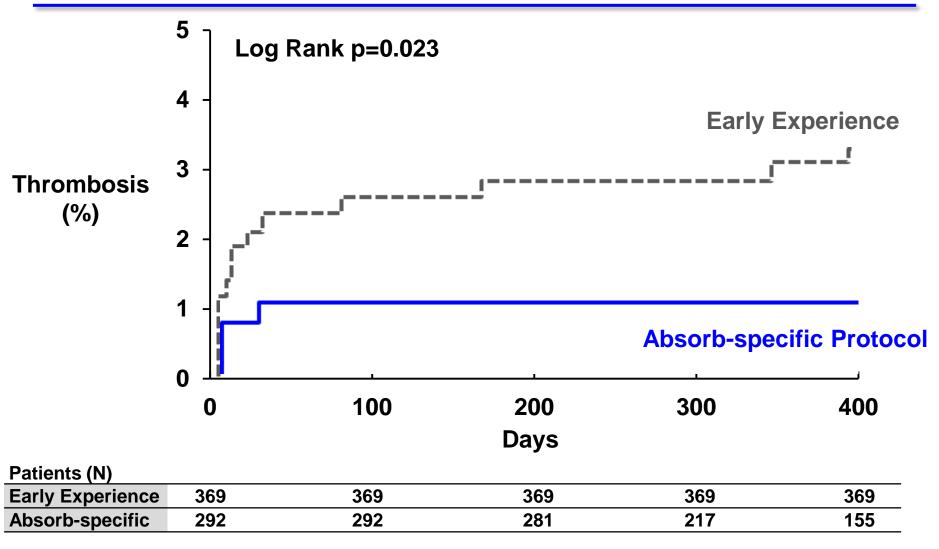

Sponsor Commitments

- Learnings from international experience
- Labeling
- Physician education and training
- Phased commercial launch
- Post-approval study

Optimizing Implant Techniques: International Experience and ABSORB III

- International Experience:
 - Absorb implant procedure fundamentally similar to DES, but with emphasis on:
 - Good lesion preparation
 - Appropriate sizing of scaffold
 - Post-dilatation to full lesion expansion
- Learning from ABSORB III trial:
 - Optimal outcomes in appropriately sized vessels consistent with proposed label

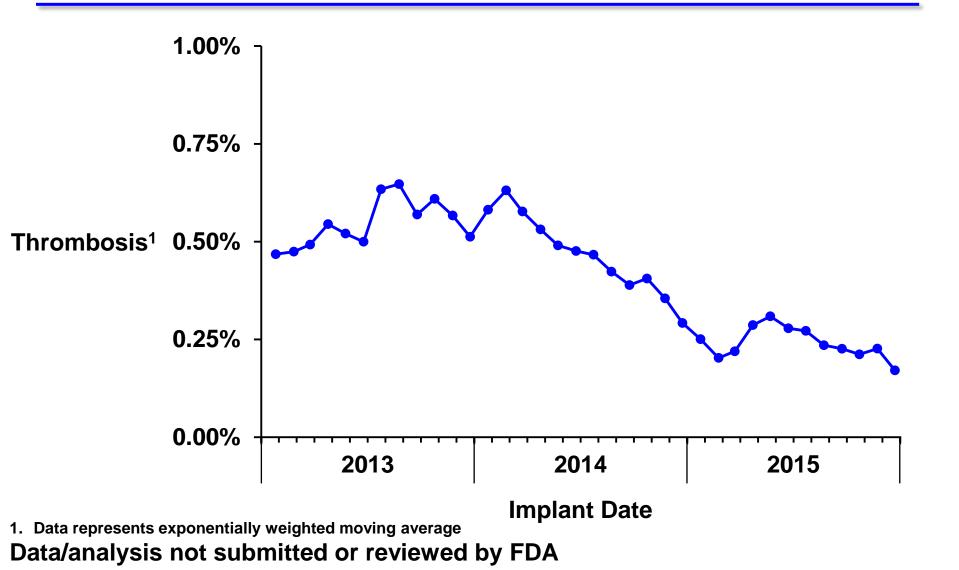
Absorb Scaffold Thrombosis in Real-World Registries of ≥ 1000 Patients



Data/analysis not submitted or reviewed by FDA

CO-94

Capodanno et al, GHOST-EU Investigators – EuroIntervention 2015;10:1144-53; Puricel, S. et al. J Am Coll Cardiol. 2016; 67(8):921–31; Seth et al. TCT 2015; Hamm EiuroPCR 2015; Koning TCT 2015


ABSORB Learnings: MICAT

Puricel, S. et I. J Am Coll Cardiol. 2016; 67(8):921-31

Worldwide Absorb Voluntary Reporting of Thrombosis by Implant Date

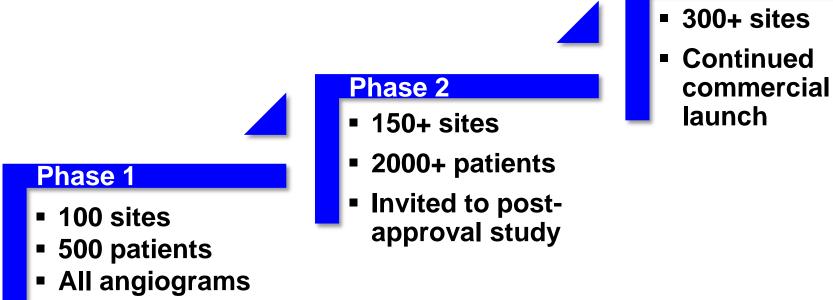
CO-96

Absorb Proposed Labeling

Precaution Statements

- "In small vessels (visually assessed as ≤ 2.75 mm), on-line QCA or intravascular imaging is strongly recommended to accurately measure and confirm appropriate vessel sizing (≥ 2.5 mm)"
- Post-dilatation is strongly recommended for optimal scaffold apposition. When performed, post-dilatation should be at high pressure with a non-compliant balloon.

Warning Statement


"If quantitative imaging determines a vessel size < 2.5 mm, do not implant Absorb. Implantation of the device in vessels < 2.5 mm may lead to an increased risk of adverse events such as myocardial infarction and scaffold thrombosis"

Mandatory Comprehensive Absorb Education and Training Program

Each physician will complete program before implanting Absorb commercially				
1	 Three Online Training Modules Module 1: Overview of device features and design Module 2: Deployment and implantation technique Module 3: Case reviews 			
2	 In-Person Education with Absorb Experts Interactive case reviews and discussion Device overview Review of clinical data Patient selection according to label Deployment and implantation Technique Review initial case plan 			
3	 3-5 Monitored Cases (by AV personnel) Documentation of patient selection according to label Angiograms analyzed by core lab QCA for appropriate vessel sizing (first 500 cases) 			

Phase 3

Phased Commercial Launch

analyzed by core

validation)

Invited to post-

approval study

lab QCA (education

Proposed Post-Approval Commitments

- All ABSORB III patients will be followed to 5 years
- ABSORB IV has enrolled N=1642 of 3000, followed to 5 years
- First 500 commercial patients will have angiographic baseline analysis (core lab QCA) to ensure appropriate vessel sizing and effectiveness of training
- Post-approval study (PAS) synchronized with commercial launch
 - All commercial sites will be invited to participate in PAS immediately upon launch
 - Up to 5000 patients
 - Approximately 250 sites
 - Ongoing review of clinical outcome data with FDA
 - 5 year follow-up of safety and effectiveness outcomes

Clinical Perspective

Mitchell W. Krucoff, MD

Director, Cardiovascular Devices Unit Duke Clinical Research Institute Professor of Medicine, Cardiology Duke University Medical Center

Absorb GT1[™] Bioresorbable Vascular Scaffold (BVS) System

March 15, 2016

Abbott Vascular

Circulatory System Devices Panel