National Electronic Injury Surveillance System – Cooperative Adverse Drug Event Surveillance Project (NEISS-CADES)

Pediatric Safety Surveillance Workshop
September 13, 2010

Daniel Budnitz MD, MPH, CAPT USPHS
Division of Healthcare Quality Promotion
Disclaimer

“The findings and conclusions in this presentation are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention”
Overview

1. Introduction

2. Design & data collection

3. Analytic characteristics & examples

4. Summary
1. Introduction:

An Injury-based Approach
William Sutton
Gentleman, Innovator, &... Bank Robber

1901 - 1980

http://www.fbi.gov/libref/historic/famcases/sutton/sutton.htm
“Slick Willie” Sutton
Gentleman, Innovator, &… Bank Robber

“Why do you rob banks?”

“Because, that’s where the money is.”

1901 - 1980

http://www.fbi.gov/libref/historic/famcases/sutton/sutton.htm
“Slick Willie” Sutton
Gentleman, Innovator, &… Bank Robber

“Why do you rob banks?”

“Because, that’s where the money is.”

1901 - 1980

Not *is there* money in banks?

Which bank has the *most* $?

http://www.fbi.gov/libref/historic/famcases/sutton/sutton.htm
Sutton’s Law & Accounting

“Where the highest costs are incurred, therein lies the highest potential for over-all cost reduction”
Sutton’s Law & Drug Safety

“Where the highest costs are incurred, therein lies the highest potential for over-all cost reduction”

“Where the highest number of ADEs occur, therein lies the highest potential for over-all harm reduction”
ADVERSE DRUG EVENTS

The Magnitude of Health Risk Is Uncertain Because of Limited Incidence Data

January 2000
2. Design and Data Collection

National Electronic Injury Surveillance System – Cooperative Adverse Drug Event Surveillance (NEISS-CADES)
NEISS-CADES:
Began in 2004

- U.S. Consumer Product Safety Commission (CPSC):
 - Administers the National Electronic Injury Surveillance System (NEISS) to monitor consumer product injuries

- CDC, with FDA expertise and support, enhanced to:
 - Identify and record injuries from drugs (ADEs)
 - Cooperative Adverse Drug Event Surveillance (NEISS-CADES)
NEISS-CADES: Case Definition

- “Injury from the use of a drug”:
 - ED visit
 - Treating physician explicitly attributed
 - To a drug*
 - Intended for therapeutic use

- Drugs include: Rx, OTC, supplements, vaccines
NEISS-CADES: Population Representative

- Stratified probability sample of 24-hour EDs
 - 63 hospitals across the US
 - 4 strata by hospital size / 1 stratum for pediatric
- Cases weighted by inverse probability of selection
NEISS-CADES: Data Collection

- **Ongoing public health surveillance** based on chart abstraction

Diagram:
- Patient visits ED
- ADE documented
- Coder abstracts data
- Data transferred to CPSC
- Data validated by CDC
Identifying ADE Cases

1. Look in Diagnosis Section of chart:
 - Do diagnoses include key words?
 - Allergic reaction
 - Adverse effect
 - Side effect (s/e)
 - Secondary to (2° to, due to, related to)
 - Ingestion (poisoning)
 - Toxicity (overdose, supra therapeutic level)
 - Medication error
 - Or suspicious symptoms?
 - Angioedema (face/lip/throat swelling)
 - Anaphylaxis (severe allergy)
 - Rash (urticaria, dermatitis)
 - Bleeding (GI Bleed, hematemesis, epistaxis, hypocoaguability, high INR/PT)
 - Hypoglycemia (low blood sugar)

2. Is a Drug involved?
 - Drugs include: prescription meds, over the counter meds, vaccines, vitamins, & dietary supplements.

3. Is there evidence of:
 - Suicide attempt?
 - Intentional overdose?
 - Abuse / Recreational use?

4. Fill out ADE Screen:
 - Record ED chart DIAGNOSIS word for word
 - Record drug name(s)
 - If available, record dose, route, frequency, and duration
 - Record reason for visit, testing, and treatments
 - Record any other information (e.g., discharge instructions or medication error information)

START

STOP
Do not report ADE

NO

YES

STOP
Do not report ADE

YES

NO

FINISH
Recording Case Data

- Drug data
 - Name of implicated medication(s)
 - Dose, frequency, duration, route
 - Concomitant drugs
- Patient demographics
- Testing and treatments in ED
- Physician diagnoses
- Patient disposition
- Narrative description of event
Limitations

- Setting: only ED visits
 - No inpatient follow-up or mortality

- Underestimates
 - Relies on caregiver recognition, physician documentation, and accurate abstraction
 - High PPV, lower sensitivity

- Selection biases
 - Acute onset ADEs
 - ADEs which can be diagnosed in ED
3. Analytic Characteristics & Examples

Known Harms → ED visits
Analytic Characteristics
Sensitivity and +PV

Gold Standard
Independent Chart Review

<table>
<thead>
<tr>
<th></th>
<th>Case +</th>
<th>Case -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case +</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Case -</td>
<td>43</td>
<td>4,489</td>
</tr>
</tbody>
</table>

33% Weighted Sensitivity
92% Weighted +PV

NEISS-CADES Coder

MMWR 2005;54:380-3
Analytic Characteristics
Data Quality: Completeness

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>% Complete (N=10,383)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>100%</td>
</tr>
<tr>
<td>Sex</td>
<td>100%</td>
</tr>
<tr>
<td>Disposition</td>
<td>100%</td>
</tr>
<tr>
<td>Diagnosis in medical record</td>
<td>99%</td>
</tr>
<tr>
<td>Treatment in medical record</td>
<td>91%</td>
</tr>
<tr>
<td>Testing in medical record</td>
<td>84%</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td>76%</td>
</tr>
</tbody>
</table>

Analytic Characteristics

Data Quality: Completeness

<table>
<thead>
<tr>
<th>Drug Characteristic</th>
<th>% Complete (N=10,383)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Drug</td>
<td>97%</td>
</tr>
<tr>
<td>Route of administration</td>
<td>82%</td>
</tr>
<tr>
<td>Dosage</td>
<td>37%</td>
</tr>
<tr>
<td>Frequency</td>
<td>43%</td>
</tr>
<tr>
<td>Duration of use</td>
<td>41%</td>
</tr>
</tbody>
</table>

Analytic Characteristics

Data Quality: Validity

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Data Element Sensitivity (Coder-Gold Standard Agreement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient age & sex</td>
<td>100%</td>
</tr>
<tr>
<td>Names of drugs involved</td>
<td>93%</td>
</tr>
<tr>
<td>Primary diagnoses</td>
<td>93%</td>
</tr>
<tr>
<td>Primary drug dose</td>
<td>80%</td>
</tr>
<tr>
<td>Indicated treatments</td>
<td>80%</td>
</tr>
<tr>
<td>Primary drug frequency</td>
<td>68%</td>
</tr>
<tr>
<td>Diagnostic tests ordered</td>
<td>61%</td>
</tr>
<tr>
<td>Primary drug duration</td>
<td>56%</td>
</tr>
<tr>
<td>Other drugs taken</td>
<td>52%</td>
</tr>
<tr>
<td>Primary drug route</td>
<td>40%</td>
</tr>
</tbody>
</table>

Analytic Characteristics

Timeliness

<table>
<thead>
<tr>
<th>Event</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE reported within 7 days</td>
<td>67</td>
</tr>
<tr>
<td>ADE reported within 30 days</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED Visit → Analytic Dataset</td>
<td>9 – 21 months</td>
</tr>
<tr>
<td></td>
<td>(e.g., Calendar year 2009 ready September 2010)</td>
</tr>
</tbody>
</table>

Estimated Annual Impact of Ambulatory Adverse Drug Events in Children ≤18 years

Deaths

Hospitalizations 15,000

Emergency visits 160,000

Deaths

15,000

0.2 per 1,000

2.0 per 1,000

Rates of ED Visits for Adverse Drug Events, 2004-2005

Unintentional Overdoses Cause Most ED Visits in Children <5 Years Old

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unintentional Overdoses</td>
<td>58%</td>
</tr>
<tr>
<td>Allergic Reactions</td>
<td>28%</td>
</tr>
<tr>
<td>Side Effects</td>
<td>5%</td>
</tr>
<tr>
<td>Vaccine Reactions</td>
<td>8%</td>
</tr>
<tr>
<td>Secondary Effects</td>
<td>1%</td>
</tr>
</tbody>
</table>

Medicines Cause More ED Visits For Overdoses Than All Other Consumer Products Combined

OTC Medicines Commonly Involved in ED Visits for Overdoses

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Cases n (%)</th>
<th>Drug class</th>
<th>Cases n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>289 (10.5)</td>
<td>Anticonvulsants</td>
<td>29 (10.0)</td>
</tr>
<tr>
<td>Opioids/benzodiazepines</td>
<td>211 (7.7)</td>
<td>Cough and cold agents(^b)</td>
<td>29 (10.0)</td>
</tr>
<tr>
<td>Cough and cold agents(^b)</td>
<td>202 (7.4)</td>
<td>Antipsychotics</td>
<td>19 (6.6)</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>167 (6.1)</td>
<td>Opioids/benzodiazepines</td>
<td>18 (6.2)</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>161 (5.9)</td>
<td>Antidepressants</td>
<td>16 (5.6)</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>160 (5.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Cases and Cumulative Percent of Cough and Cold ADEs, 2004-2005

Adapted from Schaefer MK, et al. *Pediatrics* 2008;121: 783-787
Number of Cases and Cumulative Percent of Cough and Cold ADEs, 2004-2005

Adapted from Schaefer MK, et al. *Pediatrics* 2008;121: 783-787
Number of Cases and Cumulative Percent of Cough and Cold ADEs, 2004-2005

Adapted from Schaefer MK, et al. *Pediatrics* 2008;121: 783-787
Underlying Causes of Emergency Visits for Child Overdoses, 2004-2005

PROTECT Partnership

- Preventing Overdoses & Treatment Errors in Children Taskforce
- Federal agencies, manufacturers (OTC), professional organizations, safety experts
 - Innovative safety packaging
 - Standardization of volumetric units for liquid medicines
 - “Up & Away” educational campaign
Packaging Innovation to Prevent Ingestions

Active

Passive

- ![Image of packaging innovation to prevent ingestions](image)
 - Benadryl Allergy Perfect Measure
Standardizing Volumetric Dosing Devices and Instruction

Guidance for Industry
Dosage Delivery Devices for OTC Liquid Drug Products

Guideline Volumetric Measures for Dosing of Over-the-Counter Oral Liquid Drug Products for Children ≤ 12 years of Age

1. Introduction

As part of multiple stakeholder efforts to help prevent accidental, unsupervised medication ingestions and overdoses in children, this document suggests ways to improve the consistency and standard format of volumetric measures within the dosing directions on the outer packaging and immediate container label, as well as on the dosing device for OTC oral liquid drug products with dosing directions for children, defined as ≤12 years of age (both covered under the monograph system as well as an approved NDA/ANDA). While research evidence is limited, the recommendations made herein do represent the integration of stakeholder communications and standards, including those from authoritative bodies and professional organizations, as well as knowledge gained from consumer experience and research with OTC medicine products.
4. Summary

Points to Consider
Regarding the System

1. Age in months for children <2 years
2. No documentation of indication
3. Identifies: admit / transfer / observation
4. Physician-documented AEs & implicated drug
 • Sometimes: dose, schedule, formulation, route
 • Not biologics or devices
5. Concomitant medications collected
6. OTC medications collected
Regarding the System (2)

7. Free text must be examined for clinical setting
8. Diagnosis of AE by ED clinician
9. Reporting of AE from ED
10. No data on deaths
11. Collects AEs across age subpopulations
12. Includes 5 pediatric-specialty and 58 general hospital EDs
Does the System?

1. Professional staff that monitors, codes, and standardizes data reported. Validation of data with re-review of charts is not done.
2. Accepts diagnosis indicated by treating clinician
3. No “trigger events” / All reports are physician-diagnosed ADEs
4. Not linked to EMRs
5. Age in months for children <2 years
Does the System (2)

6. No growth & development data
7. No birth history
8. Codes AEs to MedDRA Preferred Terms (PTs)
9. Unique patient identifiers *may* allow follow-up but only in *extreme* circumstances
10. No cost data per visit
11. No cost data per treatment
Acknowledgements

Division of Healthcare Quality Promotion, CDC
- Nadine Shehab
- Kelly Weidenbach
- Victor Johnson
- Melissa Schaefer
- Adam Cohen
- Michael Jhung
- Daniel Pollock
- Sarah Schillie
- Priti Patel
- Arjun Srinivasan

Center for Drug Evaluation and Research, FDA
- Karen Weiss
- Solomon Iyasu
- Gerald Dalpan
- Judy Staffa
- Pamela Scott
- Mary Willie
- Margie Goulding
- Charles Ganley
- Sue Johnson

US Consumer Product Safety Commission
- Tom Schroeder
- Joel Freidman
- Cathleen Irish
Additional Slides
The Public Health Approach

- Identify the Problem
 - 98,000 ED visits/year for children <=5 years old

- Identify Risk & Protective Factors
- Design Intervention

- Evaluate Impact
 - Improve child-resistant packaging
 - 1 in 180 two-year olds
 - Unsupervised ingestions