Devices for Neurological Disorders in Children & Infants

Shenandoah Robinson, MD
Pediatric Neurosurgery
Rainbow Babies & Children’s Hospital
Case Western Reserve University School of Medicine
Cleveland, Ohio
Disclosure –
No Conflicts of Interest

• No relationships with any drug, device or biological company
• Research funding from NINDS and hospital/private foundations for basic & translational studies on perinatal brain injury due to preterm birth
• Salaried, no incentive for volume
One Size Does NOT Fit All… >>
Disorders

- Hydrocephalus & other abnormalities of fluid dynamics
- Movement disorders
- Epilepsy
- Neuromuscular disorders
- Cerebrovascular disorders
- Deformational plagiocephaly
Issues

• Neurological disorders are often lifelong challenges
• Many children are multiply affected
 – 10 yr old former preterm infants with shunted hydrocephalus
 • 10% have severe spasticity
 • 25% have autism spectrum disorder
 • 25% have other behavioral abnormalities (ADHD)
 • 30-50% have epilepsy, often multifocal
 • 50% have significant cognitive delay
 – Cannot exclude cognitively impaired children
• Some of the disorders are life-threatening
• Most have other medical problems other stressors

• Potentially vulnerable population
 – Multiple treatment options
 – Professional conflicts
Devices

– Hydrocephalus & other abnormalities of fluid dynamics
 – A shunt diverts fluid
 » Start in ventricles, cyst, subdural fluid, lumbar thecal sac
 » End in peritoneum, pleural cavity, cardiac atrium, gallbladder,…

– Movement disorders
– Epilepsy
– Neuromuscular disorders
– Cerebrovascular disorders
– Deformational plagiocephaly
Shunts divert fluid

Before Shunt

After Shunt
Shunt Components

- **Catheter**
 - Tube in brain with tiny holes within 2 cm of the tip
- **Valve**
 - Multiple types – none is superior by multiple RTC
- **Tubing**
 - Length to accommodate growth
 - Rely on cavity to absorb ~ 200 ml per day
Shunts - Issues

- **Longevity**
 - Lifelong dependence from early infancy
 - Throughout life

- **Efficacy**
 - Basic plumbing – high malfunction rate
 - Catheter becomes obstructed
 - Tubing breaks or disconnects
 - Malfunction can cause transient or permanent neurological deficits or death
 - Repair requires surgery

- **Infection**
 - Excellent rates are 3-5%
 - Often requires at least 2 surgeries & 10-14 day hospital stay
 - Associated with cognitive decline and malfunction
Shunts – Clinical Trials

- Multicenter randomized controlled trials
 - Relatively small group of surgeons
 - Treatment is rarely optional
- Definable objective specific criteria
 - Population
 - Initial procedure or revision for specific diagnoses
 - Lifelong follow-up is required
 - Generally agreed upon specific clinical criteria for treatment
 - Specific outcome parameters
- Poor current efficacy allows differences to be detected
 - Infant shunts – 50% fail in first year
 - Can use relatively short follow-up period (6 mo to 1 year)
 - Treatment is required
 - Few other effective treatment options
Shunts – Other Treatment Option

• Endoscopic third ventriculostomy
 – Suitable for limited specific population
 – Use in infants is controversial
• Efficacy varies by population
 – Teen with late-onset aqueductal stenosis
 • Initial treatment with ETV
 • Expect 95% long term success
 – Teen with myelomeningocele and current shunt infection
 • ETV to try to avoid replacing shunt
 • Expect 50% long term success with ETV if anatomy suitable
Devices

• Hydrocephalus & other abnormalities of fluid dynamics
• Movement disorders
 – Intrathecal baclofen pump – spasticity & dystonia
 – Deep brain stimulator - dystonia
• Epilepsy
• Neuromuscular disorders
• Cerebrovascular disorders
• Deformational plagiocephaly
Intrathecal Baclofen Pump

- **Components**
 - Catheter within thecal sac
 - Tissue pocket in abdominal wall
 - holds pump
- **Intrathecal baclofen**
 - GABA (g-amino butyric acid) agonist
 - Intrathecal baclofen 1000x
 - more potent than oral
Advantages - Intrathecal Baclofen Pump

• Any etiology of spasticity or dystonia
 – Prematurity
 – Meningoencephalitis
 – Inflicted trauma
 – Optimal candidate is typically non-ambulatory
• Adjustable dose
• Treats combination of spasticity and dystonia
• No risk of direct intracranial injury
• Track record over decades
Issues - Intrathecal Baclofen Pump

- Longevity
 - Pump requires replacement every 7 years
- Size
 - Difficult to use in child under 15 kg
- Malfunction
 - Physiological dependence on baclofen
 - Withdrawal or overdose requires emergent expert care
 - Most malfunctions require surgery
 - Catheter breaks, clogs
 - Pump malfunction rare
- Infection
 - Excellent rate is 5-8%
 - Often requires removal (surgery)
 - Prolonged intravenous antibiotics
 - Treatment for withdrawal
Deep Brain Stimulation

• Primarily for dystonia
 – Indicated for primary dystonia
 – Populations for secondary dystonia being defined

• Components
 – Electrode inserted into a specific brain location
 – Generator inserted in tissue pocket in upper chest

• Advantages
 – Less bulky – easier on children with poor weight gain
 – Much lower physiological dependency
 – Frequent use in adults provides information
Issues Deep Brain Stimulation

• Longevity
 – Generator requires replacement

• Malfunction

• Infection
 – Often requires removal (surgery)
 • Prolonged intravenous antibiotics
Devices

- Hydrocephalus & other abnormalities of fluid dynamics
- Movement disorders
- Epilepsy
 - Vagal nerve stimulator
 - Deep brain stimulator
- Neuromuscular disorders
- Cerebrovascular disorders
- Deformational plagiocephaly
Vagal Nerve Stimulator

- Spectrum of epilepsy patients
 - Much more effective than new medicine
 - Much less effective than intracranial resection of seizure focus

- Advantages
 - Relatively low surgical morbidity

- Issues
 - Longevity
 - Generator replacement every 3-5 years
 - Malfunction
 - Lead breakage
 - Infection
 - Re-operation has much higher risks
 - Not MRI compatible
 - Relatively contra-indicated in tumor patients
Devices

- Hydrocephalus & other abnormalities of fluid dynamics
- Movement disorders
- Epilepsy

Neuromuscular disorders
- Spine Instrumentation
- Bladder stimulation
 - Multiple surgical options – none are ideal
 - Diaphragm pacing

- Cerebrovascular disorders
- Deformational plagiocephaly
Devices

- Hydrocephalus & other abnormalities of fluid dynamics
- Movement disorders
- Epilepsy
- Neuromuscular disorders
- Cerebrovascular disorders
 - Interventional neuroradiology
 - Coils
 - Stents
 - Glue
 - Too new and too few patients to test in trials
- Deformational plagiocephaly
Devices

- Hydrocephalus & other abnormalities of fluid dynamics
- Movement disorders
- Epilepsy
- Neuromuscular disorders
- Cerebrovascular disorders
- Deformational plagiocephaly
 - Cranial orthotic devices are currently regulated as Class II devices despite no data to support safety concerns
 - No trial currently planned
 - No associated neurological deficits or risks
 - No agreed upon rating scale to define patient population
 - Five-year follow-up required – huge expense

Conclusions

• Each disorder and device had unique concerns
 – Specific criteria
 • Diagnosis
 • Treatment with device
 • Comparison to other treatment options
 • Efficacy
 • Complications
 • Follow-up

• Children are not little adults with adult disorders
 – Different disease processes (even with same name)
 – Longevity, malfunction, and infection

One size does NOT fit all!