Warfarin Pharmacogenomics: Translation Into Clinical Practice

Cold Spring Harbor Laboratory-Wellcome Trust Conference on Pharmacogenomics
Hinxton, UK
October 17, 2007

Lawrence J. Lesko, Ph.D., FCP
Director, Office of Clinical Pharmacology
Center for Drug Evaluation and Research
Food and Drug Administration
Silver Spring, Maryland, USA
Comparison of Risk Assessment vs Risk Management: Distinctly Different Processes

RISK ASSESSMENT

1. Excess Bleeding (INR) Assessment
2. Exposure Assessment
3. Dose – INR Assessment

RISK MANAGEMENT

Non-Risk Analyses:
- Economics
- Reimbursement
- Liability
- Social Issues
- Medical Adoption
- Politics

Communication Options

Regulatory Decision
Considerations In Risk Assessment

Important to weigh:

1. Magnitude of relative and absolute risk
2. Clinical importance of risk
3. Public health implications of risk
4. Uncertainty of risk factors
Magnitude of Risk: Vast Amount of Clinical Data on Bleeding Complications

- Warfarin ranks #1 in total mentions of deaths for drugs causing AEs from death certificates
- Warfarin ranks among the top drugs associated hospital emergency room visits for bleeding
- Overall frequency of major bleeding has been 10% to 16% (versus 0.1% for most drugs)
- Minor bleeding event rates in RCT of new anticoagulants has been as high as 25-27%

Wysowksi et al, Arch Int Med 2007 and SPORTIF III Trial 2003 (Exanta, Astra-Zeneca)
Clinical Importance of Risk: Warfarin Eludes Patients Who Need It the Most

- Risk of stroke in A Fib increases by 40% in elderly while warfarin use decreases by 60%

- New patients with A Fib (1:130 over 65 yo) treated by physicians who had a patient with a bleeding event were 21% less likely to receive warfarin

- Other reasons for not starting warfarin treatment in A Fib patients (n = 300)
 - 28% prefer treatments without INR monitoring
 - 20% fear of bleeding
 - 18% would have difficulty to get INR monitored

Public Health Implications of Risk: Most Widely Used Anticoagulant Worldwide

Real and Projected Growth in Anticoagulant Market: 600,000 New Patients Per Year

Note: Anticoagulant market projected to increase 3 to 4-fold between 2004 and 2015. Sources include National Rx Audit, IMS Health Forecast (MIDAS)
WARNING: BLEEDING RISK

Warfarin sodium can cause major or fatal bleeding. Bleeding is more likely to occur during the starting period and with a higher dose (resulting in a higher INR). Risk factors for bleeding include high intensity of anticoagulation (INR > 4.0), age ≥ 65, highly variable INRs, history of gastrointestinal bleeding, hypertension, cerebrovascular disease, serious heart disease, anemia, malignancy, trauma, renal insufficiency, concomitant drugs (see PRECAUTIONS), and long duration of warfarin therapy. Regular monitoring of INR should be performed on all treated patients. Those at high risk of bleeding may benefit from more frequent INR monitoring, careful dose adjustment to desired INR, and a shorter duration of therapy. Patients should be instructed about prevention measures to minimize risk of bleeding and to report immediately to physicians signs and symptoms of bleeding (see PRECAUTIONS: Information for Patients).

Label as of October 2006
Considerations In Risk Assessment

Important to weigh:

1. Magnitude of relative and absolute risk
2. Clinical importance of risk
3. Public health implications of risk
4. Uncertainty of risk factors
“Does This Mean I have Cancer?” – “Well, No, We Have to Do Further Tests!”

Mammograms
- 30 million mammograms are done each year in the US
- Additional tests will be ordered for 1 in every 3000 women
- 1 woman out of 1000 will benefit from mammogram screening

Prostate Specific Antigen
- Virtually every man over 50 years of age is screened for PSA
- 25% to 85% of men get biopsies following PSA screening
- In 2007 it is still unknown how many men benefit from screening

There is no evidence from prospective RCT that mammograms or PSA screening leads to a survival benefit as a result of early detection of cancer. Are they useful? Maybe but nobody knows for sure!
Warfarin Risk Characterization
Theater: All Cause Bleeding Events

70 year old Caucasian male with Afib

75 year old Caucasian women with prior stroke

60 year old African-American man with Afib and INR over 4

50 year old healthy male undergoing knee replacement ???

65 year old Asian female with Afib

23 year old healthy female smoker who had a VTE while taking OC ???

60 year old African-American man with Afib and INR over 4
Managing Risk: Steps Required to Maintain Therapeutic Anticoagulation May Not Be Feasible

Initiation**

- Initial dose: 5-10 mg based "tailored" to known risk factors and clinical need
- Titrate and test INR every 2 to 7 days until stable

Maintenance

- Monthly or bi-monthly INR test
- Adjust dose
- Repeat INR
- Adjust dose and repeat INR

** Note: Standards of care conflict with how to adjust doses based on observed INRs
Estimating Warfarin Maintenance Doses Is Difficult: Basically “Act and React”

Most frequent initial dose is 5 mg adjusted for risk actors thought to affect warfarin PK and clinical situation

Initial dose attempts to estimate maintenance dose

How to adjust dose for known patient risk factors is not clear

Fixed Initial Dose: 5 mg

Target Stable INR: 2 to 3
Control of INR (Surrogate) Is Critical to Maintaining Therapeutic Anticoagulation

Shows incidence rate per 100 person-years
INR Values in Clinical Practice Are Difficult to Monitor and Maintain

- INR values are less than 2.0-3.0 twice as often as they are more than 2.0-3.0
- Less than 50% of patients achieve target INR range on a starting dose of 5 mg

Result: High % of Major Bleeding Events During Dosing Initiation Phase

Outpatient Warfarin Treatment

- Time to stable INR
- Time in INR range of 2-3
- # of INR > 4

Frequency (% / month)

First Month | 12 Months | > 12 Months

Finding Doses to Maintain Therapeutic Anticoagulation is Largely Trial and Error

Dose Adjustments
No (5 mg) = 16%
Yes (< 5 mg) = 51%
Yes (> 5 mg) = 33%

Reynolds KK et al. Personalized Medicine 2007
Ex: 50 Yr, Male, NS, 180 lbs, 5’10”, A Fib, Normal Hepatic Function, No Drug Interactions From Warfarin Risk Theater

Predicted Warfarin Doses

CYP 2C9 Genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Weekly Doses (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1/*1</td>
<td>50</td>
</tr>
<tr>
<td>*1/*2</td>
<td>40</td>
</tr>
<tr>
<td>*2/*2</td>
<td>35</td>
</tr>
<tr>
<td>*1/*3</td>
<td>30</td>
</tr>
<tr>
<td>*2/*3</td>
<td>25</td>
</tr>
<tr>
<td>*3/*3</td>
<td>20</td>
</tr>
</tbody>
</table>

Fixed Dose (5 mg/day)

Does not show time to stable INR and INR values over 3.5 – 4.0

Loading dose recommended for each genotype with a variant 2C9 allele depending on VKORC1 haplotype: 6.6 mg (GG), 4.8 mg (AG) and 3.5 mg (AA)
Here Is The Urgent Clinical Consideration Related to Risk Management

Is the overall increased risk of poor INR control, and bleeding episodes, explained by a particularly elevated risk in an identifiable subgroup of patients, or whether the risk is uniform across all patients?

Extensive amount of clinical data suggesting that risk is particularly high in patients with gene variants in CYP2C9 and/or VKORC1.
Clinical Data Sources: Strength and Weight of Evidence Supporting Relabeling

- Nine population-based observational studies of matched cases and controls (1999-2006)
 - Historically prospective, i.e., DNA collection, pre-specified protocols for INR collection, warfarin doses, other drugs and data analysis, in over 1800 patients
 - 8 studies found strong associations between lower dose requirements and 2C9 gene variants
 - 3 studies showed strong associations between poor INR control, bleeding and 2C9 and VKORC1 alleles
 - Potential sampling bias reduced by using studies from different clinical sites from three continents
 - Results representative of real world, convergent and extrapolatable to other patients
Biologic Plausibility and A Dose-Response Relation Strengthens Inference That Associations Are Real

Pharmacokinetics

- **Dose**
 - Absorption k_a
 - C_{free}
 - CL/V_1
 - CL_2/V_1
 - CL_2/V_2
 - Elimination

Pharmacodynamics

- **VKORC1 Haplotype**
 - Synthesis k_{synth}
 - PCA
 - Degradation k_{out}
 - PT
 - INR

CYP 2C9 Genotype
Initial Warfarin Dosing: PART of the Solution is Reducing the Zone of Uncertainty

Adjusted Initial Dose: 2 to 5 mg

Target Stable INR: 2 to 3

Zone of Uncertainty

Weight
Gender
Unknown
Age

Zone of uncertainty reduced by almost 50%

VKORC1

CYP 2C9

Adjusted Initial Dose: 2 to 5 mg

Target Stable INR: 2 to 3

Zone of Uncertainty

Weight
Gender
Unknown
Age

Zone of uncertainty reduced by almost 50%

VKORC1
Press Release Regarding Genetic Information in New Warfarin Label

• Genetic tests not required
• Encourage doctors to consider genetics in initial warfarin doses
• Genetic tests are available
• Prevalence of genetic variants in different ethnic/racial groups
• Non-genetic factors also important
• INR monitoring is still essential

Initial Dosage
day with dosage adjustments based on the results of PT/INR determinations.17,18 The lower initiation
doses should be considered for patients with certain genetic variations in CYP2C9 and VKORC1
enzymes as well as for elderly and/or debilitated patients and patients with potential to exhibit greater
than expected PT/INR responses to COUMADIN (see CLINICAL PHARMACOLOGY and
PRECAUTIONS).

Public Reaction

"I fully support the FDA's stance on the value of genetic information in dosing of warfarin. It is a major step in the right direction of individualized medicine in the future. While it will take years before the final, definitive proof that genotyping the two genes--CYP2C9 and VKORC1--will change the outcomes of bleeding via randomized trials, getting this information today is remarkably inexpensive and harmless, and, at the very least, can accelerate the time it takes for a patient to be properly anticoagulated and markedly improves the convenience features."

Dr. Eric Topol, Scripps
Medscape Medical News, 20 August 2007

"It would be irresponsible and potentially harmful to suggest that testing be used, or even mentioned, in the label for warfarin.”

Dr. Ann Wittkowsky, U of Washington
WSJ, 16 August 2007
Announcement of First FDA-Approved Genetic Test for Warfarin

Physician adoption of test will be challenging since a genetic screening test represents deviation from established practices.
Prospective Clinical Trial with Bleeding Outcomes

- Prospective clinical cohort study in 446 (88 with 1 or more gene variants) outpatients eligible for warfarin treatment
- Mean age of 60.5 yrs, 50% men, 50% African-American followed for average of approximately 15 months
- Clinical endpoints of major and minor hemorrhage stratified by INR range and time to stabilization of target INR
- A variant 2C9 genotype yielded a HR of 3.0 for increased risk of major hemorrhage
- Risk of major hemorrhage was 5.3-fold higher before stabilization of INR, and 2.2-fold higher after stabilization
Prospective Clinical Trial with INR and Bleeding Endpoints

- Prospective clinical cohort study in 191 (95 2C9 genotyped cases vs. 96 controls) outpatients eligible for warfarin
- Matched for mean age of 58 yrs, 46% men, followed to time of stable anticoagulation up to 3 months (no VKORC1 measures)
- Clinical endpoints of time to stable anticoagulation, time spent in therapeutic range (INR 2-3) and % minor bleeding
- *Cases achieved stable anticoagulation (initiation) 18 days earlier and stayed between INR 2-3 twice as long (45% vs. 24%)*
- *Minor bleeding in the cases was ¼ that observed in the control group (3.4 vs. 12.5%)*
Genetic-Based Dosing Algorithm in Orthopedic Patients Starting Warfarin Therapy

Milican et al, Blood, September 2007

- Retrospective (historically prospective) clinical cohort study in knee or hip replacement patients (CYP 2C9 and VKORC1)
- Matched for mean age of 58 yrs, 56% men, 13% African-American
- Clinical endpoint was the stable maintenance warfarin dose (INR in therapeutic range of 2-3)
- Genetic-based dosing model explained 79% of the variability in warfarin dose (note: $r^2 = 64\%$ in 59 non-surgical patients**)
- Significant predictors of dose were 2C9 genotype, VKORC1 haplotype, INR after 3rd dose, first warfarin dose, smoking, EBL

Personal communication, Dr. Brian Gage, Oct 1, 2007
Clinical Decision Support Tool: Algorithm to Estimate Dose With and Without Genetic Information and/or INR Values

Algorithm based on 8 genetic and non-genetic factors
Algorithm-Predicted Warfarin Daily Doses Using the Label-Approved Dose Range

<table>
<thead>
<tr>
<th></th>
<th>2 mg/day</th>
<th>2.5 mg/day</th>
<th>3 mg/day</th>
<th>4 mg/day</th>
<th>5 mg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/3 AG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/3 AA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/3 AA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/3 AG</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2 AA</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3 AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/3 GG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2 AG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3 AG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 AA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2 GG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1/3 GG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/3 GG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1/2 AG</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1 AA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1 GG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1/2 GG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1/1 AG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Performance of Dosing Algorithm: Matched Actual Dose by Nearly 80%

With Genetic Factors
- Surgical R^2 (n = 119) = 79%
- Median Absolute Error = 0.6 mg
- Medical R^2 (n = 49) = 64%
- Median Absolute Error = 1.1 mg

Clinical Factors Alone
- Surgical R^2 (n = 353) = 53%
- Median Absolute Error = 0.9 mg

“…..We rarely get an INR over 4 using this dosing algorithm.”

Data courtesy of Dr. Brian Gage and Petra Jacobsen, Washington University School of Medicine (9 Oct 2007)

Petra et al, Ann of Pharmacotherapy, published online 2 October 2007
Sources of Apprehension About Translation Into Clinical Practice

- How to generate the evidence
- How much evidence is sufficient
- Strength of evidence of "clinical utility"
- Problem of cost and coverage
- Preparedness of providers
- Readiness of delivery system
Challenges

- **Perception**: excess bleeding is worth the risk, given the benefit, and absence of clear and safer alternatives

- **Education**: less than 1 in 10 physicians have been educated in molecular medicine and pharmacogenetics

- **Infrastructure**: unclear availability of test, and needed turn-around-time, who pays, and lack of clear instructions to use results

- **Public Health Value**: Routine genetic screening would not benefit 70% of population with *average risk*

- **Evidence Standards**: Absence of RCT demonstrating significant effect on major bleeding rates
Overcoming the Challenges

- There is always a learning curve
- Clinicians exist in state of information overload
- Do not desire genomics tutorial in patient setting

Unambiguous statements about clinical implications of results
When and how should dosing be adjusted quantitatively
Actionable results important to patient care

![Diagram](image)

- No complexities from blood draw to sample handling to test results
- Proximal availability of laboratory assay and rapid turn-around-time
- Straightforward billing and reimbursement

Adapted from presentation by Peter Keeling, Diaceutics, 2007
Summary

- Relatively large number of patients are exposed to warfarin and the number will get larger.
- Poor INR control and bleeding events are a major safety problem for patients taking warfarin.
- INR monitoring is essential but it has not adequately improved the safety of warfarin.
- Vast amounts of evidence suggests that genetic factors play a major role in warfarin risks.
- Using genetics to guide initial dosing improves INR control and reduces bleeding events.