Establishing Treatments as Disease-Modifying in Neurodegenerative Disease

Challenges in Trial Design and Analysis

Michael P. McDermott, Ph.D.
University of Rochester
Outline

• Problems with single-period designs
• Two-period designs
 – Withdrawal vs. delayed start vs. “complete” two-period designs
 – Statistical issues
 – Sample size issues
• Other design considerations
What is Disease Modification?

• Parkinson’s disease (PD)
 – Slowing/halting neuronal degeneration

• Alzheimer’s disease (AD)
 – Slowing/halting the appearance of AD neuropathology

• Treatments exert their effects on the underlying pathology or pathophysiology of the disease rather than simply on symptoms
Single-Period Designs

• Problems with single period designs
 – Difficult to determine whether treatment effect is symptomatic, disease-modifying, or both
 – Absence of valid markers of underlying disease progression
 – Reliance on clinical measures of outcome
 • UPDRS (PD)
 • ADAS-Cog (AD)
 • Total Functional Capacity (HD)
DATATOP Trial

• The Parkinson Study Group. NEJM 1989; 321:1364-1371

• Randomized trial of deprenyl and vitamin E in 800 participants with early PD

• Primary outcome variable
 – Time to reach a level of functional disability sufficient to warrant initiation of levodopa therapy, in the judgment of the enrolling investigator
Figure 1. Cumulative Probability of Reaching the End Point (Kaplan-Meier Estimate), According to Treatment Group.

The hazard ratio for the comparison of group B to group A with respect to the risk of reaching the end point per unit of time is 0.43 ($P<10^{-12}$; 95 percent confidence limits, 0.33 and 0.55). See text for details.
DATATOP Trial

• Evaluation of disease modification was confounded by the apparent short-term symptomatic effects of deprenyl

• Mean changes in total UPDRS scores at Month 3
 – Deprenyl: +1.48 (n = 383)
 – No deprenyl: -1.63 (n = 365)
 – P-value < 0.0001
Single-Period Designs

- Problems with simple slope comparisons
 - Magnitude of the symptomatic effect may depend on factors that change over time
 - True disease state
 - Measured disease state (clinical rating scale)
 - Age
 - Drug exposure
 - May need to discard data from visits that occur before symptomatic effects are fully apparent
Withdrawal Design

• Leber (1996)
• Subjects randomized to active treatment followed by placebo (A/P) vs. placebo followed by placebo (P/P)
• Period 1: Estimation of total treatment effect ($\alpha_T = \alpha_D + \alpha_S$)
• Period 2: Estimation of symptomatic (α_S) and disease-modifying (α_D) components
Withdrawal Design

• The DATATOP trial had a withdrawal component
 – Two-month duration of washout period was criticized for being too brief

• Potential problems
 – Lack of blinding in Period 2
 • Differential bias in the evaluation of those declining more rapidly?
 – Difficulties in subject recruitment and retention
Delayed Start Design

- Leber (1996); Bodick et al. (1997)
- Subjects randomized to active treatment followed by active treatment (A/A) vs. placebo followed by active treatment (P/A)
- Period 1: Estimation of total treatment effect ($\alpha_T = \alpha_D + \alpha_S$)
- Period 2: Estimation of symptomatic (α_S) and disease-modifying (α_D) components
Delayed Start Design in the ADAGIO Trial

Delayed Start Design

• Potential problem
 – Lack of blinding in Period 2
 • Differential bias in the evaluation of those improving more rapidly?

• May improve subject recruitment/retention compared to the withdrawal design
Randomized Withdrawal/Start Designs

• Whitehouse et al. (1998)
• Randomized withdrawal design
 – Subjects randomized to three groups
 • P/P, A/P, A/A
• Randomized start design
 – Subjects randomized to three groups
 • P/P, P/A, A/A
• Blinding is improved, but at the cost of efficiency
Complete Two-Period Design

• Whitehouse et al. (1998); McDermott et al. (2002)
• Combination of withdrawal and delayed start designs
 – Subjects randomized to four groups
 • P/P, P/A, A/P, A/A
• Blinding is maintained throughout
• Efficient (under certain assumptions)
Delayed Start Design

Mean Change in UPDRS Score

Period 1

Period 2

P/A

A/A
Statistical Model

• Assume normally distributed responses
 – End of Period 1: \(Y_1 \)
 – End of Period 2: \(Y_2 \)
 – Period 2 – Period 1 difference: \(Y_2 – Y_1 \)

• Variances assumed to be the same across treatment groups, but may vary with time
Statistical Model for Mean Responses

<table>
<thead>
<tr>
<th>Group</th>
<th>$E[Y_1]$</th>
<th>$E[Y_2]$</th>
<th>$E[Y_2 - Y_1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/P</td>
<td>μ_1</td>
<td>μ_2</td>
<td>$\mu_{21} = \mu_2 - \mu_1$</td>
</tr>
<tr>
<td>A/P</td>
<td>$\mu_1 + \alpha_D + \alpha_S$</td>
<td>$\mu_2 + \alpha_D$</td>
<td>$\mu_{21} - \alpha_S$</td>
</tr>
<tr>
<td>P/A</td>
<td>μ_1</td>
<td>$\mu_2 + \alpha_T'$</td>
<td>$\mu_{21} + \alpha_T'$</td>
</tr>
<tr>
<td>A/A</td>
<td>$\mu_1 + \alpha_D + \alpha_S$</td>
<td>$\mu_2 + \alpha_D + \alpha_T'$</td>
<td>$\mu_{21} + \alpha_T' - \alpha_S$</td>
</tr>
</tbody>
</table>
Model Assumptions

• Disease-modifying effect acquired during Period 1 remains with the subject through the end of Period 2

• Symptomatic effect acquired during Period 1 disappears by the end of Period 2
 – Withdrawal design
 – Can be difficult to verify
Model Assumptions

• Incremental effect acquired during Period 2 is the same for the P/A and A/A groups
 – Magnitude of the incremental effect (α'_{τ}) is independent of whether or not the subject received active treatment during Period 1
 – Strong assumption that may compromise the ability of a delayed start design to provide a conclusive distinction between symptomatic and disease-modifying effects
Model Assumptions

• Incremental effect acquired during Period 2 is the same for the P/A and A/A groups
 – Disease-modifying effect (α_D) is underestimated if the incremental effect (α'_T) is greater for the P/A group
 – Disease-modifying effect (α_D) is overestimated if the incremental effect (α'_T) is greater for the A/A group

• This assumption can be tested in the complete two-period design
Statistical Model for Mean Responses

<table>
<thead>
<tr>
<th>Group</th>
<th>$E[Y_1]$</th>
<th>$E[Y_2]$</th>
<th>$E[Y_2 - Y_1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/P</td>
<td>μ_1</td>
<td>μ_2</td>
<td>$\mu_{21} = \mu_2 - \mu_1$</td>
</tr>
<tr>
<td>A/P</td>
<td>$\mu_1 + \alpha_D + \alpha_S$</td>
<td>$\mu_2 + \alpha_D$</td>
<td>$\mu_{21} - \alpha_S$</td>
</tr>
<tr>
<td>P/A</td>
<td>μ_1</td>
<td>$\mu_2 + \alpha_T'$</td>
<td>$\mu_{21} + \alpha_T'$</td>
</tr>
<tr>
<td>A/A</td>
<td>$\mu_1 + \alpha_D + \alpha_S$</td>
<td>$\mu_2 + \alpha_D + \alpha_T'$</td>
<td>$\mu_{21} + \alpha_T' - \alpha_S$</td>
</tr>
</tbody>
</table>
Parameter Estimation

- Disease-modifying effect (α_D)
 - Difference between means in the A/P and P/P groups at the end of Period 2 (Withdrawal)
 - Difference between means in the A/A and P/A groups at the end of Period 2 (Delayed Start)
 - Average of the above two estimators (Complete Design)
Parameter Estimation

• Symptomatic effect \((\alpha_s)\)

 – Difference between mean Period 2 – Period 1 differences in the P/P and A/P groups (Withdrawal)

 – Difference between mean Period 2 – Period 1 differences in the P/A and A/A groups (Delayed Start)

 – Average of the above two estimators (Complete Design)
Subject Allocation

• Allocation to minimize the variances of the estimates of α_D and α_S
 – Equal allocation to the P/P and A/P groups
 – Equal allocation to the P/A and A/A groups
 – Arbitrary allocation to these two components

• May want to allocate fewer subjects to the P/P and A/P groups (withdrawal design component) for purposes of recruitment and retention
Issues in Implementation

• Lengths of follow-up periods
 – Period 1 needs to be long enough for the disease-modifying effects of treatment to become apparent
 – Period 2 needs to be long enough to allow the symptomatic effects of treatment to completely disappear (withdrawal) and/or become fully apparent (delayed start)
 • Problems with long duration or slow-onset of the symptomatic effect
Issues in Implementation

• Lengths of follow-up periods
 – Above assumptions are very difficult to test
 – Concerns about retention and the need for therapy are greater as the required length of follow-up increases
 • Dopaminergic therapy (PD)
 • Acetylcholinesterase inhibitor therapy (AD)
 • Periods beyond 6-9 months stretch the limits of feasibility
Issues in Statistical Analysis

• Three main steps in the analysis
 – Estimation of the total treatment effect at the end of Period 1
 • Not essential if demonstration of this effect is not a goal of the trial
 – Estimation of disease-modifying and symptomatic effects at the end of Period 2
 • Comparison of end-of-trial means
Issues in Statistical Analysis

• Three main steps in the analysis
 – Comparison of the pattern of mean responses near the end of Period 2
 • Need to establish constant (or non-decreasing) separation between the group means over time
 • Need to define “near the end”, i.e., which time points to use in the comparisons
 • Non-inferiority comparison
 – How should the non-inferiority margin be chosen?
 – Large sample size requirement
Issues in Statistical Analysis

• Subject withdrawal
 – Need for treatment of emerging symptoms
 • Move participants directly into Period 2 if treatment is needed (delayed start design)?
 • Preservation of time scale
 – Other reasons for withdrawal
 – Clearly one of the major limitations of two-period designs
Issues in Statistical Analysis

• Subject withdrawal
 – Analysis strategies
 • Last-observation-carried-forward (LOCF)
 • Complete cases
 • Cases that make it to Period 2
 – Statistical adjustment for imbalances in baseline covariates, propensity score
 • Likelihood-based (MAR assumption)
 • Multiple imputation (MAR assumption)
 • Sensitivity analyses
Sample Size Determination

• Minimally important effect size for disease modification?
 – Extrapolation of benefits over very long treatment periods
 – What can be anticipated to accrue over relatively short (6-9 month) treatment periods?
Sample Size Determination

• Non-inferiority comparison at the end of Period 2
 – Number and timing of observations in Period 2 may be an important design consideration

• Need to account for subject withdrawal
 – Particularly a problem in Period 2

• Need to account for misdiagnosis
 – Particularly a problem if those with early disease are of interest
Other Design Considerations

• Eligibility criteria
 – Best to treat as early as possible with a disease-modifying treatment in neurodegenerative disease
 • Recruitment and misdiagnosis issues
 – Need to minimize co-morbid conditions
 • Retention
• Allowance of concomitant medications
• Primary outcome variable
Alternative Approaches

• Use of biomarker/surrogate marker
 – Ideal solution to the problem?
 – Validity as a marker of the effect of treatment on the underlying disease process
 – Validity of a biomarker as a surrogate outcome
 • Must yield the same inference regarding the treatment as the meaningful clinical outcome
Regulatory Opinion

• FDA
 – Conference held in April 2008 to discuss relevant issues in PD trials
 – Remains open to the idea of approval of an agent for disease modification on the basis of clinical outcomes only

• EMA
 – Will only consider strong biomarker evidence along with evidence of treatment effects on meaningful clinical outcomes
Summary

• Two-period designs may be able to distinguish between symptomatic and disease-modifying effects when there are no available direct measures of underlying disease progression

• These designs are challenging in terms of:
 – Assumptions
 – Feasibility
 – Execution
ELLDOPA Trial

• Randomized trial of levodopa (150, 300, and 600 mg/day) vs. placebo in 361 participants with early PD

• Primary outcome variable
 – Change from baseline to Week 42 (after 2-week washout of study medication) in the total UPDRS score