Neuroimaging Biomarkers for Pain

Sean Mackey, MD, PhD
Chief, Pain Medicine Division
Director, Stanford Systems Neuroscience and Pain Lab (SNAPL)
Stanford University
http://paincenter.stanford.edu
http://snapl.stanford.edu
smackey@stanford.edu

Disclosures – Funding Sources

- National Center of Complementary and Alternative Medicine
 - P01 AT006651-01
- National Institutes of Drug Abuse (NIDA)
 - K24 DA029262, R21 DA026092
- National Institutes of Neurological Diseases and Syndromes
 - R01 NS053961
- National Institutes of Diabetes and Digestive and Kidney Diseases
 - U01 DK082316
- Dodie and John Rosekrans Pain Research Endowment
- Redlich Pain Research Endowment
- Stanford NeuroVentures - BioX
- No industry conflicts

Experiences With Pain – Institute of Medicine Report

- Affects 100 Million Americans
 - More than heart disease, diabetes and cancer combined
- Indirect/direct medical expenses
 - US $560-$630 Billion/year
 - $100 billion/year in Medicare funding alone
- Pain can become a disease in its own right through changes in the CNS
Descartes’ View of Pain (1664)

- Dualism
- Descartes viewed the world as mechanistic and viewed human behavior in terms of reflexive mechanisms elicited by stimuli in the environment
- Fire pulled on “delicate threads” that opened pores in the commonsense center

Pain is Not Equal to Nociception

Pain is a Product of the Prain

- Cognition: attention, distraction, hypervigilance, catastrophizing, re-appraisal, hypnotic suggestion
- Mood: depression, anxiety, catastrophizing, emotional context
- Context: beliefs, expectations, placebo, motivation
- Individual differences: genetics, gender, history of injury, atrophy
Individual Differences in Pain Sensitivity

- 500 healthy volunteers
- 49°C stimulus
- Over 300 mouse genes found to modulate pain sensitivity and analgesia. Over 20 human SNPs
 - Genes thought to account for 20%-50% of variability of pain
 - Women slightly (8%) more sensitive to heat pain.
- Ethnicity
- Anxiety, catastrophizing, somatization
- What about the role of the brain?

Kim H, et al, Pain 2004
Seminowicz DA, et al, Pain 2006
Pain Genesdb http://www.jbldesign.com/jmogil/enter.html

Individual Differences in the Experience of Pain

- 49°C stimuli
- High vs low sensitivity subjects
- High sensitivity → more activation
 - Caudal and perigenual ACC
 - Primary somatosensory cortex
 - Prefrontal cortex
Pain - Fear and Anxiety

- Individual’s anxiety about, and fear of, painful sensations predicts physical complaints and treatment outcomes in patients with chronic pain (McCraeke, 1998, 1999).
- Patients high in anxiety more likely to develop post-herpetic neuralgia (Dworkin, 1992).
- Patients higher in fear and anxiety more likely to develop increased pain after surgery or injury (Granot, 2005).
- Psychological construct? But why? What are the neurophysiological underpinnings?

Individual difference in pain – Effects of fear of pain

- Right Lateral Orbital frontal activation may reflect attempts by fearful individuals to evaluate and/or regulate possible responses to painful stimuli.

Neuroimaging of Clinical Pain Conditions

The Role of Brain Plasticity
Chronic low back pain causes premature brain gray matter atrophy

- Age related losses in gray matter = 0.5%/year
- Chronic low back pain patients = 5.4% decrease
- Reduced in bilateral prefrontal cortex and right thalamus
- Impact of chronic low back pain is an additional 10 years of brain atrophy
- Duration of chronic low back pain is a strong predictor of gray matter changes

Resting-State Functional Connectivity

- Brain activity continues in the absence of an externally-cued task
- Any brain region will therefore have spontaneous fluctuations in BOLD signal
- A brain region’s “resting” BOLD signal timecourse can be used as the regressor
- Many resting state networks identified with different proposed functions.

Differences in Default Mode Network between Patients and Controls

- 8 diabetic neuropathic pain patients and 8 healthy controls
- Regions with reduced connectivity in patients:
 - Left fusiform gyrus, left lingual gyrus, left inferior temporal gyrus, right inferior occipital, DACC, bilateral pre and post central gyri
- Regions with greater connectivity in patients:
 - Left precuneus, DLPFC, Thalami, Insulae, right mammillary body

Functional Connectivity of Default Mode Network
Increased in Patients with Fibromyalgia

- Increased Connectivity in DMN in Fibromyalgia in sensory/pain related areas

Are These Brain Changes Reversible and What are the Effects of Treatment?

- Chronic Low Back Pain Related Brain Changes Reverse After Treatment
 - 18 patients with chronic low back pain
 - Structural scans and Cognitive tasks at baseline and 6mths after treatment (spine surgery or facet joint injections)
 - After treatment increased cortical thickness in the left dIPFC
 - Increased dIPFC correlated with pain reduction and disability
 - Left dIPFC activity during attention task was abnormal before TX, but normalized after TX

Prescription Opioids Rapidly Change the Human Brain

- 10 patients with low back pain on long acting opioids
- Decreased gray matter in right amygdala
- Increased gray matter in dorsal posterior cingulate, left inferior frontal gyrus, hypothalamus, and pons
- Gray matter atrophy and hypertrophy significantly correlated with morphine dosage

Younger, Chu, D’Arcy, Trott and Mackey (Pain, 2011)

Future Directions: Pain Detection and Pain Biomarkers

Need for Objective Biomarkers of Pain

- Currently rely on self-report of pain and remains the gold standard
- Vulnerable populations
 - Very young
 - Older patients with dementia
 - ICU patients
- Legal system - Thousands of cases each year based on pain and suffering (personal injury, workers comp, med-mal)
- Objective biomarkers
 - Treatment targets
 - Treatment response
- Efforts: HR, Skin Conductance, EEG
- Can we use brain imaging to elucidate the “truth”?

- Training (8 subjects)
 - Painful
 - Non-Painful

- Testing (16 novel subjects)
 - Painful
 - Non-Painful

<< Each map of BOLD signal is plotted in feature space.
<< A boundary line is defined, separating maps associated with painful and non-painful stimulation.
<< Novel maps are plotted into the feature space.
<< Stimuli are classified as painful or non-painful by comparing maps of BOLD signal to the boundary line.

Mackey In Review
Presented at IASP

Detecting Pain from Brain Activity

- 24 healthy subjects
- Trained on 8 subjects, tested on 2 independent groups of 16 subjects (8 each group).
- 14 painful thermal stimuli and 14 non-painful thermal stimuli applied to the left forearm
- S2 had highest discriminant value
- 87% overall accuracy

Chatterjee N, Brown J, Younger J, and Mackey S, PLOS One (2011)
Future Directions

- Neuroimaging of the CNS is advancing our understanding of these mechanisms and pointing the way to future therapeutic targets (e.g., pharmacologic, stimulation, mind-body).
- Personalized pain medicine
- Pain Detection:
 - Identify differences between pain and related conditions such as affective disorders.
 - Investigate different pain conditions to determine commonality.
 - Characterize ability to distinguish physical pain from imagined pain, pain deception, empathy of pain, remembered pain, etc.
 - Incorporate multimodal imaging techniques to improve classification. Also combine with genomics and other biomarkers.
- Keep this technology from being abused.

Stanford Systems Neuroscience and Pain Lab (SNAPL)

- Faculty
 - Sean Mackey, MD, PhD
 - Ian Carroll, MD, MS
 - Jarred Younger, PhD
- Postdoctoral Research Fellows
 - Jiang Ti Kong, MD
 - Mark Johnson, PhD
 - Paul Near, PhD
 - Epamia Bagetilos, PhD
 - Heather Chapin, PhD
- Postdoctoral Education Fellow
 - Sam Lahidji, MD
- Division Research Manager
 - Rebecca McCue
- Research Coordinators
 - Noorulain Noor
 - Debra Clay, RN
 - Laura Jastrzab
 - Rachel Moericke
- Research Assistants
 - Emily Hubbard
 - Kate Wiley

"We study the best things on Earth that hurt"

- Undergraduate Student Research Assistants
 - Jose Sentman
 - Greg Gerod
 - Robin Hajniski
 - Analysia Shimmer
 - Matt Lohan
 - Ian Mackey
- Division Manager
 - Andrew Maller
- Division Administrator
 - Denise Mednick
- Fellowship Coordinator
 - Matthew Chen