Notice: Archived Document

The content in this document is provided on the FDA’s website for reference purposes only. It was current when produced, but is no longer maintained and may be outdated.
Judicious Use of Antimicrobials for Poultry Veterinarians
The material contained in this brochure was developed in cooperation with the American Veterinary Medical Association.

The Food and Drug Administration Center for Veterinary Medicine
INTRODUCTION

The use of drugs in animals is fundamental to animal health and well-being. Antimicrobials are needed for the relief of pain and suffering in animals. For food animals, the gains that have been made in food production capacity would not have been possible without the ability for reliable drugs to contain the threat of disease to animals. The increased capacity of the United States livestock and poultry producer has kept high quality protein available and affordable for the majority of the U.S. consumers and consumers in many other countries. The World Health Organization stated, “Antimicrobials are vital medicines for the treatment of bacterial infections in both humans and animals. Antimicrobials have also proved to be important for sustainable livestock production and for the control of animal infections that could be passed on to humans.” And the report by the National Research Council and Institute of Medicine states, “The benefit to human health in the proper use of antibiotics in food animals is related to the ability for these drugs to combat infectious bacteria that can be transferred to humans by either direct contact with the sick animal, consumption of food contaminated with pathogens from animals, or proliferation into the environment.” However, the use of antimicrobials in food animals is not without risks.

In recent years, concerns about the use of antimicrobial products in food-producing animals have focused on human food safety because foods of animal origin are sometimes identified as the vehicles of food borne disease in humans and, therefore, also vehicles of resistant food borne pathogens and resistant genetic material. The major zoonotic pathogens of concern for the development of antimicrobial resistance are Salmonella spp. and Campylobacter jejuni. A recent report estimated that 80% of the estimated 2.5 million annual human cases in the United States of campylobacteriosis are food borne and that 95% of the 1.4 million annual human cases of nontyphoidal salmonellosis are food borne. This equates to 1.96 million cases of food borne campylobacteriosis and 1.34 million cases of food borne salmonellosis per year in the United States. If a significant percentage of Salmonella or Campylobacter become resistant to the antibiotics used to treat those infections in humans, then there can be a significant impact on human health.

Resistance to antimicrobials existed even before antimicrobials were used. However, this intrinsic form of resistance is not a major source of concern for
human and animal health. The vast majority of drug-resistant organisms have instead emerged as a result of genetic changes, acquired through mutation or transfer of genetic material during the life of the microorganisms, and subsequent selection processes. Mutational resistance develops as a result of spontaneous mutation in a locus on the microbial chromosome that controls susceptibility to a given antimicrobial. The presence of the drug serves as a selecting mechanism to suppress susceptible microorganisms and promote the growth of resistant mutants. Spontaneous mutations are transmissible vertically. Resistance can also develop as a result of transfer of genetic material between bacteria. Plasmids, which are small extra-chromosomal DNA molecules, transposons and integrons, which are short DNA sequences, can be transmitted both vertically and horizontally and can code for multi-resistance. It is believed that the major part of acquired resistance is plasmid-mediated, although the method of resistance transfer varies for specific drug/bacteria combinations.

Resistance depends on different mechanisms and more than one mechanism may operate for the same antimicrobial. Microorganisms resistant to a certain antimicrobial may also be resistant to other antimicrobials that share a mechanism of action or attachment. Such relationships, known as cross-resistance, exist mainly between agents that are closely related chemically (e.g. neomycin-kanamycin), but may also exist between unrelated chemicals (e.g. erythromycin-lincomycin). Microorganisms may be resistant to several unrelated antimicrobials. Use of one such antimicrobial will therefore also select for resistance to the other antimicrobials.

Definitive answers about the safety of antimicrobial use in animals remain scientifically challenging, but more information is accumulating that raises concerns about food safety.

As a result of treatment of the animal with antibiotics, food borne microbes may become resistant to the antibiotics used to treat human disease. When an animal is treated with an antimicrobial drug, a selective pressure is applied to all bacteria exposed to the drug. Bacteria that are sensitive to the antimicrobial are killed or put at a competitive disadvantage, while bacteria that have the ability to resist the antimicrobial have an advantage and are able to grow more rapidly than more susceptible bacteria. In addition, bacteria can become resistant when resistance genes are passed from a resistant bacterium to a sensitive one. Thus, antimicrobial agents may increase the prevalence of resistant bacteria among both target pathogens and normal bacterial flora. For example, despite several restrictions placed on the use of the two approved poultry fluoroquinolone products in the U.S., ciprofloxacin-resistant Campylobacter were recently isolated from 20% of domestic retail chicken products sampled. Molecular subtyping revealed an association between resistant C. jejuni strains from chicken products and C. jejuni strains from domestically acquired human cases of campylobacteriosis. The 1998 Annual Report of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS) reported 13.3% of the human Campylobacter isolates were resistant to ciprofloxacin. Preliminary data from 1999 reveal an increase to 21% resistance. Temporal relationships between ciprofloxacin-resistant Campylobacter and approval of fluoroquinolones for food-
producing animals have also been noted in the Netherlands, the United Kingdom, and Spain.

Similarly, a temporal association has been noted between lessened susceptibility to fluoroquinolones among Salmonella enterica serotype Typhimurium Definitive Type 104 (DT104) and the approval and use of a fluoroquinolone for veterinary therapeutic use in the United Kingdom. This organism has also been identified in livestock and poultry in the U.S. Human disease caused by DT104 in the U.S. has been associated with consumption of unpasteurized dairy products and direct contact with livestock. NARMS has identified small numbers of human Salmonella isolates in the U.S. with reduced susceptibility to ciprofloxacin. Although the numbers are small, there is a worrisome upward trend of reduced susceptibility to ciprofloxacin as measured by the percentage of Salmonella isolates with a minimum inhibitory concentration equal to or greater than 0.25 mg/ml. The percentage rose from 0.4% of the Salmonella isolates in 1996 to 0.6% in 1997, 0.7% in 1998, and 1.3% in 1999 (preliminary data as of October 1, 1999).

NARMS also tests Salmonella and Campylobacter isolates obtained from several species of animals. The isolates come from diagnostic laboratories, healthy animals on farms, and raw products collected at slaughter or processing plants. The Salmonella isolates are tested for susceptibility to 17 antimicrobials and the Campylobacter isolates are tested for resistance against eight antimicrobials. In 1998, resistance of the Salmonella isolates was most common to tetracycline (38% of the isolates), sulfamethoxazole (32%), streptomycin (35%), ampicillin (18%), ticarcillin (17%), kanamycin (15%), and gentamicin (11%). Resistance of the Campylobacter isolates was most common to tetracycline (60%), nalidixic acid (16%), ciprofloxacin (11%), clindamycin (7%), and azithromycin and erythromycin (6%) each. Resistance to multiple antimicrobials is a concern. As organisms become resistant to more antimicrobials, the problem of therapy is compounded. In 1998, 40% of the animal Salmonella isolates were resistant to 2 or more antimicrobials. This is an increase from 25% in 1997. In 1998, 18% were resistant to 5 or more antimicrobials compared to 11% in 1997.

Unfortunately there is not a national monitoring system that tests for resistance in animal pathogens so we are unable to track and report trends.

This document has been prepared to help poultry veterinarians in their efforts to use antimicrobials judiciously to minimize the development of resistance in human and animal pathogens while maintaining effectiveness to treat and prevent diseases of chickens and turkeys.

JUDICIOUS USE

Whenever an animal or human host is exposed to antimicrobials, there will be some degree of selection for resistant bacterial population. Selection will depend upon the type of antimicrobial used, the number of individuals treated, the dosage regimen, and the duration of treatment. Therefore, it is vital to limit
therapeutic antimicrobial use in animals and humans to those situations where
they are needed.

The veterinary profession shares the concerns of the public, governmental
agencies, and public health community regarding the broad issue of antimicro­
bial resistance and specifically the potential risk of resistance developing in
animals with subsequent transfer to humans. Because of that concern and to
maintain the long-term effectiveness of antimicrobials for animal and human use
and to increase the possibility of future antimicrobial drug approvals for the
treatment of animals, the American Veterinary Medical Association committed to
judicious use of antimicrobials by veterinarians for the prevention, control, and
treatment of animal diseases.

The AVMA started a profession-wide initiative, including companion and food
animal practitioner groups, to develop and implement judicious use principles for
the therapeutic use of antimicrobials by veterinarians. The AVMA Executive
Board has approved a general set of judicious use principles. The species
practitioner groups, including the American Association of Avian Pathologists,
are using the general principle to develop more detailed guidelines appropriate to
each species.

The overarching position of the AVMA is, “When the decision is reached to use
antimicrobials for therapy, veterinarians should strive to optimize therapeutic
efficacy and minimize resistance to antimicrobials to protect public and animal
health.” The objectives of the AVMA are to:

● Support development of a scientific knowledge base that provides the
 basis for judicious therapeutic antimicrobial use,
● Support educational efforts that promote judicious therapeutic
 antimicrobial use,
● Preserve therapeutic efficacy of antimicrobials, and
● Ensure current and future availability of veterinary antimicrobials.

Judicious use of antimicrobials is an integral part of good veterinary practice.
It is an attitude to maximize therapeutic efficacy and minimize selection of
resistant microorganisms. Judicious use principles are a guide for optimal use of
antimicrobials. They should not be interpreted so restrictively as to replace
professional judgment of practitioners or to compromise animal health or
welfare. In all cases, animals should receive prompt and effective treatment as
deemed necessary by the prescribing or supervising veterinarian.

There are fifteen general principles which emphasize preventive actions to
avoid disease, consideration of other options before choosing to use antimicrobi­
als, and consideration of use of less important drugs before using the drugs of
last resort, especially those that are very important to human or animal medicine.

The principles with explanatory notes are:

1) Preventive strategies, such as appropriate husbandry and hygiene, routine
health monitoring, and immunizations, should be emphasized.
Antimicrobial use should not be viewed in isolation from the disciplines of animal management, animal welfare, husbandry, hygiene, nutrition, immunology and vaccination. Diseases must be controlled to reduce the need for antimicrobial use and they can only be controlled successfully by a holistic approach. The objective is to prevent disease to the extent possible so that antimicrobial treatment is not required. In food animals, antimicrobial use should always be part of, and not a replacement for, integrated disease control programs. These programs are likely to involve hygiene and disinfection procedures, biosecurity measures, management alterations, changes in stocking rates, vaccination, and other measures. The examples of preventive strategies are not exhaustive. Continued antimicrobial use in such control programs should be regularly assessed regarding effectiveness and whether their use can be reduced or stopped.

Additional research is needed on economical and efficacious alternatives to the use of antimicrobials and to evaluate their effects on selection of resistant bacteria. Evaluation is needed of vaccines, probiotics, competitive exclusion principles and products, nutrition, and new health technologies and strategies.

2) Other therapeutic options should be considered prior to antimicrobial therapy.

Altering the temperature in the poultry house may aid the birds in recovering from the disease.

3) Judicious use of antimicrobials, when under the direction of a veterinarian, should meet all the requirements of a valid veterinarian-client-patient relationship.

The use of prescription antimicrobials or any antimicrobial used in an extralabel manner requires a valid veterinarian-client-patient relationship. A valid VCPR exists when all of the following conditions have been met:

a) The veterinarian has assumed the responsibility for making clinical judgments regarding the health of the animal(s) and the need for medical treatment, and the client has agreed to follow the veterinarian’s instructions.

b) The veterinarian has sufficient knowledge of the animal(s) to initiate at least a general or preliminary diagnosis of the medical condition of the animal(s). This means that the veterinarian has recently seen and is personally acquainted with the keeping and care of the animal(s) by virtue of an examination of the animal(s) or by medically appropriate and timely visits to the premises where the animal(s) are kept.

c) The veterinarian is readily available for follow-up evaluation, or has arranged for emergency coverage, in the event of adverse reactions or failure of the treatment regimen.

When it is not possible to make a direct clinical evaluation, the diagnosis should be based on past experience, on knowledge of the farm epidemiological status, and on on-going susceptibility testing.

4) Prescription, Veterinary Feed Directive, and extralabel use of antimicrobials must meet all the requirements of a valid veterinarian-client-patient relationship.
Federal regulations mandate a valid VCPR for the dispensing and use of prescription and VFD drugs and for extralabel use of drugs.

5) **Extralabel antimicrobial therapy must be prescribed only in accordance with the Animal Medicinal Drug Use Clarification Act amendments to the Food, Drug, and Cosmetic Act and its regulations.**

No drug can be marketed unless its quality, safety, and efficacy have been demonstrated. Therefore, the first line of choice should be based on the products approved for the species and the indication concerned. When no suitable product is approved for a specific condition or species, or the approved product is ineffective, the choice of an alternative product should be based, whenever possible, on the results of well performed scientific studies and a proven efficacy for the condition and species concerned.

a) For food animals, extralabel drug use (ELDU) is not permitted if a drug exists that is labeled for the food animal species and contains the needed ingredient, is in the proper dosage form, is labeled for the indication, and is clinically effective.

b) ELDU is permitted only by or under the supervision of a veterinarian.

c) ELDU is allowed only for FDA approved animal and human drugs.

d) ELDU is permitted for therapeutic purposes only when an animal’s health is suffering or threatened. ELDU is not permitted for production drugs (e.g., growth promotion).

e) ELDU in feed is prohibited.

f) ELDU is not permitted if it results in a violative food residue, or any residue that may present a risk to public health.

g) ELDU requires scientifically based drug withdrawal times to ensure food safety.

h) The record and labeling requirements must be met.

i) The FDA prohibits specific ELDU. For example, the following drugs are prohibited for extralabel use in food animals: chloramphenicol, clenbuterol, diethylstilbestrol, dimetridazole, ipronidazole, other nitroimidazoles, furazolidone (except for approved topical use), nitrofurazone (except for approved topical use), sulfonamide drugs in lactating dairy cows (except approved use of sulfadimethoxine, sulfabromomethazine, and sulfaethoxypyridazine), fluoroquinolones, and glycopeptides (example is vancomycin).

6) **Veterinarians should work with those responsible for the care of animals to use antimicrobials judiciously regardless of the distribution system through which the antimicrobial was obtained.**

Since 1988, FDA has approved new therapeutic antimicrobials for use in animals as prescription-only products. The prescription-only policy is based on the need to assure the proper use of antimicrobials through precise diagnosis and correct treatment of disease to minimize animal suffering and to avoid drug residues in food. However, many of the older antimicrobials are available for over-the-counter sale to producers. For these drugs, the FDA has determined that the producers can use the antimicrobials safely and effectively. Regular, close veterinary involvement can assist the producers by providing informed advice and guidance on judicious use. Extralabel uses of over-the-
counter antimicrobials require that a veterinarian and the producer follow the constraints of AMDUCA, including the establishment of a valid veterinarian-client patient relationship. Quality assurance programs in some industries also provide guidance to the producers on proper use of drugs.

7) Regimens for therapeutic antimicrobial use should be optimized using current pharmacological information and principles.

For labeled use of an antimicrobial, the most accessible source of information is the label, which includes the package insert. For extralabel use, the Food Animal Residue Avoidance Databank can assist with determinations of withdrawal times. To assist with determinations of possible alternatives to antimicrobial therapy and with drug use regimens when using antimicrobials, several veterinary organizations and one producer organization are funding the development of the Veterinary Antimicrobial Decision Support System (VADS). The objective of VADS is to provide veterinarians with a source of easily accessible information on the therapy of specific diseases to help them make wise treatment decisions. The new decision support system will allow veterinarians to access current, peer-reviewed information when selecting treatment regimens. The available information will include a full-range of therapeutic options, and the supporting data for each antimicrobial available to treat a disease. The pathogen data will include susceptibility profile information, when available, as well as an interpretation of susceptibility breakpoints as related to clinical efficacy.

The choice of the right antimicrobial needs to take into account pharmacokinetic parameters, such as bioavailability, tissue distribution, half-life, tissue kinetics to ensure the selected therapeutic agent reaches the site of infection. Duration of withdrawal times may be a factor in choosing suitable products. Considerations must also be given to the available pharmaceutical forms and to the route of administration. Prolonged oral use should be avoided, as most of the concerns with regard to resistance are associated with the selection and transfer of resistant bacteria that inhabit the gut.

8) Antimicrobials considered important in treating refractory infections in human or veterinary medicine should be used in animals only after careful review and reasonable justification. Consider using other antimicrobials for initial therapy.

In this context, this principle takes into account development of resistance or cross-resistance to important antimicrobials. In December 1998, the FDA made available “A Proposed Framework for Evaluating and Assessing the Human Safety of the Microbial Effects of Antimicrobial New Animal Drugs Intended for Use in Food-Producing Animals” (Framework Document). A concept introduced by the Framework Document is the categorization of antimicrobials based on their unique or relative importance to human medicine. While the criteria for categorization remain under discussion, it is expected that antimicrobials such as the fluoroquinolones and third generation cephalosporins will probably be classified in the most important category. The fluoroquinolones are also very important for the treatment of colibacillosis in poultry.

9) Use narrow spectrum antimicrobials whenever appropriate.

Generally, antimicrobials with a broad spectrum of activity lead to development of resistance in non-target microorganisms more rapidly than those with a
narrow spectrum because they exert a selection pressure on a greater number of microorganisms. Therefore to minimize the likelihood of broad antimicrobial resistance development, where an appropriate narrow spectrum agent is available, it should be selected in preference to a broad spectrum agent. The theory is that narrow spectrum antimicrobials will have lessened effect on non-target species of bacteria and therefore will lessen the chances of resistance development in commensal bacteria.

10) Utilize culture and susceptibility results to aid in the selection of antimicrobials when clinically relevant.

Susceptibility profiles can vary between flocks. Periodic culture and susceptibility testing can provide historical data on which to base future empirical treatment as well as assist with refractory infections. Ideally the susceptibility profile of the causal organism should be determined before therapy is started. The veterinarian has a responsibility to determine the applicability to the specific disease indication of the breakpoints used by the laboratory. In disease outbreaks involving high mortality or where there are signs of rapid spread of disease, treatment may be started on the basis of a clinical diagnosis before susceptibility results are obtained. Even so, the susceptibility of the suspected causal organism should, where possible, be determined so that if treatment fails it can be changed in the light of the results of susceptibility testing. Antimicrobial susceptibility trends should be monitored over time, and such monitoring used to guide clinical judgement on antibiotic usage.

Susceptibility tests are intended to be a guide for the practitioner, not a guarantee that an antimicrobial will be effective in therapy. Susceptibility testing can only give an indication of what the clinical activity of the drug will be. The effect of the drug in vivo depends on its ability to reach the site of infection in a high enough concentration, the nature of the pathological process, and the immune responses of the host.

11) Therapeutic antimicrobial use should be confined to appropriate clinical indications. Inappropriate uses such as for uncomplicated viral infections should be avoided.

Veterinarians should use their professional knowledge and clinical judgment to decide whether viral infections are or are likely to involve a superimposed bacterial infection.

12) Therapeutic exposure to antimicrobials should be minimized by treating only for as long as needed for the desired clinical response.

Theoretically infections should be treated with antimicrobials only until the host’s defense system is adequate to resolve the infection, but that period is difficult to judge. Limiting the duration of use to only that required for therapeutic effect will minimize the exposure of the bacterial population to the antimicrobial. The adverse effects on the surviving commensal microflora are minimized and the medical impact of the remaining zoonotic organisms is reduced. However, treatment for too short a period can also be problematic because it can lead to recrudescence of the infection. It is then likely that a higher percentage of the pathogens involved in the recrudescence episode have reduced susceptibility to the antimicrobial.
13) Limit therapeutic antimicrobial treatment to ill or at risk animals, treating the fewest animals indicated.

In some circumstances, if a number of animals in a group have overt signs of disease, both sick and healthy animals will usually need to be treated with therapeutic levels of an antimicrobial. This is intended to cure the clinically affected animals, reduce the spread of the disease, and arrest disease development in animals not yet showing clinical signs.

It is recognized that strategic medication may be appropriate in certain precisely defined circumstances. However, this should be part of an integrated disease control program and the need for such medication should be regularly re-evaluated. The use of antimicrobials in the absence of clinical disease or pathogenic infections should be restricted to situations where past experience indicates that the group of animals may develop the disease if not treated is high. In addition, long-term administration to prevent disease should not be practiced without a clear medical justification.

14) Minimize environmental contamination with antimicrobials whenever possible.

Unused antimicrobials should be properly disposed. Also some antimicrobials may be environmentally stable in manure. If the antimicrobials are not bound in an inactive form, environmental exposure could contribute to resistance development. Consideration may need to be given to disposal methods that will not recycle resistant organisms to humans or animals.

15) Accurate records of treatment and outcome should be used to evaluate therapeutic regimens.

Outcome records can greatly assist with design of future empiric treatment regimens.

The implementation of these general judicious use principles and the more specific guidelines developed for each species of animal will reduce the development of resistant zoonotic pathogens and commensals in animals and will lessen the risk of a human health impact related to the therapeutic use of antimicrobials in animals.

American Veterinary Medical Association Principles of Judicious Therapeutic Use of Antimicrobials
-Their Application in the Poultry Industry-

Judicious Use Principles for Poultry

- Preventive strategies, such as appropriate husbandry and hygiene, routine health monitoring, and immunization, should be emphasized.

The foundation of the success in the poultry industry is through disease prevention management. Farms utilizing all-in-all-out production minimize the presence of multiple ages of flocks on farms to help in disease prevention. Biosecurity programs in place on poultry farms prevent the introduction of diseases. The use of coveralls, boots
and head coverings prevents the introduction and spread of disease within and between farms. Preventative disease programs based on vaccination strategies reduce disease outbreaks in poultry. The poultry industry is the leader in novel vaccination procedures for vaccination of large numbers of poultry. Breeder and meat production flocks are monitored for protective response to vaccinations. Serological monitoring of disease exposure forms the basis of our strategic vaccination programs.

- **Other therapeutic options should be considered prior to antimicrobial therapy.**

 The poultry industry approaches the treatment of diseases with antimicrobial agents very seriously. Because of the cost of disease treatment with antimicrobials, therapeutic antimicrobial intervention is used only as a tool to treat active disease. Management adjustments are made when disease outbreaks occur by reacting to environmental temperature, ventilation, and litter moisture to minimize the impact of any disease condition in flocks. Supportive therapy with vitamins and electrolytes are utilized in some cases of disease outbreaks. All of the above strategies help in preventing the use of antimicrobials for treatment.

- **Judicious use of antimicrobials, when under the direction of a veterinarian, should meet all requirements of a valid veterinarian-client-patient relationship.**

 Poultry veterinarians, in integrated companies, closely monitor antimicrobial use in their poultry flocks. They maintain close contact with service technicians and managers related to the use of antimicrobials. Veterinarians are involved in the training of all individuals that will ultimately be following veterinary directions for antimicrobial use. Antimicrobials are used always under the direction and knowledge of the company veterinarian or veterinary consultant.

- **Prescription, Veterinary Feed Directive, and extralabel use of antimicrobials must meet all the requirements of a valid veterinarian-client-patient relationship.**

 At the present time, no feed additives are approved for prescription or by veterinary feed directive in poultry. If these products are approved in the future, strict compliance with regulations will be done with the same policies set for other antimicrobial use and under the guidelines of AMDUCA.

- **Extralabel antimicrobial therapy must be prescribed only in accordance with the Animal Medicinal Drug Use Clarification Act amendments to the Food, Drug, and Cosmetic Act and its regulations.**

 Veterinarians in integrated poultry companies strive to use antimicrobials at labeled indications and dosage. When prescribing extralabel use of antimicrobials, it is performed in compliance with AMDUCA.

- **Veterinarians should work with those responsible for the care of animals to use antimicrobials judiciously regardless of the distribution system through which the antimicrobial was obtained.**
Veterinarians in poultry are responsible for the production of poultry at the breeder and meat bird level involving multiple complexes in different geographic locations. Veterinarians work closely with service technicians, service persons, and production managers and are in close contact with all individuals responsible for the use of therapeutic antimicrobials. These individuals are trained in disease recognition and medication strategies. The veterinarian, however, will always be responsible for the initiation and evaluation of antimicrobial therapy.

- Regimens for therapeutic antimicrobial use should be optimized using current pharmacological information and principles.

Continuing education programs by the American Veterinary Medical Association, American Association of Avian Pathologists, and technical updates from pharmaceutical technical service veterinarians, keep poultry veterinarians and managers up to date on current information regarding antimicrobial use.

- Antimicrobials considered important in treating refractory infections in human or veterinary medicine should be used in animals only after careful review and reasonable justification. Consider using other antimicrobials for initial therapy.

Poultry veterinarians recognize the importance of antimicrobial resistance in both human and veterinary medicine. Important antimicrobials used in both poultry and humans are held in reserve to minimize the rate of resistance development. Antimicrobials such as the fluoroquinolones are held in reserve for the treatment of bacterial disease refractory to other antimicrobials.

- Use narrow spectrum antimicrobials whenever appropriate.

Narrow spectrum, bactericidal antimicrobials are chosen when culture and sensitivity results suggest therapeutic success.

- Utilize culture and susceptibility results to aid in the selection of antimicrobials when clinically relevant.

Before antimicrobial therapy is initiated, based on mortality and morbidity, typically affected birds are euthanized and samples taken for bacterial culture and susceptibility testing. This is common practice in the poultry industry today. The poultry veterinarian uses this information to make informed decisions regarding the appropriate antimicrobial therapy to be initiated. This information is kept as part of the flock and farm history as information to determine changes in antimicrobial susceptibility patterns on farms.

- Therapeutic antimicrobial use should be confined to appropriate clinical indications. Inappropriate uses such as for uncomplicated viral infections should be avoided.

Viral, fungal and other non-bacterial infections are not treated in poultry with
antimicrobials. Veterinarians pay special attention to disease outbreaks to determine if, and when antimicrobial therapy is warranted. Every effort is made to address disease outbreaks with other disease management strategies prior to the initiation of antimicrobial therapy. Mortality and morbidity are closely monitored; diagnostic evaluations are performed to confirm bacterial involvement prior to antimicrobial therapy.

- **Therapeutic exposure to antimicrobials should be minimized by treating only for as long as needed for the desired clinical response.**

 Due to the cost of antimicrobial use in poultry, veterinarians and service technicians closely monitor antimicrobial treatments to minimize antimicrobial therapeutic exposure in flocks. Flocks are treated for the desired clinical response avoiding prolonged use of antimicrobials. Morbidity and mortality are used to base clinical judgments as to duration of therapy.

- **Limit therapeutic antimicrobial treatment to ill or at risk animals, treating the fewest animals indicated.**

 In population medicine involving flocks, it is recognized that in a disease outbreak, all birds are not infected at the same time with the disease to which antimicrobial therapy is warranted. However, birds in the same house are “at risk” to the same primary disease that often results in secondary bacterial infections. Only birds within the same house ill or at risk are treated. Adjacent houses, not clinically affected with disease, are not treated. Cost figures for medication are usually maintained to the one-hundredth of a cent per pound of live weight. If therapeutic antimicrobial intervention isn’t cost effective and a low number of birds are infected per house, the cost of treatment will usually dictate that no antibiotics be used at all.

- **Minimize environmental contamination with antimicrobials whenever possible.**

 Every effort is made to avoid environmental contamination with antimicrobials. The cost of antibiotics generally ensures that the antimicrobial be used specifically in the diseased flock and not introduced into the environment unnecessarily.

- **Accurate records of treatment and outcome should be used to evaluate therapeutic regimens.**

 Record keeping is an integral part of the integrated poultry industry. Production records including medication costs, evaluation and outcome are kept and placed in the history of the farm for future reference in determining any changing antimicrobial susceptibility patterns.