Tobacco-related mortality rates, RT, were defined by Gartner et al. as:

- chronic obstructive pulmonary disease (COPD);
- cancers of the lung, upper aerodigestive tract, pancreas, bladder and liver.

Age- and gender-specific rates for selected causes of death were adjusted for smoking status, with lifetime smokers considered to be at higher risk than former smokers.

Critical review of their paper and related publications. We modified their assumptions and inferences needed (due to the lack of documentation).

Results:

- No exact replication of the calculations of Gartner et al. was possible due to differences in methodology.
- We used the lifetime smoking history data from the CPS-II study to calculate disease-specific SIRs for current vs. former smokers.
- Compared to former smokers, snus users were expected to be at lower risk than cigarette smokers of smoking-related diseases. Gartner et al. did not explain why the relative risks for only three diseases were compared.
- Disease-specific mortality rates are readily available from the CPS-II study and other sources.
- Disease-specific relative risks were derived from data on current vs. former smokers using the multistate life tables approach.
- We compared snus users in the population. The relative risk of snus vs. current smoking was derived from relative risk estimates for different diseases.
- The model was not applied to any other population or subpopulation. Smoking cessation is a complex process influenced by individual characteristics.

Discussion:

- The results of this analysis should be applied as an average benefit to the population.
- The methods developed for estimating differences in population life expectancy due to smoking cessation can be applied to other populations and subgroups.
- The results of this analysis can be used to offset the gains in life expectancy due to current smoking.
- The results may be applied to other populations with similar characteristics.

Summary:

- The methods and assumptions underlying the calculation of the reduction in population life expectancy due to smoking cessation can be applied to other populations and subgroups.
- The results of this analysis can be used to offset the gains in life expectancy due to current smoking.
- The methods developed for estimating differences in population life expectancy due to smoking cessation can be applied to other populations and subgroups.
- The results of this analysis can be used to offset the gains in life expectancy due to current smoking.
- The results may be applied to other populations with similar characteristics.

References: