POSTERIOR CERVICAL SCREW CLASSIFICATION

NORTH AMERICAN SPINE SOCIETY
HISTORY OF POSTERIOR CERVICAL FIXATION

Spinous process wiring for Pott’s Disease
Hadra BE, Transactions of AOA 1891: 4, 206.

Sublaminar wiring for atlantoaxial instability

Contoured metal loop/wiring for occipitocervical instability

Posterior lower cervical screw/plate for traumatic spine injury

Contoured plate/screw fixation for occipitocervical instability
POSTERIOR CERVICAL BONE SCREWS

- More than three decades of surgical experience
 - Described in 1980’s by Roy-Camille and Magerl
 - Initially applied to treatment of traumatic cervical spine injury
 - Biomechanically similar or superior to available alternatives
 - Gill K et al, Spine 1988: 13, 813. Wiring, clamping, 2 lat mass screw fixation techniques in cadavers Plate/bicortical screw fixation stiffest
 - Mihara H et al, Spine 2001: 26, 1662. 3 Wiring, 1 lat mass screw fixation technique compared in cadavers Similar restoration of biomechanical stability
 - Richter M et al, Spine 2002: 27, 1724. 1 Wiring, 3 transarticular screw, 1 isthmic screw, 1 lat mass screw in C1C2 Transarticular screw fixation best, isthmic and lat mass screw good biomechanical alternatives
POSTERIOR CERVICAL BONE SCREWS

• More versatile than available alternatives
 • Cervical bone screws offer more options compared with wiring
 • Applicable when spinous process/laminar fractures/defects present
 • Allows for sparing of motion segments
 • Cervical bone screws replace inadequate alternatives
 • Methylmethacrylate fixation
 • Several hook techniques
DORSAL CERVICAL FIXATION TECHNIQUES

- Wiring Techniques
 - Interspinous
 - Facet
 - Triple Wire
POSTERIOR CERVICAL WIRING LIMITATIONS

- Tension band resists flexion
- Poorly resists rotation
- Doesn’t resist extension
CERVICAL CLAMP TECHNIQUES

LIMITATIONS

- Biomechanics of clamps similar to that of wiring techniques: Tension band only
- Does NOT intrinsically resist translation or rotation
POSTERIOR CERVICAL BONE SCREWS

- Commonly applied and commonly reported
 - Pubmed search “posterior cervical bone screw”: 1530 references
 - Pubmed search “lateral mass screw”: 564 references
 - Other posterior cervical screw applications include:
 - Transarticular screws (across C1-2)
 - Pars interarticularis screws (at C2)
 - Pedicle screws (typically at C2 or C7)
Figure 6. Technique for lateral mass screw placement for the (A) Roy-Camille, (B) Magerl, (C) Anderson, (D) An. (Reprinted with permission.)
POSTERIOR CERVICAL LATERAL MASS ANATOMY
C7 PEDICLE SCREWS
C1 LATERAL MASS C2 PEDICLE SCREW

• C1-2 Instability
 • Strength of construct similar to that of transarticular screws
 • Easier to apply
 • Provides alternative avenue of fixation
SAFE AND EFFECTIVE TECHNIQUE

• Neurovascular injuries are infrequent
 • Unusual with lateral mass screws
 654 facet screws in 78 patients
 No vertebral artery injury, 0.6% nerve root injury
 • Sekhon LH, J Spinal Disord Tech 2005: 18, 297.
 1026 consecutive facet screws in 143 patients
 No vascular/ neurological injuries
 457 facet screws in 97 patients
 No serious vascular/ neurological injuries

• 1-4% with C1-C2 transarticular screws
• 1-5% with subaxial pedicle screws (C3-6 insertion infrequent in US)
SAFE AND EFFECTIVE TECHNIQUE

- Arthrodesis (fusion) rates very high
 - 85-100% at C1-2
 - 90-100% subaxial spine (C3-C7)
POSTERIOR CERVICAL SCREW FIXATION

- Safe and Effective
 - Low rate of neurovascular injury in lat mass and pedicle fixation
- Comparable to other pedicle screw applications
 - Similar to Class II thoracolumbar pedicle screw fixation
- Studied in a variety of clinical conditions:
 - Trauma, neoplasm, degenerative disease, myelopathy
- Application when other techniques not feasible
 - Laminar/spinous process fracture, laminectomy
- Class II designation (from unclassified) clinically justified
 - Cervical screw fixation is as safe and effective as predicate