Industry Perspective on the Clinical Development of Systemic Products for the Treatment of Atopic Dermatitis in Pediatric Patients with Inadequate Response to Topical Prescription Therapy

FDA Dermatologic and Ophthalmic Drugs Advisory Committee Meeting
March 9, 2015
Industry Presenters

Dr. René van der Merwe MBChB, MSc, FFPM
Senior Director - Clinical Development
Respiratory and Inflammation
MedImmune, Ltd.

Dr. Athos Gianella-Borradori, MD
Chief Medical Officer
Chugai Pharma USA, LLC
Overview of Atopic Dermatitis (AD)
Atopic Dermatitis Overview

- Chronic inflammatory itchy skin condition that develops in early childhood
- It is relapsing/remitting by nature
- Significantly impairs quality of life due to vicious cycle of intense itching & scratching, insomnia, depression and anxiety
- Increased susceptibility to bacterial, viral, and fungal infections
Atopic Dermatitis Overview

- Complex interaction of genetic and environmental factors
- Lesional skin characterized by:
 - Impaired protective barrier
 - Deficient innate immune response
 - Predominantly Th2 mediated inflammation
 - ~80% of AD patients have elevated serum IgE levels and increased allergen specific responses
- Common dermatitis triggers e.g. irritants, allergens, microbes, weather changes, etc.
Atopic Dermatitis Overview

• ~30% of children with AD will develop asthma and/or allergic rhinitis (including hayfever)\(^1\)
 o This sequence of events is referred to as the ‘atopic march’

\(^1\) Hanifin 2007
Atopic Dermatitis Overview

• AD persists in 80+% of US children and adolescents\(^2\)

• Many AD cases clear or improve during childhood, whereas others persist into adulthood

 o Up to 70% of children who develop AD between 6 months-5 years of age, have spontaneous remission before adolescence\(^3\)

• Evidence suggest prevalence of AD decreases as age increases in children\(^4,5\)

• Severity tends to increase with age\(^6\)

 o Children with severe disease are more likely to have a protracted disease course and a significantly worse quality of life compared with those with more mild disease

\(^2\) Margolis 2014; \(^3\) Bieber 2008; \(^4\) Furue 2011; \(^5\) Shaw T, et al; \(^6\) Silverberg and Simpson 2014
Target Population Prevalence

• There are very little demographic data available on children with AD who are inadequately treated with topical or systemic treatment.

• It can be extrapolated from older data that a proportion of moderate and severe patients will respectively represent those who inadequately respond to topical treatment or those who receive systemic treatment.
Severity in US Pediatric AD Population

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Atopic Dermatitis Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild (N=7198)</td>
</tr>
<tr>
<td></td>
<td>Percent (95% CI)</td>
</tr>
<tr>
<td><1</td>
<td>76.9 (69.9-84.0)</td>
</tr>
<tr>
<td>1 - 3</td>
<td>76.2 (72.2-80.2)</td>
</tr>
<tr>
<td>3 - 7</td>
<td>67.7 (63.3-72.2)</td>
</tr>
<tr>
<td>7 - 13</td>
<td>63.1 (59.0-67.3)</td>
</tr>
<tr>
<td>13 - 17</td>
<td>62.6 (57.4-67.7)</td>
</tr>
</tbody>
</table>

Silverberg and Simpson 2014
Age-related Differences in Disease Manifestation

• AD occurs in three main age-related stages
 o Infants (0-2 years): highly pruritic, red, scaly crusted, weeping patches on cheeks and extensor surfaces of extremities; scalp
 o Childhood (2 to 12 years): xerosis, papulation frequently in flexural surfaces of extremities; thickened plaques, excoriation
 o Adolescence/Adulthood: flexural surfaces, facial, hands, feet

<table>
<thead>
<tr>
<th>Infants (0-2 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Extensor surfaces of extremities</td>
</tr>
<tr>
<td>• Face (forehead, cheeks, chin)</td>
</tr>
<tr>
<td>• Neck</td>
</tr>
<tr>
<td>• Scalp</td>
</tr>
<tr>
<td>• Trunk</td>
</tr>
</tbody>
</table>

Childhood (2 years to puberty)

| • Flexural surfaces of extremities |
| • Neck |
| • Wrists, ankles |

Adolescence/adulthood

| • Flexural surfaces of extremities |
| • Hands, feet |

7Rudikoff 1998; 8Table adapted from Wasserbauer N, Ballow M, 2009
Challenges in AD – Definitions\(^9\)

- Lack of universally accepted, formal definition of “inadequate response,” “intolerance,” “refractory” and “resistance” in AD

- One interpretation:

<table>
<thead>
<tr>
<th>Intolerance to topical treatment: patient’s opinion after at least 2 weeks of therapy with a new topical treatment, because of worsening of lesions or any difficulty to apply the drug (ointment not supported, pain, burning or any uncomfortable sensation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to topical treatment: physician’s opinion after at least 2 weeks of therapy with an appropriate dosage of the treatment which has not changed or has aggravated the clinical score</td>
</tr>
</tbody>
</table>

\(^9\)Darsow U et al 2010
Challenges in AD – Disease Severity Scales

• AAD identified 28 different scales
• No gold standard identified
• Common Scales:
 o SCORing Atopic Dermatitis (SCORAD) index
 o Eczema Area and Severity Index (EASI)
 o Static Investigator’s Global Assessment (sIGA)
 o Six Area, Six Sign Atopic Dermatitis (SASSAD)
• Lack of uniformity in scales
• Differences in requirements between health authorities
American Academy of Dermatology (AAD)
American Academy of Dermatology Guidelines10

• In general, no differentiation in use of agents made between adults and pediatrics
• Currently, no FDA approved treatment for patients with AD who inadequately respond to topical therapy are recommended
• Majority of patients with AD achieve improvement and control of symptoms using combination of
 o Nonpharmacologic interventions (e.g. emollients, bleach baths)
 o Conventional topical therapies (e.g. corticosteroids, calcineurin inhibitors)
 o Lifestyle and/or environmental modifications
American Academy of Dermatology Guidelines

• If not controlled by previous methods, phototherapy recommended
• If still not adequately controlled, systemic immunomodulating agents recommended (all “off-label” use)
• Systemic corticosteroids should generally be avoided
 o Some are FDA approved for control of severe or incapacitating AD to conventional treatments, but not recommended
 o Unfavorable risk-benefit profile in both short- and long-term use
 o Rebound of AD following discontinuation is an important reason to avoid systemic CS
 o Not recommended unless used to manage comorbid conditions (e.g. asthma)

10 AAD guidelines 2014 Part 3
American Academy of Dermatology Guidelines

- Systemic immunomodulating agents recommended by AAD (all “off-label” use)
 - Cyclosporine A
 - Generally reserved for refractory disease
 - Both pediatric and adult patients treated with CSA experience a reduction in signs and symptoms of AD
 - For both short-term and long-term use (up to 12 months)
 - Azathioprine
 - Use in recalcitrant disease or when disease causes significant social impact
 - Patients experience a reduction in AD disease activity
 - Methotrexate
 - Treatment effect in refractory AD is unclear
 - Mycophenolate mofetil
 - Use as alternative therapy for patients with AD, treatment effect variable
 - “…should be considered a relatively safe alternative systemic therapy for pediatric patients with refractory AD.”
Systemic Agents: Adverse Effects

<table>
<thead>
<tr>
<th>Systemic Agent</th>
<th>Black Box Warnings/Adverse Effects</th>
</tr>
</thead>
</table>
| Cyclosporine A | Risk of infection
Malignancy, hypertension, nephrotoxicity and structural renal damage, hypertrichosis, gingival hyperplasia, and paresthesia. |
| Azathioprine | Chronic immunosuppression with increased malignancy risk
Increased infection risk, hepatotoxicity (elevation in liver enzymes), and bone marrow suppression. |
| Methotrexate | Bone marrow suppression, skin and kidney toxicities
Anemia/pancytopenia, elevated transaminases, liver fibrosis/failure and teratogenic. |
| Mycophenolate mofetil | Fetal-risk and lymphoma
Nausea, vomiting, diarrhea, leukopenia, hypertension and nephrotoxicity. |
Past and Potential Concerns in Pediatrics
Tumor Necrosis Factor (TNF) α blockers11

- Risk of malignancies in adults were identified from clinical trials after initial drug approvals in autoimmune diseases

- Evidence that treatment with TNF α blockers in children may increase the risk of malignancies
 - Rate of malignancy in pediatrics receiving infliximab was \sim4X the estimated background rate in general US population

- For some agents appropriate safety evaluation in adults may be warranted before use in children

11Diak, Peter et al 2010
Secukinumab (Cosentyx™) for Psoriasis

“Serious safety signals have been observed... in adult patients, and the Agency has determined that pediatric studies should be deferred until after adult studies have been completed.”

-from FDA BLA Approval letter (January 2015) for Cosentyx™
Children’s Development
Safety Concerns

• Normal growth and development, 4 periods12:
 1. Infancy
 2. Preschool years
 3. Middle childhood years
 4. Adolescence

• Care should be taken not to negatively impact the normal growth and development process

• The developing immune system may be particularly sensitive to systemic therapies
 o Neutrophil maturation during infancy13
 o Innate immune system maturation before preschool years with full capacity reached only at adolescence13
 o Intensive shaping of adaptive immune system 14

12 Textbook of Pediatrics 19th Ed 2011; 13 Ygberg et al 2012; 14 Ygberg et al. 2011
Considerations for Timing of Pediatric Studies
Pediatric Safeguards: 21 CFR 50 Subpart D

• Direct benefit should justify risks
 o Potential risks posed by novel systemic agents particularly immunomodulatory agents generally exceed a minor increase over minimal risk
 o Risk justified by anticipated benefit
 o Consider alternative therapies available which may offset the direct benefit of the new treatment
ICH E11 Guidance

• “...timing of pediatric studies will depend on the medicinal product, the type of disease being treated, safety considerations, and the efficacy and safety of alternatives”
 o Disease:
 • AD can be severe and debilitating
 o Safety:
 • Uncertainties of novel agents must be taken into consideration
 o Alternative therapies:
 • Exist and they are recommended by AAD for pediatric use
 • Benefits and risks are known
Accelerating Development in Pediatrics

- ICH and 21 CRF 50: special attention needs to be given to development in pediatrics

- At the same time, there is a need to carefully accelerate development

- Safety cannot be compromised
Extrapolation Algorithm

Is it reasonable to assume that children, when compared to adults, have a similar (1) disease progression and (2) response to intervention?

No to either ➔ Yes to both

Is it reasonable to assume a similar ER in children when compared to adults?

No ➔ Is there a PD measurement that can be used to predict efficacy in children?

Option A: Conduct PK studies to establish dosing, and then safety and efficacy trials in children.

Yes ➔ Conduct (1) PK studies in children aimed at achieving drug levels similar to those for adults then (2) safety trials at the proper dose.

Option B: Conduct (1) PK/PD studies to establish an ER in children for the PD measurement, (2) PK studies to achieve target concentrations based on ER, then (3) safety trials at the proper dose.

Option C

15Dunne et al, 2011
ER: Exposure-Response
Extrapolation and Timing

• If extrapolation can be based on exposure-response or PK/PD, then there is potential for pediatric safety data to be submitted with adult data for approval.

• If extrapolation is not possible (e.g. exposure–response not expected to be similar or no PD marker):
 o Both safety and efficacy trials are required in pediatrics.
Consideration for Timing of Pediatric Studies

• Acknowledgement that there is a true need to develop safe and effective therapies in pediatric patients with AD with inadequate response to topical therapies

• Potential to study adolescents (>12 years old) with adult study

• Careful consideration for appropriate timing to study in younger pediatrics (≤12 years old)
Evaluation on Case-by-Base Basis

- Risk/benefit profile of the product
- Availability of data to support direct benefit to pediatrics to justify risk
- Ability to extrapolate from adult data is dependent on particular drug/biologic
- Consider alternative therapies available
- Practical considerations for the time needed to recruit younger population
A Proposal for Timing of Pediatric Studies

• Potential inclusion of adolescents with adult population

• Deferral for 2-12 years old
 o Evaluate efficacy and/or safety in adults and adolescents prior to exposing younger population to potential risk

• Waiver for pediatric patients <2 years old
 o Consider antibody therapies which can have unpredictable effects in pediatrics under 2 years old (ICH E11)
 o Studies may be impractical
Summary

• There is a need for safe and effective therapies for the treatment of AD that is inadequately responsive to topical therapies.

• Timing of pediatric studies should be considered on a case-by-case basis based on risk/benefit of each product.

• Novel therapies have an opportunity to provide safe and effective therapies.
References

References

Ygberg S, Nilsson A. The developing immune system - from foetus to toddler. The Institution for Woman and Child Health, Unit of Clinical Pediatrics, Karolinska Institute, 2011