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30 MEASURES OF DISEASE FREQUENCY

While the hypotheses are often stated 1n qualitative terms, the testing of hypotheses 1s
predicated on measurement. The role of measurement :s central to all empirical sciences,
not only epidemiology, no matter how qualitative the theories under evaluation. For ex-
ample, qualitatively stated hypotheses about evolution, the formation of the earth, the ef-
fect of gravity on light, or the method by which birds find their way during migration are
all tested by measurements of the phenomena that relate to the hypotheses.

The importance of measurement has been reflected in the evolution of epidemiologic
understanding. Physicians throughout recorded history, from Hippocrates to Sydenham,
have considered the causes of disease. Unfortunately, they seldom did more than con-
sider. It was only when scientists began to measure the occurrence of disease rather than
merely reflect on what may have caused disease that scientific knowledge about causa-
tion made impressive strides.

A central task in epidemiologic research is to quantify the occurrence of disease in
populations. This chapter discusses four basic measures of disease occurrence. Incidence
times are simply the times at which new disease occurs among population members. /n-
cidence rate measures the occurrence of new disease per unit of person-time. {ncidence
proportion measures the proportion of people who develop new disease during a speci-
fied period of time. Prevalence, a measure of status rather than of newly occurring dis-
ease, measures the proportion of people who have disease at a specific time.

INCIDENCE TIME

In the attempt to measure the frequency of disease occurrence in a population, it is in-
sufficient merely to record the number of people or even the proportion of the population
that is affected. It is also necessary to take into account the time elapsed before disease
occurs, as well as the period of time duning which events are counted. Consider the fre-
quency of death. Since all people are eventually affected, the time from birth to death be-
comes the determining factor in the rate of occurrence of death. If, on average, death
comes earlier to the members of one population than to members of another population,
it is natural to say that the first population has a higher death rate than the second. Time
is the factor that differentiates between the two situations shown in Fig. 3-1.

In an epidemiologic study, we may measure the time of events in an individual’s life
relative to any one of several reference events. Using age, for example, the reference
event is birth, but we might instead use the start of a treatment or the start of an exposure
as the reference event. The reference event may be unique to each person, as it is with
birth, or it may be identical for all persons, as with calendar time. The time of the refer-
ence event determines the time origin or zero time for measuring time of events.

Given an outcome event or “incident” of interest, a person’s incidence time for this out-
come is defined as the time span from zero time to the time at which the event occurs, 1f
it occurs. A man who experienced his first myocardial infarction in 1990 at age 50 has an
incidence time of 1990 in (Western) calendar time and an incidence time of 50 in age
time. A person’s incidence time is undefined if that person never experiences the event.
There is a useful convention that classifies such a person as having an unspecified inci-
dence time that is known to exceed the last time the person could have experienced the
event. Under this convention, a woman who had a hysterectomy in 1990 without ever
having had endometrial cancer is classified as having an endometrial cancer incidence
time greater than 1990.
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0 D

l——D D
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——p D
Time —— Time — FiG. 3-1. Two different patterns of
D=death D=death disease occurence.

Epidemiologists often study events that are not inevitable or that may not occur during
the period of observation. In such situations, the set of incidence times for a specific
event in a population will not all be defined or observed, and another incidence measure
must be sought. Ideally, such a measure would take into account the number of individ-
uals in a population that become ill, as well as the length of time contributed by all per-
sons during the period they were in the population and events were counted.

Person-Time

Consider any population at risk and a risk period over which we want to measure inci-
dence i this population. Every member of the population experiences a specific amount
of time in the population over the risk period; the sum of these times over all population
members is called the total person-time at risk over the period. Person-time should be dis-
tinguished from clock time in that it is a summation of time that occurs simultaneously
for many people, whereas clock time is not. Person-time represents the observational ex-
perience in which disease onsets can be observed. The number of new cases of disease
(incident number) divided by the person-time is the incidence rate of the population over
the period:

. No. disease onsets
Incidence rate =

Y. time spent i population
persons

When the risk period is of fixed length At, the total person-time at risk over the period
is equal to the average size of the population over the period, N, times the length of the
period. At If we denote the incident number by A4, it follows that the person-time rate
equals 4/(N-Af). This formulation makes clear that the incidence rate has units of inverse
time (per year, per month, per day, etc.). The units attached to an incidence rate can be
written as year™!, month™, or day~'.
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[t 1s an important principle that the only events eligible to be counted 1n the numerator
»f an incidence rate are those that occur to persons who are contributing time to the de-
qominator of the incidence rate at the time that the disease onset occurs. Likewise, only
‘ime contributed by persons eligible to be counted in the numerator if they suffer an event
should be counted in the denominator. The time contributed by each person to the de-
-1ominator is sometimes known as the “time at risk,” that 1s, time at risk of an event’s oc-
surring. Analogously, the people who contribute time to the denominator of an incidence
-ate are referred to as the “population at risk.”

Incidence rates often include only the first occurrence of disease onset as an eligible
svent for the numerator of the rate. For the many diseases that are irreversible states, such
as diabetes, multiple sclerosis, cirrhosis, or death, there is at most only one onset that a
person can experience. For some diseases that do recur, such as rhinitis, we may simply
wish to measure the incidence of “first” occurrence, even though the disease can occur
repeatedly. For other diseases, such as cancer or heart disease, the first occurrence is of-
ten of greater interest for study than subsequent occurrences in the same individual.
Therefore, it is typical that the events in the numerator of an incidence rate correspond to
the first occurrence of a particular disease, even in those instances in which it is possible
for an individual to have more than one occurrence. In this book, we will assume we are
dealing with first occurrences, except where stated otherwise.

When the events tallied in the numerator of an incidence rate are first occurrences of
disease, then the time contributed by each individual in whom the disease develops should
terminate with the onset of disease. The reason is that the individual is no longer eligible
to experience the event (the first occurrence can only occur once per individual), so there
is no more information to obtain from continued observation of that individual. Thus, each
individual who experiences the event should contribute time to the denominator up until
the occurrence of the event, but not afterward. Furthermore, for the study of first occur-
rences, the number of disease onsets in the numerator of the incidence rate is also a count
of people experiencing the event, since only one event can occur per person.

An epidemiologist who wishes to study both first and subsequent occurrences of dis-
ease may decide not to distinguish between first and later occurrences and simply count
all the events that occur among the population under observation. If so, then the time ac-
cumulated in the denominator of the rate would not cease with the occurrence of the
event, since an additional event might occur in the same individual. Usually, however,
there is enough of a biologic distinction between first and subsequent occurrences to war-
rant measuring them separately. One approach is to define the “population at risk” dif-
ferently for each occurrence of the event: The population at risk for the first event would
consist of individuals who have not experienced the disease before; the population at risk
for the second event or first recurrence would be limited to those who have experienced
the event once and only once, etc. A given individual should contribute time to the de-
nominator of the incidence rate for first events only until the time that the disease first
occurs. At that point, the individual should cease contributing time to the denomnator of
that rate and should now begin to contribute time to the denominator of the rate measur-
ing the second occurrence. If and when there is a second event, the individual should stop
contributing time to the rate measuring the second occurrence and begin contributing to
the denominator of the rate measuring the third occurrence, and so forth.

Closed and Open Populations

Conceptually, we can imagine the person-time experience of two distinct types of pop-
ulations, the closed population and the open population. A closed population adds no
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new members over “ime and loses members only to death, whereas an open population
may gain members over time, through immugration or birth, or lose members who are still
alive through emigration. (Some demographers and ecologists use a broader definition of
closed population ir which births, but not immigration or emigration, are allowed.) Sup-
pose we graph the survival experience of a closed population of 1000 people. Since death
eventually claims ¢veryone, after a period of sufficient time the original 1000 will have
dwindled to zero. A4 graph of the size of the population with time might approximate that
in Fig. 3-2.

The curve slopes. downward because as the 1000 individuals in the population die, the
population at risk of death is reduced. The population is closed in the sense that we con-
sider the fate of oniy the 1000 individuals present at time zero. The person-time experi-
ence of these 1000 individuals is represented by the area under the curve in the diagram.
As each individual dies, the curve notches downward; that individual no longer con-
tributes to the person-time denominator of the death (mortality) rate. Each individual’s
contribution is exactly equal to the length of time that individual is followed from start to
finish; in this example, since the entire population is followed until death, the finish is
the individual’s death. In other instances, the contribution to the person-time experience
would continue unil either the onset of disease or some arbitrary cutoff time for obser-
vation, whichever came sooner.

Suppose we added up the total person-time experience of this closed population of
1000 and obtained a total of 75,000 person-years. The death rate would be (1000/75,000)
x year™!, since the 75,000 person-years represent the experience of all 1000 people until
their deaths. Furthermore, if time is measured from start of follow-up, the average death
time in this closed population would be 75,000 person-years/1000 persons =75 years,
which is the inverse of the death rate.

A closed population facing a constant death rate would decline in size exponentially
(which is what is meant by the term “exponential decay”). In practice, however, death
rates for a closed population change with time, since the population is aging as time pro-
gresses. Consequently, the decay curve of a closed human population is never exponen-

1000

Population Size

0 Time =

FIG. 3-2. Size of a closed population of 1000 people, by time.
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Because this ratio is equivalent to the density of disease onsets in the observational area,
the incidence rate has also been referred to as incidence density (Miettinen, 1976a). The
measure has also been called the person-time rate, force of morbidity (or force of mor-
tality in reference to deaths), hazard rate, and disease intensity, although the latter three
terms are more commonly used to refer to the theoretical limit approached by an inci-
dence rate as the time interval is narrowed toward zero.

Interpretation of an Incidence Rate

The numerical portion of an incidence rate has a lower bound of zero but has no upper
bound; it has the mathematical range for the ratio of two non-negative quantities, in this
case the number of events in the numerator and the person-time in the denominator. At
first, it may seem surprising that an incidence rate can exceed the value of 1.0, which
would seem to indicate that more than 100% of a population is affected. It is true that at
most only 100% of persons in a population can get a disease, but the incidence rate does
not measure the proportion of a population with illness and in fact is not a proportion at
all. Recall that incidence rate is measured in units of the reciprocal of time. Among 100
people, no more than 100 deaths can occur, but those 100 deaths can occur in 10,000 per-
son-years, in 1000 person-years, in 100 person-years, or even in 1 person-year (if the 100
deaths occur after an average of 3.65 days each). An incidence rate of 100 cases (or
deaths) per 1 person-year might be expressed as

€ases

100 —— .
person-year

It might also be expressed as

10,000 — 25
""" person-century
833 cases
" person-month ’
192 —25__ o
" person-week ’
0,27 —_sases
" person-day

The riumerical value of an incidence rate in itself has no interpretability because it de-
pends on the arbitrary selection of the time unit. It is thus essential in presenting inci-
dence rates to give the appropriate time units, either as in the examples given above or as
in 8.33 month™ or 1.92 week™!. Although the measure of time in the denominator of an
incidence rate is often taken in terms of years, one can have units of years in the denom-
inator regardless of whether the observations were collected over 1 year of time, over 1
week of time, or over 10 years of time.

The reciprocal of time is an awkward concept that does not provide an intuitive grasp
of an incidence rate. The measure does, however, have a close connection to more inter-
pretable measures of occurrence in closed populations. Referring to Fig. 3-2, one can see
that the area under the curve is equal to N x 7, where N is the number of people starting
out in the closed population and T is the average time until death. Equivalently, the area
under the curve in Fig. 3-2 is equal to the area of a rectangle with height N and width T.
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Since T is the average time until death for the N people, the total person-time experience
is N x T. The time-averaged death rate when the follow-up for the closed population 1s
complete is M/(N x T) = 1/T; that is, the death rate equals the reciprocal of the average
time until death.

More generally, in a stationary population with no migration, the crude mcidence rate
of an inevitable outcome such as death will equal the reciprocal of the average time un-
til the outcome. The time until the outcome is sometimes referred to as the “waiting
time” until the event occurs (Morrison, 1979). Thus, 1n a stationary population with no
migration, a death rate of 0.04 year™! would translate to an average time until death of
25 years.

If the outcome of interest is not death but either disease onset or death from a specific
cause, the waiting-time interpretation must be modified slightly: The waiting time is the
average time until disease onset, assuming that a person is not at risk of other causes of
death or other events that remove one from risk of the outcome of interest. That is, the
waiting time must be redefined to account for competing risks, which are events that
“compete” with the outcome of interest to remove persons from the population at risk.

Unfortunately, the interpretation of incidence rates as the inverse of the average wait-
ing time will usually not be valid unless the incidence rate is calculated for a stationary
population with no migration (no tmmigration or emigration) or a closed population
with complete follow-up. For example, the death rate for the United States in 1977 was
0.0088 year™'; in a steady state, this rate would correspond to a mean life-span, or ex-
pectation of life, of 114 years. Other analyses, however, indicate that the actual expec-
tation of life in 1977 was 73 years (Alho, 1992). The discrepancy is due to immigration
and to the lack of a steady state. Note that the no-migration assumption cannot hold
within specific age groups, for people are always “migrating” in and out of age groups
as they age.

While the notion of incidence is a central one in epidemiology, it cannot capture all as-
pects of disease occurrence. This much may be clear by considering that a rate of 1
case/(100 years) = 0.01 year™! could be obtained by following 100 people for an average
of 1 year and observing one case, but could also be obtained by following two people for
50 years and observing one case, a very different scenario. To distinguish these situations,
concepts that directly incorporate the notion of follow-up time and risk are needed.

OTHER TYPES OF RATES

In addition to numbers of cases per unit of person-time, it is sometimes useful to ex-
amine numbers of events per other unit. In health services and infectious-disease epi-
demiology, epidemic curves are often depicted in terms of the number of cases per unit
time, or absolute rate,

No. of disease onsets
Time span of observation

3

or A/Ar. Because the person-time rate is simply this absolute rate divided by the average
size of the population over the time span, or A/(N-Af), the person-time rate has been
called the relative rate (Elandt-Johnson, 1975); it is the absolute rate relative to or “ad-
justed for” the average population size.

Sometimes it is useful to express event rates in units not directly involving time. A
common example is the expression of fatalities by travel modality in terms of passenger-

| ————— : - e
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breast cancer, the rate of 652 per million person-years is a total for the rate of occurrence
of cases caused by the radiation and the rate of occurrence of cases that are not related to
radiation. By measuring the rate of disease among a population of Japanese women who
had negligible radiation exposure, we might estimate what the rate would have been
among those exposed to 100+ rad if their radiation exposure not occurred. By subtract-
ing this value, we obtain an estimate of the excess rate due to the high dose of radiation.
For this estimate to be valid, the rate among those with negligible radiation exposure must
be equal to the rate that those with 100+ rad exposure would have had if they had not been
exposed. This crucial (and unlikely) condition requires that there be no confounding.

Confounders

Consider again the fluoridation example. Suppose that within the year after fluorida-
tion began, dental-hygiene education programs were implemented in some of the schools
in the community. If these programs were effective, then (other things being equal) some
reduction in caries incidence would have occurred as a consequence of the programs.
Thus, even if fluoridation had not begun, the caries incidence would have declined in the
postfluoridation time period. In other words, the programs alone would have caused the
counterfactual rate in our effect measure to be lower than the prefluoridation rate that
substitutes for it. As a result, the measure of association (which is the before-after rate
difference) must be larger than the desired measure of effect (the causal rate difference).
In this situation, we say the programs confounded the measure of association or that the
program effects are confounded with the fluonidation effect in the measure of association.
We also say that the programs are confounders of the association and that the association
is confounded by the programs.

Confounders are factors (exposures, interventions, treatments, etc.) that explain or pro-
duce confounding. In the present example, the programs explain why the before-after as-
sociation overstates the fluoridation effect: The before—after risk difference or ratio in-
cludes the effects of programs, as well as the effects of fluonidation. More generally, a
confounder explains a discrepancy between the desired (but unobservable) counterfactual
risk or rate (which the exposed would have had, had they been unexposed) and the unex-
posed risk or rate that was its substitute. In order for a factor to explain this discrepancy
and thus confound, it must be capable of affecting or at least predicting the risk or rate in
the unexposed (reference) group, and not be affected by the exposure or the disease. In
the above example, we assumed that the presence of the dental-hygiene programs in the
years after fluoridation entirely accounted for the discrepancy between the prefluorida-
tion rate and the (counterfactual) rate that would have occurred 3 years after fluoridation
if fluoridation had not been introduced.

A large portion of epidemiologic methods are concerned with avoiding or adjusting
(controlling) for confounding. Such methods inevitably rely on the gathering and proper
use of confounder measurements. We will repeatedly return to this topic. For now, we
simply note that the most fundamental adjustment methods rely on the notion of stratifi-
cation on confounders. If we make our comparisons within specific levels of a con-
founder, those comparisons cannot be confounded by that confounder. For example, we
could limit our before—after fluoridation comparisons to schools in states in which no
dental-hygiene program was introduced. In such schools, program introductions could
not have had an effect (because no program was present), and so any decline following
fluoridation could not be explained by effects of programs in those schools.
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STANDARDIZED MEASURES

Consider again the concept of standardization as introduced at the end of Chapter 3.

Given a standard distribution 77, ... , Tx of person-times across K categories or strata de-
fined by one or more variables and a schedule [y, ..., Ix of incidence rates in those cate-
gories, we have the standardized rate K

> Tk

k=1

I = =%,
2 T
k=1

which is the average of the [, weighted by the Ti. If ¥, ... , [¢* represents another sched-

ule of rates for the same categories, and

> Tuli*
_ k=

L* ==
2 T
k=1

2

is the standardized rate for this schedule, then

= &
IR I
is called a standardized rate ratio. The defining feature of this ratio is that the same stan-
dard distribution is used to weight the numerator and denominator rate.

Suppose 11, ..., Ik represent the rates observed or predicted for strata of a given tar-
get population if it is exposed to some cause or preventive of disease, T, ... , Tk are the
observed person-time in strata of that population, and [1*, ..., Ix* represent the rates
predicted or observed for strata of the population if it is not exposed. The presumption
is then that IR, = I/I* is the effect of exposure on this population, comparing the over-
all (crude) rates that would occur under distinct exposure conditions. This interpreta-
tion assumes, however, that the relative distribution of person-times would be unaf-
fected by exposure. As alluded to in Chapter 3, however, if I\*,... , Ix* represent
counterfactual rather than actual rates, say, because the population was actually ex-
posed, then I;* need not represent the overall rate that would occur in the population if
exposure were removed {Greenland, 1996a). For instance, the change in rates from the
i to the [* could shift the person-time distribution T, ..., Tk to Ii*, ..., Tx*. In addi-
tion, the exposure could affect competing risks, and this effect could also shift the per-
son-time distribution.

There are a few special conditions under which the effect of exposure on person-time
will not affect the standardized rate ratio. If the stratum-specific ratios Ix/I* are constant
across categories, the standardized rate ratio will equal this constant stratum-specific ra-
t10. If the exposure has only a small effect on person-time, then, regardless of the person-
time distribution used as the standard, the difference between a standardized ratio and the
actual effect will also be small. In general, however, one should be alert to the fact that a
special assumption is needed to allow one to interpret a standardized rate ratio as an ef-
fect measure, even if there is no methodologic problem with the observations. Analo-
gously, the standardized rate difference will not be an effect measure except when expo-
sure does not affect the person-time distribution or when other special conditions, such
as constant rate differences Iy — I* across categories, exist.
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Diagnostic Bias

Another type of selection bias occurring before subjects are identified for study is di-
agnostic bias (Sackett, 1979). When the relation between oral contraceptives and ve-
nous thromboembolism was first investigated with case-control studies of hospitalized
patients, there was concern that some of the women had been hospitalized with a diag-
nosis of venous thromboembolism because their physicians suspected a relation be-
tween this disease and oral contraceptives and had known about oral contraceptive use
in patients who presented with suggestive symptoms (Sartwell et al., 1969). A study of
hospitalized patients with thromboembolism could lead to an exaggerated estimate of
the effect of oral contraceptives on thromboembolism if the hospitalization and deter-
mination of the diagnosis were influenced by the history of oral-contraceptive use.

Confounding

The concept of confounding is a central one in modern epidemiology. Although con-
founding occurs in experimental research, it is a considerably more important issue in
nonexperimental research. Consequently, the understanding of the concept has devel-
oped only recently in parallel with the growth of nonexperimental research. Therefore,
we will here review the concepts of confounding and confounders and then discuss fur-
ther issues in defining and identifying confounders.

Confounding as Mixing of Effects

On the simplest level, confounding may be considered a confusion of effects. Specif-
ically, the apparent effect of the exposure of interest is distorted because the effect of
an extraneous factor is mistaken for or mixed with the actual exposure effect (which
may be null). The distortion introduced by a confounding factor can be large, and it can
lead to overestimation or underestimation of an effect, depending on the direction of
the associations that the confounding factor has with exposure and disease. Confound-
ing can even change the apparent direction of an effect.

A more precise definition of confounding begins by considering the manner in which
effects are estimated. As described in Chapter 4, we wish to estimate the degree to
which exposure has changed the frequency of disease in an exposed cohort. To do so,
we must estirnate what the frequency of disease would have been in this cohort had ex-
posure been absent. To accomplish this task, we observe the disease frequency in an
unexposed cohort. But rarely could we take this unexposed frequency as fairly repre-
senting what the frequency would have been in the exposed cohort had exposure been
absent, because the unexposed cohort would differ from the exposed cohort on many
factors that affect disease frequency besides exposure. To express this problem, we say
that the comparison of the exposed and unexposed is confounded because the differ-
ence in disease frequency between the exposed and unexposed results from a mixture
of several effects, including (but not limited to) any exposure effect.

Confounders and Surrogate Confounders

The extraneous factors responsible for difference in disease frequency between the
exposed and unexposed are called confounders. In addition, factors associated with
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these extraneous causal factors that can serve as surrogates for these factors are also
commonly called confounders. The most extreme example of such a surrogate is
chronologic age. Increasing age is strongly associated with aging—the accumulation
of cell mutations and tissue damage that leads to disease—but increasing age does not
itself cause such pathogenic changes, for it is just a measure of how much time has
passed since birth.

Regardless of whether a confounder is a cause of the study disease or merely a surro-
gate for such a cause, its chief characteristic is that it would be predictive of disease fre-
quency within the unexposed (reference) cohort; otherwise, it could not explain why the
unexposed cohort fails to represent properly what the exposed cohort would experience
in the absence of exposure. For example, suppose all the exposed were men and all the
unexposed were women. If unexposed men would have the same incidence as unexposed
women, the fact that all the unexposed were women rather than men could not account
for any confounding that is present.

Confounding of a Zero Effect

In the simple view, confounding occurs only if extraneous effects become mixed with
the effect under study. Nevertheless, confounding can occur even if the factor under study
has zero effect. Thus, “mixing of effects” should not be taken to imply that the exposure
under study has a nonzero effect. The mixing of the effects comes about from an associ-
ation between the exposure and extraneous factors.

As an example, consider a study to determine whether alcohol drinkers experience a
greater incidence of oral cancer than nondrinkers. Smoking is an extraneous factor that
is related to the disease among the unexposed (smoking has an effect on oral cancer in-
cidence among alcohol abstainers); it is also associated with alcohol drinking, since there
are many people who are general “abstainers,” refraining from alcohol consumption,
smoking, and perhaps other habits. Consequently, alcohol drinkers include among them
a greater proportion of smokers than would be found among nondrinkers. Since smoking
increases the incidence of oral cancer, alcohol drinkers will have a greater incidence than
nondrinkers, quite apart from any influence of alcohol drinking itself, simply as a conse-
quence of the greater amount of smoking among alcohol drinkers. Thus, the apparent ef-
fect of alcohol drinking is distorted by the effect of smoking; the effect of smoking be-
comes mixed with the estimated effect of alcohol in the comparison of alcohol drinkers
with nondrinkers. The degree of bias or distortion depends on the magnitude of the smok-
ing effect, as well as on the strength of association between alcohol and smoking. Either
absence of a smoking effect on oral cancer incidence or absence of an association be-
tween smoking and alcohol would lead to no confounding. Smoking must be associated
with both oral cancer and alcohol drinking for it to be a confounding factor.

Properties of a Confounder

In general, a confounder must be associated with both the exposure under study and
the disease under study to be confounding. These associations do not, however, define a
confounder, for a variable may possess these associations and yet not be a confounder.
There are several ways this can happen. The most common way occurs when the expo-
sure under study has an effect. In this situation, any correlate of that exposure will also
be associated with the disease as a consequence of its association with a risk factor for
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the disease. For example, suppose frequent beer consumption is associated with the con-
sumption of pizza, and suppose that frequent beer consumption is a risk factor for rectal
cancer. Would consumption of pizza be a confounding factor? At first, it might seem that
the answer is yes, since consumption of pizza is associated both with beer drinking and
with rectal cancer. But if pizza consumptton is associated with rectal cancer only secon-
darily to its association with beer consumption, it would not be confounding. A con-
founding factor must be predictive of disease occurrence apart from its association with
exposure; that is, as explained above, among unexposed (reference) individuals, the po-
tentially confounding variate should be related to disease risk. If consumption of pizza
were predictive of rectal cancer among nondrinkers of beer, then it could confound; oth-
erwise, if it were associated with rectal cancer only from its association with beer drink-
ing, it could not confound.

Analogous with this restriction on the association between a potential confounder and
disease, the potential confounder should be associated with the exposure among the
source population for cases, not merely among cases of the disease as a consequence of
both variables being risk factors for disease.

Confounders as Extraneous Risk Factors

It is also important to clarify what is meant by the term extraneous in the phrase “ex-
traneous risk factor.” This term implies that the predictiveness for disease risk involves a
mechanism other than the one under study. Specifically, consider a causal mechanism
where

smoking AU elevated blood pressure CAUSE heart disease

Is elevated blood pressure a confounding factor? It is certainly a risk factor for disease,
and it is also correlated with exposure, since it can result from smoking. It is even a risk
factor for disease among nonexposed individuals, since elevated blood pressure can re-
sult from causes other than smoking. Nevertheless, it cannot be considered a purely con-
founding factor, since the effect of smoking is mediated through the effect of blood pres-
sure. In this example, there may be no mixing of confounder with exposure effects, but
the factor (elevated blood pressure) does mediate the exposure (smoking) effects. Any
factor that represents a step in the causal chain between exposure and disease should not
be treated as an extraneous confounding factor, but instead requires special treatment as
an intermediate factor (Greenland and Neutra, 1980; Robins, 1989).

Judging the Causal Role of a Potential Confounder

Usually, an explicit mechanism for the causal action of the exposure is not postulated.
How then can an investigator decide if a factor is extraneous or not? Such decisions must
be made on the basis of the best available information, including nonepidemiologic (i.e.,
clinical) data. Uncertainties about the mechanism can justify the handling of a potential
confounding factor as both confounding and not confounding in different analyses. For
example, in evaluating the effect of coffee on heart disease, it is unclear how to treat
serum cholesterol levels. Elevated levels are a risk factor for heart disease and may be as-
sociated with coffee use, but serum cholesterol may mediate the action of coffee use on
heart disease risk; that is, elevated cholesterol may be an intermediate factor in the etio-
logic sequence under study. In the face of uncertainty, one might conduct two analyses,
one in which serum cholesterol is controlled (which would be appropriate if coffee does
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not affect serum cholesterol) and one in which it is not controlled (which would be more
appropriate if coffee affects serum cholesterol and is not associated with uncontrolled de-
terminants of serum cholesterol). The interpretation of the results would depend on which
of the theories about serum cholesterol were correct.

Criteria for a Confounding Factor

We can summarize our observations thus far with three criteria for a variable to be a
confounder. To be a confounder, the extraneous variable must have three necessary (but
not sufficient or defining) characteristics, which we will discuss in detail. We will then
point out some limitations of these characteristics in defining and identifying con-
founding.

1. A confounding factor must be a risk factor for the disease.

As mentioned earlier, the potential confounding factor need not be an actual cause of
the disease, but if it is not, it must be a marker for an actual cause of the disease. The
association between the potential confounder and the disease should not derive only sec-
ondarily from an association with the exposure, which may be a cause of the disease.
Therefore, a confounding factor must be a risk factor within the reference level of the
exposure under study. Furthermore, the data may serve as a guide to the relation be-
tween the potential confounder and the disease, but it is the actual relation between the
potentially confounding factor and disease, not the apparent relation observed in the
data, that determines whether confounding can occur (Miettinen and Cook, 1981). In
large studies, which are subject to less sampling error, we expect the data to reflect more
closely the underlying relation, but in small studies the data may be a less reliable guide.

The following example illustrates the role that prior knowledge can play in evaluating
confounding. Suppose that in a cohort study of airborne glass fibers and lung cancer,
the data show more smoking and more cancers among the heavily exposed but no rela-
tion between smoking and lung cancer within exposure levels. The latter absence of a
relation does not mean that some smoking effect was not confounding (mixed into) the
estimated effect of glass fibers: It may be that some or all of the excess cancers in the
heavily exposed were produced solely by smoking and that the lack of smoking—cancer
association was produced by unmeasured confounding of this association in this cohort.
The latter confounding might arise from nothing more than an unfortunate confluence
of several unmeasured risk factors among the nonsmokers.

As a converse example, suppose we conduct a cohort study of sunlight exposure and
melanoma. Our best current information indicates that after control for age, there is no
relation between social security number and melanoma occurrence. Thus, we would not
consider social security number a confounder, regardless of its association with
melanoma in the reference exposure cohort, because we think it cannot be used to pre-
dict the rate in this cohort (i.e., we think the rate in this cohort would not have been dif-
ferent had the subjects received different social security numbers). Even if control of so-
cial security number would change the effect estimate, the resulting estimate of effect
would be less valid than one that ignores social security number, given our prior infor-
mation about the lack of a real effect of social security number.

Nevertheless, because external information is usually limited, investigators rely heav-
ily on their data to infer the predictive ability of a potential confounder. For example, a
cause of disease in one population will be causally unrelated to disease in another popu-
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let on -t lacks complermen-ary component causes (i.e., susceptibility factors). A dis-
¢ dar .« between the data a1d externa information about a suspected or known risk fac-
tcrma. Lierefore signa. an 1adequacy 1n the detail of information about interacting fac-
t¢r31a 1ier than an error in t i data. Similarly, external information about the assence of
a1 effe 1 for a possible risk uctor may be inadequate, if based on studies with consider-
atlz1n : toward the null. (v the other hand, it is also conceivable that external informa-
i 1zb u:the absence of an tfect could override any evidence to the contrary in the data,
as ntl - nelanoma example above.
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[he .« ;cociation between a potential confounding factor and the exposure must not de-
tive secordarily from the ass wciation between the exposure and disease. In a cohort study,
th < pre "150 implies only thut the association between the potential confounding factor
an: the . .posure must be pr “sent among subjects at the start of follow-up. Thus, in co-
hc - swis, the exposure— ¢ 1founder association can be evaluated from the data in hand
anid ot even theoretica'ly depend on prior knowledge.

*har  1e exposure unde- .tudy has been randomly assigned, it is sometimes mistak-
en th . tht that confoundig cannot occur because randomization somehow guaran-
tee < ther : will be no associaton between the exposure and other factors. In reality, ran-
doizai 01 is only a probabilistic procedure that can leave some association of the
ex s .ind extraneous nisk factors, especially if the total number of subjects 1s small.
Th 15, ¢. n'ounding can occir i randomized trials, even though it tends to be more mi-
no in ¢ .t:nt than in nonranlomized studies (Rothman, 1977) and to be negligible in
we .-condlicted very large triuls.

11 a ¢ :c-control study, the proviso implies that the association must be present in the
sotice pp ulation that gave r se to the cases. If the control series is large and there is no
sel »:tion Tias, it should provide a reasonable estimate of the association between the po-
ten al ¢ n‘ounding variable and the exposure in the source population. Nevertheless, the
ultimiate :oncern focuses on the degree of association between the potential confounder
anc the cxposure in the sour ¢ population that produced the study cases, of which the
cort'o.s ue only a substitute (Miettinen and Cook, 1981). If available, information on
this yopi letion association ca: be used to adjust findings from the control series. Unfor-
tun i ely, rc.iable external infi rmation about the associations among risk factors in the

-1founding factor a 15t be associated with the exposure under study in the source
o' . ation (the populatina at risk from which the cases are derived).

sou-:e p« p.lation is seldom a.ailable. Thus, in case-control studies, the data in hand will .
usui ly hiise to provide an est mate of the association between the exposure and the po- .-

tentially . cnfounding factor.

Ccnsid 21 a case-control stucy of occupational exposure to airborne glass fibers and the
occ 1-ten« ¢ of lung cancer that randomly sampled cases and controls from cases and non-
cas: in 1. occupational cohor:. Suppose we knew the association of exposure and smok-
ing n the full cohort. We coulc then use the discrepancy between the true association and
the :¢pos 11e-smoking assoc.azion observed in the controls as a measure of the extent to
whi 1 1ar d »m sampling had failed to produce representative tontrols. If this discrepancy
wer : kno v, it could be used o adjust the control numbers to make them appear repre-
sentative 1 the cohort. Regardless of the size of this discrepancy, if there was no associ-
atio1 of siroking and exposure in the source cohort, the unadjusted estimate would be the
best .vailitle estimate, and s¢ smoking would not be a confounder in the case-control
study (Roins and Morgenstern, 1987).
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[n contrast, consider a randomized trial of a treatment. Although the average associa-
tion between any risk factor and treatment is zero over repeated randomizations, it can
easily happen that a risk factor (despite the randomization) is associated with the treat-
ment in the one randomized cohort that is observed. In this situation, adjustment for the _
risk factor would produce the best available estimate, and so the factor would be a con- v
founder in the trial.

3. A confounding factor must not be affected by the exposure or the disease. In partic-
ular, it cannot be an intermediate step in the causal path between the exposure and
the disease.

This criterion is obviously satisfied if the factor precedes exposure and disease. Other-
wise, the criterion requires information outside the data. The investigator must decide
whether a causal mechanism exists that might lead from exposure or disease to the po-
tentially confounding factor. If the factor is an intermediate step between exposure and
disease, it should not be treated as simply a confounding factor; instead, a more careful
analysis that takes account of its intermediate nature is required (Robins, 1989; Robins
and Greenland, 1992).

It is important to remember that confounding is a bias and therefore must be consid- j
ered and dealt with as a quantitative problem. It is the amount of confounding rather than
mere presence or absence that is important to evaluate. In one study, a rate ratio of 5 may
become 4.6 after control of age, whereas in another study a rate ratio of S may change to
1.6 after control of age. Although age is confounding in both studies, in the former the
amount of confounding is comparatively unimportant, whereas in the latter confounding
accounts for nearly all of the strong effect. Methods to evaluate confounding quantita-
tively are described in Chapter 15.

Although the above three characteristics of confounders are sometimes taken to define
a confounder, it is a mistake to do so for both conceptual and technical reasons. Concep-
tually, the essence of confounding is the confusion or mixing of extraneous effects with :
the effect of interest. The first two properties are simply logical consequences of the ba- x
sic definition, properties that a factor must satisfy in order to confound; the third prop-
erty excludes situations in which the effects cannot be disentangled in a straightforward
manner (except in special cases). Technically, it is possible for a factor to possess all three
characteristics and yet not have its effects mixed with the exposure, in the sense that a
factor may produce no spurious excess or deficit of disease among the exposed, despite
its association with exposure and its effect on disease. This result can occur, for example, ,
when the factor is but one of several potential confounders and the excess of incidence
produced by the factor among the exposed is perfectly balanced by the excess incidence k.
produced by another factor in the unexposed.*

Information Bias

Once the subjects to be compared have been identified, the information to be compared
must be obtained. Bias in evaluating an effect can occur from errors in obtaining the

*This discussion omits a number of subtleties that anise 1n determining which vanables should or should not be
controlled 1n a given analysis For discussions of these issues and their relation to standard critena for confounder
control, see Pearl (1995), Pear! and Robins (1995), and Greenland et al. (1999). b
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= (.52 among the tolbutamide treated, but was 120/205 = 0.59 among the placebo treated.
Finally, we know with certainty that tolbutamide does not alter a person’s age.

Although it is possible to obtain a general appreciation for the presence or absence of
confounding in data by examining whether a potentially confounding factor is associated
with disease conditional on exposure and with exposure in the source population, the
magnitude of the confounding is difficult to assess in this way because it is a function of
both of these component associations. Further, when several factors are simultaneously
confounding, the component associations should ideally be examined conditional on the
other confounding factors, thereby complicating the problem.

More direct methods for confounder assessment compare the estimates of effect ob-
tained with and without control of each potential confounder (assuming that the potential
confounder is not affected by exposure). The magnitude of confounding is estimated by
the degree of discrepancy between the two estimates. For example, the unadjusted risk
difference in Table 15-1 is 0.147 — 0.102 = 0.045. If we adjust for age confounding by
standardizing (averaging) the age-specific risks in Table 15-1 using the total cohort as the
standard (see Chapter 4), we obtain a standardized risk-difference of

226(0.076) + 183(0.224) N 226(0.042) + 183(0.188)
226 + 183 226+ 183

Thus, the relatively crude age adjustments obtained by treating age as a dichotomy has
reduced the estimated risk difference produced by tolbutamide from 4.5% to 3.5%. Sim-
ilarly, the unadjusted risk ratio in Table 15-1 is 0.147/0.102 = 1.44, where the age-stan-
dardized risk ratio is 0.142/0.107 = 1.33.

= 0.142-0.107 = 0.035.

Selecting Confounders for Control

Having computed estimates both with and without adjustment for the age dichotomy
(under 55 versus 55+), the analyst must now decide whether it is important to adjust for
this variable when presenting results. It may be important to do so simply because many
readers would not trust results that are not adjusted for age. This distrust stems from
knowledge that age is strongly related to disease and mortality rates (similar comments
would apply to sex). Suppose, however, we wish to apply a quantitative criterion to see
whether we must control for age and other variables. To do so, the analyst must choose a
cut-off for what constitutes an important change in the estimate. In Table 15-1 the unad-
justed risk ratio is (1.44 — 1.33)/1.33 = 8% larger than the adjusted. If only changes of
greater than 10% are considered important, then this change is not important; but if
changes of greater than 5% are considered important, then this change is important and
indicates that age should not be ignored in further analyses.

The exact cutoff for importance is somewhat arbitrary but limited in range by the sub-
ject matter. For example, a 5% change in the risk ratio would be considered ignorable in
most contexts, but rarely if ever would a 50% change. Similar observations would apply
when considering confidence limits. The most important point is that one should report
the criterion used to select confounders for adjustment.

Although many have argued against the practice (Miettinen, 1976b; Breslow and Day,
1980; Greenland and Neutra, 1980; Greenland, 1989), one often sees statistical tests used
to select confounders (as in stepwise regression), rather than the change-in-estimate cri-
terion just discussed. Usually, the tests are of the confounder-disease association, al-
though sometimes the difference between the unadjusted and adjusted estimates are
tested (the latter approach is often termed collapsibility testing). It has been argued that
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these testing approaches will perform adequately if the tests have high enough power to
detect any important confounder effects. One way to insure adequate power is to raise the
alpha-level for rejecting the null (of no confounding) to 0.20 or even more, instead of us-
ing the traditional 0.05 level (Dales and Ury, 1978). Limited simulation studies indicate
that this approach is reasonable, in that use of a 0.20 or higher alpha level instead of a
0.05 level for confounder selection can make the difference between acceptable and poor
performance of statistical testing for confounder selection (Mickey and Greenland, 1989;
Maldonado and Greenland, 1993a).

Several important subtleties must be considered when more than one potential con-
founder must be examined. First, it can make a big difference in the observed change in
estimate whether one evaluates the change with or without adjustment for other con-
founders. For example, suppose we have to consider adjustment for age and sex. To eval-
uate age, we could compare the estimates without and with age adjustment, ignoring sex
in both instances. Or we could compare the estimate with age and sex adjustment to that
with only sex adjustment. In other words, we could evaluate age confounding without or
with background adjustment for sex. Furthermore, we could evaluate sex confounding
with or without background adjustment for age. Our decision about importance could be
strongly influenced by the strategy we choose.

To cope with this complexity, several authors have suggested the following “backward
deletion” strategy (Miettinen, 1976b; Kleinbaum et al., 1984): First, one adjusts for all the
potential confounders one can. Then, if one would like to use fewer confounders in further
analyses, one deletes the confounders from adjustment one-by-one in a stepwise fashion, at
each step deleting that confounder that makes the smallest change in the exposure effect es-
timate upon deletion. One stops deleting confounders when the fotal change in the estimate
and confidence limits accrued from the start of the process (with all confounders con-
trolled) would exceed the chosen limit of importance. One often sees analogous stepwise
confounder-selection strategies based on testing the confounder coefficients and deleting in
sequence the least statistically significant coefficient; again, such strategies can produce ex-
tremely confounded results unless the alpha-levels for deletion and retention are set much
higher than 0.05 (Dales and Ury, 1978; Maldonado and Greenland, 1993).

Sometimes not a single confounder can be deleted without producing important
changes, but more often at least a few will appear to be ignorable if others are controlled.
Sometimes, however, it is impossible to control all the confounders (at ieast by stratifi-
cation) because the data become too thinly spread across strata to yield any estimate at
all (this occurs when no stratum contains both a case and a noncase, as well as in other
situations). When this problem occurs, the pure “backwards deletion” strategy just de-
scribed cannot be implemented. One approach proposed for this situation is to use a “for-
ward selection” strategy, in which one starts with the exposure effect estimate from the
simplest acceptable stratification (e.g., one involving only age and sex), then stratifies on
the confounder that makes the most difference in the estimate, then adds confounders
one-by-one to the stratification, at each step adding the confounder that makes the most
difference among those not yet added. The process stops when addition of variables
ceases to make an “important” difference.

Statistical Biases in Variable Selection

If the data become very thin when all or most confounders are used for stratification,
all confounder-selection strategies based on approximate statistics can suffer from certain
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statistical artifacts that lead to very biased final results. No conventional approach to con-
founding (based on change-in-estimate or more traditional significance testing) can
wholly address this problem (Robins and Greenland, 1986). There are certain modeling
methods (which are briefly discussed in Chapter 21 under the topic of hierarchical re-
gression) that can cope with these situations, but these methods are unavailable in most
software packages. For this reason, epidemiologists often resort to some sort of forward-
selection strategy when data are sparse.

There is a hallmark symptom of the bias that arises when stratification has exceeded the
limits of the data: The exposure effect estimates begin to get further and further from the
null as more variables are added to the stratification or regression model. For example, one
might observe only modest effect estimates as one moves from adjustment for the
strongest confounder alone to adjustment for the two or three strongest confounders. Then,
with further adjustment, the exposure effect estimate becomes enormous (e.g., odds ratios
of greater than 10 or less than 0.10) as more confounders are controlled. This inflation is
sometimes mistakenly interpreted as evidence of confounding, but in our experience is
more often bias due to applying large-sample methods to excessively sparse data.

Another problem with all variable-selection approaches (again, whether based on
change-in-estimate or statistical testing) is their potential to distort P-values and confi-
dence intervals for exposure effect away from their nominal behavior. For example, con-
ventional 95% confidence intervals computed after using the data to select variables can
have true coverage less than 95% because the computation of such intervals assumes no
selection of variables has been done (Greenland, 1989a, 1993a; Hurvich and Tsai, 1990).
The limited studies performed thus far suggest that the distortion produced by typical
confounder-selection strategies need not be large in practice (Mickey and Greenland,
1989; Maldonado and Greenland, 1993), but further study is needed.

One way to reduce distortion due to confounder selection is to insist that the confi-
dence limits do not change to an important degree if a confounder is to be deleted from
control. If one uses confidence limits rather than the point estimate to monitor the change
produced by adding or deleting control of a confounder, one can use exact confidence
limits rather than the usual large-sample approximate limits produced by Mantel-Haen-
szel or maximum-likelihood methods. With exact limits, the sparse-data bias discussed
earlier will not occur. Unfortunately, exact intervals can become very conservative (and
very wide) if computed by the traditional Fisher-P method, which is the default method
in most software (see Chapter 13).

Selection of confounders can lead to complex problems, especially if there are many con-
founders to choose from. Strategies based on examining changes in the exact confidence
limits for exposure effect seem to be the best that can be carried out with standard software,
although if enough data are available one may instead use approximate limits to monitor the
changes. Most importantly, if selection is done, one should report the strategy used to se-
lect potential confounders for control in the methods section of the research report. In ad-
dition, one may have to include certain potential confounders on subject-matter grounds,
even if they do not meet the quantitative criteria for inclusion. For example, a study of lung
cancer might be well advised to adjust for smoking whenever possible, as well as age and
seX, because of the known strong relations of these variables to lung-cancer rates.

Selecting Confounder Categories

An issue closely related to that of selecting confounders is that of selecting confounder
categories. Some aspects of this issue are discussed in Chapter 13. In particular, we
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Genetic markers, in epidemiologic studies, 613
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exposure and, 607

muisclassification of, 613-614
Geographic information systems, 561
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recurrent infections, 548-549
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6591660t
Greenwood model, of transmission probability in
infectious disease, 536
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H
Haur, biochemical indicators of diet in, analysis
of, 638
Hazard model, 375-377
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surveillance, 444
Hepatitis B vaccine, field trial of, 70
Herd immunity, 540
Heritability indices, limitations of, 13-14
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Hill, A. B, 5, 24-28
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tests of, 266, 275-277
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pooled estimates and, 266-273
versus reality, in meta-analysis, 661662
violation of, 233
Horizontal scaling, 311-312, 312f
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100102
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533-534, 534f
Human Genome Project, 609610
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:1cidence rate (comid
for 2xposed and unexposea populatic ns, 93-94
inctdence proportion and, 37-38
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