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19  MEASUREMENT STATISTICS1

19.1 Overview2

This chapter discusses statistical principles and methods applicable to radioanalytical measure-3
ments, calibrations, data interpretation, and quality control.4

Laboratory measurements always involve uncertainty, which must be considered when analytical5
results are used as part of a basis for making decisions. Every measured value obtained by a6
radioanalytical procedure should be accompanied by an explicit uncertainty estimate. One7
purpose of this chapter is to give users of radioanalytical data an understanding of the causes of8
measurement uncertainty and of the meaning of uncertainty statements in laboratory reports. The9
chapter also describes procedures which laboratory personnel use to estimate uncertainties.10

The uncertainty associated with laboratory measurements is only a part of the total uncertainty11
that a data user must consider. Field sampling introduces other types of uncertainty, which are12
beyond the scope of this chapter.13

Environmental radioactivity measurements may involve material containing very small amounts14
of the radionuclide of interest. Measurement uncertainty often makes it difficult to distinguish15
such small amounts from zero. An important performance characteristic of an analytical proce-16
dure is therefore its detection capability, which is usually expressed as the smallest concentration17
of analyte that can be reliably distinguished from zero. Effective project planning requires18
knowledge of the detection capabilities of the analytical procedures which will be or could be19
used. This chapter explains the performance measure, called the “minimum detectable concentra-20
tion,” or in certain cases the “minimum detectable amount,” that is used to describe radio-21
analytical detection capabilities, as well as some proper and improper uses for it. The chapter22
also gives laboratory personnel methods for calculating the minimum detectable concentration.23

Project planners also need to know the quantification capability of an analytical procedure, or its24
capability for precise measurement. The quantification capability is expressed as the smallest25
concentration of analyte that can be measured with a specified relative standard deviation. This26
chapter explains a performance measure called the “minimum quantifiable concentration,” which27
may be used to describe quantification capabilities.28

The material in the chapter is arranged so that general information is presented first and the more29
technical information intended primarily for laboratory personnel is presented last. The general30
discussion in Sections 19.2 through 19.4 requires little previous knowledge of statistics on the31
part of the reader and involves no mathematical formulas. Section 19.2 in particular may be32
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skipped by those familiar with basic statistical concepts. The technical discussion in Sections33
19.5 through 19.7 requires an understanding of basic algebra and at least some familiarity with34
the fundamental concepts of probability and statistics. Attachments 19B–G are intended for tech-35
nical specialists with stronger mathematical backgrounds. The footnotes also contain information36
which may be skipped by most readers.37

19.2 Statistical Concepts and Terms38

19.2.1  Basic Concepts39

Every laboratory measurement involves a measurement error. Methods for analyzing measure-40
ment error are generally based on the theory of random variables. A random variable may be41
thought of as the numerical outcome of an experiment, such as a laboratory measurement, which42
produces varying results when repeated. In this document a random variable will most often be43
the result of a measurement. Random variables will usually be denoted by upper-case letters.44

Of primary importance in almost any discussion of a random variable is its distribution. The45
distribution of a random variable X describes the possible values of X and their probabilities.46
Although the word “distribution” has a precise meaning in probability theory, the term will be47
used loosely in this document. Attachment 19A describes several types of distributions, including48
the following:49

• Normal (Gaussian) distributions50
• Log-normal distributions51
• Chi-square distributions52
• Student’s t-distributions53
• Rectangular, or uniform, distributions54
• Trapezoidal distributions55
• Exponential distributions56
• Binomial distributions57
• Poisson distributions58

Normal distributions are particularly important because they appear often in measurement59
processes. The other types listed are also important in this chapter, but only the exponential,60
binomial, and Poisson distributions are described in the text.61
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The distribution of X is uniquely determined by its distribution function, defined by F(x) =62
Pr[X # x], where Pr[X # x] denotes the probability that X is less than or equal to x. If there is a63
function f(x) such that the probability of any event a # X # b is equal to Ia

b f(x) dx (i.e., the area64
under the curve y = f(x) between x = a and x = b), then X is a continuous random variable and f(x)65
is a probability density function (pdf) for X. When X is continuous, the pdf uniquely describes its66
distribution. A plot of the pdf is the most often used graphical illustration of the distribution (e.g.,67
see Figures 19.1 and 19.2), because the height of the graph over a point x indicates the probabil-68
ity that the value of X will be near x.69

Two useful numerical characteristics of the distribution of a random variable are its mean and70
variance. The mean is also called the expectation or the expected value and may be denoted by71
µX or E(X). The mean of a distribution is conceptually similar to the center of mass of a physical72
object. It is essentially a weighted average of all the possible values of X, where the weight of a73
value is determined by its probability. The variance of X, denoted by σX

2, Var(X), or V(X), is a74
measure of the variability of X, or the dispersion of its values, and is defined as the expected75
value of (X ! µX)2.76

The standard deviation of X, denoted by σX is defined as the positive square root of the variance.77
Although the variance appears often in statistical formulas, the standard deviation is a more intui-78
tive measure of dispersion. If X represents a physical quantity, then σX has the same physical79
dimensions as X. The variance σX

2, on the other hand, has the dimensions of X squared.80

Any numerical characteristic of a distribution, such as the mean or standard deviation, may also81
be thought of as a characteristic of the random variables having that distribution.82

The mean and standard deviation of a distribution may be estimated from a random sample of83
observations of the distribution. The estimates calculated from observed values are sometimes84
called the sample mean and sample standard deviation. Since the word “sample” here denotes a85
statistical sample of observations, not a physical sample in the laboratory, metrologists often use86
the terms arithmetic mean, or average, and experimental standard deviation to avoid confusion.87

The mean is only one measure of the center of a distribution. Two others are the median and the88
mode. The median of X is a value x0.5 that splits the range of X into upper and lower portions89
which are equally likely, or, more correctly, a value x0.5 such that the probability that X # x0.5 and90
the probability that X $ x0.5 are both at least 0.5. The mode of X is its most likely value. Figure91
19.1 shows the probability density function of a symmetric distribution, whose mean, median,92
and mode coincide, and Figure 19.2 shows the pdf of an asymmetric distribution, whose mean,93
median, and mode are distinct.94
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FIGURE 19.1 — A symmetric distribution
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FIGURE 19.2 — An asymmetric distribution

For some distributions, the median or mode may not be unique. If there is a unique mode, the dis-95
tribution is called unimodal; otherwise, it is called multimodal.96

The median of X is also called a quantile of order 0.5, or a 0.5-quantile. In general, if p is a num-97
ber between 0 and 1, a p-quantile of X is a number xp such that the probability that X < xp is at98
most p and the probability that X # xp is at least p. A p-quantile is often called a 100pth percentile.99

Sometimes the standard deviation of a nonnegative quantity is more meaningful when expressed100
as a fraction of the mean. The coefficient of variation, or CV, is defined for this reason as the101
standard deviation divided by the mean. The coefficient of variation is a dimensionless number,102
which may be converted to a percentage. The term “relative standard deviation,” or RSD, is also103
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used. The term “relative variance” is sometimes used to mean the square of the relative standard104
deviation.105

The results of two analytical measurements may be correlated when they have measurement106
errors in common. This happens, for example, if laboratory samples are analyzed using the same107
instrument without repeating the instrument calibration. Any error in the calibration parameters108
affects all results obtained from the instrument. This type of association between two quantities X109
and Y is measured by their covariance, which is denoted by σX,Y or Cov(X,Y). The covariance of X110
and Y is defined as the expected value of the product (X ! µX)(Y ! µY).111

Covariance, like variance, is somewhat nonintuitive because of its physical dimensions. Further-112
more, a large value for the covariance of two variables X and Y does not necessarily indicate a113
strong correlation between them. A measure of correlation must take into account not only the114
covariance σX,Y, but also the standard deviations σX and σY. The correlation coefficient, denoted115
by ρX,Y, is therefore defined as σX,Y divided by the product of σX and σY. It is a dimensionless116
number between !1 and +1. The quantities X and Y are said to be strongly correlated when the117
absolute value of their correlation coefficient is close to 1.118

Statistical formulas are generally simpler when expressed in terms of variances and covariances,119
but the results of statistical analyses of data are more easily understood when presented in terms120
of standard deviations and correlation coefficients.121

The lack of a correlation between two quantities X and Y is not a sufficient condition to guarantee122
that two values f(X) and g(Y) calculated from them will also be uncorrelated. A stronger condi-123
tion called independence is required. For most practical purposes, to say that two quantities are124
“independent” is to say that their random components are completely unrelated. To be more125
rigorous, X and Y are independent if and only if Pr[X 0 I and Y 0 J] = Pr[X 0 I ] @ Pr[Y 0 J] for126
any intervals I and J in the real line, where the symbol 0 denotes set membership.127

When the value of a random variable X is used to estimate the value of an unknown parameter p,128
then X is called an estimator for p. The bias of X is the difference between the mean µX and the129
actual value p. If the bias is zero, then X is said to be unbiased; otherwise, X is biased.130

19.2.2  Summary of Terms131

arithmetic mean: The term “arithmetic mean” denotes the estimate of the expectation of a distri-132
bution calculated by dividing the sum of a set of observed values by the number of values. It is133
also called the “average.”134
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bias: If X is an estimator for a parameter p, then the bias of X is µX ! p.135

coefficient of variation: The coefficient of variation of a nonnegative distribution is the ratio of136
its standard deviation to its mean.137

correlated: Two random variables are correlated if their covariance is nonzero.138

correlation coefficient: The correlation coefficient of two random variables is equal to their139
covariance divided by the product of their standard deviations.140

covariance: The covariance of two random variables X and Y, denoted by Cov(X,Y) or σX,Y, is a141
measure of the association between them, and is defined as E[(X ! µX)(Y ! µY)].142

distribution: The distribution of a random variable is a mathematical description of its possible143
values and their probabilities. The distribution is uniquely determined by its distribution function.144

distribution function: The distribution function, or cumulative distribution function, of a ran-145
dom variable X is the function F defined by F(x) = Pr[X # x].146

estimator: A random variable whose value is used to estimate an unknown parameter p is called147
an estimator for p.148

expectation: The expectation of a random variable X, denoted by E(X) or µX, is a measure of the149
center of its distribution and is defined as a probability-weighted average of the possible numer-150
ical values.151

expected value: See expectation.152

independent: A collection of random variables X1, X2, …, Xn is independent if Pr[X1 0 I1, X2 0 I2,153
…, Xn 0 In] = Pr[X1 0 I1 ] @ Pr[X2 0 I2] @ @ @ Pr[Xn 0 In] for all intervals I1, I2, …, In in the real line.154

mean: See expectation.155

median: A median of a distribution is any number that splits the range of possible values into156
two equally likely portions, or, to be more rigorous, a 0.5-quantile.157

mode: The mode of a distribution is its most probable value.158
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percentile: A 100pth percentile of X is the same as a p-quantile of X.159

probability density function (pdf): A probability density function for a random variable X is a160
function f(x) such that the probability of any event a # X # b is equal to the value of the integral161
Ia

b f(x) dx. The pdf, when it exists, equals the derivative of the distribution function.162

quantile: A p-quantile of a random variable X is any value xp such that the probability that X < xp163
is at most p and the probability that X # xp is at least p.164

random variable: A random variable is the numerical outcome of an experiment which pro-165
duces varying results when repeated.166

relative standard deviation (RSD): See coefficient of variation.167

relative variance: The relative variance of a random variable is the square of the coefficient of168
variation.169

standard deviation: The standard deviation of a random variable X, denoted by σX, is a measure170
of the width of its distribution, and is defined as the square root of the variance of X.171

variance: The variance of a random variable X, denoted by σX
2, Var(X), or V(X), is defined as172

E[(X ! µX)2].173

19.3 Measurement Uncertainty174

The methods, terms, and symbols recommended by MARLAP for evaluating and expressing175
measurement uncertainty are described in the Guide to the Expression of Uncertainty in Meas-176
urement, hereafter abbreviated as GUM, which was published by the International Organization177
for Standardization (ISO) in 1993 and corrected and reprinted in 1995 (ISO 1995). The methods178
presented in the GUM are summarized in this chapter and adapted for application to radiochem-179
istry.180

19.3.1  Measurement, Error, and Uncertainty181

The result of a measurement is generally used to estimate some physical quantity called the182
measurand. For example, the measurand for a radioactivity measurement might be the activity183
concentration of 238Pu in a laboratory sample. The measured result may vary with each repetition184
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of the measurement and should therefore be considered a random variable. The difference185
between the measured result and the actual value of the measurand is the error of the measure-186
ment, which is also a random variable.187

Measurement error may be caused by random effects or systematic effects in the measurement188
process. Random effects cause the measured result to vary randomly when the measurement is189
repeated. Systematic effects cause the result to tend to differ from the value of the measurand by190
a constant absolute or relative amount, or to vary in a nonrandom manner. Generally, both191
random and systematic effects are present in a measurement process.192

A measurement error produced by a random effect is a random error, and an error produced by a193
systematic effect is a systematic error. The distinction between random and systematic errors194
depends on the specification of the measurement process, since a random error in one measure-195
ment process may appear systematic in another. For example, a random error in the measurement196
of the concentration of a radioactive standard solution may be systematic from the point of view197
of a laboratory that purchases the solution and uses it to calibrate instruments.198

Measurement errors may also be spurious errors, such as those caused by human blunders and199
instrument malfunctions. Blunders and other spurious errors are not taken into account in the200
statistical evaluation of measurement uncertainty. They should be avoided, if possible, by the use201
of good laboratory practices, or at least detected and corrected by appropriate quality assurance202
and quality control activities.203

The error of a measurement is primarily a theoretical concept, because its value is unknowable.204
The uncertainty of a measurement, however, is a concept with practical uses. According to the205
GUM, the term “uncertainty of measurement” denotes a “parameter, associated with the result of206
a measurement, that characterizes the dispersion of the values that could reasonably be attributed207
to the measurand.” The uncertainty of a measured value thus gives a bound for the likely size of208
the measurement error. In practice, there is seldom a need to refer to the error of a measurement,209
but an estimate of the uncertainty is required for every measured result.210

19.3.2  The Measurement Process211

The first step in defining a measurement process is to define the measurand clearly. The specifi-212
cation of the measurand is always ambiguous to some extent, but it should be as clear as neces-213
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“a value” of the measurand and not “the value.”
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and the random variable associated with its measurement, while a lowercase letter is used for the estimated value of
the quantity. For simplicity, in most of the later examples this convention will be abandoned. Only one symbol will
be used for the quantity, the random variable, and the estimated value of the quantity.
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sary for the intended purpose of the data.1 For example, when measuring the concentration of a214
radionuclide in a laboratory sample, it is generally necessary to specify the concentration as of a215
certain date and time and whether the entire sample or only a certain fraction is of interest. For216
very accurate work, it may be necessary to specify other conditions, such as temperature (e.g.,217
concentration per unit volume of liquid at 20EC).218

Often the measurand is not measured directly but instead an estimate is calculated from the meas-219
ured values of other input quantities, which have a known mathematical relationship to the220
measurand. For example, input quantities in a measurement of radioactivity may include the221
gross count, instrument background count, counting efficiency, and test portion size. The second222
step in defining the measurement process is therefore to determine the mathematical model for223
the relationship between the measurand Y and measurable input quantities Xi on which its value224
depends. The relationship may be a simple functional relationship, expressible as Y =225
f(X1,X2,…,XN), or it may happen that Y is most conveniently expressed as the simultaneous226
solution of a set of equations.227

The mathematical model for a radioactivity measurement often has the general form228

229 Y –– (Gross Instrument Signal) – (Blank Signal % Estimated Interferences)
Sensitivity

Each of the quantities shown here may actually be a more complicated expression. For example,230
the sensitivity (the ratio of the net signal to the concentration) may be the product of factors such231
as the mass of the test portion, the chemical yield, and the instrument counting efficiency.232

When the measurement is performed, a value xi is estimated for each input quantity, Xi, and an233
estimated value y of the measurand is calculated using the relationship y = f(x1,x2,…,xN).2 Since234
there is an uncertainty in each input estimate, xi , there is also an uncertainty in the output235
estimate, y. In order to obtain a complete estimate of the uncertainty of y, all input quantities that236
could have a potentially significant effect on y should be included in the model.237
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19.3.3  Analysis of Measurement Uncertainty238

Determining the uncertainty of the output estimate y requires that the uncertainties of all the input239
estimates xi be determined and expressed in comparable forms. The uncertainty of xi is expressed240
in the form of a standard deviation, called the standard uncertainty and denoted by u(xi), or in the241
form of a variance, denoted by u2(xi), which is the square of the standard uncertainty. A standard242
uncertainty is sometimes informally called a “one-sigma” uncertainty. The ratio u(xi) / xi is called243
the relative standard uncertainty of xi. If the input estimates are potentially correlated, covariance244
estimates u(xi,xj) must also be determined. The covariance u(xi,xj) is often recorded and presented245
in the form of an estimated correlation coefficient, r(xi,xj), which is defined as the quotient246
u(xi,xj) / u(xi)u(xj). The standard uncertainties and estimated covariances are combined to obtain247
the combined standard uncertainty of y, denoted by uc(y). (The term “total propagated uncertain-248
ty,” or TPU, has been used for the same concept; however, MARLAP recommends the ISO249
terminology.) The square of the combined standard uncertainty, denoted by uc

2(y), is called the250
combined variance.251

The process of combining the standard uncertainties of the input estimates xi to obtain the com-252
bined standard uncertainty of the output estimate y is called “uncertainty propagation.” Mathe-253
matical methods for propagating uncertainty and for evaluating the standard uncertainties of the254
input estimates are described in Section 19.5.255

Methods for evaluating the standard uncertainties u(xi) are classified as either Type A or Type B.256
A Type A evaluation of a standard uncertainty u(xi) may be performed by making a series of inde-257
pendent measurements of the quantity xi and calculating the arithmetic mean and experimental258
standard deviation of the mean. The arithmetic mean is used as the input estimate xi and the259
experimental standard deviation of the mean is used as the standard uncertainty u(xi). There are260
other Type A methods, but all are based on repeated measurements. Any evaluation of standard261
uncertainty that is not a Type A evaluation is a Type B evaluation.262

Sometimes a Type B evaluation of uncertainty involves making a best guess based on all avail-263
able information and professional judgment. Laboratory workers may be reluctant to make this264
kind of evaluation, but it is better to make an informed guess about an uncertainty component265
than to ignore it completely.266

A standard uncertainty u(xi) may be called a “Type A” or “Type B” standard uncertainty, depend-267
ing on its method of evaluation, but no distinction is made between the two types for the268
purposes of uncertainty propagation.269
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19.3.4  Corrections for Systematic Effects270

When a systematic effect in the measurement process has been identified and quantified, a quan-271
tity should be included in the mathematical measurement model to correct for it. The quantity,272
called a correction (additive) or correction factor (multiplicative), will have an uncertainty which273
should be evaluated and propagated.274

Whenever a previously unrecognized systematic effect is detected, the effect should be investi-275
gated and either eliminated procedurally or corrected mathematically.276

19.3.5  Counting Uncertainty277

The counting uncertainty of a radiation measurement (historically called “counting error”) is the278
component of uncertainty caused by the random nature of radioactive decay and radiation count-279
ing. Radioactive decay is inherently random in the sense that two atoms of a radionuclide will280
generally decay at different times, even if they are identical in every discernible way. Radiation281
counting is also inherently random unless the efficiency of the counting instrument is 100%.282

In many cases the counting uncertainty in a single gross radiation counting measurement can be283
estimated by the square root of the observed counts. The Poisson counting model, which is the284
mathematical basis for this rule, is discussed in Section 19.6. Note that the use of this approxi-285
mation is a Type B evaluation of uncertainty.286

Historically many radiochemistry laboratories reported only the counting uncertainties of their287
measured results. MARLAP recommends that a laboratory consider all possible sources of meas-288
urement uncertainty and evaluate and propagate the uncertainties for all sources believed to be289
potentially significant in the final result.290

19.3.6  Expanded Uncertainty291

The laboratory may report the combined standard uncertainty, uc(y), or it may multiply uc(y) by a292
factor k, called a coverage factor, to produce an expanded uncertainty, denoted by U, such that293
the interval from y ! U to y + U has a specified high probability p of containing the value of the294
measurand. The specified probability, p, is called the level of confidence or the coverage proba-295
bility and is generally only an approximation of the true probability of coverage.296

When the distribution of the measured result is approximately normal, the coverage factor is297
often chosen to be k = 2 for a coverage probability of approximately 95%. An expanded uncer-298
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tainty calculated with k = 2 or 3 is sometimes informally called a “two-sigma” or “three-sigma”299
uncertainty. In general, if the desired coverage probability is γ and the combined standard uncer-300
tainty is determined accurately, the coverage factor for a normally distributed result is k = z(1 + γ) / 2,301
which can be found in a table of quantiles of the standard normal distribution (see Table G.1 in302
Appendix G).303

The GUM recommends the use of coverage factors in the range 2–3 when the combined standard304
uncertainty is determined accurately. Attachment 19C describes a more general procedure for305
calculating the coverage factor kp that gives a desired coverage probability p when there is sub-306
stantial uncertainty in the estimate of uc(y).307

19.3.7  Significant Figures308

The number of significant figures that should be reported for the result of a measurement309
depends on the uncertainty of the result. A common convention is to round the uncertainty310
(standard uncertainty or expanded uncertainty) to either one or two significant figures and to311
report both the measured value and the uncertainty to the resulting number of decimal places312
(ISO 1995, Bevington 1992, EPA 1980). MARLAP recommends this convention and suggests313
that uncertainties be rounded to two figures. The following examples demonstrate the application314
of the rule.315

EXAMPLES316

MEASURED317
VALUE318

(y)319

EXPANDED
UNCERTAINTY 

U = kuc(y)

REPORTED
RESULT

0.8961320     0.0234 0.896 ± 0.023

0.8961321     0.2342 0.90 ± 0.23

0.8961322     2.3419 0.9 ± 2.3

0.8961323   23.4194 1 ± 23

0.8961324 234.1944 0 ± 230

Only final results should be rounded in this manner. Intermediate results in a series of calculation325
steps should be carried through all steps with additional figures to prevent unnecessary roundoff326
errors. Additional figures are also recommended when the data are stored electronically. Round-327
ing should be performed only when the result is reported. (See Section 19.6.10 for a discussion of328
the measurement uncertainty associated with rounding.)329
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19.3.8  Reporting the Measurement Uncertainty330

When a measured value y is reported, its uncertainty should always be stated. The laboratory may331
report either the combined standard uncertainty uc(y) or the expanded uncertainty U.332

The measured value y and its expanded uncertainty U may be reported in the format y ± U or333
y +– U.334

The plus-minus format may be used to report an expanded uncertainty, but it generally should be335
avoided when reporting a standard uncertainty, because readers are likely to interpret it as a con-336
fidence interval. A commonly used shorthand format for reporting a result with its standard337
uncertainty places the one or two digits of the standard uncertainty in parentheses immediately338
after the corresponding final digits of the rounded result. For example, if the rounded result of the339
measurement is 1.92 and the standard uncertainty is 0.14, the result and uncertainty may be340
shown together as 1.92(14). One may also report the standard uncertainty explicitly.341

Since laboratories may calculate uncertainties using different methods and report them using342
different coverage factors, it is a bad practice to report an uncertainty without explaining what it343
represents. Any analytical report, even one consisting of only a table of results, should state344
whether the uncertainty is the combined standard uncertainty or an expanded uncertainty, and in345
the latter case it should also state the coverage factor used and the approximate coverage prob-346
ability. A complete report should also describe the methods used to calculate the uncertainties.347

The uncertainties for environmental radioactivity measurements should be reported in the same348
units as the results. Relative uncertainties (i.e., uncertainties expressed as percentages) may also349
be reported, but the reporting of relative uncertainties alone is not recommended when the350
measured value may be zero, because the relative uncertainty in this case is undefined. A partic-351
ularly bad practice, sometimes implemented in software, is to compute the relative uncertainty352
first and multiply it by the measured value to obtain the absolute uncertainty. When the measured353
value is zero, the uncertainty is reported incorrectly as zero. Reporting of relative uncertainties354
without absolute uncertainties for measurements of spiked samples or standards generally355
presents no problems, because the probability of a negative or zero result is negligible.356

It is possible to calculate radioanalytical results that are less than zero, although negative radio-357
activity is physically impossible. Laboratories sometimes choose not to report negative results or358
results that are near zero. Such censoring of results is not recommended. All results, whether359
positive, negative, or zero, should be reported as obtained, together with their uncertainties.360
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The preceding statement must be qualified, because a measured value y may be so far below zero361
that it indicates a possible blunder, procedural failure, or other quality control problem. Usually,362
if y + 3uc(y) < 0, the result should be considered invalid, although the accuracy of the uncertainty363
estimate uc(y) must be considered, especially in cases where only few counts are observed during364
the measurement and counting uncertainty is the dominant component of uc(y). (See Chapter 18,365
Laboratory Quality Control, and Attachment 19C of this chapter.)366

19.3.9  Recommendations367

MARLAP makes the following recommendations.368

• All radioanalytical laboratories should adopt the terminology and methods of the Guide369
to the Expression of Uncertainty in Measurement (ISO 1995) for evaluating and370
reporting measurement uncertainty.371

• Each measured value should be reported with either its combined standard uncertainty372
or its expanded uncertainty.373

• The reported measurement uncertainties should be clearly explained. In particular, the374
coverage factor and approximate coverage probability should be stated whenever an375
expanded uncertainty is reported.376

• A laboratory should consider all possible sources of measurement uncertainty and377
evaluate and propagate the uncertainties for all sources believed to be potentially378
significant in the final result.379

• Each uncertainty should be rounded to two significant figures, and the measured value380
should be rounded to the same number of decimal places as its uncertainty.381

• All results, whether positive, negative, or zero, should be reported as obtained, together382
with their uncertainties.383

19.3.10  Summary of Terms384

blunder: mistake made by a person performing a measurement.385
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combined standard uncertainty: standard uncertainty of an output estimate calculated by386
combining the standard uncertainties of the input estimates. The combined standard uncertainty387
of y is denoted by uc(y).388

combined variance: the square of the combined standard uncertainty. The combined variance of389
y is denoted by uc

2(y).390

counting error: See counting uncertainty. MARLAP uses the term “counting uncertainty” to391
maintain a clear distinction between the concepts of measurement error and uncertainty.392

counting uncertainty: component of measurement uncertainty caused by the random nature of393
radioactive decay and radiation counting.394

coverage factor: value k multiplied by the combined standard uncertainty uc(y) to give the395
expanded uncertainty U.396

coverage probability: approximate probability that the reported interval will contain the value of397
the measurand.398

error (of measurement): difference between a measured result and the value of the measurand399
(cf. uncertainty of measurement).400

expanded uncertainty: product U of the combined standard uncertainty of a measured value y401
and a coverage factor k chosen so that the interval from y ! U to y + U has a desired high proba-402
bility of containing the value of the measurand Y.403

GUM: abbreviation used in this chapter for the Guide to the Expression of Uncertainty in404
Measurement (ISO 1995).405

input estimate: measured value of an input quantity.406

input quantity: any of the quantities in a mathematical measurement model whose values are407
measured and used to calculate the value of another quantity, called the output quantity.408

level of confidence: See coverage probability.409

measurand: quantity subject to measurement.410
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output estimate: calculated value of an output quantity.411

output quantity: the quantity in a mathematical measurement model whose value is calculated412
from the measured values of other quantities in the model.413

random effect: any effect in a measurement process which causes the measured result to vary414
randomly when the measurement is repeated.415

random error: a measurement error which varies randomly when the measurement is repeated416
— caused by random effects.417

relative standard uncertainty: the ratio of the standard uncertainty of a measured result to the418
result itself. The relative standard uncertainty of x may be denoted by ur(x).419

sigma (σ): The term “sigma” is sometimes used informally to mean “standard uncertainty,” and420
“k-sigma” is used to mean an expanded uncertainty calculated using the coverage factor k. The421
symbol σ and the term “sigma” are more properly used to denote a true standard deviation.422

spurious error: a measurement error caused by a human blunder, instrument malfunction, or423
other unexpected or abnormal event424

standard uncertainty: uncertainty of a measured value expressed as a standard deviation —425
often called a “1-sigma” uncertainty. The standard uncertainty of x is denoted by u(x).426

systematic effect: any effect in a measurement process which does not vary randomly when the427
measurement is repeated.428

systematic error: a measurement error which does not vary randomly when the measurement is429
repeated — caused by systematic effects.430

total propagated uncertainty (TPU): See combined standard uncertainty, which is the431
preferred term.432

Type A evaluation: experimental evaluation of a standard uncertainty or covariance using433
repeated measurements.434

Type B evaluation: evaluation of a standard uncertainty or covariance by a method that is not a435
Type A method.436
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uncertainty (of measurement): “parameter, associated with the result of a measurement, that437
characterizes the dispersion of the values that could reasonably be attributed to the measurand”438
(ISO 1993a).439

uncertainty propagation: mathematical technique for combining the standard uncertainties of440
the input estimates for a mathematical model to obtain the combined standard uncertainty of the441
output estimate.442

19.4 Detection and Quantification Capability443

19.4.1  Analyte Detection Decisions444

An obvious question to be answered following the analysis of a laboratory sample is: “Does the445
sample contain a positive amount of the analyte?” Uncertainty in the measured value often makes446
the question difficult to answer. There are different methods for making a detection decision, but447
the methods most often used in radiochemistry involve the principles of statistical hypothesis448
testing.449

Hypothesis testing has been used for analyte detection in radiochemistry since at least 1962. Two450
influential early publications on the subject were Altshuler and Pasternack 1963 and Currie 1968.451
Other important but perhaps less well-known documents were Nicholson 1963 and 1966. Most452
approaches to the detection problem have been similar in principle, but there has been inadequate453
standardization of terminology and methodology. However, there has been recent progress. In454
1995 the International Union of Pure and Applied Chemistry (IUPAC) published “Nomenclature455
in Evaluation of Analytical Methods Including Detection and Quantification Capabilities”456
(IUPAC 1995), which recommends a uniform approach to defining various performance char-457
acteristics of any chemical measurement process, including detection and quantification limits;458
and in 1997 the International Organization for Standardization (ISO) issued the first part of ISO459
11843 “Capability of Detection,” a two-part standard which deals with issues of detection in an460
even more general context of measurement (ISO 1997). Part 1 of ISO 11843 includes terms and461
definitions. Part 2, which is not available at the time of this writing, will deal with methodology.462
Although members of the IUPAC and ISO working groups collaborated during the development463
of their guidelines, substantial differences between the final documents remain. MARLAP464
follows both the ISO and IUPAC guidelines where they agree but prefers the definitions of ISO465
11843-1 for the critical value and minimum detectable value, relating them to the terminology466
and methodology already familiar to most radiochemists.467
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In July 2000, ISO also published the first three parts of ISO 11929 “Determination of the Detec-468
tion Limit and Decision Threshold for Ionizing Radiation Measurements” (ISO 2000a–c). Unfor-469
tunately, ISO 11929 is not completely consistent with either the earlier ISO standard or the470
IUPAC recommendations.471

In the terminology of ISO 11843-1, the analyte concentration of a laboratory sample is the state472
variable, denoted by Z, which represents the state of the material being analyzed. Blank material473
is said to be in the basic state. The state variable cannot be observed directly, but it is related to474
an observable response variable, denoted by Y, through a calibration function F, the mathemat-475
ical relationship being written as Y = F(Z). In radiochemistry the response variable Y is most476
often an instrument signal, such as the number of counts observed. The difference between the477
state variable Z and its value in the basic state is called the net state variable, which is denoted478
by X. In radiochemistry there generally is no difference between the state variable and the net479
state variable, because the basic state is represented by material whose analyte concentration is480
zero. (In principle the basic state might correspond to a positive concentration, but MARLAP481
does not address this scenario.)482

A detection decision requires a choice between two hypotheses about the material being ana-483
lyzed. The first hypothesis is the “null hypothesis” H0: The analyte concentration of the material484
is no greater than that of the blank (i.e., the material is in the basic state). The second hypothesis485
is the “alternative hypothesis” H1: The analyte concentration of the material is greater than that of486
the blank. The choice between the two hypotheses is based on the observed value of the response487
variable Y. The value of Y must exceed a certain threshold value to justify rejection of the null488
hypothesis. This threshold is called the critical value of the response variable and is denoted489
by yC. The calculation of yC requires the choice of a significance level for the test. The signifi-490
cance level is the probability α that the null hypothesis will be rejected in a situation where it is491
in fact true (i.e., a “type I error,” or “false positive”). The significance level α is usually chosen to492
be 0.05. This means that when a blank sample is analyzed, there is a 5% probability of incor-493
rectly deciding that the analyte is present. A smaller value of α makes type I errors less likely, but494
also makes type II errors (“false negatives”) more likely when the laboratory sample concentra-495
tion is near the blank concentration.496

The term “blank” here may mean any of several types of blanks, including instrument blanks (or497
backgrounds) and reagent blanks. The blank is chosen to provide an estimate of the mean signal498
produced by an actual sample that contains none of the analyte, whether the signal is produced by499
the instrument background, contaminated reagents, or other causes.500
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The inverse F!1 of the calibration function is sometimes called the evaluation function (IUPAC501
1995). The evaluation function, which gives the value of the net concentration in terms of the502
response variable, is closely related to the mathematical model described in Section 19.3.2.503

The critical value of the analyte concentration xC , according to the ISO definition, is the value504
obtained by applying the evaluation function F!1 to the critical value of the response variable yC .505
Thus, xC = F!1(yC). In radiochemistry this formula typically involves division by the counting506
efficiency, test portion size, chemical yield, decay factor, and possibly other factors. In ANSI507
N42.23, the same value xC is called the decision level concentration, or DLC (ANSI 1996b).508

According to ISO 11843-1, a detection decision involves the critical value of the response509
variable, or gross instrument signal, which, in a radioactivity measurement, is typically a total510
count or count rate. However, it has become standard practice in radioanalysis to use instead the511
critical value of the net instrument signal, which is calculated from the gross signal by subtract-512
ing the estimated blank value and any interferences. This practice is consistent with the recom-513
mendations of IUPAC (1995), where the critical value of the net instrument signal S is denoted514
by SC . In principle, either approach should lead to the same detection decision.515

Since the term “critical value” alone is ambiguous, one should specify the variable to which the516
term refers. For example, one may discuss the critical (value of the) analyte concentration, the517
critical (value of the) net count, or the critical (value of the) gross count.518

Section 19.7.1 and Section 19D.2 of Attachment 19D provide more information on the calcula-519
tion of critical values.520

19.4.2  The Minimum Detectable Concentration521

The minimum detectable concentration is the concentration of analyte that must be present in a522
laboratory sample to give a specified probability 1 ! β of detection. Then β is the probability of523
failing to reject the null hypothesis when it is false (i.e., a “type II error,” or “false negative”).524
The minimum detectable concentration is often abbreviated as MDC. In the ISO terminology the525
MDC is called the minimum detectable value of the net state variable, denoted by xD , which is526
defined as the smallest (true) value of the net state variable that gives a specified high probability527
1 ! β that the value of the response variable will exceed its critical value, thus leading one to528
conclude correctly that the material analyzed is not in the basic state (i.e., the material is not529
blank). The relationship between the critical value and the minimum detectable value of the net530
state variable is shown in Figure 19.3.531
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FIGURE 19.3 — The critical value xC and minimum detectable value xD 
of the net state variable

Sections 19.7.2 and 19D.3 provide more information about the calculation of the minimum532
detectable concentration.533

When the quantity being measured is the total amount of analyte in an item and not an analyte534
concentration, the minimum detectable value is sometimes called the minimum detectable535
amount, which may be abbreviated as MDA. This chapter focuses on the MDC, but with few536
changes the guidance is also applicable to the MDA.537

While project planners and laboratories have some flexibility in choosing the significance level α538
used for detection decisions, the MDC is usually calculated with α = β = 0.05. The use of stan-539
dard values for α and β allows meaningful comparison of analytical procedures.540

The MDC concept has generated controversy among radiochemists for years and has frequently541
been misinterpreted and misapplied. The term must be carefully and precisely defined to prevent542
confusion. The MDC is by definition the true concentration of analyte required to give a speci-543
fied high probability that the measured response will be greater than the critical value. Thus, the544
common practice of comparing a measured concentration to the MDC to make a detection545
decision is not defensible.546

There are still disagreements about the proper uses of the MDC concept. Some define the MDC547
strictly as an estimate of the nominal detection capability of a measurement process. Those in548
this camp consider it invalid to compute an MDC for each measurement using sample-specific549
information such as test portion size, chemical yield, and decay factors (e.g., ANSI N42.23). The550
opposing view is that the “sample-specific” MDC is a useful measure of the detection capability551
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of the measurement process, not just in theory, but as it actually performed. The sample-specific552
MDC may be used, for example, to determine whether an analysis that has failed to detect the553
analyte of interest should be repeated because it did not have the required or promised detection554
capability.555

Neither version of the MDC can legitimately be used as a threshold value for a detection deci-556
sion. The definition of the MDC presupposes that an appropriate detection threshold (i.e., the557
critical value) has already been defined.558

Many experts strongly discourage the reporting of a sample-specific MDC because of its limited559
usefulness and the likelihood of its misuse. Nevertheless, this practice has become firmly estab-560
lished at many laboratories and is expected by many users of radioanalytical data. Furthermore,561
NUREG/CR-4007 states plainly that “the critical (decision) level and detection limit [MDC]562
really do vary with the nature of the sample” and that “proper assessment of these quantities563
demands relevant information on each sample, unless the variations among samples (e.g., inter-564
ference levels) are quite trivial” (NRC 1984).565

Since a sample-specific MDC is calculated from measured values of input quantities such as the566
chemical yield, counting efficiency, test portion size, and background level, the MDC estimate567
has a combined standard uncertainty, which in principle can be obtained by uncertainty propa-568
gation.569

In the calculation of a sample-specific MDC, the treatment of any randomly varying but precisely570
measured quantities, such as the chemical yield, is important and may not be identical at all lab-571
oratories. The most common approach to this calculation uses the measured value and ignores572
the variability of the quantity. For example, if the chemical yield routinely varies between 0.85573
and 0.95, but for a particular analysis the yield happens to be 0.928, the MDC for that analysis574
would be calculated using the value 0.928 with no consideration of the typical range of yields. A575
consequence of this approach is that the MDC varies randomly when the measurement is576
repeated under similar conditions; or, in other words, the sample-specific MDC with this577
approach is a random variable. The nominal MDC for the measurement process is a constant —578
not a random variable.579

If sample-specific MDCs are reported, it must be clear that no measured value should ever be580
compared to an MDC to make a detection decision. In certain cases it may be valid to compare581
the sample-specific MDC to a required detection limit to determine whether the laboratory has582
met contractual or regulatory requirements (remembering to consider the uncertainty of the MDC583
estimate), and in general it may be informative to both laboratory personnel and data users to584
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compare sample-specific MDCs to nominal estimates, but other valid uses for the sample-585
specific MDC are rare.586

19.4.3  Differences between the ISO and IUPAC Definitions587

The ISO and IUPAC guidance documents give different definitions for some of the terms listed588
above and promote somewhat different concepts. In general, the IUPAC approach is to define the589
“critical value” and “minimum detectable value” separately for the signal and concentration590
domains. A detection decision may be made in either domain, but the outcome of the decision591
may depend on which domain is chosen. With the ISO approach the outcome does not depend on592
the domain. Either domain may be chosen, but in effect all detection decisions are made in the593
signal domain.594

The IUPAC and ISO approaches to detection in the signal domain, although expressed differ-595
ently, are effectively equivalent. (IUPAC bases detection decisions on the net signal S, whereas596
ISO bases detection decisions on the gross signal Y.) The more important differences are in the597
concentration domain (X). For example, according to IUPAC, the critical analyte concentration598
xC is determined from the distribution of the measured concentration X, taking into account its599
overall measurement uncertainty. According to ISO, xC is simply a function of yC , the critical600
value of the response variable. Since xC is related to yC in the same way that X is related to Y, it601
makes no difference whether detection decisions are based on X or Y — the outcome is the same.602

The IUPAC guidance defines the minimum detectable concentration xD as the smallest concentra-603
tion that gives a specified high probability of obtaining a measured concentration greater than xC ,604
which is inconsistent with the ISO guidance because of the differing definitions of xC .605

One consequence of the IUPAC definitions is that the measurement variances of sensitivity fac-606
tors such as the test portion size, counting efficiency, and chemical yield increase the values of xC607
and xD  because they increase the variance of X. According to the ISO definitions, these variances608
do not increase the values of xC and xD , although they generate uncertainties in the estimates of xC609
and xD . In principle, the ISO definitions imply that variability in the true values of these sensitiv-610
ity factors does increase xD , although the draft implementation guidance in ISO 11843-2 appar-611
ently does not deal with the issue.612

As stated above, MARLAP adopts the ISO definitions but also follows the IUPAC guidance613
where it does not contradict the definitions of ISO 11843-1. The draft implementation guidance614
in ISO 11843-2 appears not to be designed for typical radioanalytical measurement processes.615
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19.4.4  Other Detection Terminologies616

Another term frequently used for a measure of detection capability is the “lower limit of detec-617
tion,” or LLD (Altshuler 1963, EPA 1980, NRC 1984). Unfortunately this term has been used618
with more than one meaning. In Upgrading Environmental Radiation Data (EPA 1980), the LLD619
is defined as a measure of the detection capability of an instrument and is expressed as an activ-620
ity. However, the Nuclear Regulatory Commission defines the LLD to be identical to the MDC621
when α = β = 0.05 (see, for example, NUREG/CR-4007). It is thus a measure of the detection622
capability of a measurement process and is expressed as an activity concentration.623

The term “detection limit” is often used as a synonym for “MDC” or for “minimum detectable624
value” of any other measured quantity.625

Many other terms have been used to describe detection capabilities of measurement procedures.626
Most of them will not be listed here, but one term deserves attention because of the possibility of627
its confusion with the MDC. The method detection limit, or MDL, is a measure of detection628
capability used routinely in the context of analyzing samples for chemical contaminants.629

The term “method detection limit” is defined in the Code of Federal Regulations. In Title 40630
CFR Part 136, Appendix B, the following definition appears:631

The method detection limit (MDL) is defined as the minimum concentration of a632
substance that can be measured and reported with 99% confidence that the analyte633
concentration is greater than zero and is determined from analysis of a sample in a634
given matrix containing the analyte.635

The definition is later clarified somewhat by a statement that the MDL “is used to judge the sig-636
nificance of a single measurement of a future sample.” Thus, the MDL serves as a critical value;637
however, it is also used as a measure of detection capability, like an MDC. Note that, in638
MARLAP’s usage, the “method detection limit” is not truly a detection limit.639

The similarity between the abbreviations MDC and MDL tends to produce confusion. The term640
“method detection limit” is seldom used in the context of radioanalysis except when the analyt-641
ical method is one that is commonly used to measure stable elements (e.g., ICP/MS methods), or642
when the term is misused by those who are more familiar with the terminology of hazardous643
chemical analysis. The confusion is made worse by the fact that “MDL” is sometimes interpreted644
by radiochemists as an abbreviation for nonstandard terms such as “minimum detectable level”645
and “minimum detectable limit,” the use of which MARLAP strongly discourages.646
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19.4.5  The Minimum Quantifiable Concentration647

The minimum quantifiable concentration, or the minimum quantifiable value of the analyte con-648
centration, is defined as the concentration of analyte in a laboratory sample at which the measure-649
ment process gives results with a specified relative standard deviation.3 A relative standard devi-650
ation of 10% is usually specified, although other values are possible (see for example MARLAP651
Appendix C). Since ISO 11843 addresses detection capability but not quantification capability,652
MARLAP follows IUPAC guidance in defining “minimum quantifiable value” (IUPAC 1995).653
IUPAC defines both the minimum quantifiable instrument signal and the minimum quantifiable654
concentration, although MARLAP considers only the latter. In this document the minimum quan-655
tifiable concentration will be abbreviated as MQC and denoted in equations by xQ .656

The term “quantification limit” may be used as a synonym for “minimum quantifiable concentra-657
tion” or for “minimum quantifiable value” of any other measured quantity.658

Section 19.7.3 provides more information about the calculation of the minimum quantifiable659
concentration.660

Historically much attention has been given to the detection capabilities of radioanalytical meas-661
urement processes, but less attention has been given to quantification capabilities, although for662
some analytical projects, quantification capability may be a more relevant issue. For example,663
suppose the purpose of a project is to determine whether the 226Ra concentration in soil from a664
site is below an action level. Since 226Ra occurs naturally in almost any type of soil, the analyte665
may be assumed to be present in every sample, making detection decisions irrelevant. The MDC666
of the measurement process obviously should be less than the action level, but a more important667
question is whether the MQC is less than the action level (see also Chapter 3 and Appendix C).668
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19.4.6  Recommendations669

MARLAP makes the following recommendation.670

• A measurement result should not be compared to the minimum detectable concentra-671
tion to make an analyte detection decision. A detection decision may be made by672
comparing the gross signal, net signal, or measured analyte concentration to its673
corresponding critical value.674

19.4.7  Summary of Terms675

basic state: in radiochemistry, the chemical composition of blank material.676

critical level: See critical value.677

critical value: in the context of analyte detection, the minimum value of the response variable678
(or the measured analyte concentration) required to give confidence that a positive amount of679
analyte is present in the material analyzed.680

decision level: See critical value.681

detection limit: See minimum detectable value.682

false negative: See type I decision error. This chapter avoids the terms “false negative” and683
“false positive,” because they may be confusing in some contexts.684

false positive: See type II decision error.685

lower limit of detection (LLD): (1) “the smallest concentration of radioactive material in a686
sample that will yield a net count, above the measurement process (MP) blank, that will be687
detected with at least 95% probability with no greater than a 5% probability of falsely concluding688
that a blank observation represents a ‘real’ signal” (NRC 1984); (2) “an estimated detection limit689
that is related to the characteristics of the counting instrument” (EPA 1980).690

method detection limit (MDL): “the minimum concentration of a substance that can be meas-691
ured and reported with 99% confidence that the analyte concentration is greater than zero …692
determined from analysis of a sample in a given matrix containing the analyte” (40 CFR 136,693
Appendix B).694
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minimum detectable amount (MDA): the minimum detectable value of the total amount of695
analyte in the sample being analyzed.696

minimum detectable concentration (MDC): the minimum detectable value of the analyte con-697
centration in a laboratory sample.698

minimum detectable value: the smallest value of the net state variable (amount or concentration699
of analyte) that ensures a specified high probability 1 ! β of detection.700

minimum quantifiable concentration (MQC): the minimum quantifiable value of the analyte701
concentration in a laboratory sample.702

minimum quantifiable value: the smallest value of the net state variable (analyte amount or703
concentration) that ensures the relative standard deviation of the measurement is not greater than704
a specified value, usually 10%.705

net state variable (X): the difference between the state variable Z and its value in the basic state706
—in radiochemistry, usually equal to Z, because the value of Z in the basic state is zero.707

quantification limit: See minimum quantifiable value.708

response variable (Y): the variable that gives the observable result of a measurement—in radio-709
chemistry, typically a gross count or count rate.710

significance level (α): in a hypothesis test, the probability of a type I decision error.711

state variable (Z): the quantity that describes the state of the material analyzed—in radiochem-712
istry, usually the analyte activity concentration.713

type I decision error: in a hypothesis test, the error made by rejecting the null hypothesis when714
it is true (a “false positive”).715

type II decision error: in a hypothesis test, the error made by failing to reject the null hypothesis716
when it is false (a “false negative”).717
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19.5 Procedures for Estimating Uncertainty718

The steps for evaluating and reporting the uncertainty of a radioactivity measurement may be719
summarized as follows (adapted from Chapter 8 of the GUM):720

1. Identify the measurand Y and all the input quantities Xi for the mathematical model.721
Include all quantities whose variability or uncertainty could have a potentially significant722
effect on the result. Express the mathematical relationship Y = f(X1,X2,…,XN) between the723
measurand and the input quantities.724

2. Determine an estimate xi of the value of each input quantity Xi  (an “input estimate,” as725
defined in Sections 19.3.2 and 19.3.9).726

3. Evaluate the standard uncertainty u(xi) for each input estimate xi , using either a Type A or727
Type B method of evaluation (see Section 19.5.2).728

4. Evaluate the covariances u(xi,xj) for all pairs of input estimates with potentially729
significant correlations.730

5. Calculate the estimate y of the measurand from the relationship y = f(x1,x2,…,xN), where f731
is the function determined in Step 1.732

6. Determine the combined standard uncertainty uc(y) of the estimate y (see Section 19.5.3).733

7. Multiply uc(y) by a coverage factor k to obtain the expanded uncertainty U such that the734
interval [y ! U, y + U] can be expected to contain the value of the measurand with a735
specified probability (see Section 19.3.6 and Attachment 19C).736

8. Report the result as y ± U with the unit of measure, and, at a minimum, state the coverage737
factor used to compute U and the estimated coverage probability.738

19.5.1  Identifying Sources of Uncertainty739

The procedure for assessing the uncertainty of a measurement begins with listing all conceivable740
sources of uncertainty in the measurement process. Even if a mathematical model has been iden-741
tified, further thought may lead to the inclusion of more quantities in the model. Some sources of742
uncertainty will be more significant than others, but all should be listed.743
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After all conceivable sources of uncertainty are listed, they should be categorized as either poten-744
tially significant or negligible. Each uncertainty that is potentially significant should be evaluated745
quantitatively. In particular, counting uncertainty, pipetting and weighing uncertainties, and746
uncertainties in standard concentrations should always be evaluated. Other possible causes of747
uncertainty include source geometry and placement, variable instrument backgrounds and effi-748
ciencies, time measurements used in decay and ingrowth calculations, instrument dead-time749
corrections, approximation errors in simplified mathematical models, impurities in reagents, and750
uncertainties in the published values for half-lives and radiation emission probabilities.751

19.5.2  Evaluation of Standard Uncertainties752

Calculating the combined standard uncertainty of an output estimate y = f(x1,x2,…,xN) requires753
the estimation of the standard uncertainty of each input estimate xi. As stated earlier, methods for754
evaluating standard uncertainties are classified as either “Type A” or “Type B.” A Type A eval-755
uation of an uncertainty uses a series of measurements to estimate the standard deviation empiri-756
cally. Any other method of evaluating an uncertainty is a Type B method.757

19.5.2.1  Type A Evaluations758

Suppose Xi is an input quantity in the mathematical model. If a series of n independent observa-759
tions of Xi are made under the same measurement conditions, yielding the results ,760 Xi,1,Xi,2, ...,Xi,n
the appropriate value for the input estimate xi is the arithmetic mean, or average, , defined as761 Xi

The experimental variance of the observed values is defined as762

and the experimental standard deviation, s(Xi, k), is the square root of s2(Xi, k). The experimental763
standard deviation of the mean, s(X̄i), is obtained by dividing s(Xi, k) by .764 n
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The experimental standard deviation of the mean is also commonly called the “standard error of765
the mean.”766

The Type A standard uncertainty of the input estimate xi =  is defined to be the experimental767 Xi
standard deviation of the mean. Combining the preceding formulas gives the following equation768
for the standard uncertainty of xi:769

When the input estimate xi and standard uncertainty u(xi) are evaluated as described above, the770
number of degrees of freedom for the evaluation is equal to n ! 1, or one less than the number of771
independent measurements of the quantity Xi . In general, the number of degrees of freedom for a772
statistical determination of a set of quantities equals the number of independent observations773
minus the number of quantities estimated. The number of degrees of freedom for each evaluation774
of standard uncertainty is needed to implement the procedure for calculating coverage factors775
described in Attachment 19C.776

In some cases there may be accumulated data for a measurement system, such as a balance or777
pipet, which can be used in a Type A evaluation of uncertainty for future measurements,778
assuming the measurement process remains in control. In fact, the use of recent historical data is779
advisable in such cases, because it enlarges the pool of data available for uncertainty evaluation780
and increases the number of degrees of freedom. This type of uncertainty evaluation can be781
linked closely to the measurement system’s routine quality control.782

EXAMPLE: Ten independent measurements of a quantity Xi are made, yielding the values783

12.132    12.139    12.128    12.133    12.132784
12.135    12.130    12.129    12.134    12.136785

The estimated value xi is the arithmetic mean of the values Xi,k .786

787 xi ' Xi '
1
n j

n

k'1
Xi,k '

121.328
10

' 12.1328
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s(Xi,k,Xj,k) '
1

n & 1 j
n

k'1
(Xi,k & Xi) (Xj,k & X j) (19.5)

s(X i,Xj) '
s(Xi,k,Xj,k)

n
(19.6)

u(xi,xj) –– s(Xi,X j) –– 1
n (n – 1) j

n

k––1
(Xi,k – X i) (Xj,k – Xj) (19.7)

The standard uncertainty of xi is788

789

u(xi) ' s(Xi) '
1

n (n&1) j
n

k'1
(Xi,k & Xi)

2

'
1

10 (10–1) j
10

k'1
(Xi,k & 12.1328)2

' 1.12888 × 10&6 ' 0.0011

If Xi and Xj are two input quantities and estimates of their values are correlated, a Type A evalua-790
tion of covariance may be performed by making n independent pairs of simultaneous observa-791
tions of Xi and Xj and calculating the experimental covariance of the means. If the observed pairs792
are , the experimental covariance of the values is793 (Xi,1,Xj,1), (Xi,2,Xj,2), ..., (Xi,n,Xj,n)

and the experimental covariance of the means  and  is794 Xi Xj

So, the Type A covariance of the input estimates xi =  and xj =  is795 Xi Xj

An evaluation of variances and covariances of parameters determined by the method of least796
squares may also be a Type A evaluation (see Attachment 19B).797
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u(x) ' a
3

(19.8)

19.5.2.2  Type B Evaluations798

There are many ways to perform Type B evaluations of standard uncertainty. This section799
describes some common Type B evaluations but is not meant to be exhaustive.800

One example of a Type B method already given is the estimation of counting uncertainty using801
the square root of the observed counts. If the observed count is n, when the Poisson counting802
model is used, the standard uncertainty of n may be evaluated as u(n) = . When n may be very803 n
small or even zero, MARLAP recommends the use of the equation u(n) =  instead.804 n % 1

EXAMPLE: A Poisson counting measurement is performed, during which n = 121 counts are805
observed. So, the standard uncertainty of n is u(n) =  = 11.806 121

Sometimes a Type B evaluation of an uncertainty u(x) consists of estimating an upper bound a807
for the magnitude of the error in x based on professional judgment and the best available infor-808
mation. If nothing else is known about the distribution of the measured result, then after a is809
estimated, the standard uncertainty may be calculated using the equation 810

which is derived from a statistical model in which the error has a rectangular, or uniform, distri-811
bution bounded by –a and +a (see Section 19A.6 in Attachment 19A).812

EXAMPLE: The maximum error in a measured value x = 34.40 is estimated to be a = 0.05, with813
all values between 34.35 and 34.45 considered equally likely. So, the standard uncertainty of x814
is u(x) = 0.05 /  = 0.029.815 3

EXAMPLE: A strontium carrier solution is prepared by dissolving strontium nitrate in acidified816
water. The purity, P, of the strontium nitrate is stated to be 99.9%, or 0.999, but no tolerance817
or uncertainty is provided. By default, a rectangular distribution with half-width 1 ! P, or818
0.001, is assumed. So, the standard uncertainty of P is evaluated as u(P) = 0.001 /  =819 3
0.00058.820
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u(x) '
(a

%
& a

&
)

2
1 % β2

6
(19.9)

u(x) ' c
z(1%γ) /2

(19.10)

If the value of x is believed to lie between a lower bound a– and an upper bound a+, but values821
near these two bounds are considered less likely than those near the midpoint, then a symmetric822
trapezoidal distribution may be used to obtain the input estimate and its standard uncertainty (see823
Section 19A.7 in Attachment 19A). If the ratio of the width of the trapezoid at its top to the width824
at its base is β, where 0 < β < 1, then the input estimate is the midpoint x = (a– + a+) / 2, and its825
standard uncertainty is826

As β approaches zero, the trapezoidal distribution becomes triangular. As β approaches one, the827
trapezoidal distribution becomes rectangular.828

EXAMPLE: Extreme bounds for a quantity X are estimated to be 34.3 and 34.5, with values829
between 34.35 and 34.45 considered most likely. Using the trapezoidal distribution with830
a– = 34.3, a+ = 34.5, and β = (34.45 ! 34.35) / (34.5 ! 34.3) = 0.5, one obtains the input esti-831

mate x = 34.4 and the standard uncertainty .832 u(x) ' 34.5 & 34.3
2

1 % 0.52

6
' 0.046

When the estimate of an input quantity is taken from an external source, such as a book or a833
calibration certificate, which states the uncertainty as a multiple of the standard deviation s, the834
standard uncertainty is obtained by dividing the stated uncertainty by the stated multiplier of s.835

EXAMPLE: The uncertainty for a measured concentration x is stated to be 0.015 Bq g!1 and the836
stated multiplier is 2. So, the standard uncertainty of x is u(x) = 0.015 / 2 = 0.0075 Bq g!1.837

If the estimate is provided by a source which gives a bound c for the error such that the interval838
from x ! c to x + c contains the true value with 100γ% confidence (0 < γ < 1) but no other infor-839
mation about the distribution is given, the measured result may be assumed to have a normal840
distribution, and the standard uncertainty may therefore be evaluated as841
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u 2
c (y) ' j

N

i'1

My
Mxi

2
u 2(xi) % 2 j

N&1

i'1
j
N

j' i%1

My
Mxi

My
Mxj

u(xi,xj)

The Uncertainty Propagation Formula

(19.11)

u 2
c (y) –– j

N

i––1

My
Mxi

2
u 2(xi) (19.12)

The value of z(1 + γ) / 2 may be found in a table of quantiles of the standard normal distribution (see842
Table G.1 in Appendix G).843

EXAMPLE: The activity concentration x of a commercial standard solution is stated to lie844
within the interval 4530 ± 64 Bq g!1 with 95% confidence. The standard uncertainty may845
therefore be evaluated as u(x) = 64 / z0.975 = 64 / 1.96 = 33 Bq g!1.846

19.5.3  Combined Standard Uncertainty847

Consider the mathematical model Y = f(X1,X2,…,XN). If x1, x2, …, xN are measured values of the848
input quantities Xi and y = f(x1,x2,…,xN) is the calculated value of the measurand Y, the variance849
of y is estimated using the following formula.850

Here u2(xi) denotes the estimated variance of xi , or the square of its standard uncertainty; u(xi,xj)851
denotes the estimated covariance of xi and xj; My / Mxi (or Mf / Mxi) denotes the partial derivative of852
Y with respect to Xi evaluated at the measured values x1, x2, …, xN; and uc(y) denotes the com-853
bined standard uncertainty of y. The partial derivatives My / Mxi are called sensitivity coefficients.854

The preceding formula, called the “law of propagation of uncertainty” in the GUM, will be called855
the “uncertainty propagation formula” in this document.856

If the input estimates x1, x2, …, xN are uncorrelated, the uncertainty propagation formula reduces857
to858

Equation 19.12 is only valid when the input estimates are uncorrelated. Although this case occurs859
frequently in practice, there are notable exceptions. When input estimates are obtained using the860
same measuring devices or the same standard solutions, or when they are calculated from the861
same data, there is a potential for correlation. For example, instrument calibration parameters862
determined by least-squares analysis may be strongly correlated. Fortunately, the method of least863
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squares provides covariance estimates with almost no additional effort (see Attachment 19B). In864
general, ignoring correlations between the input estimates may lead to overestimation or under-865
estimation of the combined standard uncertainty.866

Table 19.1 shows how to propagate uncertainties in some common cases.867

The product of |My / Mxi | and the standard uncertainty u(xi) is called the component of the868
combined standard uncertainty uc(y) generated by the standard uncertainty of xi , and may be869

SUMS AND
DIFFERENCES

If a and b are constants, then
u 2

c (ax ± by) ' a 2u 2(x) % b 2u 2(y) ± 2ab @ u(x,y)

PRODUCTS If x and y are measured values, then
u 2

c (xy) ' u 2(x)y 2 % x 2u 2(y) % 2xy @ u(x,y)
When x and y are nonzero, the formula may be rewritten as

u 2
c (xy) ' x 2y 2 u 2(x)

x 2
%

u 2(y)
y 2

%
2u(x,y)

xy

QUOTIENTS If x and y are measured values, then

u 2
c

x
y

'
u 2(x)

y 2
%

x 2u 2(y)
y 4

&
2x @ u(x,y)

y 3

When x is nonzero, the variance formula may be rewritten as

u 2
c

x
y

'
x 2

y 2

u 2(x)
x 2

%
u 2(y)

y 2
&

2u(x,y)
xy

EXPONENTIALS If a is a constant, then
u 2

c (e ax ) ' a 2 e 2ax u 2(x)
If n is a positive integral constant, then

u 2
c (x n ) ' n 2 x 2n & 2 u 2(x)

If x is positive, then

u 2
c (x y ) ' x 2y y 2 u 2(x)

x 2
% (lnx)2 u 2(y) % 2y (lnx)u(x,y)

x

LOGARITHMS If a is a constant and ax is positive, then

u 2
c (ln ax) ' u 2(x)

x 2
and u 2

c (log10 ax) ' u 2(x)
(ln 10)2 x 2

. u 2(x)
5.302 @ x 2

TABLE 19.1 — Applications of the uncertainty propagation formula
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u 2
c (y) ' j

N

i'1
u 2

i (y) (19.13)

denoted by ui(y). When all the input estimates are uncorrelated, the combined standard uncer-870
tainty may be written in terms of its components as follows.871

Since uc
2(y) is the sum of the squares of the components ui(y), the combined standard uncertainty872

tends to be determined primarily by its largest components.873

EXAMPLE874

Problem: A 6000-s gross alpha measurement is performed on a test source prepared by evap-875
orating water on a stainless steel planchet. The measurement produces 120 alpha counts. The876
preceding background measurement on the instrument had a duration of 6000 s and produced877
42 alpha counts. The estimated alpha counting efficiency is 0.223 with a standard uncertainty878
of 0.015. The sample volume analyzed is 0.05000 L, with a standard uncertainty of 0.00019 L.879
The alpha emission rate per unit volume is described by the mathematical model880

881 A '
NS / tS & NB / tB

g V
where882

is the source count (NS = 120)883 NS
is the background count (NB = 42)884 NB
is the source count time (tS = 6000)885 tS
is the background count time (tB = 6000)886 tB

g is the counting efficiency (g = 0.223)887
V is the volume analyzed (V = 0.0500)888

What is the output estimate A and what is its combined standard uncertainty, uc(A)?889

Solution: First compute the output estimate A (alphas per second per liter).890

891 A '
NS / tS & NB / tB

gV
'

120/6000 & 42/6000
(0.223)(0.05000)

. 1.17
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u 2
c (y) ' y 2 u 2(x1)

x 2
1

%
u 2(x2)

x 2
2

% @ @ @ %
u 2(xn)

x 2
n

%
u 2(z1)

z 2
1

%
u 2(z2)

z 2
2

% @ @ @ %
u 2(zm)

z 2
m

(19.14)

Then compute the combined standard uncertainty uc(A). The only uncertainties included in the892
model will be those associated with the counts NS and NB , the efficiency , and the volume V.893 g
There is no reason to suspect correlations between the measured values; so, the uncertainty894
propagation formula becomes895

896 u 2
c (A) ' MA

MNS

2
u 2(NS) %

MA
MNB

2
u 2(NB) % MA

Mg

2
u 2(g) % MA

MV

2
u 2(V)

The partial derivatives are evaluated as follows:897

898
MA
MNS

'
1

tSgV
' 0.0149477

MA
MNB

'
&1

tBgV
' &0.0149477

MA
Mg

' &
NS / tS & NB / tB

g2 V
' &5.22834

MA
MV

' &
NS / tS & NB / tB

gV 2

' &23.3184

The Poisson model is used for the standard uncertainties of the counts NS and NB . So,899

u2(NS) = NS = 120      and      u2(NB) = NB = 42900

Recall from the statement of the problem that u(g) = 0.015 and u(V) = 0.00019. When the901
values of all these expressions are substituted into the uncertainty propagation formula, the902
combined variance is uc

2(A) = 0.0424; so, the combined standard uncertainty is uc(A) =903
 . 0.21.904 0.0424

It is helpful to remember certain special forms of the uncertainty propagation formula. For905
example, if the values x1, x2, …, xn and z1, z2, …, zm are uncorrelated and nonzero, the combined906

standard uncertainty of y =  may be calculated from the formula907
x1x2 @ @ @xn

z1z2 @ @ @zm

As another example, suppose , where f is some specified function of x1, x2, …, xn ,908 y ' f(x1,x2,…,xn)

z1z2 @ @ @zm

all the zi are nonzero, and all the input estimates are uncorrelated. Then909
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u 2
c (y) '

u 2
c f(x1 x2 @ @ @xn)

z 2
1 z 2

2 @ @ @z
2
m

% y 2 u 2(z1)

z 2
1

%
u 2(z2)

z 2
2

% @ @ @ %
u 2(zm)

z 2
m

(19.15)

Equation 19.15 is particularly useful in radioanalysis, where f(x1,x2,…,xn) might be a net count910
rate and z1z2@ @ @zm might be the product of the test portion size, chemical yield, counting effi-911
ciency, decay factor, and other sensitivity factors.912

EXAMPLE: Consider the preceding gross-alpha example. Equation 19.15 implies the following913
equation for the combined variance of A.914

915

u 2
c (A) '

u 2
c (NS / tS & NB / tB)

g2V 2
% A 2 u 2(g)

g2
%

u 2(V)
V 2

'
u 2(NS) / t 2

S % u 2(NB) / t 2
B

g2V 2
% A 2 u 2(g)

g2
%

u 2(V)
V 2

Then, since u2(NS) = NS and u2(NB) = NB,916

917 u 2
c (A) '

NS / t 2
S % NB / t 2

B

g2V 2
% A 2 u 2(g)

g2
%

u 2(V)
V 2

19.5.4  The Estimated Covariance of Two Output Estimates918

Measured values obtained from two measurement processes may be correlated if some of the919
same input estimates are used to calculate output estimates in both models. If the two measured920
values are to be used as input quantities in a third model, their covariance must be estimated.921

Suppose the combined set of input quantities in two mathematical models consists of X1, X2, …,922
XN . Then the models can be expressed as Y = f(X1,X2,…,XN) and Z = g(X1,X2,…,XN), where each923
of the measurands may actually depend on only a subset of the combined list of input quantities.924
If the input estimates are x1, x2, …, xN and the output estimates are y = f(x1,x2,…,xN) and z =925
g(x1,x2,…,xN), the covariance of y and z is estimated by926
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   4 The uncertainty propagation formula may also be generalized using the matrix notation of Attachment 19B. If
y = f(x), where x and y are column vectors and f is a vector-valued function, then

u2(y) ' Mf
Mx

u2(x) Mf
Mx

)

This formula describes how the variances and covariances of the vector components of y are related to the variances
and covariances of the vector components of x. When y has only one component, the formula here is equivalent to
the uncertainty propagation formula.

   5 The uncertainty propagation formula also provides finite estimates of variance in cases where, strictly speaking,
the true variance is infinite or undefined. For example, if x has a normal or Poisson distribution, the variance of 1 / x
is undefined, although the formula provides a finite estimate of it. On the other hand, if the relative standard uncer-
tainty of x is small, the combined variance uc

2(1 / x) will almost always be consistent with observation, making the
estimate useful in practice.
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u(y,z) ' j
N

i'1
j
N

j'1

My
Mxi

Mz
Mxj

u(xi,xj) (19.16)

Since u(y,y) = uc
2(y), the preceding equation may be considered a generalization of the uncertainty927

propagation formula.4928

19.5.5  Nonlinear Models929

19.5.5.1  Uncertainty Propagation930

The uncertainty propagation formula tends to give better variance estimates when the function f931
is linear, because the formula is derived from a linear approximation of f (i.e., a first-order Taylor932
polynomial). Generally, obtaining a reliable estimate of uc

2(y) using the uncertainty propagation933
formula requires (at least) that whenever f is nonlinear in one of the input quantities Xi , the rela-934
tive uncertainty of the input estimate xi must be small.5 In radiochemistry this rule applies, for935
example, to the uncertainty of an instrument calibration factor, chemical yield, or test portion936
size.937

If all the input estimates xi are uncorrelated and distributed symmetrically about their means, a938
better approximation of uc

2(y) may be made by including higher-order terms in the uncertainty939
propagation formula, as shown below.940
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u 2
c (y) ' j

N

i––1

My
Mxi

2
u 2(xi) % j

N

i'1
j
N

j'1

1
2

M2y
MxiMxj

2
%

My
Mxi

M3y
MxiMx 2

j

u 2(xi)u 2(xj) (19.17)

See also Section 5.1.2 of the GUM.941

EXAMPLE: Suppose x and y are independent estimates of input quantities X and Y, respec-942
tively. Then the combined variance of the product p = xy according to the (first-order)943
uncertainty propagation formula is944

uc
2(p) = y2 u2(x) + x2 u2(y)945

For example, suppose x = 5, with u(x) = 0.5, and y = 10, with u(y) = 1. Then p = 50, and the946
first-order formula gives the combined standard uncertainty947

uc(p) =  = 7.07948 102 0.52 % 52 12

When higher-order terms are included,949

950
u 2

c (p) ' y 2 u 2(x) % x 2 u 2(y) % 0 @ u 4(x) % 1
2

u 2(x) u 2(y) % 1
2

u 2(y) u 2(x) % 0 @ u 4(y)

' y 2 u 2(x) % x 2 u 2(y) % u 2(x)u 2(y)

With numbers,951

uc(p) =  = 7.09952 102 0.52 % 52 12 % 0.52 12

The combined variance of the quotient q = x / y according to the first-order formula is953

uc
2(q) =  + 954

u 2(x)
y 2

q 2 u 2(y)
y 2
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Using the same values for x and y again, q = 0.5 and the first-order formula gives955

uc(q) =  = 0.0707956
0.52

102
% 0.52 12

102

When the higher-order terms are included,957

958

Mq
Mx

'
1
y

M2q
Mx 2

' 0 M3q
Mx 3

' 0

Mq
My

' &
x
y 2

M2q
My 2

'
2x
y 3

M3q
My 3

' &
6x
y 4

M2q
Mx My

' &
1
y 2

M3q
Mx My 2

'
2
y 3

M3q
My Mx 2

' 0

959

u 2
c (q) ' u 2(x)

y 2
% q 2 u 2(y)

y 2
% 0 @ u 4(x) % 1

2
&

1
y 2

2

%
1
y

2
y 3

u 2(x) u 2(y)

%
1
2

&
1
y 2

2

% 0 u 2(y) u 2(x) % 1
2

4x 2

y 6
% &

x
y 2

&
6x
y 4

u 4(y)

'
u 2(x)

y 2
1 % 3 u 2(y)

y 2
% q 2 u 2(y)

y 2
1 % 8 u 2(y)

y 2

With numbers,960

961 uc(q) ' 0.52

102
1 % 3 12

102
% 0.52 12

102
1 % 8 12

102
' 0.0726

19.5.5.2  Bias962

If f is nonlinear, its nonlinearity may also tend to bias the output estimate y. The bias may be esti-963
mated, if necessary, by the formula964
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Bias(y) . 1
2 j

N

i'1
j
N

j'1

M2y
MxiMxj

u(xi,xj) (19.18)

Bias(y) . 1
2 j

N

i'1

M2y
Mx 2

i

u 2(xi) % j
N&1

i'1
j
N

j' i%1

M2y
MxiMxj

u(xi,xj) (19.19)

which, in practice, is equivalent to965

This bias is usually negligible in comparison to the combined standard uncertainty uc(y) if the966
relative standard uncertainty of each input estimate is small.967

EXAMPLE: If x is an estimate of a positive quantity X, the bias of y = 1 / x as an estimate of968
1 / X may be approximated using Equation 19.19. Since y is a function of only one variable,969
the partial derivatives of y are the same as ordinary derivatives. The first derivative is dy /dx =970
!x!2 and the second derivative is d2y /dx2 = 2x!3. So the bias due to nonlinearity can be esti-971
mated as Bias(y) . (1 /2) (2x!3)u2(x) = u2(x) /x3. The combined variance of y given by the972
uncertainty propagation formula is uc

2(y) =  = u2(x) /x4. So, the ratio of the bias to973 &x &2 2 u 2(x)
the combined standard uncertainty can be estimated as ,974 (u 2(x) / x 3) (u(x) / x 2) ' u(x) / x
which is approximately the same as the relative standard uncertainty of x. Therefore, the size975
of the relative standard uncertainty gives an indication of the practical significance of the bias.976

EXAMPLE: If x and y are uncorrelated estimates of quantities X and Y, respectively, the bias of977
the product z = xy as an estimate of XY is given approximately by978

979 Bias(z) . 1
2

M2z
Mx 2

u 2(x) % M2z
My 2

u 2(y)

which equals zero, since .980 M2z / Mx 2 ' M2z / My 2 ' 0
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EXAMPLE: If t is an estimate of the decay time T for a radionuclide whose decay constant is λ981
(assumed to have negligible uncertainty), the bias of the estimated decay factor d = e!λt is given982
approximately by983

984 Bias(d) . 1
2
M2d
Mt 2

u 2(t) ' 1
2
λ2e &λ t u 2(t)

and the relative bias is λ2 u2(t) / 2. For example, suppose the radionuclide is 228Ac, which has a985
half-life of t1/2 = 6.15 h, and the decay time has a standard uncertainty of u(t) = 2 h. Then the986
decay constant λ equals ln 2 / 6.15 = 0.112707 h!1. The bias equation above implies that the987
relative bias of the decay factor d due to the uncertainty of t is approximately988

989
1
2

(0.112707)2 (2)2 ' 0.025

or 2.5%. Note that the relative bias of d is small if  is small.990 u 2(t) / t 2
1/2

19.5.5.3  Nominal Values991

Sometimes an input estimate xi is a nominal value and not the result of a measurement. This may992
be true for example when an analyst uses a pipet to dispense a predetermined amount of tracer993
into a sample. In this case the input estimate xi is the predetermined volume. Since xi never994
varies, its variance is zero, but the volume of liquid dispensed varies each time the measurement995
is repeated. So, the final result does have a variance component associated with the pipet. If the996
tracer is used to measure the yield for a chemical separation, the value xi appears as a factor in the997
denominator of a mathematical expression, but the variable factor in that expression is actually998
the count rate produced by the tracer, which appears in the numerator. The variance of this count999
rate is increased by the variability of the tracer volume. The first-order uncertainty propagation1000
formula gives the same result for the uncertainty of the yield regardless of whether the nominal1001
value or the true value is assumed to be variable, but the higher-order formula may not.1002

When nominal values appear in the calculation, one must also be careful when applying the bias1003
formula. For example, the quotient x / y may by biased if y is the result of a measurement, but it1004
is not inherently biased if y is a nominal value.1005
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EXAMPLE: Suppose the measurement model is1006

1007 X '
Y & B

a

where Y is the gross signal, B is the blank signal, and a is the nominal value for a randomly1008
varying sensitivity factor A, whose true value is always unknown. Suppose Y can be written in1009
the form Y = xA + b + gY ; where x is the true value of the measurand; b is the true blank level;1010
and εY denotes the measurement error of Y. If all the measured (and nominal) values are1011
unbiased (i.e., if E(A) = a, E(B) = b, and E(εY) = 0), then the mean of X is given by1012

1013 E(X) ' E(Y) & E(B)
a

'
(xa % b % 0) & b

a
' x

So, X is an unbiased estimator for x. If one treats a as a random variable, this chapter’s bias-1014
approximation formula gives the incorrect value Xu2(a) / a2 for the bias of X.1015

Assume A, B, and εY are uncorrelated. Then the variance of Y is the sum of two components1016
 and x2σA

2, which may be estimated by u2(εY) and X2 u2(a), respectively, where u2(a) is1017 σ2
gY

actually an estimate of the variance of A. The combined variance of X is given by1018

1019 u 2
c (X) ' u 2(Y) % u 2(B)

a 2
'

u 2(εY) % X 2 u 2(a) % u 2(B)

a 2

The expression on the right may be obtained from the first-order uncertainty propagation1020
formula even if one incorrectly treats a as a random variable and A as a constant, so that1021
u2(Y) = u2(εY). If the higher-order approximation is used, the same expression is obtained only1022
if one correctly treats a as the constant and A as the random variable.1023

19.6 Radiation Measurement Uncertainty1024

19.6.1  Radioactive Decay1025

Although it is impossible to know when an unstable nucleus will decay, it is possible to calculate1026
the probability of decay during a specified time interval. The lifetime of the nucleus has an1027
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FIGURE 19.4 — Expected fraction of atoms remaining at time t

exponential distribution, which is a model for the life of any object whose expected remaining1028
life does not change with age.1029

The exponential distribution is described by one parameter λ, which measures the expected frac-1030
tional decay rate. This parameter λ is called the decay constant and equals ln 2 / t1/2 , or approx-1031
imately 0.693 / t1/2 , where t1/2 is the half-life of the radionuclide (sometimes denoted by T1/2). The1032
half-life is the same as the median of the exponential distribution.1033

The probability that an atom will survive until time t without decaying is equal to e!λt. Thus the1034
probability of survival decreases exponentially with time. Consequently, when a large number of1035
atoms of the same radionuclide are considered, the expected number of surviving atoms also1036
decreases exponentially with time, as shown in Figure 19.4.1037

Since the probability that an atom survives until time t is equal to e!λt, it follows that the1038
probability of decay during this time is 1 ! e!λt.1039

19.6.2  Radiation Counting1040

Undoubtedly the best-known rule of radiation measurement statistics is the fact that the counting1041
uncertainty for a gross radioactivity measurement can be evaluated as the square root of the1042
observed counts. The square-root rule is useful, because it permits the estimation of a potentially1043
significant uncertainty component without replicate measurements. Although the rule is usually1044
valid as an approximation, for reasons which are discussed below, there are limits to its applica-1045
bility. It is also important to remember that the counting uncertainty is only one component of the1046
total measurement uncertainty.1047
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   6 In the rare cases when the Poisson counting model is inadequate and the binomial model is required, if the
instrument background level is negligible, the standard deviation of the source count NS can be estimated by

. If a Poisson background is measured for time tB and NB counts are observed, the standard deviation of(1 – p)NS
NS should be estimated instead by

σNS
. (1 – p)NS % pNB

t
tB

These two expressions are appropriate only when the source counts are generated by a single radionuclide or by one
radionuclide plus the instrument background.
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When a source containing a radionuclide is placed in a detector, the probability that a particular1048
atom of the radionuclide will produce a count is the product of three factors: the probability of1049
decay (nuclear transformation), the probability of emission of the radiation being measured, and1050
the probability of detection. According to the exponential decay model, the probability of decay1051
is equal to 1 ! e!λt, where λ is the decay constant and t is the counting time. The probability of1052
radiation emission, denoted here by F, is a characteristic of the radionuclide. The probability of1053
detection is the same as the counting efficiency g. Then the probability that an atom will generate1054
a count is p = (1 ! e!λt)Fg.1055

If the source initially contains n atoms of the radionuclide, the instrument is stable, and its back-1056
ground is negligible, the number of observed counts N has a binomial distribution with parame-1057
ters n and p. In general, if an experiment has only two possible outcomes, which may be called1058
“success” and “failure,” and the probability of success is p, then the number of successes1059
observed when the experiment is repeated in n independent trials has a binomial distribution with1060
parameters n and p.1061

Actually the probability p is a random variable, because the counting efficiency for an instrument1062
and source can vary for a number of reasons, such as source placement, dead time, and other1063
instrument characteristics. These variations generate measurement uncertainty, but their effects1064
are not included in the “counting uncertainty.” The counting uncertainty is the standard deviation1065
of the theoretical distribution of counts observed in a fixed time period when the efficiency is1066
held constant. Thus, the actual variability observed in repeated measurements of a single radio-1067
active source may be greater than the theoretical counting uncertainty.1068

The mean and variance of the binomial distribution are np and np(1 ! p), respectively. In radia-1069
tion counting, the value of p is usually small enough that the factor 1 ! p in the variance can be1070
ignored. When this is true, the binomial distribution can be approximated by a Poisson distri-1071
bution with mean µ = np. The variance of a Poisson distribution equals the mean; so, both can be1072
estimated by the same measured result N, and the standard deviation can be estimated by .61073 N



Measurement Statistics

   7 The negative bias of  is largely eliminated if one replaces it by . MARLAP recommends theN N % 0.25
estimator  although it is positively biased.N % 1

   8 It is possible to evaluate the uncertainties associated with the decay and ingrowth of a small number of short-
lived atoms before counting using the binomial model, but under the stated conditions, the assumption of Poisson
counting statistics simplifies the calculation. A more complete evaluation of uncertainty may be necessary if the
same source is counted more than once.
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When µ is large,  is an excellent estimator for the standard deviation, but the estimate may be1074 N
poor when µ is small. For example, if µ = 100, the coefficient of variation of  is only about1075 N
5% and its bias is negligible. If µ = 10, the coefficient of variation is more than 16% and there is1076
a negative bias of more than 1%. If µ = 1, the coefficient of variation is more than 63% and the1077
negative bias is more than 22%. Furthermore, when µ is small, it is possible to observe zero1078
counts, so that  = 0. MARLAP recommends that  be replaced by  when extremely1079 N N N % 1
low counts are possible (see also Attachment 19C).71080

A sum of independent Poisson quantities also has a Poisson distribution. So, when the Poisson1081
approximation is valid for all the sources of counts in a counting measurement, the total count1082
obeys Poisson counting statistics as well.1083

If a short-lived radionuclide (large λ) is counted in a high-efficiency detector (large g), the prob-1084
ability p that an atom placed in the detector will produce a count may be so large that the Poisson1085
approximation is invalid. In this case the Poisson approximation overestimates the counting1086
uncertainty, but it is important to consider that the statistical model described thus far represents1087
only the process of counting. In most cases previous steps in the measurement process decrease1088
the probability that one of the atoms of interest initially present in the test portion will produce a1089
count. If a correction for decay before counting is performed, the decay factor must be included1090
in p. If the measured activity of a (single) decay product is used to estimate the activity of a1091
parent, p must include both ingrowth and decay factors. If a chemical extraction is performed, the1092
recovery factor must be considered. When these factors are included, the Poisson counting model1093
is usually valid. Note, however, that these factors must be measured and their standard uncertain-1094
ties evaluated and propagated, increasing the total measurement uncertainty even further.81095

Both the binomial and Poisson models may be invalid if one atom can produce more than one1096
count during the measurement. This situation occurs when the activity of a parent is estimated1097
from the total count produced by a series of short-lived progeny (Lucas and Woodward 1964,1098
Collé and Kishore1997). For example, when 222Rn is measured by counting the emissions of its1099
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u 2(r) ' n
t 2

%
n 2

t 4
u 2(t) (19.20)

progeny, an atom of 222Rn may produce several counts as it decays through the short-lived series1100
218Po, 214Pb, 214Bi, and 214Po, to the longer-lived 210Pb.1101

Both counting models may also be invalid if the total dead time of the measurement is significant1102
(see Section 19.6.3.1).1103

Instrument background measurements are usually assumed to follow the Poisson model. This1104
assumption is reasonable if the background counts are produced by low levels of relatively long-1105
lived radionuclides. However, the true background may vary between measurements (e.g.,1106
cosmic background). Furthermore, the measured background may include spurious instrument-1107
generated counts, which do not follow a Poisson distribution. Generally, the variance of the1108
observed background is somewhat greater than the Poisson counting variance, although it may be1109
less for certain types of instruments, such as those that use parallel coincidence counters to com-1110
pensate for background instability (Currie et al. 1998). Departures from the Poisson model may1111
be detected using the chi-square test described in Section 18B.2 of Attachment 18B; however,1112
deviations from the model over short time periods may be small and difficult to measure.1113

19.6.3  Count Rate1114

Suppose a radiation counting measurement of duration t is made for the purpose of estimating a1115
mean count rate R, assumed to be constant, and the result of the measurement N (in counts) has a1116
distribution that is approximately Poisson with mean Rt. If t is known precisely, the best estimate1117
of R given a single observation N = n is the measured count rate r = n / t, and the best estimate of1118
the variance of the measured rate is u2(r) = n / t2 = r / t. Under the Poisson assumption, even if1119
repeated measurements are made, the best estimates of r and its variance are obtained by pooling1120
the counts and count times and using the same formulas.1121

In fact the count time t is known imperfectly; so, a more complete estimate of the variance of r is1122

The uncertainty of t may be ignored if u(t) / t << 1 / , that is, if the relative standard uncertainty1123 n
of t is much less than 1 over the square root of the count.1124
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   9 If the mean count rate R is constant, the waiting times between events are independent exponentially distributed
random variables with parameter λ = R. Therefore, the total time required to obtain n counts is the sum of the n
waiting times, which has a gamma distribution with parameters α = n and λ = R.
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EXAMPLE: A source is counted for t = 100 s, where t has standard uncertainty u(t) = 0.1 s, and1125
n = 961 counts observed. When u(t) is ignored, the combined standard uncertainty of the count1126
rate r is uc(r) = , or 0.31 cps. When u(t) is included, the combined standard uncertainty1127 n / t 2

is1128

1129 uc(r) ' n
t 2

%
n 2

t 4
u 2(t) ' 961

104
%

9612

108
0.12 . 0.31 cps

In this case, the difference between the two uncertainty estimates is negligible.1130

EXAMPLE: A source is counted for t = 100 s, where u(t) = 1 s, and n = 10,609 counts observed.1131
When u(t) is ignored, uc(r) =  = 1.03 cps. When u(t) is included,1132 n / t 2

1133 uc(r) ' n
t 2

%
n 2

t 4
u 2(t) ' 10,609

104
%

10,6092

108
12 . 1.48 cps

In this example the difference between the two estimates is clearly significant.1134

Sometimes a radiation counter is set to acquire a predetermined number of counts. In this case1135
the number of counts is a constant, and only the count time varies. If the mean count rate does1136
not change appreciably during the measurement, then Equation 19.20 may still be used.91137

19.6.3.1  Dead Time1138

The dead time for a counting instrument is the minimum separation τ between two events1139
required for the instrument to process and record both. Theoretical models for dead time are1140
generally of two types. If the dead time for one event may be extended by a second event that1141
arrives before the first has been processed, the system is called “paralyzable” and the dead time is1142
called “extendable.” Otherwise, the system is called “non-paralyzable” and the dead time is1143
called “non-extendable” (Knoll 1989, Turner 1995, NCRP 1985). Both models are idealized. The1144
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   10 The chi-square distribution is a special case of a gamma distribution, whose relationship to the Poisson distribu-
tion is described by Hoel et al. (1971) and Stapleton (1995). This relationship is the basis for the two formulas in
Equation 19.21. The relationship is such that if X is chi-square with 2n degrees of freedom and Y is Poisson with
mean µ, then Pr[X # 2µ] = Pr[Y $ n].
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Rlower ' χ
2
(1&γ) /2(2n) 2t

Rupper ' χ
2
(1%γ) /2(2n % 2) 2t

(19.21)

behavior of an actual counting system tends to fall between the two extremes. At low count rates,1145
however, both models give essentially the same predictions.1146

At low count rates the observed count rate n / t may be corrected for dead time by dividing by the1147
factor 1 ! nτ / t. Many counting instruments perform the correction automatically by extending1148
the real time t of the measurement to achieve a desired live time tL . Since tL = t ! nτ, the correct-1149
ed count rate is simply n / tL . When the dead time rate for the measurement is low, the variance1150
of the corrected count rate may be estimated as . Thus, the Poisson model remains adequate1151 n / t 2

L
if the “count time” is equated with the live time. When the dead time rate is high (above 20%),1152
the same estimate may not be adequate (NCRP 1985). In this case the measurement should be1153
repeated, if possible, in a manner that reduces the dead time rate.1154

Dead time effects may be evaluated experimentally to confirm that they do not invalidate the1155
Poisson model at the count rates expected for typical measurements. The chi-square test1156
described in Section 18B.2 of Attachment 18B can be used for this purpose.1157

19.6.3.2  A Confidence Interval for the Count Rate1158

When the Poisson counting model is valid, lower and upper confidence limits for the mean count1159
rate R given an observation of n counts in time t may be calculated as follows:101160

Here γ is the desired confidence coefficient, or the minimum probability of coverage, and χp
2(n)1161

denotes the p-quantile of the chi-square distribution with n degrees of freedom (see Table G.3 in1162
Appendix G). If n = 0, the chi-square distribution χ2(n) is degenerate. For our purposes χp

2(0)1163
should be considered to be 0.1164
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EXAMPLE: Suppose 10 counts are observed during a 600-second instrument background1165
measurement. Then the 95% confidence limits for the background count rate are1166

1167
Rlower '

χ2
0.025(20)

(2)(600)
'

9.59078
1200

' 0.00799 cps

Rupper '
χ2

0.975(22)
(2)(600)

'
36.7807

1200
' 0.03065 cps

EXAMPLE: Suppose 0 counts are observed during a 600-second measurement. Then the 95%1168
confidence limits for the count rate are1169

1170
Rlower '

χ2
0.025(0)

(2)(600)
' 0 cps

Rupper '
χ2

0.975(2)
(2)(600)

'
7.3778
1200

' 0.00615 cps

19.6.4  Instrument Background1171

As noted above, single-channel background measurements are usually assumed to follow the1172
Poisson model, although there may be effects which increase the variance beyond what the model1173
predicts. For example, the cosmic radiation and other natural sources of instrument background1174
may vary between measurements, the composition of source holders and containers may vary, the1175
instrument may become contaminated by sources, or the instrument may be unstable. For certain1176
types of instruments, the Poisson model may overestimate the background variance (Currie et al.1177
1998). If the background does not closely follow the Poisson model, its variance should be esti-1178
mated by repeated measurements.1179

The “instrument background,” or “instrument blank,” is usually measured with source holders or1180
containers in place, since the presence of the container may affect the count rate. In many cases,1181
perhaps most, it is not feasible to use the same container during both the background and test1182
source measurements, but nearly identical containers should be used. Variations in container1183
composition may affect the background count rate. If test sources contain enough mass to atten-1184
uate background radiation, then it is best to use a similar amount of blank material during the1185
background measurement.1186
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If repeated measurements demonstrate that the background level is stable, then the average  of1187 x̄
the results of many similar measurements performed over a period of time may give the best1188
estimate of the background. In this case, if all measurements have the same duration, the experi-1189
mental standard deviation of the mean  is also a good estimate of the measurement uncer-1190 s(x̄)
tainty. Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson1191
estimate, which equals the square root of the summed counts, divided by the number of measure-1192
ments, but the experimental standard deviation may be used when the Poisson assumption is1193
false.1194

If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to1195
minimize the consequences of the drift by performing frequent blank measurements.1196

If the background variance includes a small non-Poisson component, that component can be esti-1197
mated from historical background data and added to the calculated Poisson component. A chi-1198
square statistic may be used to detect and quantify non-Poisson background variance (Currie1199
1972; see also Section 18B.3 of Attachment 18B), but chi-square provides an unbiased estimate1200
of the additional variance only if the background remains stationary while the data are being1201
collected. If the observed background counts, in order, are N1, N2, …, Nn and the corresponding1202
counting intervals are t1, t2, …, tn , then the quantity1203

may be used to estimate the non-Poisson variance of a net count rate due to background even if1204
the background is not stationary. The distribution of ξB

2 is not simple, and ξB
2 may even assume1205

negative values, which are clearly unrealistic. So, if this estimator is used, it should be calculated1206
for several data sets and for more than one instrument, if possible, to give an indication of its1207
reliability. Although replicate measurements are involved, this type of evaluation of uncertainty1208
should be considered a Type B method.1209

If background and test source measurements are performed under different conditions, the back-1210
ground measurement may be biased. Such a bias may occur, for example, if test sources are1211
counted in containers or on planchets which are not present during background measurements. A1212
situation of this kind should be avoided if possible.1213
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When instrument background levels are low or when count times are short, it is possible that too1214
few counts will be observed to provide an accurate estimate of the measurement uncertainty.1215
Attachment 19C describes a method for choosing an appropriate coverage factor when only few1216
counts are observed.1217

19.6.5  Counting Efficiency1218

The counting efficiency for a measurement of radioactivity may depend on many factors, includ-1219
ing source geometry, placement, composition, density, activity, radiation type and energy, and1220
other instrument-specific factors. The estimated efficiency is sometimes calculated explicitly as a1221
function of such variables (in gamma spectrometry, for example). In other cases a single meas-1222
ured value is used (e.g., alpha spectrometry). If an efficiency function is used, the uncertainties of1223
the input estimates, including those for both calibration parameters and sample-specific quanti-1224
ties, must be propagated to obtain the combined standard uncertainty of the estimated efficiency.1225
Calibration parameters tend to be correlated; so, estimated covariances must also be included. If1226
a single value is used instead of a function, the standard uncertainty of the value is determined1227
when the value is measured.1228

EXAMPLE1229

Several sources with the same geometry are prepared and used to calibrate a radiation counter.1230
One blank measurement is made. Each source is counted once to obtain an estimate of the1231
count rate, the estimates are averaged, and the average is used to calculate the counting1232
efficiency. The sources are long-lived and all source count times are equal. Let1233

C = concentration of standard solution (C = 1500, u(C) = 20 Bq g!1)1234
M = mean mass of solution added to each source (0.09980 g, added by a 0.1-mL pipet)1235
n = number of sources (15)1236
NB = blank count (90)1237
tS = source count time (300 s)1238
tB = blank count time (6000 s)1239
NS, i = gross count observed during the measurement of the ith source1240
Ri = gross count rate observed in the ith source measurement1241

= arithmetic mean of the gross count rates, Ri1242 R
g = estimated counting efficiency1243
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Then the following equations may be used to calculate the mean efficiency and its standard1244
uncertainty:1245

1246

Ri '
NS, i

tS

, i ' 1,2, ...,n

R '
1
n j

n

i'1
Ri

s 2(R) ' 1
n (n & 1) j

n

i'1
(Ri & R)2

g '
R & NB / tB

CM

u(g) '
s 2(R) % NB / t 2

B

C 2M 2
% g2 u 2(C)

C 2
%

u 2(M)
M 2

The source-to-source variability of the mass M is not explicitly evaluated, because it is1247
included in the observed variability of the count rates, Ri. So, the standard uncertainty u(M)1248
represents only the uncertainty of the mean mass added by the pipet. This uncertainty arises1249
from uncertainty in the capacity of the pipet, the density of the solution, temperature effects,1250
and the analyst’s technique. Assume for this example that u(M) is 0.00050 g (about 0.5%).1251

Note that the uncertainty of the blank count, NB, is negligible in this example and could have1252
been ignored. It was included only for completeness.1253

Assume the observed source counts, NS, i, are as follows:1254

     15,708       15,946       15,953       16,012       16,0661255
     15,924       15,844       16,020       15,877       16,0611256
     16,120       15,902       16,211       16,181       15,9841257

Then the observed gross count rates, Ri, are:1258

     52.360       53.153       53.177       53.373       53.5531259
     53.080       52.813       53.400       52.923       53.5371260
     53.733       53.007       54.037       53.937       53.2801261
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The average of the gross count rates is calculated as follows.1262

1263 R '
1
15 j

15

i'1
Ri '

799.363
15

'53.2909

The experimental variance of  is1264 R

1265 s 2(R) ' 1
15(15 – 1) j

15

i'1
(Ri – 53.2909)2 ' 0.012876

Then the estimated counting efficiency is1266

1267 g ' 53.2909 & 90 / 6000
(1500)(0.09980)

'0.355884

and the standard uncertainty of g is given by1268

1269 u(g) ' 0.012876 % 90 / 60002

(1500)2 (0.09980)2
% 0.3558842 202

15002
%

0.00052

0.099802
' 0.0051

In fact, the standard uncertainty of g calculated in the preceding example may be incomplete. The1270
true counting efficiency may vary from source to source because of variations in geometry, posi-1271
tion, and other influence quantities not explicitly included in the model. So, the standard uncer-1272
tainty of g should include not only the standard uncertainty of the estimated mean, as calculated1273
in the example, but also a second component of uncertainty due to variations of the true effi-1274
ciency during subsequent measurements. The second component may be written as g2φ2, where φ1275
is an estimate of the coefficient of variation of the true efficiency. Then the standard uncertainty1276
of g equals the square root of the sum of the squares of the two components.1277

In the example above, the experimental variance of the count rates, s2(Ri), might be used to esti-1278
mate φ2. Procedure E2, which is described in Section 18B.2 of Attachment 18B, is a step-by-step1279
procedure for estimating such “excess” variance in a series of measurements. However, if the1280
procedure were applied to the series of measurements made in the example, the estimated vari-1281
ance might be inflated by errors in the pipetting of the standard solution. The resulting estimate1282
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would therefore tend to be an upper bound. A lower bound for the excess variance could be esti-1283
mated by making replicate measurements of only one source, thus eliminating the effects of1284
pipetting errors but also unfortunately eliminating the effects of variable source geometry. A1285
better approach is to weigh the amount of standard solution added to each source, use the results,1286
Mi, to calculate 15 individual estimates of the counting efficiency, gi, and estimate the excess1287
variance of the values gi.1288

Variations in counting efficiency due to source placement should be reduced as much as possible1289
through the use of positioning devices that ensure a source with a given geometry is always1290
placed in the same location relative to the detector. If such devices are not used, variations in1291
source position may significantly increase the measurement uncertainty.1292

Calibrating an instrument under conditions different from the conditions under which test sources1293
are counted may lead to large uncertainties in the sample activity measurements. Source geome-1294
try in particular tends to be an important factor for many types of radiation counting instruments.1295
Generally, calibration sources should be prepared with the sizes and shapes of test sources and1296
counted in the same positions, although in some cases it may be possible to calculate correction1297
factors which allow one calibration to be used for different geometries. When correction factors1298
are used, their uncertainties should be evaluated and propagated.1299

If the efficiency g is calculated from a model that includes one of the quantities Xi appearing else-1300
where in the sample activity model, there is a correlation between the measured values of g1301
and Xi, which should not be ignored. It is often simpler to include the entire expression for g in1302
the expression for the laboratory sample activity before applying the uncertainty propagation1303
formula.1304

EXAMPLE: Suppose the counting efficiency for a measurement is modeled by the equation1305
g = Aexp(!BMS), where A and B are calibration parameters and MS is the source mass; and1306
suppose the chemical yield Y is modeled by MS / MC, where MC is the expected mass at 100%1307
recovery. Then the estimated values of the counting efficiency and the yield are correlated,1308
because both are calculated from the same measured value of the source mass. When the com-1309
bined standard uncertainty of the sample activity is calculated, the covariance u(g,Y) may be1310
included in the uncertainty propagation formula, or the variables g and Y in the model may be1311
replaced by the expressions Aexp(!BMS) and MS / MC , respectively.1312

In some cases the estimated value of the counting efficiency has no effect on the output estimate1313
of laboratory sample activity. This happens often in alpha spectrometry, for example, when iso-1314
topic tracers are used. The efficiency estimate is needed to obtain an estimate of the yield of the1315
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chemistry procedure, but the efficiency usually cancels out of the mathematical model for the1316
laboratory sample activity and its uncertainty is not propagated when determining the combined1317
standard uncertainty of the activity estimate.1318

19.6.6  Radionuclide Half-life1319

The component of combined standard uncertainty associated with the half-life of a radionuclide1320
is often negligible in measurements performed by typical radioanalytical laboratories, since the1321
half-lives of most radionuclides of interest have been measured very accurately and in many1322
cases decay times are short relative to the half-life (so that the sensitivity coefficient is small).1323
However, this uncertainty component is also one of the most easily obtained components, since1324
radionuclide half-lives and their standard uncertainties are evaluated and published by the1325
National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. The data may be1326
obtained from the NNDC website (www.nndc.bnl.doe.gov).1327

19.6.7  Gamma Spectrometry1328

There are a number of sources of measurement uncertainty in gamma spectrometry, including:1329

• Poisson counting uncertainty1330
• Compton baseline determination1331
• Background peak subtraction1332
• Multiplets and interference corrections1333
• Peak-fitting model errors1334
• Efficiency calibration model error1335
• Summing1336
• Density correction factors1337
• Dead time1338

See Chapter 17 for further discussion of measurement models and uncertainty analysis for1339
gamma spectrometry.1340

19.6.8  Balances1341

The uncertainty of a balance measurement tends to be small, even negligible, when the balance is1342
used properly and the mass being measured is much larger than the balance’s readability. How-1343
ever, the uncertainty may also be difficult to evaluate unless the balance is well maintained and1344
operated in a controlled environment that protects it from external influences. In particular, drafts1345
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or sudden changes in pressure, temperature or humidity (e.g., opening doors or dishwashers) may1346
produce spurious errors.1347

The uncertainty of the result of a balance measurement generally has components associated with1348
balance calibration, linearity, repeatability, day-to-day variability due to environmental factors,1349
and air buoyancy. Other sources of uncertainty may include leveling errors and off-center errors,1350
which should be controlled. Static electrical charges may also have an effect. For some materials,1351
gain or loss of mass before or after weighing (e.g., by absorption or evaporation of water) may be1352
significant. Attachment 19G of this chapter describes several of these uncertainty components in1353
more detail.1354

Balance manufacturers provide specifications for repeatability and linearity, which are usually of1355
the same order of magnitude as the balance’s readability, but tests of repeatability and linearity1356
should also be included in the routine quality control for the balance.1357

Repeatability is expressed as a standard deviation and is typically assumed to be independent of1358
the load. It represents the variability of the result of zeroing the balance, loading and centering a1359
mass on the pan, and reading the final balance indication.1360

The linearity tolerance of a balance, aL, should be specified by the manufacturer as the maximum1361
deviation of the balance indication from the value that would be obtained by linear interpolation1362
between the calibration points. Different methods may be used to convert this tolerance to a1363
standard uncertainty, depending on the form the linearity error is assumed to take. One method,1364
which is recommended by the Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical1365
Measurement, is to treat the tolerance, aL, as the half-width of a rectangular distribution and1366
divide aL by  to obtain the standard uncertainty (Eurachem 2000). Another method, suggested1367 3
in Attachment 19G of this chapter, is to treat aL as the amplitude of a sinusoidal function. This1368
model requires that aL be divided by  to obtain the standard uncertainty. The latter method is1369 2
used below.1370

Procedures for evaluating the relative standard uncertainties due to calibration and environmental1371
factors and for calculating the buoyancy correction factor and its standard uncertainty are1372
described in Attachment 19G.1373

A typical mass measurement in the laboratory involves separate measurements of a gross mass1374
and a tare mass. The net mass, m, is determined by subtracting the balance indication for the tare1375
mass, ITare, from the indication for the gross mass, IGross, and multiplying the difference, INet, by1376
the buoyancy correction factor, B. That is,1377
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m ' INet B ' (IGross & ITare)B (19.23)

u(m) ' B 2 I 2
Net (φ

2
Cal % φ

2
Env) % a 2

L % 2s 2
r % I 2

Net u 2(B) (19.24)

The standard uncertainty of m is given by1378

where1379
m is the buoyancy-corrected net mass1380
INet is the net balance indication (IGross ! ITare)1381
ITare is the balance indication for the tare mass1382
IGross is the balance indication for the gross mass1383
B is the buoyancy correction factor1384

Attachment 19G describes uncertainty equations for use in other circumstances.1385

19.6.9  Pipets and Other Volumetric Apparatus1386

Generally, a pipet or volumetric flask is used not to measure an existing volume of liquid, but to1387
obtain a volume of a predetermined nominal size. The nominal value is treated as if it were a1388
measured value, although it is known before the “measurement.” The true volume is the variable1389
quantity. Since a volumetric “measurement” of this type cannot be repeated, pipets and flasks are1390
good examples of measurement systems for which historical data are important for Type A eval-1391
uations of standard uncertainty.1392

The density of a liquid depends on its temperature. For this reason, when a volume is being1393
measured, one should determine whether the volume of interest is the volume at the current room1394
temperature, the long-term mean room temperature, or some other temperature, such as 20EC.1395
One should also determine whether the effect of temperature is significant for the measurement.1396
Often it is not, but in some cases a correction for thermal expansion may be necessary.1397

The standard uncertainty for a volumetric measurement includes components associated with the1398
capacity of the measuring device, temperature effects, repeatability, and the analyst’s bias in1399
using the device (e.g., reading a meniscus).1400

The capacity of a volumetric pipet or flask (at 20EC) is generally specified with a tolerance a,1401
which may be assumed to represent the half-width of a triangular distribution (e.g., see ASTM1402
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VT ' V20 (1 % α (T & 20)) (19.25)

1994 and ASTM 1995). Assuming a triangular distribution, one evaluates the uncertainty com-1403
ponent of the volume associated with the capacity as .1404 a / 6

The relative standard uncertainty due to temperature variations is typically a Type B standard1405
uncertainty, which may be derived from a temperature range, T ± δT, and the liquid’s coefficient1406
of thermal expansion, β, at the center of the range. Assuming a rectangular distribution for the1407
temperature with half-width δT, the relative standard uncertainty component due to temperature1408
variations is .1409 β δT / 3

The nominal capacity of any volumetric glassware is usually specified at 20EC. If the glassware1410
is used at a different temperature, the capacity is slightly different. Temperature effects on the1411
capacity are generally very small (much smaller than the effects on the density of the liquid) and1412
for this reason one may usually ignore them. The relationship between the capacity and the1413
temperature is given approximately by1414

where1415
T is the temperature (EC)1416
VT is the capacity at temperature T1417
V20 is the capacity at 20EC1418
α is the glassware’s coefficient of thermal cubical expansion (EC!1)1419

The value of α for ASTM Type I, Class A, borosilicate glassware is approximately 0.00001 EC!1;1420
so, the capacity increases by only about 0.001% for each degree Celsius of temperature increase.1421

An analyst may calibrate a pipet gravimetrically using an analytical balance. The balance, to be1422
useful, must provide better accuracy than the pipet. In particular, the balance’s repeatability and1423
linearity tolerance should be small relative to the tolerances for the pipet. The calibration pro-1424
vides an estimate of the pipet’s capacity, the standard uncertainty of the capacity, and the var-1425
iability to be expected during use. The procedure involves dispensing a series of n pipet volumes1426
of a specified liquid into a container and weighing the container and zeroing the balance after1427
each volume is added. Usually the container must have a small mouth to reduce evaporation. The1428
temperature of the room, the liquid, and the apparatus involved should be specified, equilibrated,1429
and controlled during the experiment.1430

The procedure produces a set of balance indications, Ii , which are averaged to obtain the arith-1431
metic mean . To obtain the estimated mean pipet volume, v, the mean balance indication, , is1432 Ī Ī
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v ' Ī Z where Z '
1 & ρA,C / ρC

ρM & ρA,M
(19.26)

multiplied by a factor Z, which equals the quotient of the buoyancy correction factor divided by1433
the density of the liquid at room temperature. A correction factor for thermal expansion of the1434
pipet may also be included, if necessary.1435

and where1436
ρM is the density of the liquid1437
ρA,M is the density of the air at the time the liquid is weighed1438
ρC is the density of the calibration mass standard for the balance1439
ρA,C is the density of the air at the time of the balance calibration1440

The calibration is most often performed using water.1441

ASTM E542, “Standard Practice for Calibration of Laboratory Volumetric Apparatus,” provides1442
additional information about the procedure, including tables of values of Z for various conditions1443
(ASTM 2000). Table 19.2, which is taken from ASTM E542, shows the density of air-free water1444
at various temperatures. Attachment 19G of this chapter describes an equation to calculate the1445
density of air as a function of temperature, pressure, and humidity.1446

Temperature, EC Density, g/cm3 Temperature, EC Density, g/cm3

15 0.999098 26 0.996782

16 0.998941 27 0.996511

17 0.998773 28 0.996232

18 0.998593 29 0.995943

19 0.998403 30 0.995645

20 0.998202 31 0.995339

21 0.997990 32 0.995024

22 0.997768 33 0.994701

23 0.997536 34 0.994369

24 0.997294 35 0.994030

25 0.997043

TABLE 19.2 — Density of air-free water
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u(ĪZ) ' Z 2u 2(Ī) % Ī 2u 2(Z)

' Z 2 s 2(Ī) % Ī 2 (φ2
Cal % φ

2
Env) % Ī 2u 2(Z)

' Z 2 s 2(Ii)
n

% v 2 φ2
Cal % φ

2
Env %

β2δT 2

3

(19.27)

u(v) ' Z 2 s 2(Ii) 1 %
1
n

% v 2 φ2
Cal % φ

2
Env %

2β2δT 2

3
(19.28)

u(v) ' a 2

6
% Z 2 s 2(Ii) %

v 2β2δT 2

3
(19.29)

The volume, v, estimated by the calibration may be substituted for the pipet’s nominal capacity1447
when the pipet is used later in an analytical measurement. The uncertainty of v as an estimate of1448
the mean volume may be calculated as follows.1449

where nCal and nEnv denote the relative standard uncertainties of mass measurements associated1450
with balance calibration and environmental factors, respectively (see Section 19.6.8). Note that1451
the uncertainty of the buoyancy correction factor has been ignored here and the standard uncer-1452
tainty of Z has been equated with the component due to thermal expansion of the liquid, which is1453
assumed to be dominant. Also note that the correlation between Z and  induced by temperature1454 Ī
effects on both the liquid density and the balance sensitivity is unknown and has been ignored.1455

The uncertainty of v as a predictor of the true volume that will be dispensed during a subsequent1456
measurement includes additional components for repeatability and temperature variability.1457

Note that if a different analyst performs the measurement, there may be an additional uncertainty1458
component associated with the difference in individual techniques.1459

If the mean volume is within specified tolerances, a slightly simpler approach is possible. The1460
pipet’s nominal capacity may be used as the volume v and the tolerance a may be used in a Type1461
B evaluation of standard uncertainty. In this case, the standard uncertainty of v is evaluated as1462
shown below.1463
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u(v) ' a 2

6
% s 2 %

v 2β2δT 2

3
(19.30)

The experimental procedure outlined above may also be adapted for other volume measuring1464
devices, including flasks and graduated cylinders.1465

The manufacturers of certain types of automatic pipetting devices (e.g., Eppendorf® pipettors)1466
provide specifications for bias and imprecision. For these devices the manufacturer’s specifica-1467
tions for bias and imprecision may be assumed. In this case the Type B standard uncertainty of a1468
pipetted volume v is1469

where a is the manufacturer’s stated bias tolerance, assumed to represent the half-width of a tri-1470
angular distribution, and s is the stated standard deviation. This approach has the advantage of1471
simplicity; however, since many analysts may not achieve the same accuracy as the manufac-1472
turer, the standard uncertainty given by Equation 19.30 may be unrealistic.1473

19.6.10  Digital Displays and Rounding1474

If a measuring device, such as an analytical balance, has a digital display with resolution δ, the1475
standard uncertainty of a measured value is at least δ / . This uncertainty component exists1476 2 3
even if the instrument is completely stable. 1477

A similar Type B method may be used to evaluate the standard uncertainty due to computer1478
roundoff error. When a value x is rounded to the nearest multiple of 10n, the component of uncer-1479
tainty generated by roundoff error is 10n / . When rounding is performed properly and x is1480 2 3
printed with an adequate number of figures, this component of uncertainty should be negligible1481
in comparison to the total uncertainty of x.1482

EXAMPLE: The readability of a digital balance is 0.1 mg. Therefore, the minimum standard1483
uncertainty of a measured mass is 0.1 /  = 0.029 mg.1484 2 3
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EXAMPLE: A computer printout shows the result x of a measurement as 1485

3.40E+01 +– 9.2E–021486

where the expanded uncertainty is calculated using a coverage factor of 2. The measured value1487
is rounded to the nearest multiple of 0.1. So, the standard uncertainty of x is1488

.1489 u(x) ' 0.092
2

2
%

0.1
2 3

2
' 0.054

19.6.11  Subsampling1490

Appendix F of this manual discusses laboratory subsampling. The subsampling of heterogeneous1491
materials for laboratory analysis increases the variability of the measurement result and thus adds1492
a component of measurement uncertainty, which is usually difficult to quantify without replicate1493
measurements. Appendix F summarizes important aspects of the statistical theory of particulate1494
sampling and applies the theory to subsampling in the radiation laboratory (see also Gy 1992 and1495
Pitard 1993). The mathematical estimates obtained using the theory often require unproven1496
assumptions about the material analyzed and rough estimates of unmeasurable parameters. How-1497
ever, in some cases the theory can be used to suggest how subsampling errors may be affected by1498
either changing the subsample size or grinding the material before subsampling. Of course, the1499
total measurement uncertainty, including components contributed by subsampling, may always1500
be evaluated by repeated subsampling and analysis.1501

If subsampling is not repeated, its effects may be represented in the mathematical measurement1502
model by including an input quantity FS whose value is the ratio of the analyte concentration of1503
the subsample to that of the total sample. This ratio, which will be called the subsampling factor1504
(a MARLAP term), appears in the model as a divisor of the net instrument signal and thus is1505
similar to the chemical yield, counting efficiency, and other sensitivity factors. The value of FS is1506
estimated as 1, but the value has a standard uncertainty which increases the combined standard1507
uncertainty of the result. (Since its value is always 1, the factor FS is an example of a “nominal1508
value,” as discussed in Section 19.5.5.) The uncertainty of FS also increases the MDC and the1509
MQC.1510

Although the component of uncertainty caused by the subsampling of heterogeneous solid matter1511
may be difficult to estimate, it should not be ignored, since it may be relatively large and in some1512
cases may even dominate all other components. One may use previous experience with similar1513
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materials to estimate the uncertainty, possibly with the aid of the information and methods pre-1514
sented in Appendix F. By default, if “hot particles” are not suspected, and if reasonable precau-1515
tions are taken to homogenize (mix) the material and to obtain a sufficient number of particles in1516
an unbiased subsample, one may simply assume a nominal relative standard uncertainty compo-1517
nent of 5% for solid materials.1518

19.6.12  The Standard Uncertainty for a Hypothetical Measurement1519

MARLAP’s recommended method selection criteria in Chapter 3 require that a laboratory esti-1520
mate the standard uncertainty for the measured concentration of a hypothetical laboratory sample1521
with a specified concentration (i.e., the “method uncertainty,” as defined by MARLAP). To1522
estimate the combined standard uncertainty of the measured concentration, one must obtain esti-1523
mates for all the input quantities and their standard uncertainties. All quantities except the gross1524
instrument signal may be measured and the standard uncertainties evaluated by routine Type A1525
and Type B methods. Alternatively, the values and their standard uncertainties may be deter-1526
mined from historical data. The estimate of the gross signal and its standard uncertainty must be1527
obtained by other means, since the laboratory sample is only hypothetical. The predicted value of1528
the gross count NS is calculated by rearranging the equation or equations in the model and solving1529
for NS . The standard uncertainty of the measured value may then be evaluated either from theory1530
(e.g., Poisson counting statistics), historical data, or experimentation.1531

EXAMPLE: Suppose the mathematical model for a radioactivity measurement is1532

1533 X '
NS / tS & NB / tB

MS Yge &λ(tD% tS /2)

where1534
X is the activity concentration (Bq kg!1)1535
NS is the test source count1536
NB is the blank count1537
tS is the source count time (s)1538
tB is the blank count time (s)1539
tD is the decay time (s)1540
MS is the size of the test portion (kg)1541
Y is the chemical yield1542
g is the counting efficiency1543
λ is the decay constant (s!1)1544
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Pr[ Ŝ > SC | X –– 0] –– α (19.31)

With specified values for the concentration X, test portion size MS , blank count NB , count1545
times tS , tB , and tD , efficiency g, and yield Y, the source count NS can be predicted. The pre-1546
dicted value is NS = tS (XMSYg exp(!λ(tD + tS / 2) ) + NB / tB). When this value is treated like a1547
measured value, its estimated variance according to Poisson statistics is u2(NS) = NS . So,1548
assuming negligible uncertainties in the times tS , tB , and tD , the uncertainty propagation for-1549
mula gives the combined variance of the output estimate X as1550

1551

u 2
c (X) '

u 2(NS) / t 2
S % u 2(NB) / t 2

B

M 2
S Y 2g2 e –2λ(tD% tS /2)

% X 2 u 2(MS)

M 2
S

%
u 2(Y)

Y 2
%

u 2(g)
g2

'
XMS Yge –λ(tD% tS /2)

% NB / tB / tS % NB / t 2
B

M 2
S Y 2g2 e –2λ(tD% tS /2)

% X 2 u 2(MS)

M 2
S

%
u 2(Y)

Y 2
%

u 2(g)
g2

19.7 Detection and Quantification Limits1552

19.7.1  Calculation of the Critical Value1553

In Section 19.4.1, the critical value of the response variable (or gross instrument signal), denoted1554
by yC, was defined as the response threshold used to decide whether the analyte concentration of1555
a laboratory sample is greater than that of the blank. The critical value of the net instrument1556
signal, denoted by SC, was similarly defined as the net signal threshold that may be used for the1557
same purpose.1558

The critical value of the net signal SC is defined symbolically by the relation1559

where Pr[  > SC | X = 0] denotes the probability that the observed net signal  exceeds its critical1560 Ŝ Ŝ
value SC when the true analyte concentration X is zero, and α denotes the significance level, or1561
the specified probability of a type I error. When the signal assumes only discrete values (e.g.,1562
numbers of counts), there may be no value SC that satisfies Equation 19.31 exactly. The critical1563

value in this case is defined as the smallest value SC such that Pr[  > SC | X = 0] # α.1564 Ŝ
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SC ' z1&ασ0 (19.32)

σ0 ' σB 1 %
1
n

(19.33)

Determining a value of SC which satisfies the definition requires knowledge of the distribution of1565
the net signal  under the assumption that the analyte concentration is zero (the null hypothesis).1566 Ŝ
The measured net signal may be written as  =  ! , where  denotes the measured gross1567 Ŝ Ŷ B̂ Ŷ
signal and  denotes the estimated value of the gross signal under the null hypothesis H0. In the1568 B̂
absence of interferences, the value of  is usually estimated by measuring one or more blanks1569 B̂
using the same procedure used to measure the test sample, and the distribution of  under H0 is1570 Ŷ
determined from that of . In other cases, however, the value of  includes estimated baseline1571 B̂ B̂
and other interferences that are present only during the measurement of the sample and cannot be1572
determined from the blank. 1573

Since SC , not yC , has traditionally been used for analyte detection decisions in radioanalysis, the1574
following presentation focuses primarily on SC . However, conversion of either of these values to1575
the other is simple, because yC = SC + .1576 B̂

19.7.1.1  Normally Distributed Signals1577

If the distribution of the net signal  under H0 is approximately normal with a well-known1578 Ŝ
standard deviation σ0, the critical value of  is1579 Ŝ

where z1!α denotes the (1 ! α)-quantile of the standard normal distribution. Table G.1 in Appen-1580
dix G shows that z1!α . 1.645 when α = 0.05. Attachment 19D describes the calculation of SC1581
when the standard deviation is not well-known.1582

The blank signal  and its standard deviation σB may be estimated by replicate blank measure-1583 B̂
ments, but at least 20 measurements are generally needed to ensure that the experimental stan-1584
dard deviation sB is an accurate estimate of σB. (If fewer than 20 measurements are made, see1585
Attachment 19D.) Given σB, the standard deviation σ0 of the net signal  under the null hypothe-1586 Ŝ
sis is given equal to1587
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Ŷ ' NS B̂ '
NB

tB

% R̂I tS (19.34)

Ŝ ' NS &
NB

tB

% R̂I tS (19.35)

19.7.1.2  Poisson Counting1588

Radionuclide analyses typically involve radiation counting measurements. Although radiation1589
counting data never follow the Poisson model exactly, the model may be a useful approximation1590
in some situations, especially those where the mean count is extremely low and the observed1591
count therefore does not follow a normal distribution. At somewhat higher count levels, features1592
from both models are often used, since the Poisson distribution may be approximated by a1593
normal distribution. In this case, the Poisson model allows one to estimate σ0 without replication,1594
because one blank measurement provides an estimate of σB.1595

When a test source is analyzed in a radiation counting measurement, either the gross count or the1596
gross count rate may be considered the instrument signal . In this section, it is assumed that the1597 Ŷ
instrument signal is the gross count. Therefore,1598

and the net instrument signal is the net count, defined as1599

where1600
NS is the gross count (source count)1601
NB is the blank count1602

I is the estimated count rate due to interferences1603 R̂
tS is the count time for the test source1604
tB is the count time for the blank1605

The net signal is always assumed to have zero mean.1606

THE POISSON-NORMAL APPROXIMATION1607

When Poisson counting statistics are assumed (possibly with additional variance components)1608
and the instrument background remains stable at a level where the Poisson distribution is approx-1609
imately normal, the critical net count is given approximately by the equation1610
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SC ' z1–α tS

RB % RI

tS

%
RB

tB

% ξ2
B % σ2(R̂I) (19.36)

SC ' z1–α RB tS 1 %
tS

tB

(19.37)

SC ' z1–α R̂B tS 1 %
tS

tB

(19.38)

R̂B '
NB

tB
(19.39)

SC ' z1–α NB

tS

tB

1 %
tS

tB

(19.40)

where RB denotes the (true) mean count rate of the blank, RI denotes the mean interference count1611
rate, ξB

2 denotes non-Poisson variance in the blank (count rate) correction (see Section 19.6.4),1612
and σ2( I) denotes the variance of the estimator for RI . When there are no interferences and no1613 R̂
non-Poisson blank variance, this equation becomes1614

The preceding formula is equivalent to “Currie’s equation” LC = 2.33  when tB = tS, α = 0.05,1615 µB
and the symbols LC and µB are identified with SC and RBtS , respectively (Currie 1968).1616

In Equation 19.37, RB denotes the true mean blank count rate, which can only be estimated. In1617
practice, one must substitute an estimated value B for RB, as shown in the following equation.1618 R̂

Equation 19.38 resembles Equation 19.37 (Currie’s equation) but involves the estimated count1619
rate B, which varies with repeated measurements. The value of B is usually estimated from the1620 R̂ R̂
same blank value NB used to calculate the net instrument signal. (See Attachment 19D for other1621
possible estimators.)1622

The resulting formula, shown below, is equivalent to equations published by several authors1623
(Currie 1968, Lochamy 1976, Strom and Stansbury 1992, ANSI 1996a). 1624
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If α = 0.05 and tB = tS , Equation 19.40 leads to the well-known expression  for the1625 2.33 NB
critical net count.1626

When the blank count is high (e.g., 100 or more), Equation 19.40 works well. At lower blank1627
levels, it can produce a high rate of type I errors. For example, if the true mean blank count is1628
0.693, there is a 25% chance of observing 0 blank counts and a positive number of test source1629
counts in paired measurements of equal duration. In this case, a critical value calculated by Equa-1630
tion 19.40 produces type I errors more than 25% of the time regardless of the chosen significance1631
level α. Attachment 19D describes several expressions for SC that have been proposed for use in1632
situations where the mean blank count is less than 100.1633

EXAMPLE1634

Problem: A 6000-s blank measurement is performed on a proportional counter and 108 beta1635
counts are observed. A test source is to be counted for 3000 s. Estimate the critical value of the1636
net count when α = 0.05.1637

Solution:1638

1639

SC ' z1–α NB

tS

tB

1 %
tS

tB

' 1.645 108 3000
6000

1 %
3000
6000

' 14.8 counts.

EXAMPLE1640

Problem: Repeat the same problem assuming the blank correction, expressed as a count rate,1641
has a non-Poisson uncertainty component of ξB = 0.001 cps (see Section 19.6.4).1642



Measurement Statistics

MARLAP JULY 2001
DO NOT CITE OR QUOTE DRAFT FOR PUBLIC COMMENT19-70

B̂ –– F(ZRB) (19.41)

SC –– z1–α σ2(Ŷ0) % σ
2(B̂) (19.42)

Solution:1643

1644

SC ' z1–α NB

tS

tB

1 %
tS

tB

% ξ2
B t 2

S

' 1.645 108 3000
6000

1 %
3000
6000

% (0.001)2 (6000)2

' 15.6 counts.

So, 15.6 may be a slightly more realistic value for the critical net count.1645

19.7.1.3  Reagent Blanks1646

Equation 19.40 is derived with the assumption that a detection decision is based on counts1647
obtained from a single radiation counter. When laboratory samples are analyzed in batches, it is1648
common to analyze a single reagent blank per batch, so that the measurement conditions for the1649
blank may differ somewhat from those of the samples. In particular, the counts for the laboratory1650
samples and the blank may be measured using different instruments. If detection in a laboratory1651
sample is defined relative to a reagent blank counted on a different instrument, Equation 19.40 is1652
inappropriate. Even if a single instrument is used, the presence of positive amounts of analyte in1653
the reagents probably invalidates the Poisson assumption. In principle,  should be estimated by1654 B̂
converting the total analyte activity of the reagent blank ZRB to an estimated gross count on the1655
instrument used to measure the laboratory sample. Thus,1656

where1657
F is the calibration function for the laboratory sample measurement, whose parameters1658

include the instrument background, counting efficiency, chemical yield, and any1659
estimated interferences1660

ZRB is the estimated total activity of the reagent blank1661

Then the net count is  =  ! , whose critical value is1662 Ŝ Ŷ B̂

where1663
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Pr[Ŝ # SC | X ' xD] ' β (19.43)

σ2( 0) is the variance of the gross count  in the test source measurement when all of the1664 Ŷ Ŷ
analyte in the source is derived from reagents1665

σ2( ) is the variance of the estimator 1666 B̂ B̂

If Poisson counting statistics are assumed, then σ2( 0) may be estimated by  (assuming  > 0),1667 Ŷ B̂ B̂
but estimating σ2( ) still requires a more complicated expression, which may be based on uncer-1668 B̂
tainty propagation or replication. The variance of  may be difficult to estimate if positive blank1669 B̂
values are caused not by the presence of the analyte in reagents but by contaminated glassware or1670
instruments, which may represent a loss of statistical control of the analytical process.1671

19.7.2  Calculation of the Minimum Detectable Concentration1672

The minimum detectable concentration (MDC) is defined as the concentration of analyte xD that1673
must be present in a laboratory sample to give a probability 1 ! β of obtaining a measured1674
response greater than its critical value, leading one to conclude correctly that the analyte concen-1675
tration is positive. In other words, the MDC is the analyte concentration at which the type II error1676
rate is β.1677

The MDC may also be defined as the analyte concentration xD that satisfies the relation1678

where the expression Pr[  # SC | X = xD] is read as “the probability that the net signal  does not1679 Ŝ Ŝ
exceed its critical value SC when the true concentration X is equal to xD .”1680

The MDC is often used as a performance measure for an analytical process for the purpose of1681
comparing different analytical procedures or evaluating a laboratory’s capabilities against speci-1682
fied requirements. The calculation of the “nominal” MDC is complicated by the fact that some1683
input quantities in the mathematical model, such as interferences and the chemical yield, which1684
have a substantial impact on the MDC, may vary significantly from measurement to measure-1685
ment. Other quantities that may have similar effects include the decay time, counting efficiency,1686
and instrument background. Because of these variable quantities, determining the value of xD that1687
satisfies Equation 19.43 in practice may be difficult. The common approach to this problem is to1688
make conservative choices for the values of the variable quantities, which tend to increase the1689
value of xD .1690
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Pr[ Ŝ # SC | S ' SD ] ' β (19.44)

SC ' z1&ασ0 (19.45)

SD ' SC % z1&β σ2(Ŝ | S ' SD) (19.46)

The MDC is also commonly used in radiochemistry to describe the detection capability of the1691
analytical process as implemented in a particular instance. In this case, the need for conservative1692
choices is reduced. Instead, the measured values of the variable quantities may be used. How-1693
ever, since the measured values have uncertainties, their uncertainties contribute to a combined1694
standard uncertainty in the calculated value of xD . For purposes of regulatory compliance, an1695
uncertainty interval or conservative upper bound for xD may still be needed (see NRC 1984).1696

19.7.2.1  The Minimum Detectable Net Instrument Signal1697

The traditional method for calculating the MDC involves first calculating the minimum detect-1698
able value of the net instrument signal and then converting the result to a concentration using the1699
mathematical measurement model. The minimum detectable value of the net instrument signal,1700
denoted by SD , is defined as the mean value of the net signal that gives a specified probability1701
1 ! β of yielding an observed signal greater than its critical value SC . Thus,1702

where S denotes the true mean net signal.1703

19.7.2.2  Normally Distributed Signals1704

If the net signal  is normally distributed and its estimated standard deviation σ0 under H0 is well-1705 Ŝ
known, the critical value of  is1706 Ŝ

as previously noted. Then, the minimum detectable net signal SD is determined implicitly by the1707
equation1708

where σ2(  | S = SD) denotes the variance of the measured signal  when the true mean signal S1709 Ŝ Ŝ
equals SD . If the function σ2(  | S = SD) is constant, Equation 19.46 gives the value of SD immedi-1710 Ŝ
ately, but typically σ2(  | S = SD) is an increasing function of SD .1711 Ŝ
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sequence converges to a fixed point of f, where f(x) = x. Newton’s Method for finding a zero of a function g(x) is
one example of the technique.
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σ2(Ŝ) ' aS 2 % bS % c (19.47)

SD '
1
Iβ

SC %
z 2

1–βb
2

% z1–β bSC %
z 2

1–βb 2

4
% aS 2

C % Iβc (19.48)

If the function σ2(  | S = SD) has a simple form, it may be possible to transform Equation 19.461712 Ŝ
by algebraic manipulation into an explicit formula for SD . For example, the variance of  often1713 Ŝ
has the form1714

where S denotes the true mean net signal and the constants a, b, and c do not depend on S (see1715
Section 19.7.2.3, “Poisson Counting”). In this case, the minimum detectable net signal is given1716
approximately by1717

where Iβ = 1 ! . 1718 z 2
1–βa

If Equation 19.46 cannot be transformed algebraically, an iterative procedure, such as fixed-point1719
iteration, may be used to solve the equation for SD . An outline of fixed-point iteration is shown1720
below.111721

1. Set SD = SC + 1722 z1&β σ2(Ŝ | S ' SC)

2. repeat1723

3.     Set h = SD1724

4.     Set SD = SC + 1725 z1&β σ2(Ŝ | S ' SD)

5. until |SD ! h | is sufficiently small1726

6. output the solution 1727 SD

In many cases, one iteration of the loop (Lines 2–5) provides an adequate approximation of SD. In1728
almost all cases, repeated iteration produces an increasing sequence of approximations1729
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1–β

, which is approximately 2.71 when β = 0.05, but replacing this value by !ln β (approximately 3 when β = 0.05)z 2
1–β

accounts for the fact that when the mean count is low, a Poisson distribution is only imperfectly approximated by a
normal distribution. The value !ln β is the exact value of SD when the mean blank count rate is zero, because in this
case SC = 0, and Pr[  = 0] # β if and only if S $ !ln β. Note also that the equation in the text is valid only if α = β.Ŝ
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SD ' z 2
1&β % 2SC (19.49)

SD –– 2.71 % 2SC (19.50)

SD ' SC %
z 2

1–β

2
% z1–β

z 2
1–β

4
% SC % RB tS 1 %

tS

tB

(19.51)

converging upward to the solution; so, the stopping condition at Line 5 may be replaced by1730
“until SD # h” to obtain full machine precision in the result.1731

19.7.2.3  Poisson Counting1732

If SC is calculated using the Poisson model and the blank is measured with a sufficiently large1733
number of counts, and if α = β, the minimum detectable net signal SD is given by the following1734
simple equation.121735

In the special case when tS = tB and α = β = 0.05, Equation 19.49 becomes1736

In the general case, SD is determined from Equation 19.48 using the following values for a, b,1737
and c.1738

1739 a –– 0 b –– 1 c –– RB tS 1 %
tS

tB

The resulting formula for SD is1740

As previously noted, counting data never follow the Poisson model exactly. Variable factors such1741
as counting efficiency, and source geometry and placement tend to increase a, while interferences1742
and background instability tend to increase c. For example, if the counting efficiency has a 2%1743
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xD ––
SD

A
(19.52)

coefficient of variation and background instability contributes a non-Poisson standard deviation1744
of 0.001 cps to the blank correction, then one might use Equation 19.48 with the values1745

1746 a ' (0.02)2 b ' 1 c ' RB tS 1 %
tS

tB

% (0.001)2 t 2
S

19.7.2.4  The MDC1747

Traditionally the minimum detectable net signal SD has been converted directly to the minimum1748
detectable concentration xD using the same measurement model used to convert an observed1749
value of the signal  to a concentration . In a typical model, the net count is divided by the1750 Ŝ x̂
sensitivity A, which is the product of factors such as the count time, test portion size, counting1751
efficiency, chemical yield, and decay factor. The sensitivity may also include the subsampling1752
factor, denoted by FS , which was defined in Section 19.6.11 as the ratio of the analyte concentra-1753
tion of a subsample to that of the original sample. This factor is always estimated to be 1 and is1754
included only for its contribution to the measurement uncertainty.1755

If the sensitivity does not vary substantially from measurement to measurement, the MDC is1756
given by1757

If the variance of A is not negligible, it increases the value of xD. Recall that when the variance of1758
the net count  has the form σ2( ) = aS2 + bS + c, the minimum detectable net instrument signal1759 Ŝ Ŝ
may be approximated by Equation 19.48. If the sensitivity is normally distributed, the effect of its1760
variance on the detection limit may be accounted for (approximately) by increasing the value of1761
the constant a in Equation 19.48 by an amount equal to (1 + a), where φA denotes the relative1762 φ2

A
standard deviation of A.13 For example, in the Poisson-counting scenario, where the value of a1763
would otherwise be zero, a becomes . Then the MDC is given by1764 φ2

A
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xD '
1

AIβ
SC %

z 2
1–β

2
% z1–β

z 2
1–β

4
% SC % aS 2

C % IβRB tS 1 %
tS

tB

(19.53)

xD ––
SD

aβ
(19.53)

xD ––
SD

Â
(19.54)

where Iβ = 1 !  and a = .1765 z 2
1–βa φ2

A

Often the distribution of A may not be well-known or may not be approximately normal. In this1766
case, one may replace A in the formula by a somewhat low value, such as the β-quantile aβ of its1767
distribution, and ignore its variance. Thus, assuming Poisson counting statistics, one may use1768
Equation 19.53 with a = 0 and A = aβ. Alternatively, if the subsampling error is thought to be1769
approximately normal, one may increase a by φS

2
amp (1 + a), where φS

2
amp denotes the relative sub-1770

sampling variance, and ignore the subsampling error when estimating the quantile aβ (the1771
approach used in Attachment 19E). If φS

2
amp is negligible, the MDC may be obtained directly from1772

the minimum detectable net count SD using the following formula.1773

When a “sample-specific” MDC is calculated, the measured value of the sensitivity  may be1774 Â
substituted for A in the equation for xD and the variance of A may be ignored. Then, if the sub-1775
sampling variance φS

2
amp is also negligible, the MDC is estimated by1776

However, it should be remembered that the resulting value for the MDC has an uncertainty gen-1777
erated by the measurement uncertainties of the input estimates from which it is calculated. It may1778
also be variable because of the variability of the true sensitivity factors (e.g., chemical yield).1779

19.7.2.5  Regulatory Requirements1780

More conservative (higher) estimates of the MDC may be obtained by following the recommen-1781
dations of NUREG/CR-4007, in which formulas for MDC (LLD) include estimated bounds for1782
relative systematic error in the blank determination ( B) and the sensitivity ( A). The critical net1783 ∆| ∆|
count SC is increased by , and the minimum detectable net count SD is increased by .1784 ∆| B B̂ 2∆| B B̂
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P –– j
n

j––k

n
j

βj (1 – β)n– j or 1 – j
k–1

j––0

n
j

βj (1 – β)n– j (19.55)

The MDC is then calculated by dividing SD by the sensitivity and multiplying the result by1785
. The approach of NUREG/CR-4007, which deals with detection limits, differs fundamen-1786 1 % ∆| A

tally from that of the GUM, which considers only measurement uncertainty. The NUREG’s1787
conservative approach treats random errors and systematic errors differently to ensure that the1788
MDC for a measurement process is unlikely to be consistently underestimated, which is an1789
important consideration if the laboratory is required by regulation or contract to achieve a speci-1790
fied MDC.1791

19.7.2.6  Testing the MDC1792

To ensure that the MDC has been estimated properly, one may test the estimate experimentally1793
by analyzing n identical control samples spiked with an analyte concentration equal to xD . If the1794
MDC has been determined properly (the null hypothesis), the probability of failing to detect the1795
analyte in each control sample is at most β. Then the number of nondetectable results in the1796
experiment may be assumed to have a binomial distribution with parameters n and β. If k non-1797
detectable results are actually obtained, one calculates the cumulative binomial probability1798

and rejects the null hypothesis if P is smaller than the chosen significance level for the test1799
(which may differ from the significance level for the analyte detection test).1800

To make the test realistic, one should ensure that the physical and chemical characteristics of the1801
control samples, including potential interferences, are representative of laboratory samples1802
encountered in practice.1803

EXAMPLE1804

Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with1805
concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to1806
have been underestimated (at the 2% level of significance)?1807
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xQ –– kQ σ2(X̂ | X –– xQ) (19.56)

Solution: The variables are n = 10, β = 0.05, and k = 3. Calculate the P-value1808

1809 P –– 1 – j
2

j––0

10
j

(0.05) j (0.95)10– j –– 1 – 0.9885 –– 0.0115

Since P # 0.02, reject the null hypothesis and conclude that the MDC was underestimated.1810

19.7.3  Calculation of the Minimum Quantifiable Concentration1811

The minimum quantifiable concentration (MQC), or the minimum quantifiable value of the con-1812
centration, was defined in Section 19.4.5 as the analyte concentration in a laboratory sample that1813
gives measured results with a specified relative standard deviation 1 / kQ , where kQ is usually1814
chosen to be 10.1815

Calculation of the MQC requires that one be able to estimate the standard deviation for the result1816
of a hypothetical measurement performed on a laboratory sample with a specified analyte con-1817
centration. Section 19.6.12 discusses the procedure for calculating the standard deviation for such1818
a hypothetical measurement.1819

The MQC is defined symbolically as the value xQ that satisfies the relation1820

where σ2(  | X = xQ) denotes the variance of the estimator  when the true concentration X1821 X̂ X̂
equals xQ. If the function σ2(  | X = xQ) has a simple form, it may be possible to solve Equation1822 X̂
19.56 for xQ using only algebraic manipulation. Otherwise, fixed-point iteration, which was1823
introduced in Section 19.7.2, may be used. The use of fixed-point iteration for this purpose is1824
shown below.1825

1. Set xQ = 1826 kQ σ2(X̂ | X –– 0)

2. repeat1827

3.     Set h = xQ1828
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xQ '
k 2

Q

2AIQ

1 % 1 %
4 IQ

k 2
Q

RB tS 1 %
tS

tB

% ξ2
B t 2

S % RI tS % σ
2(R̂I) t 2

S
(19.57)

4.     Set xQ = 1829 kQ σ2(X̂ | X –– xQ)

5. until |xQ ! h | is sufficiently small1830

6. output the solution xQ1831

The sequence of values generated by the algorithm typically converges upward to the solution.1832

When Poisson counting statistics are assumed, possibly with excess variance components, and1833
the mathematical model for the analyte concentration is X = S / AFS , where S is the net count, A1834
denotes the overall sensitivity of the measurement, and FS is the subsampling factor, Equation1835
19.56 may be solved for xQ to obtain the formula1836

where1837
tS is the count time for the test source1838
tB is the count time for the blank1839
RB is the mean blank count rate1840
ξB

2 is the non-Poisson variance component of the blank count rate correction1841
RI is the mean interference count rate1842

is the standard deviation of the measured interference count rate1843 σ(R̂I)
is the relative variance of the measured sensitivity, 1844 n2

Â Â
φS

2
amp is the relative subsampling variance1845

IQ is equal to 1 ! kQ
21846 (n2

Â % n
2
Samp)

If the true sensitivity A may vary, then a conservative value, such as the 0.05-quantile a0.05 ,1847
should be substituted for A in the formula. Note that  denotes only the relative variance of 1848 n2

Â Â
due to measurement error — it does not include the variance of the true sensitivity, A.1849

Note that Equation 19.57 defines the MQC only if IQ > 0. If IQ # 0, the MQC is defined to be1850
infinite, because there is no concentration at which the relative standard deviation of  fails to1851 X̂
exceed 1 / kQ . In particular, if the relative standard deviation of the measured sensitivity  or the1852 Â
subsampling standard deviation φSamp exceeds 1 / kQ , then IQ < 0 and the MQC is infinite.1853
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xQ '
k 2

Q

2(1 & k 2
Q a)

b % b 2 %
4c (1 & k 2

Q a)

k 2
Q

(19.58)

More generally, if the variance of the measured concentration  can be expressed in the form1854 X̂
σ2( ) = aX2 + bX + c, where a, b, and c do not depend on X, then the MQC is given by the1855 X̂
formula1856

For example, if pure Poisson counting statistics are assumed and there are no interferences, then1857
, , and c = RB tS (1 + tS / tB) / A2.1858 a ' n2

Â % n
2
Samp b ' 1 / A
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FIGURE 19.5 — A normal distribution

ATTACHMENT 19A1982

Distributions1983

19A.1  Introduction1984

This attachment briefly describes the probability distributions used in Chapter 19.1985

Distributions may be classified according to their mathematical properties. Distributions in the1986
same class or family are described by the same mathematical formulas. The formulas involve1987
numerical parameters which distinguish one member of the class from another.1988

Two important kinds of distributions are the normal and log-normal, which are observed often in1989
nature. Other types of distributions important in radioanalysis include the rectangular, binomial,1990
Poisson, Student’s t, chi-square, and exponential distributions. Poisson distributions in particular1991
are important in radiation counting measurements and are described in Section 19.6.2.1992

19A.2  Normal Distributions1993

Many quantities encountered in nature and in the laboratory have distributions which can be1994
described by the “bell curve.” This type of distribution, called a normal, or Gaussian, distribu-1995
tion, is usually a reasonably good model for the result of a radioanalytical measurement. A num-1996
ber of commonly used methods for evaluating data sets depend on their having an approximately1997
normal distribution. The probability density function (pdf) for a normal distribution is shown in1998
Figure 19.5.1999

A normal distribution is uniquely specified by its mean µ and variance σ2. The normal distribu-2000
tion with mean 0 and variance 1 is called the standard normal distribution. If X is normally dis-2001
tributed with mean µ and variance σ2, then (X ! µ) / σ has the standard normal distribution.2002
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FIGURE 19.6 — A log-normal distribution

The sum of a large number of independent random variables has an approximately normal distri-2003
bution, even if the individual variables themselves are not normally distributed, so long as the2004
variance of each term is much smaller than the variance of the sum.14 This is one reason why the2005
normal distribution occurs often in nature. When a quantity is the result of additive processes2006
involving many small random variations, the quantity tends to be normally distributed. It is also2007
true that many other distributions, such as the binomial, Poisson, Student’s t, and chi-square, can2008
be approximated by normal distributions under certain conditions.2009

The mean value of a normal distribution is also its mode, or most likely value, which corresponds2010
to the location of the peak of the curve shown in Figure 19.5. Since the distribution is symmetric2011
about this point, the mean is also the median, or the value that splits the range into equally likely2012
portions.2013

The value of a normally distributed quantity will be within one standard deviation of the mean2014
about 68% of the time. It will be within two standard deviations about 95% of the time and2015
within three standard deviations more than 99% of the time. It is important to remember that2016
these percentages apply only to normal distributions.2017

19A.3  Log-normal Distributions2018

The concentration of a contaminant in the environment may not be normally distributed. Instead2019
it often tends to be log-normally distributed, as shown in Figure 19.6.2020
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By definition, a quantity X has a log-normal distribution if the logarithm of X is normally distrib-2021
uted. The product of a large number of independent positive random variables with similar var-2022
iances is approximately log-normal, because the logarithm of the product is a sum of independent2023
random variables, and the sum is approximately normal. The concentration of a contaminant in2024
the environment tends to be log-normal because it is the result of processes of concentration and2025
dilution, which are multiplicative.2026

The distribution of a log-normal quantity X can be uniquely specified by the mean µln X and2027
variance  of ln X, but more commonly used descriptors are the geometric mean µg =2028 σ2

lnX
exp(µln X) and the geometric standard deviation σg = exp(σln X). The geometric mean and geomet-2029
ric standard deviation are defined so that, if k is a positive number, the probability that X will fall2030
between µg / σg

k and µgσg
k is the same as the probability that ln X, which is normally distributed,2031

will fall between µln X ! kσln X and µln X + kσln X. For example, the value of X will be between2032
µg / σg

2 and µgσg
2 about 95% of the time.2033

Although the mean, median, and mode of a normal distribution are identical, for a log-normal2034
distribution these three values are distinct. The median, in fact, is the same as the geometric2035
mean µg. As shown in Figure 19.6, the mean µ is larger than the geometric mean µg and the mode2036
M is smaller. The mean and mode may be calculated from the geometric mean and geometric2037
standard deviation as shown in Table G.6 in Appendix G.152038

The log-normal distribution is important for the interpretation of environmental radiation data,2039
but it may also have applications in the laboratory. Two possible applications are decay factors2040
e!λt based on uncertain time measurements and concentrations of contaminants in laboratory2041
reagents.2042

19A.4  Chi-square Distributions2043

If Z1, Z2, …, Zν are independent random variables and each has the standard normal distribution,2044
the sum Z1

2 + Z2
2 + """ + Zν

2 has a chi-square (or chi-squared) distribution with ν degrees of free-2045
dom. A chi-square distribution, like a log-normal distribution, is asymmetric and does not include2046
negative values. For large ν the chi-square distribution is approximately normal. Figure 19.72047
shows the densities for chi-square distributions with 1, 2, 3, and 10 degrees of freedom.2048
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FIGURE 19.7 — Chi-square distributions

Chi-square distributions are used frequently in hypothesis testing, especially for tests of hypothe-2049
ses about the variances of normally distributed data. Chi-square distributions also appear in least-2050
squares analysis (see Attachment 19B).2051

A sum of independent chi-square random variables is also chi-square. Specifically, if X and Y are2052
independent chi-square random variables with ν1 and ν2 degrees of freedom, respectively, then2053
X + Y has a chi-square distribution with ν1 + ν2 degrees of freedom.2054

The mean of a chi-square distribution equals the number of degrees of freedom ν, and the vari-2055
ance equals 2ν. The mode equals zero if ν # 2 and equals ν ! 2 otherwise. The median does not2056
have a simple formula.2057

19A.5  T-Distributions2058

If Z is standard normal, X is chi-square with ν degrees of freedom, and Z and X are independent,2059
then  has a Student’s t-distribution with ν degrees of freedom. A t-distribution is sym-2060 Z / X / ν
metric and mound-shaped like a normal distribution and includes both positive and negative2061
values. Figure 19.8 shows the pdf for a t-distribution with 3 degrees of freedom. A dotted stan-2062
dard normal curve is also shown for comparison.2063
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FIGURE 19.8 — The t-distribution with 3 degrees of freedom

When ν is large, the t-distribution is virtually identical to the standard normal distribution.2064

The median and mode of a t-distribution are both zero. The mean is also zero if ν > 1 but is2065
undefined for ν = 1. The variance equals ν / (ν ! 2) if ν > 2 and is undefined otherwise.2066

T-distributions are often used in tests of hypotheses about the means of normally distributed data2067
and are important in statistical quality control. T-distributions are also used in the procedure2068
described in Attachment 19C for calculating measurement coverage factors.2069

If X1, X2, …, Xn are independent and normally distributed with the same mean µ and the same2070
variance, then the quantity2071

where  is the arithmetic mean and sX is the experimental standard deviation, has a t-distribution2072 X
with n ! 1 degrees of freedom.2073

If X1, X2, …, Xn, Y are independent and normally distributed with the same mean and variance,2074
then the quantity2075
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where  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-2076 X
distribution with n ! 1 degrees of freedom.2077

If Z is standard normal, X is chi-square with ν degrees of freedom, Z and X are independent, and2078
δ is a constant, then  has the non-central t-distribution with ν degrees of freedom2079 (Z % δ) / X / ν
and non-centrality parameter δ. When the (central) t-distribution is used to test the null hypothe-2080
sis that two normal distributions have the same mean, a non-central t-distribution describes the2081
distribution of the test statistic if the null hypothesis is false. For example, if X1, X2, …, Xn, Y are2082
independent and normally distributed with the same variance σ2, and X1, X2, …, Xn have the same2083
mean µX, then the statistic2084

2085
Y & X

sX 1 % 1/n

where  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-2086 X
distribution with n ! 1 degrees of freedom if µX = µY, but it has a non-central t-distribution with2087
non-centrality parameter2088

2089 δ ––
µY – µX

σ 1 % 1 / n
if µX … µY.2090

The non-central t-distribution is useful in the theory of detection limits and appears in Section2091
19D.3.2 of Attachment 19D.2092

19A.6  Rectangular Distributions2093

If X only assumes values between a– and a+ and all such values are equally likely, the distribution2094
of X is called a rectangular distribution, or a uniform distribution (see Figure 19.9).2095
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FIGURE 19.9 — A rectangular distribution
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FIGURE 19.10 — A trapezoidal distribution

The mean and median of the rectangular distribution equal the midrange (a– + a+) / 2, and the2096
standard deviation is (a+ ! a–) / . The rectangular distribution is multimodal.2097 2 3

Rectangular distributions are frequently used for Type B evaluations of standard uncertainty (see2098
Sections 19.5.2.2 and 19.6.10).2099

19A.7  Trapezoidal and Triangular Distributions2100

Another type of bounded distribution used for Type B evaluations of standard uncertainty is a2101
trapezoidal distribution, which is described in Section 19.5.2.2. If X has a trapezoidal distribu-2102
tion, it only assumes values between two numbers a– and a+, but values near the midrange2103
(a– + a+) / 2 are more likely than those near the extremes. The pdf for a symmetric trapezoidal2104
distribution is shown in Figure 19.10. Asymmetric trapezoidal distributions are not considered2105
here.2106
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FIGURE 19.11 — An exponential distribution

The mean and median of this distribution are both equal to the midrange. If the width of the trap-2107
ezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation2108
is . As β approaches 0, the trapezoidal distribution approaches a triangular distri-2109 a (1 % β2) / 6
bution, whose standard deviation is , or (a+ ! a–) / . As β approaches 1, the distribution2110 a / 6 2 6
approaches the rectangular distribution described in Section 19A.6.2111

19A.8  Exponential Distributions2112

The exponential distribution describes the life of an unstable atomic nucleus, whose remaining2113
life does not depend on its current age. The distribution is described by one parameter, often2114
denoted by λ, which represents the fractional decay rate. The mean of the distribution is 1 / λ and2115
its variance is 1 / λ2. The mode is zero, and the median is the same as the half-life of the radio-2116
nuclide. The pdf for an exponential distribution is shown in Figure 19.11.2117

The exponential distribution also describes waiting times between events in a Poisson process.2118
For example, if the instrument background for a radiation counter follows the Poisson model2119
with mean count rate RB , the waiting times between counts are exponentially distributed with2120
parameter RB .2121

19A.9  Binomial Distributions2122

The binomial distribution, introduced in Section 19.6.2, arises when one counts the outcomes of2123
a series of n independent and identical experiments, each of which can produce the result2124
“success” or “failure.” If the probability of success for each event is p, the number of successes2125
has a binomial distribution with parameters n and p. Important facts about the binomial distribu-2126
tion include the following:2127
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Pr[X –– k] –– n
k

p k(1 – p)n–k (19.61)

Pr[X ' n] ' e &µ µn

n!
(19.62)

• The distribution is discrete; its only possible values are 0, 1, 2, …, n.2128

• The mean of the distribution is np.2129

• The variance is np(1 ! p).2130

• If n is large and p is not close to 0 or 1, the distribution is well approximated by a normal2131
distribution.2132

If X is binomial with parameters n and p, then for k = 0, 1, 2, …, n, the probability that X = k is2133
given by the equation2134

19A.10  Poisson Distributions2135

As explained in Section 19.6.2, the Poisson distribution arises naturally as an approximation to2136
the binomial distribution when n is large and p is small. Even if n is not large, the variance of the2137
binomial distribution can be approximated using the Poisson model if p is small. Other important2138
facts about a Poisson distribution include the following:2139

• The distribution is discrete; its only possible values are the nonnegative integers2140
0, 1, 2, ….2141

• The mean and variance of the distribution are equal.2142

• If the mean is large, the distribution is well approximated by a normal distribution.2143

• A sum of independent Poisson random variables is also Poisson.2144

If X has a Poisson distribution with mean µ, then for any nonnegative integer n, the probability2145
that X = n is given by2146

The Poisson distribution is related to the chi-square distribution, since2147
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Pr[X # n] ' Pr[χ2(2n % 2) $ 2µ] and Pr[X $ n] ' Pr[χ2(2n) # 2µ] (19.63)

χ2
p(ν) . ν 1 &

2
9ν

% zp
2

9ν

3

(19.64)

Pr[X # n] . Φ n % 0.5 & µ
µ

(19.65)

where χ2(ν) denotes a chi-square random variable with ν degrees of freedom. This fact allows one2148
to use quantiles of a chi-square distribution to construct a confidence interval for µ based on a2149
single observation X = n. Table 19.3 lists 95% two-sided confidence intervals for µ some small2150
values of n. For larger values of n, the quantiles (2n) and (2n + 2) may be approximated2151 χ2

p χ2
p

using the Wilson-Hilferty formula (NBS 1964):2152

As noted above, when the mean µ is large, the Poisson distribution may be approximated by a2153
normal distribution. Specifically,2154

where Φ denotes the distribution function of the standard normal distribution. For most purposes,2155
this approximation is adequate if µ $ 20.2156

n µlower = (2n) µupper = (2n + 2)1
2
χ2

0.025
1
2
χ2

0.975

0 0.000 3.689
1 0.025 5.572
2 0.242 7.225
3 0.619 8.767
4 1.090 10.242
5 1.623 11.668

TABLE 19.3 — 95% confidence interval for a Poisson mean
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ai1x1 % ai2x2 ' E(yi) (19.66)

a11x1 % a12x2 . y1

a21x1 % a22x2 . y2

@@@

am1x1 % am2x2 . ym

(19.67)

ATTACHMENT 19B2160

Multicomponent Analyses2161

19B.1  Matrix Equations2162

A multicomponent mathematical model may require the simultaneous solution of a system of2163
equations formulated in terms of vector and matrix operations, which are implemented in soft-2164
ware. For example, one procedure for radiostrontium analysis involves the precipitation of stron-2165
tium from a sample, followed by multiple beta measurements of the precipitate over a period of2166
time. Both 89Sr and 90Sr are beta emitters, and 90Sr decays to 90Y, another beta emitter. The half-2167
life of 90Y is short enough (64 h) that significant ingrowth occurs over a period of several days,2168
allowing the activities of 89Sr and 90Sr to be determined from the changing count rate.2169

The net beta count yi for a measurement of duration ti at time ∆ti after precipitation has an2170
expected value given by2171

where2172
x1 is the 89Sr activity in the precipitate2173
x2 is the 90Sr activity in the precipitate2174
ai1 is a function of ti , ∆ti , and the 89Sr counting efficiency and half-life2175
ai2 is a function of ti , ∆ti , and the 90Sr and 90Y counting efficiencies and half-lives2176

If m measurements are performed, Equation 19.66 is repeated for each measurement, giving a2177
system of m equations. After replacing E(yi) by the measured value yi , one can rewrite the2178
equations as approximations in the form2179

or in matrix form as Ax . y. If m $ 2, the system of equations can be solved simultaneously for x12180
and x2. If there are exactly two measurements (m = 2), the system can be solved easily without2181
matrix operations, but if additional measurements are made (m > 2), a least-squares solution,2182
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Cov(x,y) ' E x ! E(x) y ! E(y) ) (19.68)

V(x) ' Cov(x,x) (19.69)

which typically involves matrix algebra, is required. The use of matrix algebra can make uncer-2183
tainty propagation more tedious.2184

19B.2  Random Vectors and Matrices2185

Uncertainty propagation in matrix equations is best described in terms of random vectors and2186
random matrices. A useful exposition of matrix theory in this manual is impractical; so, some2187
familiarity with the basic concepts must be assumed. These basic concepts will be extended to2188
incorporate randomness.2189

A random vector is a vector whose components are random variables. Similarly, a random2190
matrix is a matrix whose components are random variables.2191

Vectors are usually denoted by bold lower-case letters and matrices by bold upper-case letters.2192
The ith component of a vector v is denoted by vi . The ijth component of a matrix A is usually2193
denoted by aij . The transpose of a matrix A will be denoted here by AN. If A is square and2194
invertible, the inverse is denoted by A!1. The length of a vector v is denoted by .2195 2v2

The expected value of a random vector x is defined as the vector E(x) whose ith component2196
is E(xi). The expected value of a random matrix Y is similarly defined as the matrix E(Y) whose2197
ijth component is E(yij). The covariance matrix of a column vector x and a column vector y is2198
defined by2199

The covariance matrix of a random column vector x (or the variance-covariance matrix) is2200
defined by2201

The covariance matrix gets its name from the fact that the ijth component of Cov(x,y) equals the2202
covariance Cov(xi,yj).16 When x and y are vectors of measured values, the estimated covariance2203
matrices will be denoted here by u(x,y) and u2(x).2204
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a11x1 % a12x2 % @ @ @ % a1nxn ' E(y1)

a21x1 % a22x2 % @ @ @ % a2nxn ' E(y2)

@@@

am1x1 % am2x2 % @ @ @ % amnxn ' E(ym)

(19.70)

Ax ' E(y) (19.71)

19B.3  Linear Least Squares2205

Assume y1, y2, …, ym are independent, normally distributed measured results and V(yi) = σ i
2 for2206

each i. Let x1, x2, …, xn denote unknown quantities on which the yi depend and whose values one2207
needs to determine. Assume the means E(yi) are related to the quantities xj by the following2208
system of equations.2209

For example the yi might be measured beta counts of a sample and the xj could represent the2210
unknown activities of 89Sr and 90Sr in the sample at the time of collection.2211

The linear system 19.70 can be represented using matrix notation as2212

Typically E(y) is unknown and must be replaced in Equation 19.71 by the measured vector y, but2213
there may be no vector x for which Ax exactly equals y. So, it is necessary to find an approximate2214
solution x̂ such that Ax̂ is close to y in some sense. The components of the difference Ax̂ ! y are2215
called residuals, and when Ax̂ is close to y, the residuals should be small. If σi = 1 for all i, the2216
method of least squares finds a vector x̂ that minimizes the sum of the squares of the residuals2217
SSRES = . If σ … 1 for some i, then both sides of equation i should be divided by σi2218 2 Ax̂ & y 22

before applying the least-squares method. So, if W denotes the m × m diagonal matrix whose ith2219
diagonal element is 1 / σ i

2, then SSRES = . In practice, the standard devia-2220 (Ax̂ – y))W (Ax̂ – y)
tions σi are usually replaced by the standard uncertainties u(yi).2221

A least-squares solution always exists. If rankA < n, there may be more than one solution, but2222
this case only occurs if the measurement process is inadequate even in principle for determining2223
the unknown quantities. So, in practice rank A = n. (The rank of A is the number of linearly2224
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x̂ ' (A)WA)–1A)Wy (19.72)

u2(x̂) ' (A)WA)–1 (19.73)

x̂ ' (A)A)–1A)y (19.74)

independent columns or rows.) Under this assumption the unique least-squares solution is given2225
by Equation 19.72.172226

When quantities such as the test portion size V and chemical yield Y can be factored out of the2227
matrix A, it is generally better to do so. The presence of such variables increases the variance of2228
the least-squares solution x̂, making critical values unnecessarily large when they are calculated2229
as described in Section 19B.6. When quantities such as V and Y are factored out, the components2230
of the least-squares solution x̂ must be divided by the missing factors to obtain activity concen-2231
trations, and the uncertainties in the factors must be propagated.2232

Approximating the standard deviations σi in the weight matrix W by the standard uncertainties2233
u(yi) may bias the least-squares solution slightly if yi and u(yi) are correlated, which happens, for2234
example, when yi is a measured count and u(yi) is the Poisson counting uncertainty calculated2235
from a single measurement. This bias can be virtually eliminated by using the initial least-squares2236
solution to refine the values of the standard uncertainties and then repeating the least-squares2237
procedure using the refined estimates.2238

The solution x̂ is a random vector, because it is a function of the random vector y. The covariance2239
matrix for x̂ is2240

The diagonal elements of this matrix are the variances of the components of x̂, and the off-2241
diagonal elements are the covariances. This expression for the covariance matrix is complete2242
only when there are no uncertainties in the coefficient matrix A. A more general formula for the2243
covariance matrix is presented in Section 19B.5.2244

In some cases, the variance of each yi may be unknown, although all components of y are2245
believed to have the same variance. When this is true, the solution x̂ may be computed by2246
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u 2(yi) '
2Ax̂ – y22

m – n
(19.75)

u2(x̂) ' u 2(yi) (A)A)–1 (19.76)

f1(x) ' E(y1)
f2(x) ' E(y2)

@@@
fm(x) ' E(ym)

(19.77)

SSRES ' j
m

i'1

fi(x̂) ! yi

u(yi)

2
' f(x̂) & y )W f(x̂) & y (19.78)

and the variance of the components yi may be estimated by2247

(The use of Equation 19.75 is a Type A evaluation of uncertainty with m ! n degrees of2248
freedom.) When this equation is used, the covariance matrix for x̂ is2249

19B.4  General Least Squares2250

The general least-squares problem arises when there is a set of measured values y1, y2, …, ym ,2251
whose expected values are functions of an n-dimensional vector x of unknown quantities, as2252
indicated by the following system of equations.2253

The system of equations can be written in matrix form as f(x) = E(y) The method of least squares2254
finds a vector x̂ that minimizes the sum of the squares of the residuals2255

When f(x̂) can be written as Ax̂ for some matrix A, the problem is linear least squares, whose2256
solution was presented in the preceding section. When the functions fi are nonlinear but differen-2257
tiable, the solution can be obtained by iterative approximation methods. The most commonly2258
used algorithm for nonlinear least squares is the Levenberg-Marquardt algorithm (Press et al.2259
1992). Whatever algorithm is used, it should compute the covariance matrix u2(x̂), described in2260
the next section. For more details on nonlinear least-squares problems, see Marquardt 1963,2261
Press et al. 1992, or Bevington 1992.2262
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u2(x̂) ' (A)WA)&1 %
Mx̂
Mz

u2(z) Mx̂
Mz

)

(19.79)

Mx̂
Mzj

' (A ))))WA)&1 MA ))))

Mzj

W y & f (x̂;z) & A ))))W Mf
Mzj

(19.80)

19B.5  The Covariance Matrix for a Least-Squares Solution2263

Let A = Mf / Mx denote the m × n matrix whose ijth component is Mfi / Mxj.18 Then the covariance2264
matrix for the least-squares solution  is approximately equal to (ANWA)!1.2265 x̂

It often happens that the function f depends on variables other than x, whose values, like the2266
components of y, are measured before the least-squares method is applied. In the strontium2267
analysis described at the beginning of this attachment, the measured counting efficiencies for2268
89Sr, 90Sr, and 90Y are good examples. Measurement uncertainties in these variables contribute to2269
the uncertainties in the solution x̂, although the least-squares covariance matrix (ANWA)!12270
accounts only for uncertainties in the measurement of y. Better estimates of the variances and2271
covariances of the components of x̂ require that the expression for the covariance matrix be2272
expanded.2273

Let the additional measured quantities be written as a vector z with components z1, z2, …, zr, and2274
write f(x;z) to indicate that f depends on both x and z. Assume the components of z are measured2275
independently of y, and the covariance matrix u2(z) is known. If the method of least squares is2276
applied to find the unique solution x̂ that minimizes SSRES, and if the uncertainties in the com-2277
ponents zi are small, the covariance matrix for the solution is2278

where Mx̂ / Mz denotes the n × r matrix whose ijth component is Mx̂i / Mzj. The jth column of Mx̂ / Mz2279
may be calculated using the formula2280

If the uncertainties in the components zi are not small, another method of solution may be needed2281
(e.g., see Fuller 1987).2282

When the least-squares problem is linear, the jth column of Mf / Mz is given by the formula2283
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Mf
Mzj

'
MA
Mzj

x̂ (19.81)

Mfi

Mzj

' j
n

k'1

Maik

Mzj

x̂k (19.82)

u 2(yi) ' ai1 x (

1 % ai2 x (

2 % RB, i ti 1 %
ti

tB, i
(19.83)

and the ijth component is given by2284

When the problem is nonlinear, the components Mfi / Mzj are calculated by other means.2285

19B.6  Critical Values2286

The general approach to the determination of critical values even in the case of nonlinear least2287
squares is conceptually no different from that outlined in Section 19.7.1. The standard uncer-2288
tainty of a signal or response variable is determined under the null hypothesis H0 and then multi-2289
plied by an appropriate factor, such as the normal quantile z1!α . The response variable for a2290
component xj may be taken to be the corresponding component  of the least-squares solution2291 x̂j
vector. Let  denote the value of the vector x under H0. It will be assumed here that  = 0, but2292 x( x (

j
note that the null hypothesis must give values not only to xj but to all the components of x,2293
because the value of one component generally affects the measurement uncertainties of the other2294
components of the solution vector. Generally, for this purpose one must use the measured values2295
of all the components of x except xj, although these values may not be known accurately.2296

To determine the critical value, first calculate the vector y* = f(x*), which is the expected value of2297
y under H0. If the least-squares problem is linear, then y* = Ax*. Next calculate the diagonal2298
weight matrix W, whose ith diagonal element is the inverse 1 / u2(yi) of the estimated variance of2299
yi under the null hypothesis. For example, if the problem is the strontium problem described in2300
Section 19B.1, in which yi denotes a net count, then u2(yi) might be the counting variance given2301
by2302

where RB, i is the blank count rate and tB, i is the corresponding count time. Finally, evaluate the2303
covariance matrix C for the solution of the least-squares problem , as described in2304 f(x̂) – y(
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Section 19B.5. (The solution vector  here equals x* because of the method by which y* was2305 x̂
constructed.) Then the critical value of the jth component  is z1 ! α , where z1!α is the 2306 x̂j cj j
(1 ! α)-quantile of the standard normal distribution.2307

19B.7  Detection and Quantification Limits2308

Computing the minimum detectable value of a component xj requires one to find the value d such2309
that d = z1 ! α  + z1 ! β , where V(xj) denotes the variance of the estimator  as a func-2310 V(0) V(d) x̂j
tion of the true value xj . The value of V(xj) is the jth diagonal element of the covariance matrix C2311
determined under the assumption that the true value of the jth component is xj . Solving for d pre-2312
cisely generally requires an iterative algorithm, which generates a sequence of values converging2313
to d. Given that V(xj) and its derivative can be calculated, the equation may be solved by Newton-2314
Raphson iteration. A simpler version of fixed-point iteration, which does not involve the deriv-2315
ative, may also be used. The use of fixed-point iteration for this purpose is described in Section2316
19.7.2317

The problem of determining the minimum quantifiable value of a concentration estimated by the2318
least-squares methods is similar to that of finding the minimum detectable value and generally2319
requires an iterative algorithm (e.g., see Section 19.7).2320
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νeff '
u 4

c (y)

j
N

i'1

u 4
i (y)
νi

(19.84)

νi '
1
2

u 2(xi)

σ2 u(xi)
'

1
2

∆u(xi)
u(xi)

&2

(19.85)

ATTACHMENT 19C2331

Estimation of Coverage Factors2332

19C.1  Introduction2333

Although it is common for laboratories to use a fixed coverage factor such as 2 or 3 when deter-2334
mining an expanded uncertainty for a measured value, the true coverage probability for the resul-2335
ting interval may be lower than expected if the standard uncertainties of the input estimates are2336
determined from evaluations with too few degrees of freedom. This attachment summarizes a2337
general method presented in Annex G of the GUM for determining appropriate coverage factors2338
in these circumstances (ISO 1995). Section 19C.3 applies the method to Poisson counting2339
uncertainties.2340

19C.2  Procedure2341

Assume the mathematical model for a measurement is Y = f(X1,X2,…,XN), the input estimates2342
x1, x2, …, xN are independent, and the output estimate is y = f(x1,x2,…,xN). Also assume that the2343
combined standard uncertainty of y is not dominated by one component determined from a Type2344
A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-2345
bution very different from a normal distribution. Then the distribution of the output estimate y2346
should be approximately normal, and the following procedure may be used to obtain a coverage2347
factor kp for the expanded uncertainty of y that gives a desired coverage probability p.2348

First compute the effective degrees of freedom νeff of the measurement using the Welch-2349
Satterthwaite formula2350

Here ui(y) = |My / Mxi| u(xi) is the component of the combined standard uncertainty generated by2351
u(xi). If u(xi) is evaluated by a Type A method, then νi is the number of degrees of freedom for2352
that evaluation. If u(xi) is evaluated instead by a Type B method, then νi is defined to be2353
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   19 The GUM uses the notation tp(ν) to denote the (1 + p) / 2-quantile of a t-distribution with ν degrees of freedom
(ISO 1995), but the same notation in most statistical literature denotes the p-quantile (e.g., ISO 1993). MARLAP
follows the latter convention.

   20 Taking the square root of a Poisson random variable is a common variance-stabilizing transformation, as
described in Chapter 20 of Experimental Statistics (NBS 1963). The stated (slightly conservative) upper bound for
the standard deviation of  is based on calculations performed at the EPA’s National Air and Radiation Environ-n
mental Laboratory, although the same approximate value may be determined by inspecting Figure 20-2 of NBS
1963. The precise calculation maximizes a function f(λ) whose value is the variance of the square root of a Poisson
random variable with mean λ. The first derivative of f is positive, decreasing, and convex between λ = 0 and the
location of the maximum of the function at λ = 1.31895; so, Newton’s Method converges to the solution from
below. The maximum value of f is found to be (0.642256)2.
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kp ' n % 1 & νeff t(1%p) /2(n) % νeff & n t(1%p) /2(n % 1) (19.86)

where ∆u(xi) is the estimated standard deviation of the standard uncertainty u(xi). Estimation of2354
∆u(xi) often requires professional judgment.2355

In some cases, one may consider the value of ∆u(xi) for a Type B standard uncertainty to be zero2356
or negligible, as for example when evaluating the uncertainty associated with rounding a number2357
(Section 19.6.10). In such cases, one may assume νi = 4; so, the ith term of the sum appearing in2358
the denominator of the Welch-Satterthwaite formula vanishes.2359

The coverage factor kp is defined to be the (1 + p) / 2-quantile t(1 + p) / 2(νeff) of a t-distribution with2360
νeff degrees of freedom.19 Since the calculated value of νeff will generally not be an integer, it must2361
be truncated to an integer, or else an interpolated t-factor should be used. That is, if2362
n < νeff < n + 1, then use either kp = t(1 + p) / 2(νeff) or2363

The expanded uncertainty Up = kpuc(y) is estimated to have a coverage probability approximately2364
equal to p.2365

19C.3  Poisson Counting Uncertainty2366

As stated in Section 19.5.2.2, the standard uncertainty in the number of counts n observed during2367
a radiation measurement may often be estimated by u(n) = , according to the Poisson counting2368 n
model. This method of evaluating the standard uncertainty is a Type B method; so, the effective2369
degrees of freedom ν for the evaluation should be determined from ∆u(n). The standard deviation2370
of  is always less than 0.65.20 If n is greater than about 10, the standard deviation of  is2371 n n
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u(n) ' n and ν ' 2n (19.87)

u(n) ' n % 1 and ν ' 2(n % 1) (19.88)

approximately equal to 0.5, and, in this case, Equation 19.85 gives the estimate ν . 2n. For2372
smaller values of n, the same approximation is inadequate.2373

MARLAP recommends that the standard uncertainty u(n) and degrees of freedom ν for a Poisson2374
measured value n be estimated by2375

or, if very low counts are possible, by2376

If the expected count is greater than about 10, these formulas tend to give a coverage probability2377
near the desired probability p. When the expected count is small, the coverage probability tends2378
to be greater than p.2379

Although the estimate u(n) =  may be derived by the Bayesian approach to counting statis-2380 n % 1
tics assuming a flat prior distribution for the mean count (Friedlander et al. 1981), the recom-2381
mended expressions for u(n) and ν in Equation 19.88 have been chosen for the purely practical2382
reason that they are simple and seem to give satisfactory results. When the count is low, the2383
assumptions underlying the Welch-Satterthwaite formula are usually violated, because the com-2384
bined standard uncertainty is dominated by counting uncertainty, and the distribution of the count2385
is not normal. However, even in this case, if the formula is used, the recommended expressions2386
for u(n) and ν tend to give conservative results.2387

19C.4  References2388

Friedlander, Gerhart, et al. 1981. Nuclear and Radiochemistry 3rd ed. John Wiley and Sons, New2389
York, NY.2390

International Organization for Standardization (ISO). 1993. Statistics – Vocabulary and Sym-2391
bols – Part 1: Probability and General Statistical Terms. ISO 3534-1. ISO, Geneva,2392
Switzerland.2393

International Organization for Standardization (ISO). 1995. Guide to the Expression of Uncer-2394
tainty in Measurement. ISO, Geneva, Switzerland.2395



Measurement Statistics

MARLAP JULY 2001
DO NOT CITE OR QUOTE DRAFT FOR PUBLIC COMMENT19-108

National Bureau of Standards (NBS). 1963. Experimental Statistics. NBS Handbook 91, National2396
Bureau of Standards, Gaithersburg, MD.2397



JULY 2001 MARLAP
DRAFT FOR PUBLIC COMMENT DO NOT CITE OR QUOTE19-109

Pr[ Ŝ > SC | X ' 0] ' α (19.89)

SC ' z1–ασ0 (19.90)

SC ' t1&α(ν) σ̂0 (19.91)

ATTACHMENT 19D2398

Low-Background Detection Limits2399

19D.1  Overview2400

This attachment describes methods for determining critical values and minimum detectable con-2401
centrations (MDCs) when the standard deviation of the blank signal is not known precisely,2402
which occurs for example when the blank is measured by low-background Poisson counting or2403
when the standard deviation is estimated from a small number of replicate measurements.2404

19D.2  Calculation of the Critical Value2405

The critical value of the net signal SC was defined earlier by the relation2406

When the signal assumes only discrete values (e.g., numbers of counts), there may be no value SC2407
that satisfies Equation 19.89 exactly. The critical value in this case is defined as the smallest2408
value SC such that Pr[  > SC | X = 0] # α.2409 Ŝ

19D.2.1  Normally Distributed Signals2410

If the distribution of the net signal  under H0 is approximately normal with a well-known stan-2411 Ŝ
dard deviation, σ0, the critical value of  is2412 Ŝ

where z1!α denotes the (1 ! α)-quantile of the standard normal distribution. Typically the stan-2413
dard deviation σ0 is not well-known and must therefore be replaced by an estimate, σ̂0. If σ̂0 is2414
determined by a statistical evaluation with ν degrees of freedom, the multiplier z1!α should be2415
replaced by t1!α(ν), the (1 ! α)-quantile of the t-distribution with ν degrees of freedom (cf. Type2416
A evaluation of standard uncertainty in Section 19.5.2.1). Thus,2417
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σ̂0 ' sB 1 %
1
n

(19.92)

SC ' t1&α(n & 1) sB 1 %
1
n

(19.93)

Ŷ ' NS B̂ '
NB

tB

% R̂I tS (19.94)

Ŝ ' NS &
NB

tB

% R̂I tS (19.95)

Table G.2 in Appendix G lists values of t1!α(ν). In general, t1!α(ν) is greater than z1!α , but the two2418
values are approximately equal if ν is large.2419

When  is estimated by the average of n replicate blank measurements (assuming no interfer-2420 B̂
ences), the standard deviation σ̂0 of the net signal  under the null hypothesis may be estimated2421 Ŝ
from the experimental standard deviation of the measured blank values, sB. Specifically,2422

The number of degrees of freedom, ν, in this case equals n ! 1; so, the critical value of  is2423 Ŝ

19D.2.2  Poisson Counting2424

It is assumed here, as in Section 19.7, that the instrument is a radiation counter and the instru-2425
ment signal is the gross count. Therefore,2426

and the net instrument signal is the net count, defined as2427

where2428
NS is the gross count (source count)2429
NB is the blank count2430

I is the estimated count rate due to interferences2431 R̂
tS is the count time for the test source2432
tB is the count time for the blank2433
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   21 The breaks in the table occur at RB tS = 0.5 (2yC) and 0.5 (2yC + 2).χ2
0.05 χ2

0.05
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e &RB tS j
n

k'0

(RB tS)
k

k!
$ 1 & α (19.96)

yC ' 0.5 % RB tS % z1&α RB tS (19.97)

If the mean blank count rate, RB, is well-known and there are no interferences, then according to2434
the Poisson model, the critical gross count, yC, equals the smallest nonnegative integer n such that2435

Then SC , the critical net count, equals yC ! NBtS / tB . Table 19.4 shows critical gross counts for2436
α = 0.05 for small values of RBtS (adapted from NRC 1984).21 To use the table, one calculates the2437
value of RBtS , finds the appropriate line in the table, and compares the observed gross count NS to2438
the value of yC read from the table. The analyte is considered detected if and only if NS > yC .2439
When RBtS is greater than about 20, yC may be approximated by2440

where z1!α denotes the (1 ! α)-quantile of the standard normal distribution, and lxm denotes the2441
largest integer not greater than x.2442

      RBtS yC       RBtS yC       RBtS yC

0.000–0.051 0 5.425–6.169 10 13.255–14.072 20

0.051–0.355 1 6.169–6.924 11 14.072–14.894 21

0.355–0.818 2 6.924–7.690 12 14.894–15.719 22

0.818–1.366 3 7.690–8.464 13 15.719–16.549 23

1.366–1.970 4 8.464–9.246 14 16.549–17.382 24

1.970–2.613 5 9.246–10.036 15 17.382–18.219 25

2.613–3.285 6 10.036–10.832 16 18.219–19.058 26

3.285–3.981 7 10.832–11.634 17 19.058–19.901 27

3.981–4.695 8 11.634–12.442 18 19.901–20.746 28

4.695–5.425 9 12.442–13.255 19 20.746–21.594 29

TABLE 19.4 — Critical gross count (well-known blank)
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   22 Probabilities on the curve are calculated using the equation

P(µ) ' 1 & e &2µ j
4

n'0

µn

n! j
n%2.33 µ

k'0

µk

k!

where µ denotes the (true) mean blank count. Terms of the infinite sum are accumulated until the cumulative
Poisson probability, , approaches 1. The calculated values agree with those listed in Table 1 ofe &µ'n

i'0 µi / i!
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SC ' z1&α tS

RB % RI

tS

%
RB

tB

% ξ2
B % σ2(R̂I) (19.98)

SC ' z1&α RB tS 1 %
tS

tB

(19.99)

When the blank count rate RB is low, which is often true for alpha counting, measuring its value2443
with good relative precision tends to be difficult, especially if the instrument background tends to2444
drift. However, a conservative bound, such as a 1 ! α upper confidence limit, may be used if one2445
wishes to limit type I error rates and is willing to tolerate the resulting higher detection limits.2446
More commonly used methods for calculating the critical value are described below.2447

THE POISSON-NORMAL APPROXIMATION2448

As stated in Section 19.7.1.2, when Poisson counting statistics are assumed (possibly with2449
additional variance components) and the instrument background remains stable between meas-2450
urements at a level where the Poisson distribution is approximately normal, the critical net count2451
is given approximately by the equation2452

where RB denotes the (true) mean count rate of the blank, RI denotes the mean interference count2453
rate, ξB

2 denotes non-Poisson variance in the blank (count rate) correction, and σ2( I) denotes the2454 R̂
variance of the estimator for RI . When there are no interferences and no non-Poisson blank2455
variance, this equation becomes2456

Low mean blank levels cause the Poisson distribution to deviate from the normal model. Figure2457
19.12 shows the effects of these deviations on the type I error rates for the Poisson-normal2458
approximation when tB = tS and α = 0.05. The graph has discontinuities because of the discrete2459
nature of the Poisson distribution, but the type I error rate is approximately correct (equal to 0.05)2460
when the mean blank count is 10 or more.222461



Measurement Statistics

Brodsky 1992. The discontinuities occur at µ = k2 / 2.332 for k = 1, 2, 3, ….
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SC ' z1&α R̂B tS 1 %
tS

tB

(19.100)

R̂B ' wS

NS

tS

% wB

NB

tB
(19.101)
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FIGURE 19.12 — Type I error rate for the Poisson-normal approximation (tB = tS)

In Equation 19.99, RB denotes the true mean blank count rate, which can only be estimated. In2462
practice, one must substitute an estimated value, , as shown in the following equation.2463 R̂B

The most frequently used expressions for SC may be derived from Equation 19.100 using an2464
estimator  that equals a weighted average of the measured blank count rate NB / tB and the2465 R̂B
measured source count rate NS / tS . A weighted average of both measured rates may be used here2466
to estimate the true blank level for the purpose of the hypothesis test, because, under the null2467
hypothesis of zero net source activity, both measured rates are unbiased estimates of the true2468
blank count rate. Given nonnegative weights wS and wB such that wS + wB = 1, the mean blank2469
count rate is estimated by2470
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   23 The common practice of using the same Poisson measurement data to calculate both the net signal  and itsŜ
critical value tends to produce a correlation between the two variables. This correlation does not exist when the
critical value is determined by a statistical evaluation of normally distributed data as described earlier in the
attachment.

   24 The critical value  may be written as a function  of the observed net signal  and the blank count NB .S̃C f(Ŝ) Ŝ
Then  exceeds  if and only if it exceeds the fixed point of f, which is the value SC where f(SC) = SC . The fixedŜ S̃C
point is a function of NB but not of NS .
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This estimate  is always unbiased under the null hypothesis of zero net activity and no inter-2471 R̂B
ferences, but the choice of weights affects the variance of the estimator. (When interferences are2472
present, this weighted average is inappropriate.)232473

This attachment will use the notation , which is nonstandard, to denote any version of the2474 S̃C
critical value that depends on the gross signal NS (or ).2475 Ŷ

It is often convenient to eliminate NS from the expression for  (e.g., when calculating the2476 S̃C
MDC). When the same measured value of NB is used to calculate both the critical value  and2477 S̃C
the net signal , elimination of NS from Equation 19.100 produces the following formula for an2478 Ŝ
alternative critical value SC.242479

It is not generally true that SC =  unless wS = 0, but either critical value may be used to imple-2480 S̃C
ment the same test for analyte detection, because  > SC if and only if  > .2481 Ŝ Ŝ S̃C

If there is additional non-Poisson variance associated with the blank correction, an extra term2482
may be included under the radical (e.g., ξB

2 tS
2, where ξB

2 is as in Equation 19.98), although at very2483
low background levels the Poisson variance tends to dominate this excess component.2484

FORMULA A2485

The most commonly used approach for calculating SC is given by Formula A (shown below).2486
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   25 Probabilities on the two curves are calculated using the equation

P(µ) ' 1 & e &µ(1% tS / tB) j
4

n'0

µn

n! j
yC(n)

k'0

(µ tS / tB)k

k!

where yC(n) =  and µ denotes the mean blank count. The same equation withn (tS / tB) % 1.645 n (tS / tB) (1 % tS / tB)
different expressions for yC(n) is used to calculate the type I error rates shown in Figures 19.14–17.
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SC ' z1&α NB

tS

tB

1 %
tS

tB

Formula A

(19.103)

tB = 5tS

tB = tS
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FIGURE 19.13 — Type I error rates for Formula A

If α = 0.05 and tB = tS , Formula A leads to the well-known expression  for the critical net2487 2.33 NB
count (e.g., see Currie 1968).2488

Formula A may be derived from the standard approximation by using the blank measurement2489
alone to estimate the true blank count rate — i.e., by using the weights wS = 0 and wB = 1.2490

As noted in Section 19.7.1.2, when the blank count is high (e.g., 100 or more), Formula A works2491
well, but at lower blank levels, it can produce a high rate of type I errors. Figure 19.13 shows2492
type I error rates for Formula A as a function of the mean blank count for count time ratios2493
tB / tS = 1 and 5 when α = 0.05.252494
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S̃C ' z1&α NS % NB

t 2
S

t 2
B

(19.104)

SC '
z 2

1&α

2
% z1&α

z 2
1&α

4
% NB

tS

tB

1 %
tS

tB

Formula B

(19.105)

tB = tS

tB = 5tS
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FIGURE 19.14 — Type I error rates for Formula B

FORMULA B2495

Another published formula for the critical value is (equivalent to) the following (Nicholson2496
1966).2497

The critical value calculated by Equation 19.104 equals z1 –α times the combined standard uncer-2498
tainty of the net count. This fact is the basis for the original derivation of the formula, but the2499
formula may also be derived from Equation 19.100 using the weights wS = tB / (tS + tB) and wB =2500
tS / (tS + tB) to estimate B . When NS is eliminated from Equation 19.104, one obtains Formula B2501 R̂
(below), which is equivalent to the equation for the critical value given in Atoms, Radiation, and2502
Radiation Protection (Turner 1995).2503

Type I error rates for Formula B are shown in Figure 19.14.2504
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S̃C ' z1&α (NS % NB)
tS

tB

(19.106)

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

Formula C

(19.107)

Formula B appears natural and intuitive when it is derived in terms of the combined standard2505
uncertainty of the net count, and it gives excellent results when tB = tS and the pure Poisson2506
model is valid. However, when the formula is derived using the weights wS and wB, as described2507
above, the expression seems much less natural, because the weights clearly are not optimal when2508
tB … tS . Notice that when tB > tS , the type I error rate tends to be less than α.2509

FORMULA C2510

If the pure Poisson model is valid, then under the null hypothesis, the weights wS = tS / (tS + tB)2511
and wB = tB / (tS + tB) provide the minimum-variance unbiased estimator B for the mean blank2512 R̂
count rate and lead to the following formula for the critical net count (Nicholson 1963, 1966).262513

Elimination of NS from Equation 19.106 produces Formula C, shown below.2514

Formula C is equivalent to the equation for the “decision threshold” given in Table 1 of ISO2515
11929-1 (ISO 2000a) for the case of fixed-time counting. Figure 19.15 shows type I error rates2516
for Formula C.2517
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tB = tS
tB = 5tS
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FIGURE 19.15 — Type I error rates for Formula C

Z ' 2
NS % d

tS

&
NB % d

tB

1
tS

%
1
tB

(19.108)

If the blank correction involves additional non-Poisson variance, an extra term may be included2518
under the radical in Formula C; however, the weights wS and wB used to derive the formula are2519
not necessarily optimal in this case. (See ISO 2000b for another approach.)2520

Note that Formulas B and C are equivalent when tB = tS , because both assign equal weights to the2521
blank measurement and the source measurement. In this case, both formulas are also equivalent2522
to the formula given by Altshuler and Pasternack (1963).2523

THE STAPLETON APPROXIMATION2524

When the mean counts are low and tB … tS , another approximation formula for SC appears to out-2525
perform all of the approximations described above. For small values of the constant d, the2526
statistic2527

2528

which involves variance-stabilizing transformations of the Poisson counts NS and NB , has a distri-2529
bution that is approximately standard normal under the null hypothesis (Stapleton 1999). So, the2530
critical value of Z is z1!α, the (1 ! α)-quantile of the standard normal distribution. From these2531
facts one may derive the following expression for the critical net count as a function of NB .2532
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SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

The Stapleton Approximation

(19.109)

SC ' 1.35 % 2.33 NB % 0.4 (19.110)

tB = tS tB = 5tS
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FIGURE 19.16 — Type I error rates for the Stapleton approximation

When α = 0.05, the value d = 0.4 appears to be a near-optimal choice. Then for tB = tS , the2533
Stapleton approximation gives the equation2534

Figure 19.16 shows the type I error rates for the Stapleton approximation when α = 0.05 and2535
d = 0.4. This approximation gives type I error rates almost identical to those of Formulas B and C2536
when tB = tS , but it has an advantage when tB … tS .2537

When α … 0.05, the value d = z1!α / 4.112 appears to give good results (4.112 = z0.95 / 0.4).2538

When the blank correction involves a small non-Poisson variance component, a term (ξB
2 tS

2) may2539
be included under the radical in Equation 19.109 to account for it.2540
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I tS

tS% tB

(NS,NB%1)

where Ix(a,b) denotes the incomplete beta function (NBS 1964, Press et al. 1992). 

   28 To implement the randomized test, calculate the critical value , and, if NS > , reject H0, as in the non-ỹC ỹC
randomized test. If NS = , calculate a rejection probability P by subtracting 1 ! α from the sum on the left-handỹC
side of the inequality (with n = NS) and dividing the difference by the summation’s last term

NS % NB
NS

tS

tS % tB

NS tB

tS % tB

NB

Then reject H0 with probability P.
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j
NS%NB

k'NS

NS % NB

k

tS

tS% tB

k tB

tS% tB

NS%NB&k
# α (19.111)

j
n

k'0

NS % NB

k

tS

tS % tB

k tB

tS % tB

NS%NB&k
$ 1&α (19.112)

j
n

k'0

NB % k
NB

tS

tS % tB

k
$ (1 & α)

tS % tB

tB

NB%1

(19.113)

THE EXACT TEST2541

Poisson counting statistics also permit an “exact” test for analyte detection, whose type I error2542
rate is guaranteed to be no greater than the chosen value of α, although it may be less. A random-2543
ized version of the test can provide a type I error rate exactly equal to α (Nicholson 1963), but2544
only the nonrandomized version will be considered here, since its outcome is always based solely2545
on the data and not on a random number generator. The test is implemented by rejecting H0 if and2546
only if the following inequality is true.272547

Nicholson presents the test as a comparison of the gross count NS to a critical value. The critical2548
value  is the smallest nonnegative integer n such that282549 ỹC

The same (nonrandomized) test is implemented by calculating a critical gross count yC equal to2550
the smallest nonnegative integer n such that2551
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tB = tS tB = 5tS
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FIGURE 19.17 — Type I error rates for the nonrandomized exact test

Then the critical net count SC equals yC ! NB (tS / tB). (Note that Inequality 19.113 is intended for2552
use when NB is small.) Table G.4 in Appendix G lists critical values yC for α = 0.01 and 0.05 and2553
for integral values of the count time ratio tB / tS ranging from 1 to 5.2554

Figure 19.17 shows the type I error rates for the nonrandomized exact test. (The type I error rate2555
for the randomized version of the test equals 0.05 everywhere.)2556

EXAMPLE2557

Problem: A 6000-s blank measurement is performed on a proportional counter and 108 beta2558
counts are observed. A test source is to be counted for 3000 s. Estimate the critical value of the2559
net count when α = 0.05.2560

Solution: Formula A gives the result2561

2562

SC ' z1&α NB

tS

tB

1 %
tS

tB

' 1.645 108 3000
6000

1 %
3000
6000

' 14.8 counts.

Formula B is not recommended.2563
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Formula C gives the result2564

2565

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

'
1.6452(3000)

2(6000)
% 1.645 1.6452(3000)2

4(6000)2
% 108 3000

6000
1 %

3000
6000

' 15.5 counts.

The Stapleton approximation (with d = 0.4) gives the result 2566

2567

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

' 0.4 3000
6000

& 1 %
1.6452

4
1 %

3000
6000

% 1.645 (108 % 0.4) 3000
6000

1 %
3000
6000

' 15.6 counts.

The exact test gives the result yC = 70 counts (the entry in Table G.4 for α = 0.05, tB / tS = 2,2568
and NB = 108), which implies that2569

 counts.2570 SC ' 70 & (108)(3000 / 6000) ' 16

COMPARISONS2571

Although Formula A gives the highest type I error rates of all the formulas described above in the2572
pure Poisson counting scenario, it is the formula that can be adapted most easily for dealing with2573
interferences. It can also be modified to reduce the very high type I error rates at low blank levels2574
(by adding 1 or 2 to the number of blank counts NB under the radical). Formula B cannot be2575
recommended. When the pure Poisson model is valid, Formula C gives better results than either2576
A or B, but the Stapleton approximation appears to give the most predictable type I error rates of2577
all. Nicholson’s exact test is the most complicated of the tests and requires either software or2578
lookup tables to be practical, but it is the only one of the tests whose type I error rate is guaran-2579
teed not to exceed the chosen significance level. Achieving the chosen significance level exactly2580
appears to require the randomized version of Nicholson’s test.2581
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Pr[Ŝ # SC | X ' xD] ' β (19.114)

Pr[ Ŝ # SC | S ' SD ] ' β (19.115)

SC ' t1&α(ν) σ̂0 (19.116)

SD ' δα,β,νσ0 (19.117)

19D.3  Calculation of the Minimum Detectable Concentration2582

The minimum detectable concentration, or MDC, was defined earlier as the concentration of2583
analyte, xD, that must be present in a laboratory sample to give a probability 1 ! β of obtaining a2584
measured response greater than its critical value. Equivalently, the MDC is defined as the analyte2585
concentration xD that satisfies the relation2586

where the expression Pr[  # SC | X = xD] may be read as “the probability that the net signal 2587 Ŝ Ŝ
does not exceed its critical value SC when the true concentration X is equal to xD .”2588

19D.3.1  The Minimum Detectable Net Instrument Signal2589

The MDC may be estimated by calculating the minimum detectable value of the net instrument2590
signal, SD, and converting the result to a concentration. The minimum detectable value of the net2591
instrument signal is defined as the mean value of the net signal that gives a specified probability2592
1 ! β of yielding an observed signal greater than its critical value SC . Thus,2593

where S denotes the true mean net signal.2594

19D.3.2  Normally Distributed Signals2595

If the net signal  is normally distributed and its estimated standard deviation 0 under H0 is2596 Ŝ σ̂
determined from a statistical evaluation with ν degrees of freedom (e.g., n = ν + 1 replicate blank2597
measurements), then the critical value of  is2598 Ŝ

Then, if the variance of  is constant at all concentrations, the minimum detectable value of the2599 Ŝ
signal is given by2600
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t )β(ν,δα,β,ν) ' t1&α(ν) (19.118)

δα,β,ν . t ) 1 &
1
4ν

% z1&β 1 %
t ) 2

2ν
, t ) ' t1&α(ν) (19.119)

c4 '
Γ ν%1

2

Γ ν
2

2
ν (19.120)

SD ' δα,β,ν

σ̂0

c4
(19.121)

where δα,β,ν denotes the non-centrality parameter of the non-central t-distribution with ν degrees2601
of freedom. The parameter δα,β,ν is such that2602

where  denotes the β-quantile of the non-central t-distribution. The non-centrality2603 t )β(ν,δα,β,ν)
parameter δα,β,ν may be approximated by2604

which is based on an approximation for the non-central t distribution function (NBS 1964).2605
When α = β = 0.05 and ν $ 4, the non-centrality parameter is also approximated adequately by2606
t0.95(ν) × 8ν / (4ν + 1) (Currie 1997).2607

Conceptually the standard deviation  used to calculate the critical value SC is only an estimate2608 σ̂0
and therefore can be considered a random variable. If it were the true standard deviation, the cor-2609
rect multiplier used to calculate SC would be z1!α, not t1!α(ν). However, the standard deviation2610
used to calculate SD is, conceptually at least, the true standard deviation σ0, even if its value is not2611
known exactly. The true standard deviation may be estimated by σ̂0, but since the estimator σ̂0 is2612
biased, a correction factor should be used for ν less than about 20. An unbiased estimator for σ0 is2613
σ̂0 / c4, where2614

and where Γ denotes the gamma function (NBS 1964). The gamma function is easily computed2615
in software (Press et al. 1992), but c4 is also approximated well by 4ν / (4ν + 1), and values of c42616
are commonly tabulated in references for statistical quality control (whence the notation c4 is2617
borrowed). Then SD is estimated by2618
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SD, lower ' δα,β,ν

σ̂0

χ2
1&γ /2(ν) / ν

and SD,upper ' δα,β,ν

σ̂0

χ2
γ /2(ν) / ν

(19.122)

t )β ν,
SD

σD

' t1&α(ν)
σ0

σD
(19.123)

which is approximately 2 t0.95 (ν) σ̂0, or 2SC , when α = β = 0.05 and ν $ 4. Values of c4 for ν = 1 to2619
40 are listed in Table 19.5.2620
Lower and upper confidence limits for SD may be calculated using the equations2621

where  denotes the p-quantile of the chi-square distribution with ν degrees of freedom and γ2622 χ2
p(ν)

denotes the desired confidence coefficient (see Table G.3 in Appendix G).2623

If the variance of  is not constant but increases with the mean signal S, the minimum detectable2624 Ŝ
net signal is determined implicitly by the equation2625

where σD denotes the standard deviation of  when S = SD . An iterative algorithm, such as the2626 Ŝ
one shown below, may be needed to solve the equation for SD .2627

1. Set 2628 σ0 ' σ2(Ŝ | S ' 0)

ν c4 ν c4 ν c4 ν c4

1 0.79788 11 0.97756 21  0.98817 31  0.99197
2 0.88623 12 0.97941 22  0.98870 32  0.99222
3 0.92132 13 0.98097 23  0.98919 33  0.99245
4 0.93999 14 0.98232 24  0.98964 34  0.99268
5 0.95153 15 0.98348 25  0.99005 35  0.99288
6 0.95937 16 0.98451 26  0.99043 36  0.99308
7 0.96503 17 0.98541 27  0.99079 37  0.99327
8 0.96931 18 0.98621 28  0.99111 38  0.99344
9 0.97266 19 0.98693 29  0.99142 39  0.99361

10 0.97535 20 0.98758 30  0.99170 40  0.99377

TABLE 19.5 — Bias factor for the experimental standard deviation
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δ . t ) 1 &
1
4ν

% z1&β 1 %
t ) 2

2ν
, t ) ' t1&α(ν)

σ0

σD
(19.124)

SD ' SC % z1&β σ2(Ŝ | S ' SD) (19.125)

σ2(Ŝ) ' aS 2 % bS % c (19.126)

2. Set 2629 SD ' t1&α(ν)σ0

3. repeat2630

4.     Set 2631 σD ' σ2(Ŝ | S ' SD)

5.     Find the value of δ such that 2632 t )β(ν,δ) ' t1&α(ν) σ0 / σD

6.     Set 2633 h ' SD

7.     Set 2634 SD ' δσD

8. until  is sufficiently small2635 SD & h

9. output the solution 2636 SD

The value of the non-centrality parameter δ in Step 5 may be approximated by2637

When σ̂0 is determined by any means other than a statistical evaluation, SD must be calculated2638
differently.2639

19D.3.3  Poisson Counting2640

Another equation for SD, which was described in Section 19.7.2.2, is2641

where SC = z1 ! ασ0 and σ2(  | S = SD) denotes the variance of the measured signal  when the true2642 Ŝ Ŝ
mean signal S equals SD . This equation is the basis for formulas that are commonly used for SD2643
when the Poisson-normal approximation is assumed. Regardless of whether the signal follows2644
the pure Poisson model or has non-Poisson variance, the function σ2(  | S = SD) can often be2645 Ŝ
expressed in the form2646
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SD '
1
Iβ

SC %
z 2

1&βb
2

% z1&β bSC %
z 2

1&βb 2

4
% aS 2

C % Iβc (19.127)

[SC] ' 0.4
tS

tB

& 1 %
1.6452

4
1 %

tS

tB

% 1.645 (9 % 0.4)
tS

tB

1 %
tS

tB

(19.128)

where S denotes the true mean net signal and the constants a, b, and c do not depend on S. In this2647
case, the minimum detectable net signal is given approximately by2648

where . 2649 Iβ ' 1 & z 2
1&βa

Equation 19.125 is often used even when SC is calculated using one of the formulas presented2650
above for low-background Poisson counting, with RB tB substituted for the blank count NB, but in2651
this case SD may be underestimated because of the fact that the calculated value of SC varies from2652
measurement to measurement. One option for obtaining a more conservative estimate of SD is to2653
substitute a conservative value of SC, which will be denoted here by [SC]. For Poisson counting,2654
one method of obtaining [SC] is to use the value of SC calculated from the largest blank count NB2655
likely to be observed, given the assumed mean blank count rate RB  (e.g., use Table 19.4 with RB tB2656
replacing RB tS and NB replacing yC in the column headings). To calculate SD, one may substitute2657
[SC] for SC in Equation 19.127.2658

Note that [SC] is not used to make detection decisions. It is used only to calculate SD .2659

For example, suppose α = β = 0.05, the assumed mean blank count rate is RB = 8 × 10!4 cps, and2660
the blank count time is tB = 6000 s. Then RB tB = 4.8 counts. Using Table 19.4, one finds 4.8 in2661
the first column between 4.695 and 5.425, and reads the value 9 from the second column. So, 9 is2662
the largest value of NB likely to be observed when measuring a blank. Now, if Stapleton’s2663
approximation is used to calculate  when making a detection decision, the value of [SC] used2664 S̃C
to calculate SD is given by the following equation.2665

2666

So, if tS = tB, then [SC] = 8.48 counts. If RB tB (4.8 counts) were used as the blank count instead,2667
[SC] would be only 6.66 counts.2668



Measurement Statistics

MARLAP JULY 2001
DO NOT CITE OR QUOTE DRAFT FOR PUBLIC COMMENT19-128

SD ' z 2
1&β % 2SC (19.129)

SD ' SC %
z 2

1&β

2
% z1&β

z 2
1&β

4
% SC % RB tS 1 %

tS

tB

(19.130)

SD '
(z1&α % z1&β)

2

4
1 %

tS

tB

% (z1&α % z1&β) RB tS 1 %
tS

tB

(19.131)

PURE POISSON COUNTING2669

When the pure Poisson model is assumed and Formula A is used for the critical value, if the2670
critical value, SC, is determined from a sufficiently large total number of counts and if α = β, the2671
minimum detectable net signal SD is given by the following simple equation.2672

More generally, if Formula A or C is used to calculate the critical net count SC , then SD may be2673
determined from Equation 19.127 using the following values for a, b, and c.2674

2675 a ' 0 b ' 1 c ' RB tS 1 %
tS

tB

The resulting formula for SD is2676

As previously noted, counting data never follow the Poisson model exactly. Variable factors such2677
as source geometry and placement, counting efficiency, and subsampling variance tend to2678
increase a, while interferences and background instability tend to increase c.2679

THE STAPLETON APPROXIMATION2680

When the Stapleton approximation is used for SC , the minimum detectable net count SD may be2681
calculated using Equation 19.130, but when the Poisson model is valid, a better estimate is given2682
by the formula2683
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SD ' 5.41 % 4.65 RB tS (19.132)

SD '
b )2 & 2a )c ) % b ) b )2 & 4a )c )

2a )2
& RB tS (19.133)

Equation 19.131 also gives a better approximation of SD even when Formula C is used for the2684
critical value as long as the ratio of count times tB / tS is not too far from 1 (see Table 19.6). It is2685
recommended by ISO 11929-1 (ISO 2000a) in a slightly different but equivalent form.2686

When α = β = 0.05 and tB = tS , the preceding equation becomes2687

The Stapleton approximations for SC and SD give very predictable type I and type II errors when2688
the only measurement variance is Poisson.2689

When the Poisson model is incomplete because of excess relative variance (a > 0), one can use2690
Equation 19.127 with appropriate values for a, b, and c. However, a somewhat better estimate of2691
SD can be obtained. The calculation is more involved.2692

where2693

2694 a ) ' 1 &
z 2

1&βa
4

2695 b ) ' 2 RB tS % z1&α 1 %
tS

tB

2696 c ) ' RB tS %
z 2

1&α & z 2
1&β

4
1 %

tS

tB

% z1&α RB tS 1 %
tS

tB

PRECISE CALCULATION OF SD2697

When the Poisson model is valid, the mean blank count rate RB and the analyte detection criteria2698
completely determine SD . So, in principle, a computer program can be written to calculate SD2699
precisely. The calculation is most easily described when the critical net count is expressed in2700
terms of NB but not NS (e.g., SC as defined by Formulas A–C, the Stapleton approximation, and2701
the exact test). Then, at any specified value S of the mean net signal, the power of the detection2702
test can be computed using the expression:2703
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Power ' 1 & exp(&RB (tS% tB)&S) j
4

n'0

(RB tB)n

n! j
yC(n)

k'0

(RB tS%S)k

k!
(19.134)

Power ' 1 & e &RB tB j
4

n'0

(RB tB)n

n! j
yC(n)

k'0
f(k;x) (19.135)

f(k;x) '
P k % 1, RB tS % (µA % δ)x & P k % 1, RB tS % (µA & δ)x

2δx
(19.136)

where yC(n) denotes the value of yC (or SC + NB tS / tB) when NB = n. Terms of the infinite sum2704
must be accumulated only until the cumulative Poisson probability, (RBtB)m /m!,2705 e &RB tB 'n

m'0
approaches 1. Given a software procedure to compute Equation 19.134, the value of SD may be2706
determined using an iterative algorithm, such as Newton’s method or bisection, which calculates2707
the power at various trial values of S until the correct value is found where the power equals2708
1 ! β (e.g. see Burden and Faires 1993).2709

A procedure of the type described above generated the true values of SD for Table 19.6, which2710
shows both the estimated and true values of SD obtained when Formulas A and C and the2711
Stapleton approximation are used for the critical value. The estimated values of SD in this table2712
are based on values of SC calculated using the true mean net count, not the upper bound [NB]. The2713
use of [NB] would produce larger estimates.2714

PRECISE CALCULATION OF xD2715

Suppose the analyte concentration X is calculated by dividing the net signal S by the sensitivity A,2716
where A varies considerably or there is considerable subsampling variance, but the signal is2717
otherwise adequately described by the Poisson model. If one can assume that A has a particular2718
distribution, such as a rectangular or triangular distribution, then it is possible to calculate xD pre-2719
cisely in software, although the mathematics is less straightforward than that needed to calculate2720
SD in the preceding section. At any specified concentration x, the detection power equals2721

where f(k;x) is the probability that the gross count will equal k when the concentration is x. For2722
example, if A has a rectangular distribution with mean µA and half-width δ, then2723

where P(@, @) denotes the incomplete gamma function. Other combinations of the incomplete2724
gamma function appear when different polygonal distributions are assumed (e.g., triangular).2725
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A precise power calculation of this type was performed to evaluate the results derived in the2726
example in Attachment 19E assuming an approximately normal distribution for the subsampling2727
error. The assumption of a normal distribution is nonsensical unless the relative standard devia-2728
tion of A is small (because A is positive), and in the latter case, the assumption of a triangular2729
distribution, or even a rectangular distribution, gives approximately the same result.2730

Mean Blank
Count

Formula A Formula C Stapleton
Estimated True Estimated True Estimated True

0 2.706 2.996 7.083 6.296 5.411 6.296
1 7.358 8.351 9.660 10.095 10.063 10.095
2 9.285 10.344 11.355 12.010 11.991 12.010
3  10.764  11.793  12.719  13.551  13.469  13.551
4  12.010  13.021  13.894  14.826  14.716  14.826
5  13.109  14.091  14.942  15.930  15.814  15.930
6  14.101  15.076  15.897  16.902  16.807  16.902
7  15.015  16.028  16.780  17.785  17.720  17.785
8  15.864  16.945  17.605  18.614  18.570  18.614
9  16.663  17.804  18.383  19.406  19.368  19.406

10  17.418  18.595  19.120  20.170  20.123  20.170
11  18.136  19.324  19.823  20.903  20.841  20.903
12  18.822  20.002  20.496  21.602  21.527  21.602
13  19.480  20.642  21.142  22.267  22.185  22.267
14  20.113  21.257  21.764  22.900  22.819  22.900
15  20.724  21.854  22.366  23.506  23.430  23.506
16  21.315  22.438  22.948  24.091  24.020  24.091
17  21.888  23.010  23.513  24.657  24.593  24.657
18  22.444  23.569  24.062  25.206  25.149  25.206
19  22.985  24.116  24.596  25.738  25.690  25.738
20  23.511  24.649  25.116  26.252  26.217  26.252

TABLE 19.6 — Estimated and true values of SD  (tB = tS)
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ATTACHMENT 19E2775

Example Calculations2776

19E.1  Overview2777

The following example shows how to calculate the combined standard uncertainty, critical net2778
signal, minimum detectable concentration (MDC), and minimum quantifiable concentration2779
(MQC) for a typical radioanalytical measurement.2780

19E.2  Sample Collection and Analysis2781

A soil sample is analyzed for 239/240Pu and 238Pu by alpha spectrometry.2782

• The sample is collected on July 10, 1999, at 11:17 am EDT, and shipped to a laboratory2783
for analysis.2784

• The entire laboratory sample is dried, weighed, and ground to a maximum particle size of2785
0.2 mm. The dry weight is approximately 2 kg.2786

• The prepared sample is homogenized, and a test portion is removed by increments. The2787
documented procedure requires a test portion of approximately 0.5 g.2788

• The test portion is weighed and the mass is found to be 0.5017 g. The standard2789
uncertainty of the mass, including contributions from repeatability, linearity, day-to-day2790
variability, and the balance calibration, is estimated to be 2.2 × 10!4 g.2791

• A 1-mL aliquant of 242Pu tracer is added to the test portion. The concentration of the2792
tracer solution has previously been measured as 0.0705 Bq mL!1 with a standard2793
uncertainty of 0.0020 Bq mL!1 on June 30, 1999, at 11:00 am CDT. The aliquant is2794
dispensed by a pipet, whose dispensed volume has a combined standard uncertainty2795
previously determined to be 0.0057 mL.2796

• After fusion, dissolution, chemical purification, and coprecipitation, a test source on a2797
stainless steel planchet is prepared for counting in an alpha spectrometer.2798

• The efficiency of the spectrometer for the chosen geometry, which is assumed to be con-2799
stant over the range of alpha energies of interest, has previously been measured as 0.28052800
with a standard uncertainty of 0.0045.2801



Measurement Statistics

MARLAP JULY 2001
DO NOT CITE OR QUOTE DRAFT FOR PUBLIC COMMENT19-136

• A blank source is counted in the spectrometer for 60,000 s. The blank consists of a filter2802
mounted on a planchet in the same geometry as the test source. In the 242Pu region of2803
interest, 2 counts are measured; and in the 238Pu region of interest, 0 counts are measured.2804
Historical data for this and similar spectrometers at the laboratory indicate that the back-2805
ground is stable between measurements.2806

• The test source is placed in the spectrometer and counted for 60,000 s, beginning on2807
August 24, 1999, at 4:47 pm CDT. In the 242Pu region of interest, 967 counts are meas-2808
ured; and in the 238Pu region of interest, 75 counts are measured. 2809

• It is assumed that there is no detectable plutonium in the reagents; however, a method2810
blank is analyzed simultaneously using a different spectrometer to check for contamina-2811
tion of reagents and glassware.)2812

In this example the measurand will be the mean activity concentration, or massic activity, of2813
238Pu in the 2-kg sample (dry weight) at the time of collection.2814

19E.3  The Measurement Model2815

The following notation will be used:2816

MS is the mass of the test portion (0.5017 g)2817
T is the tracer activity concentration (0.1205 Bq mL!1)2818
Vt is the tracer aliquant volume (1 mL)2819
tB is the blank count time (60,000 s)2820
tS is the count time for the test source (60,000 s)2821
NS is the total count in a region of interest when the source is counted (238Pu or 242Pu)2822
NB is the count in a region of interest when the blank is counted (238Pu or 242Pu)2823
R is the fraction of alphas with measured energy in the region of interest (238Pu or 242Pu)2824
D is the decay-correction factor (238Pu or 242Pu)2825
g is the alpha counting efficiency2826
Y is the plutonium chemical yield fraction2827
FS is the subsampling factor (estimated as 1.00 with a Type B standard uncertainty of2828

0.05)2829
X is the 238Pu activity concentration in the dried laboratory sample, decay-corrected to2830

the time of collection2831

Subscripts will be used to distinguish between quantities associated with particular regions of2832
interest (238Pu or 242Pu).2833



Measurement Statistics

JULY 2001 MARLAP
DRAFT FOR PUBLIC COMMENT DO NOT CITE OR QUOTE19-137

The decay-correction factor for either isotope is calculated as follows:2834

2835 D ' e &λ tD 1 & e &λ tS

λ tS

where λ is the decay constant (s!1) and tD is the time between collection and the start of the2836
counting measurement (3,911,400 s). Since λtS is small for both isotopes in this example, D may2837
be approximated accurately by2838

2839 D ' e &λ(tD% tS /2)

The half-lives of 238Pu and 242Pu are 87.75 y and 375,800 y, respectively. So,2840

2841 D238 ' exp &ln2
87.75 @365.25 @86,400

3,911,400 %
60,000

2
' 0.9990

and .2842 D242 ' 1.000

Dead time is negligible in this example; so, no distinction is made between the real time and the2843
live time. If the real time were greater than the live time, the correction for decay during the2844
counting period would be based on the real time.2845

The fraction of alphas of each isotope actually measured in the nominal region of interest is esti-2846
mated to lie between 0.96 and 1.00. A rectangular distribution is assumed, with center at 0.982847
and half-width equal to 0.02. Then the Type B standard uncertainties of R238 and R242 are2848

2849 u(R238) ' u(R242) '
0.02

3
' 0.01155

The chemical yield of plutonium is calculated using the model2850

2851 Y '
NS,242 / tS & NB,242 / tB

TVtgR242 D242

Then the following model is used to estimate the measurand.2852
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Y '
967 / 60,000 & 2 / 60,000

0.0705 @ 1 @ 0.2805 @ 0.98 @ 1
' 0.82990

X '
75 / 60,000 & 0 / 60,000

0.5017 @ 0.82990 @ 0.2805 @ 0.98 @ 0.9990 @ 1.00
' 0.010932 Bq g&1

(or 10.932 Bq kg&1)

2853 X '
NS,238 / tS & NB,238 / tB

MS YgR238 D238 FS

When numerical values are inserted,2854

19E.4  The Combined Standard Uncertainty2855

The efficiency g effectively cancels out of the equation for X, because it is multiplied by the yield2856
Y and also appears as a factor in the denominator of the expression for Y (see also Section2857
19.6.5). Therefore, the uncertainty of g has no effect on the uncertainty of X. When using the2858
uncertainty propagation formula to calculate the combined standard uncertainty of X, one might2859
include a covariance term for u(Y,g) to account for the relationship between the measured values2860
of Y and g, but it is simpler to treat Yg as one variable. Application of the uncertainty propagation2861
formula (Section 19.5.3) to the equations above then gives the following:2862

2863
u 2

c (Yg) '
u 2(NS,242) / t 2

S % u 2(NB,242) / t 2
B

T 2 V 2
t R 2

242 D 2
242

% (Yg)2 u 2(T)
T 2

%
u 2(Vt)

V 2
t

%
u 2(R242)

R 2
242

2864
u 2

c (X) '
u 2(NS,238) / t 2

S % u 2(NB,238) / t 2
B

M 2
S (Yg)2 R 2

238 D 2
238

% X 2 u 2(MS)

M 2
S

%
u 2(Yg)
(Yg)2

%
u 2(R238)

R 2
238

%
u 2(FS)

F 2
S

All other input estimates are assumed to be uncorrelated.2865

Note that u2(FS) is the subsampling variance associated with taking a small test portion2866
(0.5017 g) from a much larger sample (2 kg). A default value is used here for this variance2867
component. However, Appendix F provides more information about subsampling errors and2868
methods for estimating their variances.2869
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Since extremely low counts are possible, each Poisson counting variance in this example will be2870
estimated by the number of observed counts plus one (see Section 19.5.2.2 and Section 19C.3 of2871
Attachment 19C). So, for example, u(NB, 238) equals one, not zero.2872

Table 19.7 summarizes the input estimates and their standard uncertainties.2873

Other possible sources of uncertainty in alpha spectrometry measurements include the following:2874

• uncertainties in half-lives and decay times2875
• spillover and baseline interferences caused by poor peak resolution2876
• incomplete equilibration of tracer and analyte before chemical separation2877
• changing instrument background2878
• dependence of counting efficiency on alpha energy2879

These uncertainties are evaluated as negligible in this example. Uncertainties associated with2880
half-lives and decay times are negligible, because the decay times in the example are much2881
shorter than the half-lives; but in practice one should confirm that any other uncertainties are2882
small enough to be neglected.2883

INPUT
QUANTITY

INPUT
ESTIMATE

STANDARD
UNCERTAINTY

MEASUREMENT
UNIT

TYPE OF
EVALUATION

MS 0.5017 2.2 × 10!4 g Combined
T 0.0705 0.0020 Bq mL!1 Combined
Vt 1.0000 0.0057 mL Combined
tB 60,000 Negligible s B
tS 60,000 Negligible s B

NB, 238 0 1 counts B
NB, 242 2 1.73 counts B
NS, 238 75 8.72 counts B
NS, 242 967 31.1 counts B

R238, R242 0.98 0.01155 none B
g 0.2805 0.0045 none Combined
FS 1.00 0.05 none B

D238 0.9990 Negligible none B
D242 1.0000 Negligible none B

TABLE 19.7 — Input estimates and standard uncertainties
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When numerical values are inserted into the formulas2884

2885
u 2

c (Yg) ' 968 / 60,0002 % 3 / 60,0002

0.07052 @ 12 @ 0.982 @ 12
% (0.82990 @ 0.2805)2 0.00202

0.07052
%

0.00572

12
%

0.011552

0.982

' 0.0001094007 ' 0.010462

and2886

2887
u 2

c (X) ' 76 / 60,0002 % 1 / 60,0002

0.50172 @ (0.82990 @ 0.2805)2 @ 0.982 @ 0.99902

% 0.0109322 (2.2 × 10&4)2

0.50172
%

0.010462

0.829902 @ 0.28052
%

0.011552

0.982
%

0.052

1.002

' 2.1926 × 10&6 ' 0.00148082

So, uc(X) = 0.00148 Bq g!1 or 1.48 Bq kg!1. If the concentration is to be reported with an expan-2888
ded uncertainty calculated from the combined standard uncertainty uc(X) and a coverage factor2889
k = 2, the result should appear (in SI units) as 10.9 ± 3.0 Bq kg!1 (dry weight).2890

19E.5  The Critical Net Count2891

Chapter 19 discusses several methods for estimating the critical net count SC . In this example, the2892
observed blank count is zero; so, the mean blank count is obviously very low, and nonnormal2893
Poisson counting statistics may be assumed. Sections 19E.5.1 through 19E.5.4 below show how2894
to apply the formulas discussed in Section 19D.2.2 for Poisson counting measurements,2895
assuming a significance level of α = 0.05.2896

19E.5.1  Formula A2897

Formula A is not recommended when the blank count is extremely low, as in this example. How-2898
ever, if Formula A is used, it gives the following estimate of the critical value of the net count.2899



Measurement Statistics

JULY 2001 MARLAP
DRAFT FOR PUBLIC COMMENT DO NOT CITE OR QUOTE19-141

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB,238

tS

tB

1 %
tS

tB

'
1.6452

2
(1) % 1.645 1.6452

4
(1)2 % (0) (1) (2)

' 2.71 counts

SC ' 0.4
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB,238 % 0.4)
tS

tB

1 %
tS

tB

' 0.4(0) % 1.6452

4
(2)% 1.645 (0 % 0.4)(1)(2)

' 2.82 counts

2900

SC ' z1&α NB,238

tS

tB

1 %
tS

tB

' 1.645 (0)(1)(2)

' 0 counts

Since the net count 75 exceeds the critical net count 0, the analyte 238Pu is considered “detected.”2901

19E.5.2  Formula C2902

Using Formula C, one obtains2903

Since 75 > 2.71, the analyte is considered detected.2904

19E.5.3  The Stapleton Approximation2905

Using the Stapleton approximation, the critical net count is calculated as follows.2906
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j
yC

k ' 0

NB,238 % k
NB,238

tS

tB % tS

k
$ (1 & α) 1 %

tS

tB

NB, 238%1

(19.144)

Since 75 > 2.82, the analyte is considered detected.2907

19E.5.4  Exact Test2908

When the exact test is used, the critical value of the source count NS, 238 is the smallest nonnega-2909
tive integer yC such that2910

First the right-hand side is calculated:2911

2912 (1 & α) 1 %
tS

tB

NB, 238%1
' (0.95)(2)0%1 ' 1.90

Then, terms of the sum on the left-hand side are accumulated until the total is at least 1.90. The2913
iteration stops at k = 4, when the sum reaches 1.9375 (illustrated below).2914

k2915 kth Term Sum

02916 1 1
12917 0.5 1.5
22918 0.25 1.75
32919 0.125 1.875
42920 0.0625 1.9375

Thus, the critical value of the total count is yC = 4, which may also be found in Table G.4 in2921
Appendix G. Since the observed count NS, 238 = 75 exceeds the critical count, one concludes that2922
the sample contains a positive amount of 238Pu.2923

The critical net count SC in this case is also 4, because the blank count is zero. Note that this2924
value of SC is the most conservative of the critical values calculated in this example.2925
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19E.6  The Minimum Detectable Concentration2926

Assume the specified probability of a type II error at the minimum detectable concentration is2927
. The following describes a conservative approach to the estimation of the nominal2928 β ' 0.05

MDC for the analytical process.2929

Let RB denote the mean blank count rate for the 238Pu region of interest. Suppose a total of 212930
counts are accumulated in the 238Pu region of interest during ten 60,000-s blank measurements.2931
The estimated blank count rate is then2932

2933 RB '
21

600,000
' 3.5 × 10&5 cps

This estimate has a moderately large relative standard uncertainty (approximately 22%), but2934
detection decisions are based on the results of shorter measurements (60,000 s, not 600,000 s),2935
which will vary even more. So, a conservative upper bound [NB] will be used for the blank count,2936
as suggested in Section 19D.3.2 of Attachment 19D. A method for calculating the critical gross2937
count can be adapted to calculate the largest value of the blank count that is likely to be observed2938
given the assumption of a mean blank count rate of 3.5 × 10!5 cps. For the current problem, Table2939
19.4 will be used, with RB tB replacing RB tS and [NB] replacing yC in the column headings. Since2940
the value of RB tB is 2.1, which lies between 1.970 and 2.613, Table 19.4 shows that the required2941
value is [NB] = 5. Therefore, one expects the number of blank counts observed in 60,000 s (tB) to2942
be no greater than 5. So, the MDC will be calculated here using a critical value [SC] based on the2943
assumption of a blank count [NB] = 5.2944

The overall sensitivity for the measurement process is the product A = tSMSYgR238D238. Since the2945
most variable factor in this product by far is the chemical yield Y, a conservative lower bound for2946
A may be found by estimating the β-quantile (5th percentile) of Y and multiplying it by estimated2947
values of the other factors. Assume that historical data show that the 5th percentile of Y is approx-2948
imately 0.60. Then with the measured efficiency 0.2805, nominal test portion mass 0.5 g, and2949
estimated values for the ROI fraction 0.98 and decay factor 0.999, the 5th percentile of A is esti-2950
mated as2951

aβ = a0.05 = (60,000)(0.60)(0.2805)(0.5)(0.98)(0.999) = 4943 g s2952

The approximation formulas given in the chapter will be used and the results will be compared to2953
the results obtained from a precise power calculation using the value aβ for the sensitivity and2954
with the assumptions that the mean blank count rate is RB = 3.5 × 10!5 cps and that the subsamp-2955
ling error is approximately normal.2956
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The following values, which appear in several formulas, are calculated first.2957

2958

c ' RB tS 1 %
tS

tB

' (3.5 × 10&5) (60,000)(1 % 1) ' 4.2 counts

Iβ ' 1 & z 2
1&βφ

2
Samp ' 1 & (1.645)2 (0.05)2 ' 0.993236

Iβc ' (0.993236)(4.2) ' 4.172 counts

19E.6.1  Formula A2959

Assuming the net signal is approximately normal at the MDC, the value of the MDC may be2960
approximated by2961

2962 xD '
1

aβ Iβ
[SC] %

z 2
1&β

2
% z1&β

z 2
1&β

4
% [SC] % φ2

Samp [SC]2 % Iβc

where [SC] denotes the critical net count calculated using [NB] as the blank count and 2963 φ2
Samp

denotes the subsampling variance, which also equals u2(FS). When Formula A is used, [SC] is2964

2965 [SC] ' z1&α [NB]
tS

tB

1 %
tS

tB

' 1.645 (5)(1)(1 % 1) ' 5.201 counts

and the minimum detectable concentration is2966

2967

xD '
1

aβ Iβ
[SC] %

z 2
1&β

2
% z1&β

z 2
1&β

4
% [SC] % φ2

Samp [SC]2 % Iβc

'
1

(4943)(0.993236)
5.201 %

1.6452

2
% 1.645 1.6452

4
% 5.201 % (0.05)2 (5.201)2 % 4.172

' 0.0024 Bq g&1 or 2.4 Bq kg&1

If the calculation is repeated with RB tB = 2.1 substituted for [NB] = 5 as the blank count used to2968
calculate the critical value, the resulting value of xD is 1.9 Bq kg!1.  A precise power calculation2969
shows that the actual value of xD is 2.1 Bq kg!1.2970
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[SC] '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% [NB]
tS

tB

1 %
tS

tB

'
1.6452

2
(1) % 1.645 1.6452

4
(1)2 % 10

' 6.727 counts

[SC] ' 0.4
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α ( [NB] % 0.4)
tS

tB

1 %
tS

tB

' 0.4(0) % 1.6452

4
(2)% 1.645 (5 % 0.4)(1)(2)

' 6.758 counts

19E.6.2  Formula C2971

Using Formula C, one obtains2972

Then the minimum detectable concentration is2973

2974

xD '
1

aβ Iβ
[SC] %

z 2
1&β

2
% z1&β

z 2
1&β

4
% [SC] % φ2

Samp [SC]2 % Iβc

'
1

(4943)(0.993236)
6.727 %

1.6452

2
% 1.645 1.6452

4
% 6.727 % (0.05)2 (6.727)2 % 4.172

' 0.0028 Bq g&1 or 2.8 Bq kg&1

If the critical value is calculated using RB tB = 2.1 instead of [NB] = 5, the resulting value of xD is2975
2.3 Bq kg!1. A precise power calculation gives the value xD = 2.5 Bq kg!1.2976

19E.6.3  The Stapleton Approximation2977

When the Stapleton approximation is used, the critical net count is2978
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Then the minimum detectable concentration may be approximated by2979

2980

xD '
1

aβ Iβ
[SC] %

z 2
1&β

2
% z1&β

z 2
1&β

4
% [SC] % φ2

Samp [SC]2 % Iβc

'
1

(4943)(0.993236)
6.758 %

1.6452

2
% 1.645 1.6452

4
% 6.758 % (0.05)2 (6.758)2 % 4.172

' 0.0028 Bq g&1 or 2.8 Bq kg&1

When RB tB is substituted for [NB] in the calculation of the critical value, the resulting value of xD2981
is 2.4 Bq kg!1.2982

Alternatively, the longer calculation given in Section 19D.3.3 of Attachment 19D may be used.2983

2984 xD '
1
aβ

b )2 & 2a )c ) % b ) b )2 & 4a )c )

2a )2
& RB tS

where2985

2986 a ) ' 1 &
z 2

1&βφ
2
Samp

4
' 0.99831

2987 b ) ' 2 RB tS % z1&α 1 %
tS

tB

' 5.2244

2988 c ) ' RB tS %
z 2

1&α & z 2
1&β

4
1 %

tS

tB

% z1&α RB tS 1 %
tS

tB

' 5.4709

Then2989

2990
xD '

5.22442 & 2(0.99831)(5.4709) % (5.2244) 5.22442 & 4(0.99831)(5.4709)
2(0.99831)2 (4943)

&
2.1

4943
' 0.0025 Bq g&1 or 2.5 Bq kg&1

A precise power calculation gives the value xD = 2.5 Bq kg!1.2991
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19E.6.4  Exact Test2992

When the exact test for detection is used, the critical gross count [yC] equals the smallest nonneg-2993
ative integer n such that2994

2995 j
n

k ' 0

[NB] % k
[NB]

tS

tB % tS

k
$ (1 & α) 1 %

tS

tB

[NB]%1

The right-hand side of the inequality is found as follows2996

2997 RHS ' (1 & 0.05)(1 % 1)5%1 ' 60.8

The value of the left-hand side exceeds 60.8 when n equals 122998

2999 LHS '
5
5

%
6
5

1
2
%

7
5

1
4
% @@@ % 17

5
1

4096
' 60.92

Therefore, 3000

3001 [yC] ' 12 counts and [SC] ' [yC] & [NB]
tS

tB

' 7 counts

So,3002

3003

xD '
1

aβ Iβ
[SC] %

z 2
1&β

2
% z1&β

z 2
1&β

4
% [SC] % φ2

Samp [SC]2 % Iβc

'
1

(4943)(0.993236)
7 %

1.6452

2
% 1.645 1.6452

4
% 7 % (0.05)2 (7)2 % 4.172

' 0.0029 Bq g&1 or 2.9 Bq kg&1

The result of the precise calculation is xD = 2.8 Bq kg!1.3004
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xQ '
k 2

Q

2a0.05 IQ

1 % 1 %
4 IQ RB tS

k 2
Q

1 %
tS

tB

IQ ' 1 & k 2
Q (n2

Â % φ
2
Samp) ' 1 & 102 0.0512% 0.052 ' 0.4899

xQ '
102

2(4943)(0.4899)
1 % 1 %

4(0.4899)(3.5 × 10&5) (60,000)
102

(1 % 1)

' 0.042 Bq g&1 or 42 Bq kg&1

19E.7  The Minimum Quantifiable Concentration3005

For the purpose of this example, the MQC is defined to be the analyte concentration xQ at which3006
the relative standard deviation of the measured result is 1 / kQ , where kQ = 10. Calculation of xQ3007
requires knowledge of the relative standard deviation of the measured sensitivity when the true3008
sensitivity is A = a0.05 . Assume for this example that the relative standard deviation is  . 0.0513009 nÂ
(5.1%) at A = a0.05 = 4943. Then3010

where3011

Then3012

The MQC is substantially increased by the measurement variance of the sensitivity  and the3013 Â
subsampling variance. Without them the minimum quantifiable concentration would be only3014
21 Bq kg!1. Note also that if either the relative standard deviation of  or the subsampling stan-3015 Â
dard deviation were 0.1 or more, the MQC would be infinite.3016
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ATTACHMENT 19F3017

Tests for Normality3018

19F.1  Purpose3019

Many common statistical hypothesis tests are based on the assumption that data are normally dis-3020
tributed. Normality is often assumed by default, but, since some tests may not perform well with3021
data that are not normal, it is often important to check the validity of the assumption. Performing3022
a test for normality cannot prove that data are normally distributed, but it may produce strong3023
evidence that they are not.3024

There are a number of tests for normality. Each test requires a random sample Y1, Y2, …, Yn from3025
the distribution being checked. Whatever test is used, it is a good idea to plot the data for visual3026
inspection. The normal probability plot described in Section 19F.2 is useful for this purpose.3027

One of the most powerful tests for normality is the Shapiro-Wilk test, but it is difficult to imple-3028
ment manually. EPA QA/G-9 recommends the Shapiro-Wilk test when the sample size n is less3029
than 50, and either Filliben’s statistic or the studentized range test when n > 50 (EPA 1998). In3030
fact, if software for the Shapiro-Wilk test is not available, then Filliben’s statistic may be used in3031
all cases for which critical values are available. Instructions for computing and using Filliben’s3032
statistic are given in Section 19F.3.3033

19F.2  Normal Probability Plots3034

A normal probability plot is a graph of the observed quantiles of a data set against the correspon-3035
ding quantiles of a standard normal distribution. If the data are normally distributed and the data3036
set is large enough (more than about 10 values), the plotted points should lie approximately on a3037
straight line. A preliminary decision about the distribution of the data may be based on inspection3038
of the graph. Normal probability plots may be produced manually, although software is generally3039
needed to make plots of large data sets feasible.3040

Manual construction of a normal probability plot is easier when pre-printed normal probability3041
paper is available (see Figure 19.18 at the end of this attachment).3042

To plot a set of data on normal probability paper, perform the following steps (EPA 1998).3043

1. Arrange the data in ascending order:3044

3045 Y(1) # Y(2) # @ @ @ # Y(n)
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2. Label the vertical axis to encompass all values between Y(1) (the minimum) and Y(n) (the3046
maximum).3047

3. For each i compute the cumulative frequency Fi of the value Y(i) , which is defined as the3048
number of values in the data set that are less than or equal to Y(i) . (Note that Fi $ i.)3049

4. Compute the horizontal coordinate Xi = Fi / (n + 1) × 100% for each i.3050

5. Plot each ordered pair (Xi,Y(i)) at the appropriate location on the grid.3051

To plot a set of data on ordinary graph paper, perform Steps 1–3 above followed by Steps 4N–6N3052
below.3053

4N. For each i, determine the quantile  of the standard normal distribution (see3054 Xi ' zFi / (n%1)
for example Table G.1).3055

5N. Label the horizontal axis to encompass all values between X1 and Xn .3056

6N. Plot each ordered pair (Xi,Y(i)).3057

The latter version of the procedure can be adapted to construct probability plots for other types of3058
distributions. Only Step 4N must change, since Xi is required to be a quantile of the appropriate3059
distribution.3060

EXAMPLE3061

Problem: Given the data set3062

123   122   124   118   118   122   121   117   125   1193063

construct a normal probability plot using normal probability paper.3064

Solution:3065
Step 13066 Sort the 10 values:

117   118   118   119   121   122   122   123   124   125

Step 23067 Label the vertical axis to encompass the values from 117 to 125.



Measurement Statistics

JULY 2001 MARLAP
DRAFT FOR PUBLIC COMMENT DO NOT CITE OR QUOTE19-151

Step 33068 For each i compute the cumulative frequency Fi of Y(i) (see the table below).

Step 43069 For each i compute  and plot .Xi ' (Fi / 11) × 100% (Xi,Y(i))

i 1 2 3 4 5 6 7 8 9 10

Y(i)
117 118 118 119 121 122 122 123 124 125

Fi
1 3 3 4 5 7 7 8 9 10

Xi
9.1% 27.3% 27.3% 36.4% 45.5% 63.6% 63.6% 72.7% 81.8% 90.9%

The results are shown as a normal probability plot in Figure 19.18.

19F.3  Filliben’s Statistic3070

Filliben’s statistic is derived from the concept of the normal probability plot and is often called3071
the “normal probability plot correlation coefficient.” The use of the statistic makes the3072
interpretation of the probability plot less subjective, although a visual inspection of the plot is3073
still recommended. The procedure for calculating and using the statistic is given below (Filliben3074
1975).3075

1. Choose the significance level α.3076

2. Arrange the data in ascending order.3077

3078 Y(1) # Y(2) # @ @ @ # Y(n)

3. Compute the quantities  and S as follows.3079 Y

                  3080 Y '
1
n j

n

i'1
Yi S ' j

n

i'1
Yi & Y 2

4. For i = 1, 2, …, n, compute3081
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3082 mi '

1 & 0.51/n , i ' 1
(i & 0.3175) / (n % 0.365) , i ' 2,3,…,n & 1

0.51/n , i ' n

and let Mi be the mi-quantile of the standard normal distribution . (Table G.1 in3083 zmiAppendix G may be interpolated to obtain approximate values of these quantiles.)3084

5. Compute .3085 cn ' 'n
i'1M

2
i

6. Compute Filliben’s statistic r (the normal probability plot correlation coefficient).3086

3087 r '
'n

i'1Y(i) Mi

cn S

7. Determine a critical value from Table G.5. If r is less than the critical value, conclude that3088
the data are not normally distributed.3089

EXAMPLE3090

Problem: Determine whether the values3091

123   122   124   118   118   122   121   117   125   1193092

appear to come from a normal distribution. Use the significance level 0.05.3093

Solution:3094
Step 13095 The significance level is specified to be .α ' 0.05

Step 23096 Sort the 10 values:

117   118   118   119   121   122   122   123   124   125
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Step 33097 Compute  andY '
1

10
'Yi ' 120.9

 S ' j (Yi & 120.9)2 ' 8.301

Step 43098 For each i compute mi and  (see the table below). (The quantiles Mi in thisMi ' zmiexample have been computed without using Table G.1.)

Step 53099 Compute .cn ' '10
i'1 M 2

i ' 7.575 ' 2.752

Step 63100 Compute .r '
'10

i'1Y(i) Mi

cn S
'

22.37
(2.752)(8.301)

' 0.979

Step 73101 Table G.5 shows that the critical value for n = 10 and α = 0.05 is 0.917. Since
0.979 $ 0.917, the data appear to be normally distributed.

i 1 2 3 4 5 6 7 8 9 10

Y(i) 117 118 118 119 121 122 122 123 124 125

mi 0.06697 0.1623 0.2588 0.3553 0.4518 0.5482 0.6447 0.7412 0.8377 0.9330

Mi –1.499 –0.9849 –0.6470 –0.3711 –0.1212 0.1212 0.3711 0.6470 0.9849 1.499
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ATTACHMENT 19G3108

Balance Measurement Uncertainty3109

19G.1  Purpose3110

This attachment describes methods that may be used to evaluate balance measurement uncer-3111
tainty. The relative standard uncertainty of a measurement made with a laboratory balance tends3112
to be small if the balance is used properly, and it may even be considered negligible when com-3113
pared to other uncertainties associated with radioanalysis (e.g., see Section 19.6.11, “Subsamp-3114
ling”). However, one needs to know the performance limits of any measuring instrument. For3115
example, the measurement uncertainty may actually be relatively large if a balance is used to3116
weigh a mass that is too small for it. Establishing reasonable acceptance criteria for balance qual-3117
ity control also requires an understanding of the sources of the measurement uncertainty.3118

19G.2  Considerations3119

Regardless of the methods used to evaluate balance measurement uncertainty, the results may be3120
misleading unless the balance is well maintained and protected from external influences, such as3121
drafts and sudden changes in pressure, temperature and humidity.3122

The appropriate method for evaluating the standard uncertainty of a mass measured using a bal-3123
ance depends on the type of balance, including its principles of calibration and operation, but the3124
uncertainty of the measured result generally has components associated with balance sensitivity,3125
linearity, repeatability, and air buoyancy. Typically, the component associated with sensitivity3126
includes the uncertainty of calibration and may include variability caused by changing environ-3127
mental conditions, such as temperature. Other sources of uncertainty may include leveling errors3128
and off-center errors, which should be controlled. Static electrical charges may also have an3129
effect. Changes in mass (e.g., by absorption or evaporation of water) may be very significant for3130
some materials.3131

19G.3  Repeatability3132

The repeatability of a balance is expressed as a standard deviation and is usually assumed to be3133
independent of the load. It represents the variability of the result of zeroing the balance, loading a3134
mass on the pan, and reading the indication.3135

Balance manufacturers provide specifications for repeatability, but a test of repeatability should3136
also be part of the routine quality control for the balance (see ASTM 1993). The simplest pro-3137
cedure for evaluating repeatability is to make a series of replicate measurements of a mass3138
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sr '
1

K (J & 1) j
K

k'1
j

J

j'1
(xk, j & x̄k)

2 (19.150)

s 2
Env '

1
K & 1 j

K

k'1
(x̄k & x)2 &

s 2
r

J
(19.151)

standard under “repeatability conditions.” Repeatability conditions require one balance, one3139
observer, one measurement location, and repetition during a short time period. For each3140
measurement, one must zero the balance, load the mass standard, and read the balance indication.3141

A nested experimental design can also be used to evaluate both the repeatability and the day-to-3142
day variability due to environmental factors. In this procedure, one makes a series of replicate3143
measurements with the same mass standard each day for a number of days. Ideally one should3144
use a mass near the capacity of the balance to obtain the most reliable estimate of day-to-day var-3145
iability. The repeatability standard deviation is then estimated by3146

where3147
sr is the estimated repeatability standard deviation3148
J is the number of repetitions per day3149
K is the number of days3150
xk,j is the jth result obtained on the kth day3151

is the average of all the results on the kth day3152 x̄k

The repeatability standard deviation determined by this method is a Type A standard uncertainty3153
with K (J ! 1) degrees of freedom.3154

19G.4  Environmental Factors3155

Given the experimental data from the preceding section, one may estimate the variability due to3156
environmental factors (day-to-day variability) as follows.293157

where3158
sE

2
nv is the estimated variance due to environmental factors3159

is the grand average of all the data (the average of the )3160 x x̄k
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nEnv '
sEnv

MCheck
(19.152)

φCal –– φ2
Env %

s 2
r % a 2

Cal / 6

M 2
Cal

(19.153)

If sE
2

nv is found to be positive, then sEnv is estimated by its square root; otherwise, sEnv is assumed3161
to be zero. One estimates the relative component of standard uncertainty of a measured mass due3162
to environmental factors by3163

where MCheck is the mass of the standard used in the experiment.3164

19G.5  Calibration3165

The uncertainty of calibration includes components associated with the mass standard or stan-3166
dards, repeatability, and variability due to environmental factors.3167

When a precision mass standard is used for calibration, the standard uncertainty of its mass is3168
generally negligible. However, the uncertainty may be evaluated if necessary from the specified3169
mass tolerance. For example, a 100-g ASTM Class-1 mass standard has a tolerance of 0.00025 g,3170
which may be assumed to represent the half-width of a triangular distribution centered at zero3171
(ASTM 1991). The standard uncertainty may be found by dividing this tolerance by  and is3172 6
approximately 0.00010 g, or 1.0 × 10!6 when expressed in relative terms.3173

The total relative standard uncertainty of a measured mass due to calibration may be estimated as3174
follows.3175

where3176
φCal is the total relative standard uncertainty of a balance measurement due to calibration3177
φEnv is the relative standard uncertainty due to environmental factors3178
sr is the repeatability standard deviation3179
aCal is the tolerance for the mass of the calibration standard3180
MCal is the mass of the standard used for calibration3181

If environmental conditions are not well-controlled, φEnv may tend to dominate the other compo-3182
nents here, since both sr and aCal are much smaller than MCal.3183
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m ' INet B (19.154)

B '
1 & ρA,C / ρC

1 & ρA,M / ρM
(19.155)

19G.6  Linearity3184

The linearity of a balance should be specified by the manufacturer as a tolerance, aL, which repre-3185
sents the maximum deviation of the balance indication from the value that would be obtained by3186
linear interpolation between the calibration points. Routine quality control should ensure that the3187
linearity remains within acceptable limits.3188

The Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement recommends3189
that the linearity tolerance aL be treated as the half-width of a rectangular distribution and that aL3190
therefore be divided by  to obtain the standard uncertainty (Eurachem 2000). However, since3191 3
the linearity error is likely to vary as a sinusoidal function of the load, the divisor  may be3192 2
more appropriate. So, the standard uncertainty due to linearity for a simple mass measurement3193
may be evaluated as . Whether one uses  or the more conservative value  depends3194 aL / 2 3 2
partly on how conservative one believes the estimate of aL to be.3195

19G.7  Air Buoyancy Corrections3196

Air buoyancy corrections have not often been performed in radiochemistry laboratories, but they3197
are necessary for a realistic estimate of the standard uncertainty of a mass measurement,3198
especially when the material being weighed has a low density. Failure to correct for air buoyancy3199
when weighing water, for example, introduces a relative error of approximately !0.1%, which3200
may be much larger than the standard uncertainty of the uncorrected mass (e.g., when weighing a3201
gram or more of an aqueous solution on a typical four-place analytical balance).3202

When a buoyancy correction factor is used, the true mass is estimated as follows.3203

where3204

and3205
m is the corrected value for the mass of the material being weighed3206
INet is the net balance indication3207
B is the buoyancy correction factor3208
ρM is the density of the material being weighed3209
ρA,M is the density of the air at the time the material is weighed3210
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u 2(B)
B 2

'

u 2(ρA,C)

ρ2
A,C

& 2
u(ρA,C,ρC)
ρA,CρC

%
u 2(ρC)

ρ2
C

ρC

ρA,C

& 1
2

%

u 2(ρA,M)

ρ2
A,M

& 2
u(ρA,M,ρM)
ρA,MρM

%
u 2(ρM)

ρ2
M

ρM

ρA,M

& 1
2 (19.156)

ρA ' ρ0
273.15

273.15 % T
P & (0.3783)(RH / 100%)(PVap)

760
(19.157)

ρA '
aP & (RH) (bT & c)

273.15 % T (19.158)

ρC is the density of the calibration mass standard3211
ρA,C is the density of the air at the time of calibration3212

The standard uncertainty of B may be obtained as follows.3213

Evaluation of this uncertainty requires estimates of ρM, ρC, ρA,M and ρA,C as well as their standard3214
uncertainties and covariances. The covariance u(ρA,C,ρC) is usually zero or negligible, and3215
u(ρA,M,ρM) also is usually negligible if the material being weighed is a solid.3216

The density of air at any time (ρA) depends on temperature, pressure, and humidity, as shown in3217
the following equation.3218

where3219
ρA is the density of air3220
ρ0 is the density of dry air at 0EC and 760 torr (mm of Hg)3221
T is the temperature (EC)3222
P is the barometric pressure (torr)3223
RH is the relative humidity (%)3224
PVap is the vapor pressure (torr) of water at temperature T3225

The vapor pressure, PVap, is a nonlinear function of T, but it can be approximated by a linear3226
function in the range of temperatures typically encountered in the laboratory. When this approxi-3227
mation is made, the resulting equation for the air density (g mL!1) may be written as follows.3228

where3229
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u(ρA) ––
a 2 u 2(P) % (bRH % ρA)2 u 2(T) % (bT – c)2 u 2(RH)

273.15 % T
(19.159)

a =  4.64746 × 10!43230
b =  2.5211151 × 10!63231
c =  2.0590571 × 10!53232

Then the standard uncertainty of ρA is given by3233

The density of the calibration weight (ρC) and of the solid or liquid material being weighed (ρM)3234
also depend on temperature somewhat, but these temperature effects can usually be safely3235
ignored when calculating the uncertainty of the buoyancy correction factor, since temperature3236
affects the density of air much more than the density of a solid or liquid.3237

The effect of pressure on the density of the material being weighed can also usually be neglected.3238
For most practical purposes, the compressibility of a solid or liquid can be considered to be zero. 3239

EXAMPLE3240

Suppose the density of the weighed material, ρM, is 0.5 g mL!1 with a tolerance of 0.2 g mL!1,3241
assumed to represent the half-width of a triangular distribution. The density of the calibration3242
mass standard, ρC, is 7.850 g mL!1 with a tolerance of 0.025 g mL!1. Instead of measuring tem-3243
perature, pressure and humidity at the time of each measurement, the laboratory assumes the3244
following nominal values and tolerances:3245

Temperature 22.5 ± 4 EC3246
Pressure 750 ± 20 torr3247
Relative humidity 50 ± 20 %3248
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Then3249

3250

ρA,C ' ρA,M '
aP & (RH) (bT & c)

273.15 % T

'
(4.64746 × 10&4) (750) & (50)((2.5211151 × 10&6) (22.5) & 2.0590571 × 10&5)

273.15 % 22.5

' 1.1728 × 10&3 g mL&1

If each of the tolerances for T, P, and RH represents the half-width of a rectangular3251
distribution, then3252

3253 u 2(T) ' 42

3
'

16
3

, u 2(P) ' 202

3
'

400
3

, and u 2(RH) ' 202

3
'

400
3

So, the standard uncertainties of ρA,C and ρA,M are3254

3255

u(ρA,C) ' u(ρA,M) '
a 2 u 2(P) % (bRH % ρA)2 u 2(T) % (bT & c)2 u 2(RH)

273.15 % T

'
a 2 (400 / 3) % (b (50) % 1.1728 × 10&3)2 (16 / 3) % (b (22.5) & c)2 (400 / 3)

273.15 % 22.5

' 2.1 × 10&5 g mL&1

Then the buoyancy correction factor is3256

3257 B '
1 & ρA,C / ρC

1 & ρA,M / ρM

'
1 & 1.1728 × 10&3 / 7.85
1 & 1.1728 × 10&3 / 0.5

' 1.00220

The tolerances for the densities ρC and ρM are the half-widths of triangular distributions; so,3258

3259 u 2(ρC) ' 0.252

6
and u 2(ρM) ' 0.22

6



Measurement Statistics

MARLAP JULY 2001
DO NOT CITE OR QUOTE DRAFT FOR PUBLIC COMMENT19-164

u(m) ' B 2 I 2 (φ2
Cal % φ

2
Env) %

a 2
L

2
% s 2

r % I 2 u 2(B) (19.160)

The covariances u(ρA,C, ρC) and u(ρA,M, ρM) are zero in this example. So, the standard uncer-3260
tainty of B is3261

3262

u(B) ' B
u 2(ρA,C) / ρ2

A,C % u 2(ρC) / ρ2
C

(ρC / ρA,C – 1)2
%

u 2(ρA,M) / ρ2
A,M % u 2(ρM) / ρ2

M

(ρM / ρA,M – 1)2

' 1.00220

(2.1 × 10&5)2

(1.1728 × 10&3)2
%

0.252 / 6
7.852

7.85
1.1728 × 10&3

– 1
2

%

(2.1 × 10&5)2

(1.1728 × 10&3)2
%

0.22 / 6
0.52

0.5
1.1728 × 10&3

– 1
2

' 3.87 × 10–4

Thus, the buoyancy correction factor increases the result of the measurement by 0.22% and3263
generates an uncertainty component of approximately 0.04%. Note that this uncertainty3264
component is very small and would generally be considered negligible in the final result of a3265
radiochemistry measurement, but it may represent a significant fraction of the uncertainty of3266
the mass measurement.3267

19G.8  Combining the Components3268

When the balance is used to measure the mass, m, of an object placed on the pan, the mass is3269
given by m = IB, and its standard uncertainty by3270

where3271
m is the buoyancy-corrected mass3272
I is the balance indication3273
B is the buoyancy correction factor3274
nCal is the relative standard uncertainty due to calibration3275
nEnv is the relative standard uncertainty due to environmental factors3276
aL is the linearity tolerance3277
sr is the repeatability standard deviation3278
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m ' INet B

u(m) ' B 2 I 2
Net (φ

2
Cal % φ

2
Env) % a 2

L % 2s 2
r % I 2

Net u 2(B)
(19.161)

Often the balance is used to weigh material in a container. The balance is zeroed with the empty3279
container on the pan and the container is then filled and weighed without being removed from the3280
pan. In this case the linearity uncertainty component is counted twice, because the linearity error3281
is assumed to vary between the two loads. (This assumption tends to be conservative when small3282
masses are weighed.) Although the buoyancy factor for the tare and gross measurements may be3283
different because of the different densities of the container and the material inside it, the only3284
value of B that is used is the buoyancy factor for the material being weighed.3285

In a third scenario, the empty container is weighed, removed from the pan, and then filled with3286
material. The balance is zeroed again, and the filled container is weighed. Finally, the net mass is3287
determined by subtracting the mass of the empty container from the total mass of the container3288
and material. In this case both the linearity and repeatability components of uncertainty must be3289
counted twice, because two distinct measurements are made. So, the corrected net mass and its3290
standard uncertainty are3291

where3292
INet is the net balance indication (Gross ! Tare)3293
B is the buoyancy factor for the material being weighed3294
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