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Summary 

The Sentinel Initiative aims to develop a national, electronic network to link data on 100 
million patients from multiple existing health care data systems by 2012 in order to 
conduct post-licensur e safety monitoring of FDA-regulated medical products. A critical 
component of this Initiative is determining what statistical methods can bes t be employed 
within this framework to accurately, robustly, and flexibly detect safety problems. In this 
report, we review existing signal detection methods for possible use in the Sentinel 
Initiative. We statistically and clinicall y describe each method, summarize prior and 
current uses 0 f each method, and assess what is kn own about each method's robustness 
across different data sources and each method's flexibility to accommodate different 
signaling threshold levels and different types of adverse event outcomes. 
Recommendations for pursuing the most promising signal detection methods for use in 
the Sentinel Initiative are given. 
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1 Introduction 

1.1 Context 

Methods for signal detection, the abilit y to discriminate betwe en signal and noise, have 
been used in many fields, including use in safety surveillance settings to identify elevated 
risks of advers e events associated with new medical products. Autom ated and rapid 
Bayesian data mining techniques J

-
3 have been used to search for an unexpectedly high 

number of adverse drug reactions, and inter active graphical tools3
-

4 have been used to 
visualize adverse event patterns in the FDA's spontaneous Adverse Events Reporting 
System (AERS). However, these methods have not been applied in a Ion gitudinal fashion 
for prospective surveillan ceo Continuous sequentia 1monitoring methods, such as W aId's 
classical sequential probability ratio testS (S PRT) and Kulldorff s maximized sequential 
probability ratio test (maxSPRT)6 have been proposed for the rapid and prospective 
detection of adverse events after the introduction 0 f a new medical product. However, 
such highly frequent monitoring may not be feasible or desirable in all instances. A 
natural methodology for prospective testin g on a periodic basis is group seq uential 
interim monitoring, and these methods have been widely used to monitor medical product 
efficacy and safety in clinical trials.7

-
8 However, their use in active obs ervational safety 

surveillance settin gs, in which more frequent monitoring may be desired and confounding 
is a potential conce rn, has not been consider ed. 

Thus, although several signal detection methods have been implemented in a variety of 
post-licensure sa fety surveillance settin gs, a detail ed statistical and clinical evaluation of 
these methods for use in active, longitudinal safet y surveillance usin g linked electroni c 
database information has not been reported. A thorough analysis of existing signal 
detection methods is critical to the FD A in determining what methods are most suitable 
for application in the Sentinel Initiative. 

1.2 Scope 

At the time of medical product approval, a key first step in planning post-licensure safety 
surveillance is to dete rmine what type of surveillance system is most appropriate for a 
given medical product and adverse event pair. In the case of the Sentinel Initiative, the 
more specific question of interest is whether or not active surveillanc e of a large 
observational cohort is th e preferred design compared to other potential cho ices such as a 
Phase IV epidemiological cohort study or a large Phase IV randomized clinical trial. If 
active surveillanc e is determined to be the preferred system, a second key step is to assess 
whether the relevant adverse event outcomes, medical product ex posure groups, and 
confounders are accurately and reliably measured using the linked electronic health care 
utilization database sourc es to be used for su rveillance. 

Although determining when active surv eillance is the optimal post-licensure system and 
ensuring that databas e information is of adequ ate quality to support surveillance are 
important, these topics ar e not the focus of this rep ort. However, since the success of any 



signal detection method used for active surveillan ce depends criticall y on these two 
factors, we conducted pilot resear ch on these topic s (including consultation with outside 
experts in statistics, epid emiology, and medical product safety), and present these results 
in Appendices A- B to supplement this report. Our recommendations (S ection 7) also 
provide som e guidanc e on these topics. 

1.3. Purpose 

The primary goal of this report is to evaluate existing signal detection methods for 
potential use in the Sentinel Initiative to condu ct active post-licensure safety surveillance 
for FDA-regulated medical products. We assume that active surveillance has been 
determined to be the preferred post-licensure surveillance system and that the available 
database info rmation is of adequat e quality to support surveillance activities. Our 
evaluation included asystematic review 0 f the signal detection literatur e to identify a 
wide range of possible relevant method areas, a Screening Evaluation to assess method 
assumptions and potential applicabilit y to Sentinel Initiative goals, and a detailed Full 
Evaluation ofmethods with clear promise for use in the Sentinel Initiative. Our Full 
Evaluation involved rese arching published literatu re, facilitating teleconferences betw een 
the FDA and outside experts in vaccine and drug safety, pharmacoepidemiology, and 
biostatistics, and directl y interviewing additional outside ex pert scientists in these fields. 

Specifically, in this report we statisticall y and clinically describe each method, including 
each method's field of origin, statistical properties, appropriaten ess of assu mptions, 
accuracy, strengths and weaknesses, and limitations in a post-licensure su rveillance 
setting. We summarize prior and current uses 0 f each method, includin g representative 
publications and presenta tions that use each method as well as first-h and input from 
researchers and method developers on their experience with ex isting methods and plans 
for future methodological developments. We assess what is known about each method's 
robustness across different data sources, includin g administrative and elect ronic medical 
record data, and we assess what is known about ea ch method's flexibility to 
accommodate different signaling threshold levels and different types of adverse 
outcomes. Recommendations for pursuing the most promising existing signal detection 
methods for use in the Sentinel Initiative ar e given. 

2 Continuous sequential monitoring methods 

In classical hypothesis te sting, a single test is performed at the end 0 f a study to compare 
the evidenc e in support of a null (Ho) versus an alternative (HA) research hypothesis. A 
hypothesis test can h ave two types of errors: Type 1 or false positive er ror (often denoted 
by u) which involves falsely rejecting the null when the null is true, and Type 2 or false 
negative error (often denoted by p) which involve s failing to reject the null when the 
alternative is true. An ind ividual hypothesis test is conventionall y designed to ensure that 
the probability of a false positive error is sm all, typically with u=O.05. 

Sequential hypothesis tes ting involves conductin g repeated hypothesis tests at multiple 
points in time throughout a study as data accrue. However, if multiple hypothesis tests are 



conducted, each with a false positive error r ate of 0.05, then the overall false positive rate 
across all tests may be considerably larger than 0.05 because the probability of rejecting 
the null by chance increases as the number of tests performed increases. Sequential 
testing methods are speci fieall y designed to contro I the overall false positive statistical 
error rate across all tests performed. Continuous sequential testing methods involve 
controlling the overall false positive rate when a hypothesis test is perfo rmed 
continuousl y in time as each new subje ct enters the study. 

2.1 Sequential probability ratio test 

2.1.1 Overview 

The sequential prob ability ratio test (S PRT) is a type of sequential hypothesis test 
originally developed for manufacturing quality control.s SPRT involves comparing the 
amount of evidenc e in support of a null hypothesis (Ho) versus a sim pIe alternative 
hypothesis (HA) continuously in time after each new observation enters the study. For 
example, in a medical product safety setting, one might be interested in testing whether 
the probability of an adverse event outcome is higher by a pre-specified amount using the 
relative risk (RR) of an adverse event for exposed compared to unex posed individuals and 
following test: Ho: RR=R 0 (where Ro is usuall y 1) versus HA: RR=RA , whe re RA is a single 
value. Using SPRT, one tests the desired hypothesis by computing the cumulative sum of 
the log-likelihood ratio test (LRT) after each new subject enters the stud y and comparing 
the observed LRT statistic with pre-spe cified upper and lower thresholds. The larger the 
LRT, the more the observed data support HA versus Ho. At each test, three decisions are 
possible: 

1) if the loge LRT) is greater than a pres et upper threshold (B), HA is ace epted 
2) lfthe log(LRT) is less than a preset lower threshold (A), one accepts Ho 
3) If the log(LRT) is in between A and B, monitoring continues 

The thresholds A and B are selected to ensure that the overall statistical er rors of the test 
(i.e. the Type I false posi tive error rate, a, and the Type 2 false negative error rate, ~, are 
at pre-specified desired levels (e.g. a=0.05). A visual description of the SPRT decision 
rules is depicted in Fi gure 1. Hypothetical dat a are used to illustrate an ex ample trajectory 
of the log(LRT), denoted by A. In this example, the log(LRT) exceeds the upper 
threshold at the 19th observation, so we accept H A and would stop monitoring after this 
observation. 

2.1.2 Statistical description 

In statistical te rms, SPRT tests a null hypothesis H 0 : I = 10 versus a simpIe altern ative 

hypothesis H A : 1= J; based on independent obse rvations XI' X 2 , '" having a common 

density function I. As the /h observation arrives, the log -likelihood ratio statistic Ai is 

calculated: 



The stopping rule is as follows: 

1) Ai;::: B: stop monitoring, and accept H A 

2) A < Ai < B: continue monitoring 

3) Ai =s; A : stop monitoring, and accept H 0 

where 0 < A < B < (fJ (see Figure 1). 

A and B are chosen to maintain the pre-specified Type 1 and Type 2 errors. Exact values 
ofA and B are difficult to calculate analytically, but Wald showed an approx imation to 

the thresholds: A:::; loge~), B :::; loge1- fJ). This approximation is based on the 
I-a a 

assumption of neg ligible excess of the likelihood ratio over the threshold w hen the test 
ends, which is often true in practice. 

As an example, the probability of an adverse event in the general population may be 
equal to Po, but vaccin ation may increase this risk. Let XI' X 2 , ... be dichotom ous 

adverse event observations from a Bernoulli distribution with probabilit y, P, of an event. 
Let P = Po among unvaccinated subjects, and suppose we want to test for a 10- fold 

increase in this probability among vaccinated subjects. The hypotheses are thus 
H o : P = Po versus H A : P = PI = 10po or in terms of the RR we have H o : RR =1 

versus H A : RR = 10 with known Po' Ifwe desire Type 1 error a=0.05 and statistical 

power= 1-~=0.8, then based on Wald's approximation the thresholds are: 

A:::; log(~) = -1.56, B:::; loge 1- fJ) = 2.77 
I-a a 

and the log-likelihood rat io Ai is 



After each new subject Xi enters the study, we recompute Ai and compare it to A and B. 

We accept H 0 ifA i ~ -1.56 , accept H A if Ai 2 2.77 , and otherwise continue the stud y 

and evaluate the (i+1)th observation. 

Figure 1: SPRT thresholds (A and B) and observed likelihood ratio statistic values (A) 
from a hypothetical example. 
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2.1.3 Applications 

SPRT was the first method tested within the Vacc ine Safety Datalink (VSD) as an 
approach for conducting longitudinal sequential vaccine safety monitoring. 9-10 Other 
applications in medicine include clinical trials 11- 12 and in observational monitoring of 
patient outcomes post-surgery. 13-14 Adjustment for potentiall y confounding differences 
between exposed and unex posed groups, such as gender, age, or baseline risk status, has 
been proposed for SPRT by making stratified comparisons of the cum ulative log 
likelihood ratios. 13 



2.1.4 Advantages 

The main advantage ofSPRT is that it is computationally simply and easy to implement. 
In addition, SPRT has been shown in som e settings to detect sig nals earlier than chart
based detection methods, such as cum ulative sum charts (CUSUM) and Shewhart p
charts. IS The SPRT threshold plot is also a useful wa y to visualize the monitoring 
process. 

2.1.5 Limitations 

SPRT has several disadvantages: 

•	 Lack of accuracy: Because SPRT tests a simple alternative hypothesis, the resulting 
test statistic is hig hIYsensitive to the choice of the alternative hypothesis. S PRT may 
delay or fail to signal if the alternative is inco rrectly specified (i.e. if the specified 
alternative is not nea r the truth). For example, for a hypothesis test based 0 n the RR, if 
the true RR=2 and one specifies RR =10 as the alternative, then the truth (R R=2) is 
closer to the null (RR=l) than it is to the alternative (RR=1O ) and SPRT may not 
yield a signal. Conversely, if the true RR=1O and one specifies RR =2 as the 
alternative, then because the null (RR=l) and alternative (RR=2) are relatively 
similar, it takes an accum ulation of more data for the LRT to distinguish between the 
two hypotheses and thus a longer time for SPRT to generate signal. Therefore, to 
ensure that SPRT produces an accurate and timely signal, one must know beforehand 
what the true ex cess risk is, which is unlikel y in practice. 

•	 Unpredictable Iength of surveillance: S PRT monitoring may continue indefinitel y if 
the log( LRT) stays between A and B. The re is no guarante e that the log( LRT) will 
either exceed B 0 r be lower than A and thus r each a conclusion in favor 0 f HA or H0

•	 Designed for continuous testing: 
o	 Although continuous or nearly continuous weekly monitoring may be 

advantageous for rapid detection, such hi ghly frequent assessments may not be 
feasible or desirable in all settings. For example, a complex and large linke d 
database system may not be equipped for real-time analyses, but it might be 
possible to assem ble and analyze such data on a less frequent basis. Further, 
continuous testing is not possible when outcom es require confirmation by review 
of medical charts, since chart-validated outcomes generally cannot be obtained in 
real-time. Such confirmation is not uncom mon to ensure the accuracy of 
outcomes presumptively-identified in health car e utilization databases. Interim 
analyses could be performed periodically, however, as batches of chart-reviewed 
outcomes become available. Even unconfirm ed presumptively-identified adverse 
event data do not always accumulate in a strictly continuous fashion but rather 
may actually be updated on a weekly or less frequent basis. 

o	 When data are analyzed continuously in close-to-real-time, there is an increased 
probability of data quality problems that arise relating to changes in the dynamic 
health care utilization databases. Changes can be due to delays in the arrival of 
data on adverse events (e.g. due to delay in receiving hospital claims data), delays 
in the arrival of exposure status data, disappea ring people (e. g. due to the fact that 



health care organization enrollment files are only updated on a periodic basis). In 
the YSD's safety surveillance studies, a 1ag of 8 weeks is necessary to allow 
database info rmation to stabiliz e. 

o	 Because SPRT thresholds are desi gned for continuous testing, if SPRT is applied 
on a less frequ ent basis (which may be likel y in practice) it does not have optimal 
statistical power com pared to alternative threshold s (e.g. thresholds desi gned for 
less frequent interim monitoring) that maintain the same Type 1 error. 

o	 Although sequential testing can largely be automated, continuous testing is 
inherently more expensive than testing on a less frequent ongoing basis. There are 
also significant costs associated with developin g the infrastructure to acquire data 
in real-time to facilitate continuous analyses. 

•	 Constant (flat) threshold over time: Although a flat boundary is more powerful at 
early time points, it also yields more Type I errors at early time points compared to 
many commonly used boundaries in clinical trials which are wider at earlier time 
points and narrower at later time points. Type 1 errors can be very costly in a safety 
surveillance settin g. For example, in the YS D, all signals (true or false) based on 
outcomes defined using information from utilization databases are followed up with 
extensive confirmatory analyses (e.g. outcome validation by chart review, alternate 
statistical anal yses using different comparison groups, control outcom es, control 
exposures, and scans fo r temporal trends in outco me occurrence). Since numerous 
outcomes and vaccines are being monitored within the YSD, the resources needed to 
confirm or refute false positive signals can therefore be quite large. A narrowing 
threshold over time, such as those used in som e clinical trials, may be advantageous 
because it c an prevent Type 1 errors from being made at early time points when 
sample sizes are small and there is greater uncertainty and variability in the data. It 
also retains more power at later time points when more data have accumulated. 

•	 Lack of interpretability: Stopping thresholds for S PRT are computed on the scale of 
the LRT, which can be difficult to interpret. Usin g a more familiar statistic like the 
RR, that is on a scale whi ch investigators naturally quantify risk differences, could 
improve the transpa rency of the threshold-settin g process and facilitate a better 
understanding of how the thresholds will perform in practice. For instance, threshold 
selection could be bas ed directly on the size of the RR that represents a concerning 
risk difference for which an investigator would want to signal a safety problem. 

•	 Limited confounder adjustment: Accommodation ofconfounders is possible through 
stratification onl y, which may provide limited adjustment compared to a more 
continuous adjustm ent method if fine enou gh stratification cannot be achieved. 

2.2 Chart-based detection methods 

2.2.1 Overview 

Chart-based methods, such as the cumulative sum chart (CUSUM), Shewhart charts, and 
exponentially-weighted moving-average control chart, derive from SPRT. In this review, 
we focus on the cumulative sum chart (CUSUM) method,16 which was initially 
developed for industrial production monitoring problems, as a representative example of 
a chart-based approach. Like SPRT, CUSUM methods continuousl y monitor the data 



sequentiall y over time until evidence in favo r of a specific alternative hypothesis is 
obtained. In process control, this involves monitoring a subgroup of units taken from the 
production process at roughly the same time until process deterioration is detected. Thus, 
the primary purpose of the CUSUM methodology is to sequentiall y detect a change over 
time in a process from a baseline state of assumed 'control' to a specific state of process 
deterioration. An example of this type of problem in public health is the detection of a 
disease outbre ak in a particular population of inter est. A comprehensive rev iew of the 
advantages and limitations of methods designed to sequentiall y detect change in process 
or in public health survei llance data over time like CUSUM is provided by Sonesson and 
Bock. 17 In this report, we focus on potential applic ability of such methods in the Sentinel 
Initiative where the primary purpose is to dete ct an adverse event risk difference between 
populations ex posed versus unex posed to a new medical product. 

One implements the CUSUM method by performing sequential hypothesis tests 
continuously in time as each new unit enters the production process. The hypothesis test 
compares the amount of evidence in support of a null hypothesis (Ho) that represents a 
state of' control' versus a simple alternative hypothesis (HA ) that rep resents a specific 
state of proc ess deterior ation. Each test is perform ed by computing a score based on 
accumulated info rmation from all previous observ ations. The score will remain close to 
zero for a long time ifno change has occurred in the process but will beco me large and 
move away from zero if a process has deteriorated. Unlike SPRT which has a preset 
lower threshold (A), CUSUM has a 'holding barrier' at zero. This means that if the 
computed score v alue falls below zero, then the sc ore is set and held to be z ero until more 
observations accumulate and the statistic becom es positive again. Thus, in CUSUM 
monitoring one can never fall beneath a lower threshold and' accept' the null hypothesis. 
It is therefore intended for situations in which one desires on going monitoring until an 
alarm is raised. Further, CUSUM procedures are designed to signal if sufficient evidenc e 
has accumulated that an industrial process has changed substantiall yare thus ideal for 
detecting small persistent process ch anges. 18 CUSUM thus allows rapid det ection of 
deterioration (or improvement) in a process while not overreacting to the expected 
smaller fluctuations due t 0 chanc e. 

2.2.2 Statistical description 

The CUSUM procedure sequentiall y tests the hypothesis Ho: 8 = 80 versus HA: 8 = 8A, 

where e is a parameter that characterizes a particular feature of the process that is of 
interest for detecting potential process ch anges. The value of 80 is typically determined 
by current process performance, and 8A corresponds to a specific level of inferior 
performance. The CUSUM procedure involves co mputing and plotting a cumulative 
score (Si) versus the observation number (i=1, 2, 3 ... ) and comparing SitO a preset upper 
stopping threshold desi gned to ensure a pre-specified desired statistical pe rformance level 
(analogous to pre-specifying a desired Type 1 error level). Si=max(O, Si-J + Wi), where So 
is defined to be 0 and Wi is the sample weight or score assigned to the i'h observation on 
the basis of the observ ed outcome of interest. For example, Wi may be specified as the 
log(LRT) comparing baseline risk to a pre-specified increased risk. Moustakides showed 



that the loge LRT) sample weight is the optim al choice for Wi for detecting shifts in the 
odds ratio (OR).I9 

At each test point, two de cisions are possible: 

1) If Sj 2: B: stop monitoring and signal 
2) If 0 ~ Si < B: continue monitoring 

where B is the upp er signaling threshold fo r the plot. 

Because the CUSUM procedure will eventuall y signal with probability one in most 
practical process control setting s, the usual criteria for the evaluation of test procedures 
(false positive and negative errors) are not appropriate for assessing the performance of 
CUSUM. Instead, the performance of the CUSUM chart is determined by the average run 
length (ARL) defined to be the expected length of time (or, equivalent! y, the expected 
number of units observed) before a signal occurs. The in-control average run length (IC
ARL) is the ARL under Ho, when the process is in control, and should ide ally be long 
since a signal would represent a false alarm. The out-of-control average run length (OC
ARL) is the ARL under HA and should be short si nce we want to detect a change in the 
process as soon as possible when it occurs. IC-ARL is analogous to Type 1 error, and 
OC-ARL is analogous to Type 2 error. Determining the ARL for a particular threshold, 
B, is computationall y intensive, but it can be app roximated using Markov chain 
methods.2o Ideally, one chooses a control limit, A, so that the IC-ARL is relatively long 
(i.e. thus yielding fewer false positive errors). 

As an example, suppose we are interested in detecting a certain increase in the odds of 
surgery failure relative to the baseline odds using the OR. The relevant hypotheses are 
Ho: OR = ORo (usuall y 1) versus H.4: OR = ORA. Let X; denote surgical failure for the /" 
subject from a binomial distribution with the prob ability of surgical failure for patient i 

equal to Pi. The odds of failure for patient i under Ho and HA , respectivel y, are ORop; 
(1- Pi) 

OR	 Pand	 ORAPi ,and the probabilities of failure are Pi and A; • Thus, the log
(1- Pi) (1- Pi + ORAPi) 

likelihood ratio weig ht for patient i is: 

W; = log( (1- Pi + ORoPi )ORAJif Xi = 1 (if surgery fails), or
 
\ (1- Pi + ORApJORo
 

1- p. +ORoP.;Wi = log	 I if Xi = 0 (if surgery succeeds) 
[ 

I 

1-Pi+ OR APi 

Thus, Wi is based on 1) the observed Bernoulli outcome, Xi, 2) the baseline probabilit y of 
failure, Pi, and 3) a specified change in the failure probability that is of importance, OR. 
A CUSUM plot looks very much like the plot of SPRT decision rules shown in Fig me 1. 



The main difference is that, instead of havin g both an upper and 10 wer thresholds, 
CUSUM has only an upper threshold at B and a lower barrier set at O. 

2.2.3 Applications 

In addition to production qualit y, CUSUM has been used to monitor proced ures in 
clinical chemistrlO and to monitor rare congenital malfonnations.21 A common 
af-f,lication of C USUM methods in medicine has been to monitor surgical perfonnance, 
2 - 4 and the concept of ' adjusting for case-mix' in the contex t of signal detection was 
first considered in this se tting.22 Specificall y, to account for the fact that bas eline 
mortality risk before surgery varies across patients, an adjustm ent for prior risk can be 
made to avoid incorrectly attributing an increase in mortality rate that is due to patient 
risk differences to the surgeon. Hypotheses based on the OR, for example, can be defined 
based on an OR that incorporates baseline risk differences between patients. A bivariate 
CUSUM methodology designed to simultaneously monitor two outcom es has also been 
developed 25 as well as other vari ations ofrisk-adj usted CUSUM including resetting 
SPRT (RSPRT) and fast initial response (F IR) CUSUM, which are discuss ed by Grigg et 
1 26 a. 

2.2.4 Advantages 

Like SPRT, chart-based methods provide useful v isual summaries of the monitoring 
process and are relatively simple to implement. They are slightly more complex 
computationally compared to SPRT since the thresholds do not have a sim pIe analytic 
approximation and must be obtained via Markov chain methods. Other advantages 
include the following: 

•	 Chart-based methods are more flexible than SPRT and can potentiall y be better 
tailored to specific applications: 

o	 The sample weight, Wi, is purposely general rather than being defined as a 
specific statistic, such as the log(LRT) for SPRT. Different choices for Wi can 
thus be made depending on the desired setting. Although specifying Wi as the 
log(LRT) has been shown to be optimal for settings in which detecting shifts in 
the OR is of interest, diff erent values 0 r statistics may be used fo r Wi in other 
settings. 

o	 The sample weight, WI> may be defined using cumulative historical infonn ation 
from previous observ ations or just using recent prior history. For example, 
CUSUM depends on the sum of the entire process history while Shewhart chart 
evaluation depends on a recent subgroup. 

•	 Chart-based methods need not be perfonned on a strictly continuous basis. For 
instance, in production monitoring, data are analyzed after groups of a pre-specified 
size are observed. 

2.2.5 Limitations 



The primary limitation of chart-b ased methods tha t derive from process control such as 
the CUSUM is that the type of signal detection for which they are designed is not the 
same type of signal that is generally of interest in a setting like the Sentinel Initiative. In 
particular, CUSUM is designed to detect a change in a process over time (i.e. to detect a 
temporal change in risk within the sam e population). The proc ess is assumed to begin in a 
state of' control' and may later shift to an 'out-of-control' state at a 1ater time point. This 
is in contrast to the Sentinel Initiative's primary purpose, which is to detect a difference 
(that is not ex pected to change over tim e) in adverse event risk between a group exposed 
versus unexposed to a new medical product. One exception in the contex t of post
licensure safety when a method like CUSUM may be of interest, is if one wants to detect 
an elevated safety risk that may be due to a problem with a specific drug or vaccine lot. 
In this instance, on e would expect to see an elevated risk onl y at certain points in tim e 
(i.e. during uptake of th e 'bad lot'), and the CUSUM would be suited to detect this t ype 
of increase. 

In addition, chart-b ased methods share m any of the same limitations as S PRT: 

•	 Potential lack of ac curacy (due to testing of a simple alternative hypothesis) and an 
unpredictable len gth of surveillance (since B is no t guaranteed to be exceeded) 

•	 They are designed for continuous testing which may not be feasible or desi rable in all 
settings. 

•	 The signaling threshold is restrictive in that it is constant (flat) over tim e. 
•	 There is a lack of interpretability and transparency in determining the stopping 

threshold. 
•	 There is relatively limited methodology to handle confounder adjustment. 

Other disadvanta ges inc! ude the following: 

•	 Chart-based methods are designed for monitoring a process until a signal is detected. 
There is no stopping rule to allow acceptance of the null hypothesis (of no signal). 

•	 Different chart methods are bette r for detecting different types of potential signals, 
but no single method is best for all signal types. For example, CUSUM does not 
detect large abrupt shifts as fast as a Shewhart chart. Shewart charts are sensitive to 
large process shifts but do not detect sm all shifts well. 

•	 Comparison of perfo rmance with other sequ ential methods, such as S PRT, is more 
complicated bec ause the statistical perform ance criteria (i.e., the ARL), although 
analogous to standard hypothesis testing criteria (Type 1 and 2 errors), are not the 
same. 

•	 Calculation of ARL and the signaling threshold is complex but possible. 
•	 Separate chart analyses are needed if a 2-sided hypothesis test is desired. 

2.3. Maximized sequential probability ratio test 

2.3. t Overview 



The maximized sequential probabilit y ratio test (maxSPRT)6 a continuous sequential 
testing method that ex tends the SPRT to test a composite rather than a sim pIe alternative 
hypothesis. For example, one may test Ho: RR = Ro versus HA: RR > Ro. In addition, 
maxSPRT allows comparisons of risk to be made between an exposed group and 
concurrently matched controls (by assuming binomial distributions in the two groups and 
comparing the probabilities of events) as well as between an exposed group and historical 
controls (b y assuming a Poisson distribut ion in the exposed group and comparing that 
rate with the rate estimated from historical control s). Like SPRT, maxSPRT involves 
computing a LRT statistic continuousl y in time after each new subj ect (or matched pair) 
enters the study and has an upper signaling threshold designed to ensure that the Type 1 
error rate is maintained at a pre-specified level. In addition, maxSPRT has an 'end of 
study' threshold, a preset point in time after which (ifno signal has been reached) the 
study terminates and fails to reject Ho. 

2.3.2 Statistical description 

Kulldorffproposed the maxSPRT ofa null hypothesis H o : f = fo versus a composite
 

alternative hypothesis H A : f *- fo based on independent obse rvations Xl ' X 2 ' ••• having
 

a common density function f .6 Usually, the observations are known to be from a
 

specific family f with an unknown param eter 8, and so the null and alternative
 

hypotheses become H 0 : 8 = 80 versus H A : 8 *- 80 , The alternative can also be one-sided,
 

H A : 8 > 80 or H A : 8 < 80 , As the ith observation arrives, the 10 g-likelihood ratio statistic
 

A,. is calculated:
 

SUP lfEEl UEl L(X1 , X 2,... , Xi 1 8)] ( [T/" =1 f(X; I B) J
A = log A 0 = log ----'..'-------- 

I 
( sUPlfEEloL(X!,X2, ...,XiI8) fI=lf(X;IBo) , 

where 8 0 ,8 A are parameter spaces under H 0' H A' and Bo ' B are the maximum 

likelihood estimates (MLEs) of 8 in 8 0 ,8 0 UeA' The stopping rule is as follows: 

• Ai ~ B: stop monitoring and accept H A 

• A; < B , i < N : continue monitoring 

• Ai < B , i = N : stop monitoring and accept H 0 

where 0 < B < co, N < co. N is a pre-specified upper limit of monitoring. IfN subjects 
accumulate and no signal is detected, the stud y terminates and H 0 is accepted. B is 

chosen to maintain a pre-specified Type 1 error and is computed through simulation. 

For example, let Xl' Xl' ... from Bernoulli(p) denote the adverse event status (yes or no) 
for vaccinated subjects. In unvaccinated population, the probabilit y of an adverse event 
is Po' We want to test whether vac cinated subjects have a higher probability of getting 

adverse events than unva ccinated subje cts (H 0 : P = Po versus H A : P > Po ). The desired 



Type 1 error and power are 0.05 and 0.8, respectively. The test is equivalen t to 
H 0 : RR = 1 versus H A : RR > 1 with known Po' and the log -likelihood ratio A; is 

x	 (1 )l-X J [ I' x, i-I' XI]sup P~Po TIi;~I. P - p! sup P~Po P (1- p) i.=1I	 1=1 

A.	 = log . ' = log I 

I Y 1- YTI'	 ,," I Y( j~lPO'I(l-po) "	 POL..,=,xJ(l-PO)I- j='" 

_{(II
H 

X;) log( Ii;~1 X;) + (i _ Ii;~1 X j) log(i ~ Iii~1 Xi ), I';~l X; 2 ipo 
- . lpo l(l- Po) 

0,	 I'i~l X; < ipo 

since the M LE of p under p 2 Po is max( I'~~l. X j ,Po). We accept H A if Ai 2 Band 
I 

accept H 0 if we have not exceeded B when we reach the Nth subject. A hypothetical 

example of the maxSPRT stopping threshold is shown in Fig me 2. The likelihood ratio 
statistic ex ceeds the uppe r threshold at the 19th observation, so in this ex ample we 

accept H A' 

Figure 2: MaxSPRT thresholds and observed likel ihood ratio statistic values (A) from a 
hypothetic al example. 
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2.3.3 Application s 

MaxSPRT was first proposed for vaccine safety surveillance. It was the second approach 
used within the VS DID and has also been considered for application in Ion gitudinal drug 
safety surveillance in the HMO Research Network's Center for Education and Research 
on Therapeutics (CERT). 27-28 Summaries of both the methodological and practical 
challenges that have arisen when applying maxSPRT for medical product safety 
surveillance based on inp ut from statistician, epidem iologist, and clinician investig ators 
from the VSD and CERT can be found in Appendices AI-3. 

2.3.4 Advantages 

The main advantage ofmaxSPRT compared to other continuous methods is that it tests 
for a composite versus a simple alternative hypothesis, which prevents the signaling 
accuracy problems that are associated with other methods. The maxSPRT is also 
computationally simply and easy to implement as Kulldorffhas provided a 
comprehensive t able of signaling threshold (i.e., critical) values fo r a range of potential 
RRs of interest and a ran ge of expected number of adverse events likel y to be observed.6 

Like SPRT, maxSPRT can be charted to provide useful visual summaries of the 
monitoring process. The maxSPRT also offers increased flexibility compared to other 
continuous methods by allowing for comparisons of risk to be made between an exposed 
group and concurrently matched controls as well as between an exposed group and 
historical controls. 

2.3.5 Limitations 

Although more accurate and flexible than SPRT, maxSPRT shares some of the same 
limitations as SP RT. First, maxSPRT is designed for continuous testing, and thus it 
performs optimally only in that setting. For instance, the VSD implements maxSPRT by 
performing a LRT test on a weekly (rather than a strictly continuous) basis. For weekly 
testing, the maxSPRT stopping thresholds (which control for a fixed Type 1 error rate 
under the assumption that continuous testing is being performed) are too conservative 
(i.e. too high) As an illustration, assum e a I-year study with ~ expected events under the 
null hypothesis of no iner eased risk among recipients of a new medical product. Table 1 
shows the stopping thresholds for maxSPRT (i.e. a LRT with continuous te sting) and the 
stopping thresholds for a sequential LRT conducted on a weekI y basis. Both thresholds 
are designed to hold the sam e Type I error rate of 0.05. In order for maxSPRT to hold the 
same Type I error rate as a weekly LRT test, maxSPRT requires a higher threshold since 
it allows for more frequent testing (i.e for maxSPRT, there are more opportunities for 
false positive erro rs). The data in Table 1 sho w that if weeki y testing is performed, the 
thresholds can be set considerabl y lower than th e maxSPRT boundaries particularl y as 
the expected num ber of events, ~, increases. In other words, use of continuously-designed 
maxSPRT thresholds when testing is actually performed on a weekly basis means that 
higher-than-necessary thresholds are used. This yields a Type 1 error rate that is lower 
than desired and subopti mal statistical power. 



Table 1. Stopping thresholds for a sequential LRT: continuous (maxSPRT) vs. weekly 
testing 

Expected 
number 

of events 

maxSPRT Weekly 
LRT 

II =1 2.86121 2.70944 
2 3.05217 2.55459 
5 3.30220 2.88088 

10 3.47399 2.88088 
20 3.63490 3.03593 
50 3.82760 2.95867 

100 3.95952 3.05170 
200 4.07969 3.12476 
500 4.22903 3.13165 

1000 4.33164 3.14484 

A second potential restriction of m axSPRT is that it involves a flat sig naling threshold 
over time. Compared to other potential threshold shape choic es, a flat threshold may 
result in more false positi ves earl y on in a study (when there is less data and inherentl y 
more variabilit y) and less power at late r time points in the stud y. Third, the maxSPRT 
stopping thresholds are computed on the scale of the LRT, which can be difficult to 
interpret and yields a somewhat obtuse stopping threshold selection proc ess. Specifically, 
when designing a safety surveillance study using maxSPRT, one must pre-specify the 
number of adverse events that are expected to occur during the study period and this then 
determines the LRT signaling threshold. However, it may be difficult for an investigator 
to estimate the expected number of events in advance. Further, the relationship of this 
quantity to the resulting stopping threshold is mathematically complex, and the resulting 
value of the stopping threshold on the scale of the LRT is not clinical meaningful. 
Therefore, as currently implemented, it is difficult to assess the operatin g characteristics 
of the maxSPRT threshold in advance. Alternative ly, threshold sele ction co uld be based 
directly on the size of the RR that represents a concerning risk difference for which an 
investigator would want to signal a safety problem. 

A fourth limitation is that, as with other continuou s monitoring methods, accommodation 
of confounders when comparing an exposed group to a concurrently matched control 
group is achieved by the binomial-based maxSPRT through stratification. This may 
provide limited adjustment compared to a more continuous regression-bas ed adjustment 
method if stratification is not fine enou gh. Conversely, when very fine 
stratification/m atching categories are used for the binomial-based maxSPRT, there is 
potential for a loss of information due to an inabilit y to identify exposed-unexposed 
matches within such nar rowly defined strata. Several investigators within the VS D, 
including members of our group at Group Health, are currently developing methods to 
generalize maxSPRT to more comprehensively adjust for confounders (i.e. using a 
regression-based covariate-adjustment approach) and to avoid the information loss 



Iproblem that may occur if matching is too restrictive (i.e. broaden from a matched 
Isampling design to an unmatched cohort design). 

Last, the Poisson-based maxSPRT which involves com paring the adverse event rate in an 
exposed group with a rate estimated using historical controls, is fair! y sensitivity to 
misspecification of histor ical rate. This sensitivit y occurs because maxSPRT assumes that 
the historical com parison rate is known and do es not acknowled ge the uncertainty in this 
estimated value. This bec omes particularl y problematic when the am ount of available 
historical data upon whic h to estimate the historical rates is reI atively small, as can often 
be the cas e with rare adverse events within pre-sp ecified strat a of interest. Kulldorff and 
his Harvard colleague Lingling Li are currently developing a new extension to maxSPRT 
that addresses this issue. 

3 Group Sequential Monitoring Methods 

3.1 Overview 

In contrast to continuous monitoring methods, gro up sequential monitoring involves 
analyzing data after a group of subjects ac crues in the study, rather than analyzing the 
data after each individual subject acc rues. Group sequential desi gns can be considered to 
be a generalization of the continuous monitoring approach. Specifically, continuous 
monitoring is a special case of a group sequential design where each individual is its own 
'group.' In group sequential monitoring, the size of the groups analyzed or equivalently 
the frequency with which monitoring is performed can be varied depending on the 
desired monitoring specifications. In clinical trials, for example, many group sequential 
stopping designs have been developed and are widely used as described in the recent 
reviews by Emerson et. a1.7

-
8 As with continuous testing methods, signaling thresholds in 

group sequential desi gns are computed to account for the multiple testing that maintains 
an overall pre-specified Type 1 error rate. 

3.2 Statistical description 

The key feature 0 f a group sequential test is that, instead of testing after each new subject 
accrues, as is done for continuous monitoring methods such as SPRT and maxSPRT, 
analyses are conducted after a group of subjects accumulates. In addition, the stopping 
thresholds can be sp ecified to vary over time, if desired. Two commonly used thresholds 
are the Pocock29 threshold, which is constant over time, and the 0' Brien-Fleming30 

threshold, which is wider at earlier time points and narrows at later time points. Group 
sequential tests can be applied to a wide variet y of hypotheses testing H 0 versus H A' and 

several stand ard test stati stics of these hypotheses can be used. The desired Type I and 2 
errors and the total num ber of plann ed tests, T, are specified in advance. If testing is 
planned after m subjects accumulate, as the /h group ofm observations arrive, the test 
statistic, Zi ' is calculated ba sed on these i*m subjects, and the stopping rule is as follows: 

• 1Zi 12 B,(T,a): stop monitoring and accept H A 



• I Zi 1< Bi(T,a), i < T: continue monitoring 

• IZi 1< BJT,a), i = T: stop monitoring and accept H o 

where 0 < B < 00, T < 00. is a pre-specified value, representing the threshold at the /hi B i 

test, that depends on the number of tests planned, T, and the desired Type 1 error, u. Less 
frequent testin g (smaller T) will result in a lower Bi • The Pocock threshold is constant 

over time: Bi(T,a) = Bp(T,a), i = 1,2, ,T. The O'Brien-Fleming threshold assumes 

that Bi(T,a) =BOF(T,a)~1j{ , i =1,2, ,T, which is a decreasing function overtime. 

Wang and Tsiatis31 proposed a fam ily of thresholds, which encom pass Pocock and 
O'Brien-Fleming, indexed by a parameter ~. Changing this parameter allows different 

thresholds shapes: Bi(T,a) = (T,a,M(j1,)/l-1/2 , i = 1,2, ... ,T, ~ E [0,1/2]: The Bwr 

Pocock and the 0 'Brien-Fleming thresholds are special cases with ~ =1/2 and ~ = 0, 
respectivel y. 

For example, suppose weare interested in testing whether vaccinated subjects have a 
higher probability of having a certain adverse event than unvaccinat ed subjects, as 
described previously for the maxSPRT example. At the /h test, the likelihood ratio 
statistic is the sam e as calculated befo reo However, now instead of i subject s, we have 
i*m subjects: 

Since 2A i ~ X12 , rejecting H o if IZi Iz Bi(T,a) is equivalent to 2Ai z Bi (T,a)2. Critical 

values B; (T ,a) can be calculated through simulation. We accept H A if 2A i z Bi (T, a)2 , 

and accept H o if we don't detect any signal until the r h test. A hypothetical example 

using both a Pocock and an O'Brien-Fleming threshold and T=5 is shown in Fig ure 3. 

3.3 Applications 

Group sequential testin g methods are widel y used in randomized clinical trials to monitor 
the efficacy and safety of new medical products. Clinical trial sequential tes ting 
procedures were originally proposed by Armitage32 and considerable methodological 
developments have been made since that time (see texts by Jennison and Turnbu1l33 and 
Whitehead34

). For instance, flex ible and wide-ranging stopping rules have been proposed 
ed on both scientific a nd statistical criteria and using different interim monitoring 



schedules and adaptive designs. Emphasis has been given in these contexts to full y 
investigating the operating characteristics of a particular stopping rule to ensure that the 
design choice is satisfa ctory from a clinic aI, statistical, and ethical pe rspective. 7-8 

3.4 Advantages 

Group sequential testin g is advantageous because it can result in lower ex peeted sample 
sizes and a shorter average study length than a conventional fix ed sample study (where a 
single analysis is performed at the end of stud y follow-up). Compared with a continuous 
sequential testing approach, the group sequential testing framework offers flexibility in 
the size of the groups analyzed or equivalently the frequency with which monitoring is 
performed. And, in general, less frequent testing leads to increased overall study power. 
In addition to flex ibility in the frequency with which data are monitored, group sequential 
monitoring methods offer flexibility in the shape of the signaling threshold over tim e as 
well as the type hypothesis and statistic/criteria used for hypothesis testing .7-8 

Figure 3: Pocock and O'Brien-fleming thresholds with T=5 tests and obse rved likelihood 
ratio statistic values from a hypothetical example. 
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3.5 Limitation s 

Although careful study of a variety of group sequential designs has been performed in 
randomized clinical trial setting s, their use in active observational sa fety surveillance, in 
which more frequent (e.g. monthly, weekly) safety monitoring may be desired and where 
confounding is a potential concern, has not been considered. In fact, there are many 
unanswered questions ab out how to best appl y a group sequential appro ach in an active 
observational safety surveillance settin g: 

•	 How frequently should sequential testing be performed? Should testing frequency 
change over time? 

•	 What signaling threshold shape is most desirable? 
•	 What test statistic is best for quantifying risk differences between exposed and 

unexposed groups? 
•	 Should these desig n choices vary by the adverse event of interest? If so, how? 

(e.g., based on known risk-benefit information, prevalence of the outcome, 
severity of the outcome) 

To guide such design decisions, statistical inform ation about the operatin g characteristics 
of a variety of group seq uential desig ns of potential interest in an active su rveillance 
setting is needed. In particular, conducting simulation studies designed to compare 
different group sequentia I designs (i.e. designs with different testin g frequencies, 
signaling threshold shapes, and test statistics for quantifying risk differences) based on 
relevant statistical crite ria including power (i.e., the probability of correctly concluding 
that an exposure is unsafe) and timeliness (i.e., the time to correct detection of safety 
problem) would be useful. For example, although it is apparent that testing less 
frequently (i.e., in a group sequential fashion) will yield higher overall statistical power 
and longer time-to-signal detection than testing continuously, specific power-timeliness 
trade-offs associated with particular degrees of less frequent testing have not been 
studied. Members of our team at Group Health are currently conducting this type of 
comprehensive sim ulation study evaluation in order to develop am uch needed formal 
statistical fram ework for optimally designing group sequentiall y monitored observational 
safety surveillance studies. 

A second lim itation of group sequential testing methods in the contex t of active 
observational safety surveillance is that confound er adjustment methods are limited. In 
clinical trials, random ization generall y equalizes confounder differences between 
comparison groups. In an active observ ational surveillance settin g, however, group 
sequential anal ysis methods need a robust mechanism to adjust for potential confounde rs 
since comparison groups are not randomized by design. VSD investigators, including 
members of our team at Group Health are currently developing such methodological 
advances. 

A final limitation of a group sequential fram ework compared to maxSPRT is that it is 
inherently more complex. No single table of existing signal thresholds c an be used as the 
threshold level will var y by testing frequency and possibly over time. However, signaling 



thresholds for a given group sequential desi gn can be obtained in a fairly straightforward 
fashion via sim ulation. This is often done in seque ntially monitored clinical trial 
planning. Further, although there is added complexity in designing group sequential 
monitoring plan that varies depending upon the specific adverse event outcome and 
medical product bein g monitored, a tailored group sequential desi gn will like1y better 
achieve the desired scientific goals compared to a one-size-fits-all design approach. 

4 Data Mining Methods 

4.1 Overview 

Data mining is a technique of extracting hidden associations or patterns of association in 
large datasets when manual inspection is not feasi ble. Data mining methods are generally 
aimed for hypothesis generation and signal strengthening rather than hypothesis testing. 
The data mining methods that are most commonly used in pharmacovigilance include the 
proportional reportin g ratio (PRR)35, a Bayesian confidence propagation neural network 
(BCPNNi6,37, and the multi-item gamma Poisson shrinker (M GPS). 1,2 All of these 
methods are bas ed on a quantitative measure of disproportionalit y which compares the 
observed with the ex pected reports of a certain outcome-exposure combination. The 
observed number of reports of a particul ar outcome-exposure combination is com pared to 
an estimate of the expected number based on all other reports in the dataset (i.e. reports 
for other adverse event outcomes and exposures). Therefore, all other exposures and 
outcomes in the dataset a re used as the comparison group. The dataset can be restricted to 
a subset of exposures and adverse event outcom es in order to achi eve the desired 
comparison group. The PRR, BCPNN, and MGPS each derive a different statistical 
measure to quantify the ratio of observed-to-expected reports. Thus, the y each have a 
different approach to statisticall y determine which outcome-exposure combinations 
generate a signal indicati ve of a safety problem. 

4.2 Statistical description 

4.2.1 Proportional reporting ratio (PRR) 

The Proportional Reportin~ Ratio (PRR) is a very simple statistical tool tha twas 
developed by Evans et. ae to generate a signal of a possible unreco gnized hazard from 
spontaneous adverse event reporting data (Table 2). 

Table 2. Structure of data used by the PRR and other data mining methods 
Drug of interest All other drugs in database 

Adverse event (s) of interest I a b a+b 
All other advers e events led c+d 

a+c b+d N 



where 
a = number of a specific adverse event for the drug of interest 
a+b = total number of that specific adverse event for all drugs in the dataset 
a+c = total num ber of reports of the dru g of interest in the dataset 
N = total number of reports of any drug-adverse event in the dataset 

For a given drug of interest, the proportion of a pr e-specified adverse event (or group of 
adverse events) among all events related to that dr ug is compared to the proportion of that 
same adverse event(s) among all events related to all other drugs in the database. The 
ratio of these two propo rtions is called the P RR and is defined as follows: 

PRR =	 a I(a + c) . 
bl(b+d) 

Measures of statistical as sociation may be calculated using a chi-squared test on one 
degree 0 f freedom with Yate's correction. 

Three pieces of information are used to define the signaling threshold for a specific 
adverse event related to the drug of interest: 1) the value of the P RR, 2) the value of the 
chi-squared statistic based on the 2X2 table data, and 3) the total num ber of adverse 
event(s) reported. Specifically, if the PRR is at least 2, the chi-squared stati stic is at least 
4, and number of adverse events is at least 3, then a signal is generated. 

4.2.2 Bayesian Confidence Propagation Neural Network (BCPNN) 

Bate et al. described a Bayesian confidence propagation neural netwo rk (BCPNN) for 
adverse event signal detection.36 

,37 The method uses a fully Bayesian framework, which 
enables the method to account for uncertainty when a small number of drug-adverse 
event combinations is observed. The st rength of the dependency between a drug and an 
adverse event is measured by the information component (IC) defined as the logarithm of 
the ratio of the observed rate of a specific drug-adverse event to the expected rate of 
adverse event under the null hypothesis of no asso ciation between th e drug and the event. 

Using the same notation as in Table 2, the c rude estimate of IC, lco ' without using a 

Bayesian modeling framework is defined as follows: 

lc = 10 al(a+c) 
o g2(a+b)IN' 

Therefore, IC is defined as 

P(event is y Idrug is x) 
Iog2	 . 

P(event is y) 

By incorporating a Bayesian framework, Bates et. al. use the property that under the null 
hypothesis of no association between drug x and reaction y, 



P(drug is x, event is y) = P(drug is x)P(event is y) 

Therefore, 

P(event is y Idrug is x) I P(drug is x, event is y)
IC = Iog = og 

2 P(eventisy) 2 P(drugisx)P(eventisy) 

where 

P(drug is x, reaction is y) = probability of a specific drug-adverse reaction 
combination (x and y) among all adverse reaction reports, 

P(drug is x) = probability ofdrug, x, among all adverse reaction reports, and 

P(reaction is y) = probability of adverse reaction, y, among all adverse reaction 
reports 

Bates et. al. assume that P(drug is x, reaction is y), P(drug is x), and P(drug is y) each 
follows a beta-binom ial distribution, and IC is estimated using the posterior mean and 
varianc e from a fully Bayesian model specific ation. A valuable feature of this type of 
estimate, compared to the crude estimate for IC, is that if a drug has very few reports of 
the adverse event of interest (i.e., if the sam pIe size is small), then the poste rior mean 
estimate of IC will be shrunk accordingly towards the null to reflect this uncertaint y due 
to the limited amount of available data. The crude estimate of IC does not have this 
feature and thus can be more subject to false posi tive signals when sample sizes are 
small. When sample sizes are large, then the BCPNN posterior mean estimate of IC will 
be similar to the crude estimate of IC A 95% credible interval for the poste rior mean 
estimate of IC is calculated to provide a measure of robustness. If the lower 95% limit of 
that interval is greater than zero, a signal is generated. 

4.2.3 Multi-Item Gamma-Poisson Shrinker (MGPS) 

DuMouchel l 
-
2 developed a Bayesian data mining method called the Multi-item Gamma 

Poisson Shrinker (MGPS) that is designed for analysis of a large outcome-by-exposure 
frequency table that has many cells. His work was motivated by interest in anal yzing the 
FDA's AERS database, which is essentiall y a frequency table containing millions of cell 
counts of spontaneous dr ug-adverse event reports. The goal of his method is to find the 
'interestingly large' cell counts in alar ge frequency table for possible fu rther evaluation. 
DuMouchel recommended a signaling criterion based on the results of fitting an 
empirical Bayes model to the cell counts. It is similar to the BCPNN data mining method 
except that MGPS uses a more robust empirical Bayesian approach that can account for 
covariate adjustment through stratifieation. 



The quantit y of interest is the logarithm of the rati 0 of observed num ber of reactions of 
type y that are related to drug x (i.e. the quantity 'a') from Table 2 over the expected 
number of events (Exy): 

~ a 
log, RR=-, 

- Ex)' 

where the expected num ber of events is calculat ed as 

and 
x = drug of interest 
y = adverse event of interest 
z = stratum such as age and/or gender 
Nxz = total number of reports with the drug of interest (x) in stratum z 
Nyz = total number of reports with the adverse event of interest (y) in stratum z 
Nz = total num ber of reports in stratum z 

Using the same notation as in Table 2, 

Note that without stratification and without incor porating the empirical Bayesian 
modeling, 

10 RR=lo a =10 a/(a+c) =ic.
 
g 2 g 2 (a + b)(a + c) / N g 2 (a + b) / N a
 

The method further assumes that the observed count for each drug-event combination, 
Nxy, is drawn from a Poisson distribution with an unknown mean, Jlxy. Additionally, the 
ratio, JlxylExy, is assumed to be drawn from a prior distribution which is a mixture of two 
gamma distributions. An empirical Bayes estimate of the RR, the empirical Bayes 
geometric mean (EBGM), is obtained from the model. It is used to rank all cell counts to 
determine which cells have unusuall y large observed counts com pared to the ex pected 
counts. Similar to the BCPNN approach the EBGM can be seen as a 'shrinkage' estimate 
of the true relative risk for a particular drug-event combination. If the observed or 
expected num ber of events of drug x (a and Ety, respectivel y) is large, then EBGM will 

be close to RR , the crude RR, but otherwise EB GM will be shrunk towards the null value 
of 1. If the lower 95% credible interval of the post erior distribution is greater than 2, then 
a signal is generated. Compared to BCPNN, MGPS is based on a more flexible model 
with fewer assumptions that may fit data better. Although EBGM and BCPNN 



approaches have not been directly compared, the major advantage for EBGM compared 
to the BC PNN is the abilit y to adjust for covariate s through stratific ation. 

4.3 Applications 

The BCPNN method has been routinel y used for signal detection in the World Health 
Organization (WHO) adverse drug reactions (ADR) database since 1998,38,39 and a pilot 
investigation applying BCPNN to the Intercontinental Medical Statistics (lMS) Disease 
Analyzer-Mediplus UK clinical records database of about 2.4 million patients was also 
done,40 The M GPS has been used in evaluating drug adverse reaction signals in the 
FDA's AERS database.3,41 The MGPS method was first applied to the Vac cine Adverse 
Event Reporting System (VAERS) data to assess feasibility,42 and later a sim ulation stud y 
was performed to assess the sensitivity and specificity of the MGPS data mining method 
within the VAER S database.43 The M GPS method was also used to dete ct opioid 
analgesic abuse using data from a network of poison control centers.44 The feasibility of 
adapting MGPS to analyze longitudinal administrative claim s data has been evaluated, 
and the validity of this Bayesian method on claims data seems promising.45 It is 
important to note, thoug h, that this feasibilit y assessment involved appl ying MGPS at a 
single point in tim e to a longitudinal claim s datab ase that was' collapsed' into a cross
sectional dataset. This is in contrast to repeatedly and sequentially applying MGPS at 
multiple points in time in prospective fashion. 

4.4 Advantages 

There are several advantages of the PRR, BCPNN, and MGPS data mining methods. 
First, since all thre e methods use a proportionate approach, and thus the y avoid potential 
biases related to variable reporting (e.g., if the overall level of reporting is high for a new 
drug) and underreporting. Furthermore, these methods can easil y handle concomitant 
medication use by conducting subgroup analysis (i.e., by varying the group of drugs of 
interest). 

For the PRR, calculation and interpretation is straightforward, and it is eas y to implement 
the method in standard software packages. Also, the PRR represents a direct measure of 
the strength of the signal. For the BCPNN and the MGPS, use of the Bayesian framework 
provides for estim ate' shrinkage' when the number of drug-adverse event reports is 
small, which can reduce the occurrence of false positive associations based on small 
sample variability. The empirical Bayes methodology used by MGPS is good at 
minimizing the effect of sampling variance on the interpretation of the relative reporting 
rate. A unique advantage ofPRR and MGPS is that they can handle covariate adjustment 
through stratification. Stratification should be appl ied if confoundin g for the outcome
exposure association is known or suspected. In a study that applied P RR and MGPS data 
mining methods to the VAER S database, stratific ation applied to both methods reduced 
confounding and unmasked some vaccine-adverse event associations that t he methods 
without stratification did not detect. 46 

4.5 Limitations 



beneral Limitations of all three methods: 

IA major limitation of all three data mining methods is that the statistical properties (e. g., 
iTYPe 1 error, sensitivity, specificity) of the standard signaling thresholds may vary when 
/the methods are applied to different d atasets. The standard thresholds typically used by 
,regulatory agencies (e.g., the WHO) derive from the original papers in which each 
Imethod was developed and are as follows: 

•	 For PRR: PRR 2':2, chi-square test statistic 2': 4, and number of adverse event 
reports 2': 3 

•	 For BCPNN: (lC value - 2 standard deviations) > 0 
•	 For MGPS: the lower 95% credible interval of the posterior distribution> 2 

However, the statistical perform ance of these thresholds when the methods are applied to 
other datasets is not kno wn and may vary greatly. For example, Matsushita et. al. 
investigated the performance of standard thresholds for signal detection in relatively 
small (compared to AERS, for example) spontaneous adverse event reporting databases 
maintained by pharmaceutical companies.47 They found that application of the standard 
thresholds for all thre e methods in these sm aller databases yielded very low sensitivit y 
«50%). In a simulation study, they showed that lower thresholds a re needed for these 
smaller spontaneous repo rting datasets to achieve desired sensitivit y levels. They also 
showed that diffe rent thresholds may be needed for more common versus rare outcomes, 
and this is not currentl y done in practic e. 

Another limitation of these data mining approaches is that a large associ ation between an 
adverse reaction and a d rug that is not of speci fic interest (i .e. fo r large valu es of 'b' in 
Table 2) can reduce the likelihood of detectin g a true signal between that adverse event 
and the drug that is of interest. This situation could occur wh en a drug that is an 
indication for the adverse event of interest is included in the dataset ( and thus included in 
the 'all other drugs' comparison group). A soluti on to this problem is to remove that 
drug from the dataset before calculating the test statistic. However, this requires knowing 
and identifying all such drugs in advance, which may not be realistic in pr actice sinc e 
drug indications may not always be recorded. 

Last, since these data mining methods were developed specific ally for pharmacovigilance 
using large spontaneous adverse reporting databases where the denominator includes 
people who take any drug and experience any adverse event, these methods may not be 
the most appropriate dat a mining methods for safety monitoring in a prospective cohort 
like the Sentinel Initiative. It would be use ful to consider how to specific ally extend these 
methods to a prospective cohort data rather than to simply apply these methods in their 
existing form to cohort data. One such extension is currentl y in development by 
DuMouchel for th e MGPS data mining method. In addition, Kulldorff is de veloping a 
tree-based data mining method for use in prosp ective longitudinal surveillan ce that 
explicitly controls for the overall false positive error rate (versus controls in ad hoc way 
as done by current approaches) and that searches for optimal outcome groupings of ICD
9 codes (rather than requires a pre-specified list of outcomes as current approaches do). It 



may also be bene ficial to review the broader statistical literature on dat a mining beyond 
these three methods as they may possess properties better-suited for prospective cohorts. 

Specific Limitations of the P RR method: 

There are several limitations to be noted that are specific to the P RR method. One major 
limitation is that the PRR cannot be calculated ifthere are no adverse events of interest 
reported for the comparison drug(s) (i.e., ifb=O in Table 2). Further, since the PRR is a 
ratio of two proportions, its value is unstable whe n sample sizes are small. Specificall y, 
when the adverse event of interest is rare, the PRR can easily signal when there is only 
one advers e event following the drug of interest. Data in the followin g example showcase 
this limitation. 

Table 3. Example dataset A for a rare adverse event of interest 
Drug of interest All other dru gs in databa se 

Reaction(s) of inte rest 
All other reactions ____~ __'___ 9,'-:_96 110,~05 

10 10,000 rTO,010 

In this case with only 10 individuals reporting use of the drug of interest and only 1 
0

adverse event of inte rest related to that dru g, the PRR is 1/1 =250, which indica tes 
4/10,000 

a very strong signal, well-above the stand ard threshold of 2. Even when the number of 

observed drug reports increases from 10 to 100, the PRR= 1/l00 =24.8, is still very 
4/9,910 

large and indic ates a strong signal (Table 4). 

Table 4. Example dataset B for a rare adverse event of interest 
Drug of interest All other dru s in databa se 

Reaction(s) of inte rest 1 5 
All other reactions 99 9,:06F 10,005 

100 9,910 10,010 

Thus, the PRR method is more likely to yield a false signal than the Bayesian data mining 
methods.48

-
51 Simple corrections to the P RR were initiall y attempted to solve this 

problem, but the BCPNN and MGPS data mining methods, which were developed in part 
due to this problem with PRR, are preferred. 

5 Bayesian updating 

5.1 Overview 

Bayesian updating is a method that has been explored recently as a possible safety 
monitoring methodology for interventional cardiovascular procedures.52

,53 Typically, 



very limited pre-licensure safety information for new interventional cardiology devices is 
available due to sm all study sample sizes and the low occurrence of specific adverse 
reactions in clinical trials. In addition, pre-licensu re clinical trial patient pop ulations can 
be very select, often incl uding healthier patients than those who m ay actually receive the 
new device in clinical practice. Thus, methods for continual post-licensure monitoring of 
new devices have been explored, including Bayesian updating. 

Bayesian updating is a method that incorporat es prior knowledge of adverse event rates 
(e.g., expert opinions, data from previous studies, data observed at earlier time points in 
the current study) to routinely monitor safety. Specifically, one recursively uses all 
available prior kno wledge plus new data available at the current study time point to 
continuall y refine an estimate of adverse event risk in a population of inter est. In 
statistical term s, a prior adverse event probabilit y estimate is combined with current stud y 
data to obtain a posterior adverse event probability estimate for the current time point. 
This updating process is repeated to combine the new additional observed data at each 
pre-specified time point. Summary statistics (e. g., means, medians and 95% credible 
intervals from the posteri or distribution) for the ad verse event probabilit y estimated at the 
final time point are com pared to those estim ated using the initial/prior data to determine 
if there is a hi gher than expected safet y risk in the current stud y compared to initial 
estimates based on pr evious data. Adjustm ent for potential confounders is accomplished 
through stratification. 

5.2 Statistical description 

Resnic et. al. described the Bayesian updating method they applied to monitor the safety 
of 309 patients who unde rwent rotational ath erectomy (RA) in a hospital setting. 52 There 
are four main steps involved in the process: 

(1) Risk stratification 
In order to account for patient characteristics or confounding factors, patients were 
stratified into differ ent risk groups and separate prior and posterior estim ates were 
calculated for each stratum. Risk-scores were computed for each study subject using 
previousl y developed mode1s for predi cting the risks of two outcom es of interest, de ath 
and the major adverse cardiac events (MACE). Based on these models, patients were 
classified into low, moderate, and hi gh risk groups. 

(2) Development of initial prior probabilit y estimates 
Initial prior probability estimates were developed separately for the three risk groups. 
Information on adverse events among patients undergoing RA was obtained from 5 
previous studies of low ri sk patients. Prior risk estim ates for moderate and high risk 
groups were extrapolated from the estimates for the low risk group. Since the risk of 
outcomes was modeled as a binomial process, a b eta distribution (which is the conjugate 
prior distribution of the binom ial distribution) was used. The prob ability density function 
for a binary outcome x under a beta distribution is 

!(x!q,r)= 1 xq-'(l-xy-',O::;x::;l,q>O,r>O 
B(q, r) 



qwhere B(q, r) is a beta function with B(q, r) = f
I 

x -
1(1- xy-l dx 

o 

Using the mean and variance of the estimated adverse event prob ability from the 5 
previously published studies, the two param eters in the beta prior distribution, q and r, 
can be easily calculated for the low risk group. To extrapolate estimates for the moderate 
and high risk groups, the relationship of the event risks in the low, moderate and high risk 
patients who underw ent non-RA interventional procedures was used. 

(3) Updating method to 0 btain posterior estim ates 
Bayesian updating was performed every 3 months to continuall y refine the adverse event 
risk estimate in each str atum. With a beta prior distribution and a binom ial distribution 
for the outcom es, the pos terior distribution is also a beta distribution under the Bayesian 
framework. At each pre-specified time point during the study, new observed data (e.g., 
the number of patients undergoing RA, the number of events) were combined with the 
prior (beta distribution) information by updating the two beta distribution param eters (q 
and r) from the previous time point and generating a new posterior beta distribution based 
on these updated pa rameters as follows: 

where i=current time period; i+1=subsequent tim e period; n=number of new patients 
observed at time i, and k=number of new adverse events at time i. The updated (i.e., 
posterior) beta distributio n parameters are then used to compute an updated estimate of 
the mean and variance of the adverse event risk for each risk group at each time point. 

(4) Interpretation of r esul ts 
Summary statistics for th e adverse event risk (e. g., means, medians and 95 % credible 
intervals from the posterior distribution) estim ated at the final tim e point are compared to 
those estimated using the initial/prior data to deter mine if there is a hi gher than expected 
safety risk in the current study compared to initial estim ates. Specificall y, if the 95% 
credible interv als for the initial and final posterior distributions overlap, then no evidence 
for an excess risk of adverse events in the current study data compared to previous 
studies has been found. However, no formal stati stical test is perform ed to compare the 
initial prior versus final posterior estim ates. 

5.3 Applications 
Bayesian updating has been applied in the field of nuclear reactor engineering to monitor 
safety.54 The method has also been r ecently applied to monitor the safet y of 
interventional car diovasc ular proc edures using high quality clinical dat a and relativel y 
smaller sample sizes, compared to sample sizes for spontaneous repo rting data systems.52 

5.4 Advantages 

The main advantage of Bayesian updating is the incorporation of prior knowledge of the 
event risk with the cur rent observed data. In addition, calculations ar e quite simple and 
straightforward, particularly when using a conjugate prior distribution (e.g. a beta prior 



distribution and a binom ial distribution for outcom es, which yields a beta posterior
 
distribution). Other distributions, including discrete and continuous probabi lity
 

. distributions, may also be used. Bayesian updating is best-suited to find di fferences 
between an initial/prior and a final/posterior estim ate under two conditions: l) when 
sufficient data accrue over time, and 2) when accurate prior estimates are obtained.55 

5.5 Limitations 

The main limitation of the Bayesian updating method is that the type of signal detection 
for which it is designed is not the same type of signal that is generally of interest in a 
setting like the Sentinel Initiative. In particular, similar to the CUSUM method, Bayesian 
updating is designed to detect a change over time in an estimated adverse event risk 
estimate as more study data accrue in a given population of interest. This is distinct from 
the primary purpose of the Sentinel Initiative, whi ch is to detect a difference in the 
adverse event risk between a group exposed versus unexposed to a new medical product. 

Another major challenge for the Bayesian updating method in monitoring the safety of a 
new medical product is accurate and precise estimation of the initial prior probabilit y. For 
certain new products, there may not be adequate existing knowledge to infonn prior 
probability estimation. Or, the population in which prior knowled ge exists may not be 
representative of the pop ulation that will actuall y receive the new product in clinical 
practice. In these instan ces, it may be necessary to use a very rough prior estimate with 
wide confidence intervals. However, since the Bayesian updating signal detection 
criterion involves com paring the final posterior es timate to the initial prior estim ate, the 
accuracy, precision, and assumptions used to estim ate the prior have a great influence on 
the signal detection resul ts. For instance, if th ere is considerable un certainty in the initial 
prior estimate, a false negative result will be likely since it will be inherently difficult to 
detect any difference between a prior risk estimated with such high variability and a truly 
elevated fin al posterior estimate. 

However, a false negative result can 0 ccur for the opposite reason as well. Specificall y, it 
has been illustrated in a randomized clinical trial setting that Bayesian updating can also 
have a high false negative rate when 'too much' prior infonnation is available.56 In this 
case, the vast amount of infonnation used to inform the prior can outw eigh the relatively 
smaller amount of information observed in the current study. Thus, the posterior estimate 
doesn't incrementally change much from the initial prior estim ate over time, and 
differences between the prior and posterior are therefore not readily detected. 

Other limitations of the Ba yesian updating method include the following: 

•	 Lack of a fonnal test to detect a signal (beyond comparing means, medians and 
95% credible inte rvals from the posterior and the prior distribution, which is 
heavil y dependent on the initial estim ates from existing data as previously noted). 

•	 Adjustment for potential confoundin g factors is accomplished through 
stratification. M ore thoro ugh continuous risk or covariate adjustm ent would be 
preferable. 



6 Other methods 

In our Screening Evaluation, we identified seve ral other general methodolo gical areas 
related to si gnal detection or to lar ge-scale multiple testing problems that may be of 
potential relevan ce to the Sentinel Initiative. However, we did not conduct a Full 
Evaluation of these methods since their potential f or application in the Sentinel Initiative 
was less clear than for the methods detailed in Sections 2-5 of this report. However, we 
list these method areas h ere as a guidepost for future potential investigations: 

•	 Methods to control false positive discover y in genome-wide and microarray 
studies 

•	 Syndromic and bioterrorism surveillance methods for early aberration and disease 
outbreak dete ction 

•	 Commercial data mining, data aggregation, and da ta abstraction m ethods/so ftware 
(see Appendix C) 

7 Recommendations 

The following recommendations are based on our comprehensive evaluation of published 
signal detection methods and unpublished methods currentl y in development by leading 
statistical and medical product safet y experts. 

7.1	 Hypothesis identification 

At the time of product approval, comprehensively review risk-benefit information from 
existing data sources (e.g. pre-licensure industry studies, post-licensure dat a outside the 
U.S., medical officer product reviews and disagreements) to aid in planning post
licensure studies. Use thi s information to determ ine whether 0 r not active 0 bservational 
surveillance of a large cohort is the preferred surveillance method for a given outcome
exposure pair compared to other potential appro aches such as a more traditional Phase IV 
epidemiological cohort stud y or a randomized clinical trial. 

Rationale: There is a considerable amount of valuable pre-licensure safety information 
available at the tim e of product approval collected at all phases of produ ct developm ent 
(including animal toxicity, human studies of the product and of sim ilar products), and the 
Sentinel Initiative offers an opportunity to make increased use of such data to inform 
post-licensure surv eillance. Industry has an asymmetric interest in efficacy and safety, 
which has led to fewer resources being spent previously to identify, verify, and publish 
safety problems or to develop statistical methods for anal yzing pre-licensure safety data. 
However, high quality synthesis and conflict-free independent review of these data can 
be used to identify post-licensure hypotheses worth pursuing, inform the prioritization of 
outcomes and products for post-licensure su rveillance, and to more accurately estimate 
expected event rates to inform post-licensure stud y power and sample size calculations. 



Implications fo r signal detection method: This rec ommendation impacts the methods 
used to anal yze pre-licensure safety data in order to improve the planning and design of 
post-licensure surv eillance studies. It involves better assembly, analysis, and synthesis of 
pre-licensure information to improve the process es by which outcomes and products are 
selected fo r surveillanc e and to improve the quality of the 0 utcome inciden ce rate 
estimates used for post-Ii censure stud y planning (e.g., sample size calculations). 

Gaps in existing methods and future wo rk needed: 

a) Retrospectively, for previously-approved products, study pre-licensure risk-benefit 
information to determine what factors are markers of products that are later shown to 
have problems that require major warnings or withdrawals. 

b) Prospectivel y, once informative markers are identified, conduct an alyses of pre
licensure data on newly licensed products to obtain and use those markers, along with 
estimated outcome rates from pre-licensure data, to aid in planning post-licensure 
studies. 

c) Explore Bayesian and empirical Bayes approaches for incorporating prior pre
licensure adverse event rate data (when such data are considered accurate and 
applicable to the post-lie ensure population) into methods used for post-lie ensure 
studies. For ex ample, existing sequential testin g methods could be modified to 
explicitly make use of outcome rate estimates from prior/pre-licensure studies and 
then more accurately and efficientl y detect signals. 

A comprehensive review of pre-lie ensure risk-benefit information at the time of medical 
product approval should also be used to determ ine whether or not active ob servational 
surveillance of a large cohort is the preferred surveillance method for a given outcome
exposure pair compared to other potential appro aches such as a more traditional Phase IV 
epidemiological cohort stud y or a large Phase IV randomized clinical trial. Active 
surveillance usin g large, linked databases is best suited for monitoring rare events and for 
ruling out relatively large relative risk effects (e. g. RR>10 or possibl y RR>5). If, based 
on known risk-bene fit evidence from pre-licensure studies, it is clinicall y important to 
rule out a more modest relative risk (e.g. RR:::;IO), then a Phase IV randomized clinical 
trial with non-surro gate endpoints should be considered sine e unmeasured confounding in 
database studies fo r many outcome-exposure pairs can easil y mask increased safety risks. 

7.2 Primary signal detection methods 

7.2.1 Active su rveillan ce 

If the pre-licensure risk-benefit evidence supports the use of an active surveillance 
framework, then, as a primary signal detection ap proach in this setting, we recommend 
targeting specific medical products (exposures) and outcomes for routine post-licensure 
surveillance and testing these target hypotheses by conducting sequential analyses with 
automated health c are data, provided that hig h quality health care data are available. 



Rationale: Targeted longitudinal surveillance will be m ore powerful than all-by-all data 
mining of medical products and adverse events due to the magnitude of the multiple 
testing problem (i.e., multiple products, outcom es, subgroups, testing time points). 
Targeted surveillance will also allow focus on the most important (from a risk-benefit 
standpoint) and the most reliably-measured products and outcomes. 

Implications for signal detection method: Sequential testing methods offer a useful and 
proven fr amework for conducting pre-specified hypotheses at multiple points in tim e 
throughout a stud y as data accrue while controlling the overall false positive statistical 
error rate across all tests performed. The maximized sequential prob ability ratio test 
(maxSPRT) has been suc cessfully used on a weekly basis for prospective vaccine safety 
monitoring within the Vaccine Safety Datalink (VSD). Group sequential methods have 
been widely used to sequentially monitor medical product efficacy and safety in clinical 
trials on a less frequ ent basis (e.g., quarterly or semi-annually throughout the trial). 
Similarly, sequential testing could be applied in th e Sentinel Initiative to e fficientl y 
monitor safety. In addition, routine testing results should be accom panied by routine 
descriptive analyses of the safety data to fully characterize outcome rates by site, 
demographics, dose, tim e interval after the product is administered and othe r factors. 

Gaps in existing methods and future wo rk: The use of and statistical pe rformance of 
sequential testing methods in observational safet y surveillance settin gs, in which 
relativel y frequent monitoring plans (compared to clinical trials, for e. g.) may be desired 
and in which confoundin g is a potential con cern, has not been conside red. Several 
methodological developments are needed to evaluate and adapt existing sequential 
methods for potential use in the Sentinel Initiative: 

a)	 Develop a formal statistical fr amework to optimally design a sequentiall y monitored 
observational safety surveillance stud y for pre-specified outcom es by extending 
group sequential clinical trial methods. Such a framework will provide stat istical 
information to guide design decisions such as: Ho w frequently should testi ng occur? 
What boundary shape is best? What test statis tic to compare risk should be used? 
Next steps: 

• Conduct simulation studi es to compare the statistical oper ating characteristics 
(e.g. power, time-to-signal detection) of th e standard continuous sequential 
monitoring method (maxSPRT, used in the VS D project) to a variety of group 
sequential desi gns (which vary the monitoring frequency, boundary shape, and 
test statistic to com pare risks) 

•	 Apply a variety of sequential designs using existing data sources (e.g., past and 
ongoing VSD safety studies) and com pare their performance to maxSPRT. 

b)	 In settings with concu rrent controls, im prove the wa y confounders are accounted for 
in sequential testing by developing a 'covariate-adjusted analysis' approach to 
construct monitoring boundaries. Most existing methods, including maxSPRT, 
involve matching (which yields information loss if matches cannot be found) and 
stratification (which may not be fine enough for adequate con founder control). 

c)	 Surveillance usin g selected sequential testin g methods has been condu cted to date in 
relatively simple outcome-exposure settings (e.g., for vaccines paired with outcomes 



that occur in relatively narrowly-defined post-vaccination intervals). The us e and 
implementation of seque ntial methods for monitoring more complex exposures (e.g., 
drugs, which may be cumulatively-defined or time-varying) and outcomes (e.g., those 
with delayed onset) requires further evaluation. 

7.2.2 Conventional surveillance 

If high quality outcome and exposure data are not available from automated health care 
data sources or if confounding is too strong by factors not reliably measured in such data 
sources, conduct a conventional Phase IV observational safety study of pre-specified 
hypotheses using more reliable data sourc es (e.g., information abstracted from medical 
charts or data from existing prospectively collected large cohort studies) or conduct a 
large simple Phase IV randomized clinical trial. Choice of data sou rce and study design 
may also depend on ex pected effect sizes and sampIe siz e. 

Rationale: Given the ex tensive resourc es that are involved in confirm ing or refuting 
signals detected using information from automated health care data sources, if such 
signals are falsely generated from data sources that are inaccurate or unreliable, much 
effort will be wasted. In such circumstances, it will be better to sim ply invest at the outset 
in a rigorously-designed Phase IV confirmatory study. 

Implications fo r signal detection method: Methods to test pre-specifi ed safety-related 
hypotheses at a single point in time (e.g., at the end of an observational Phase IV safety 
study) are well developed (e.g. logistic regression). 

Gaps in existing methods and future wo rk needed: A systematic framework is needed to 
determine whether the quality of outcomes and exposures defined usin g automated health 
care data sources is high enough to support their use in sequential surveilla nce Data must 
be of high enou gh quality to guarantee th at the re suIting potential bias on surveillance 
results due to data inac curacies is reasonably small. Important next steps: 

a)	 Determine what data quality factors are essential to consider when selecting outcomes 
and products for surveillance (e.g., database outcome and exposure accuracy, 
complexity of database exposure definitions, variabilit y in coding practices across 
health plans, level of confounding in the populatio n of interest by variables not 
available in autom ated sources). 

b) Develop asystematic approach to us e existing studies and/or to conduct pilot studies 
using automated healthcare data sources to obtain information on these data quality 
parameters for outcomes and products at the time of product approval (i.e., in advance 
of post-licensure stud y) to aid in post-licensure st udy planning. For example: 

•	 Review existing literature on automated health care database quality for 
candidate outcom es and exposures and on confou nders for candidate out come
exposure paIrs. 



•	 Conduct pilot data quality studies at a 10 cal site or with a small group of sites to 
estimate candidate out come and exposure ac curacy and to identify and estimate 
the influence 0 f confounders on candid ate outcome-exposure pairs. 

c) Conduct sensitivit y analyses to gauge the impact (i.e. bias) of data quali ty deficiencies 
of varying type and magnitude (as measured by data quality parameters) on 
surveillance results. 

7.3 Primary signal confirmation methods 

As a primary approach to confirm signals generated by active post-licensur e surveillanc e 
of automated healthcare data sources, use a two-phase sampling study design57 to select a 
subset of participants on which to collect additional inform ation (e. g. medical chart data). 

Rationale: Signals detect ed using automated and 0 ften aggregated (i. e. event counts by 
age, exposure, and site su bgroups) health c are data sources willlikel y require follow-up, 
including the collection of additional individual-level inform ation (e.g., from medical 
charts). Because both false and true signals can occur (and both may require follow-up) 
and because the resources required to obtain addit ional information (e.g., to abstract data 
from charts) are large, minimizing the amount of additional inform ation needed to 
accurately confirm or refute a signal is essential. 

Implications for signal detection method: 2-phase sampling methods are potentially 
useful tools for efficient collection of data on a targeted and informative subset. 

Gaps in existing methods and future wo rk needed: 2-phase sampling methods, and other 
techniques, warrant further development and evaluation in the medical product safety 
surveillance settin g: 

a) Develop an optimal 2-phase sampling design strategy to determine which (based on 
outcome, exposure, and/or confounder status) and how many medical charts (i.e., 
Phase 2 data) minimally need to be reviewed to reliably confirm or refute a signal 
detected using automated (i.e., Phase 1) data. 

b) Compare the performance of candidate 2-phase analysis strategies (e.g. generalized 
raking58 and other 2-phase sampling strategies from the survey literature) 

c) Develop a framework to determine what Phase 2 confounders should be collected. 

•	 Review literature on th e nature and magnitude of confounding that exists. 

•	 Propose further research, if needed, to more fully understand the potential impact 
of confoundin g. 

d) Develop a framework to determine how to best incorporate Phase 2 confounders into 
analytic regression models: 

•	 Describe approaches to minimize confounding (e.g., stratify, restrict, adjust). 

•	 Assess the abilit y of different data sources to measure comorbidity (lCD-9 codes, 
pharmacy data, home health care data, problem lists, telephone encount er data, 
medical charts, etc.) 



•	 Assess different approaches to adjust for comorbidity (e.g. summary scores versus 
individual variables; m ore nuanced measures such as severity; use of cognitive 
and functional status) 

Note that methods propo sed in c and d above to determine what confounders (beyond 
those available in autom ated health care data sources) should be collect ed and how to 
best incorporate th em into analytic regression models are similarly needed to properly 
design and analyze a conventional Phase IV study. 

7.4 Secondary and supplementary methods 

In addition to the prim ary signal detection and co nfirmation methods reco mmended 
above for testing pre-specified hypotheses, contin ue to collect and analyze other 
supplementary post-licensure safety data (e.g., spontaneous reports), and investigate 
further development of complimentary signal detection approaches (e.g., data mining for 
unanticipated adverse events in prospective coho rts) as secondary methods to ensure 
comprehensive surveillance. Specifically: 

a)	 Other data sou rces 
1.	 Spontaneous reportin g databases should continue t 0 be anal yzed. 

11.	 NIH prospectively collected cohort studies such as the Multi-Ethnic Study of 
Atherosclerosis59 and the Cardiovascular Health StudlO could also potenti ally 
serve as datasets where safety questions might be addressed quickly. 

b)	 Other signal detection methods 
i.	 To detect unanticipat ed adverse outcomes, thus complimenting sequential 

testing for pre-specified adverse events, further develop cross-s ectional da ta 
mining approaches and possibly adapt data mining methods for use in 
prospective Ion gitudinal surveillance. In particular, data mining methods that 
explicitly (versus in ad hoc way) control for the overall false positive error 
rate and that search for optimal outcome groupings ofICD-9 codes (rather 
than require a pre-specified list of outcomes) are most promising. 

11.	 Due to likely heterogeneity in data quality and coding practices across sites, 
develop meta-analysis methods to com bine safety results across sites. In 
general, conductin g meta-anal yses of multiple pos t-licensure con firmatory 
studies to rule out re gression to the mean effects (i.e. to avoid over- estimation 
of safety risks that may occur by chance in some samples) is also important. 

111.	 Further explore ex isting literature on statistical pro cess control and aberration 
and outbreak detection methods for potential use i n identifying elevated safety 
risks due to bad dru g or vaccine lots. 

7.5 Methods not recommended at this time 

Methods we reviewed and would not recommend pursuing further at this time include 
SPRT, CUSUM, PRR data mining, and Bayesian data updating. 
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