
DEPARTMENT OF HEALTH AND ~~~A~ SERVfCES

Foocl and Drug Administration

[Docket No. 9750282J 43

Medicat Devices~ Genera! Principles of Software Validation; Final Guidance for

Industry and FDA Staff; Availability

AGENCY: Food and Drug Administration, NHS.

ACTION: Notice.

SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of the guidance

entitled “General Principles of Software Validation.‘” This document provides guidance to medical

device manufacturers and FDA staff concerning requirements for validating software used within

medical devices, in device production, or in imgfementing the manufacturer’s quality system.

DATES: Submit written or electronic comments at any time.

ADDRESSES: Submit written requests for single copies on a 3.5” diskette of the guidance document

entitled “General Principles of Software Validation” to the Division of Small Manufacturers,

International and Consumer Assistance (HFZ-220), Center for Devices and Radiological Health

(CDRH), Food and Drug Administration, 1350 Piccard Dr., Rockvihe, MD 20850. Send two self-

addressed adhesive labels to assist that office in processing your request, or fax your request to

30lh-443--88 18. See the SUPPCEMENTARY t~F~R~ATt~~ section for information on ekctronic

access to the guidance.

Submit written comments concerning this guidance to the Dockets Management Branch (NFA-

305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Submit

electronic cements to ~ttp://www.fda.g~v~dockets~e~o~ents. Comments are to be identified with

the docket number found in brackets in the heading of this document.
chUl38

2 .

FOR FURTHER I~~~R~AT~~N CONTACT: John F. Murray, Center for Devices and Radiological

EIealth (IIFZ-340), Food and Drug Ad~~stration, 9200 Corporate Blvd., Rockville, MD 20850,

301.4944659.

SlPPtEMENTARY IN~UR~AT~~N:

This final guidance document entitled “General Principles of Software Validation” provides

guidance to medical device manufacturers and FDA staff concerning requirements for validating

software used within medical devices, in device production, or in implementing the manufacturer’s

quality system. It replaces the draft guidance that FDA issued for comment on June 9, 1997, and

published in the Federal Register of July 25, 1997 (62 FR 40099).

We received responses from 36 organizations and individuals, with more than 650 questions,

comments, and specific recommendations for changes to the guidance. However, further work on

the guidance was interrupted by other high priority activities, including implementation af the Food

and Drug Administration Modernization Act of 1997, FDA’s response to year 2000 software

concerns, and two rounds of implementation of our first medical device performance standard.

Because of the delay in issuing this final guidance, we have chosen to summarize uur response

to the comments received. As with any guidance, we wiff continue to accept comments and may

update this document in the future.

The following summarizes the comments we received, and significant changes we made to

the guidance in response to those comments:

From a few of the comments received, it appears that some parties may not have realized

the full breadth of the quality system regulation. The software validation requirement in 21 CFR

820.70(i) of the quality system regulation also applies to automated tools used to design medical

devices and tools used to develop software. Since the first medical device good manufacturing

3

practice regulation was published in 1978, there has always been an explicit vafidation requirement

for software used in device production or used to implement the quality system. When design

controls were introduced into the quality system regulation in 1997, that software validation

requirement was extended to software used to design devices, such as computer-aided design and

software development tools. FDA cfearly addressed this issue at the end of its response to comment

136 in the preamble to the quality system regulation (61 I% 52602 at 52630, October 7, 1996).

A copy of the text is included at the end of this section.

Some comments objected to the discussion of validation activities during the predesign

“concept” phase of software development, both because the quaIity system regulation does not

apply to research activities, and because there is too fittle information available at that point to

make any validation related activity worthwhile. fn response to these concerns, we have removed

ail reference to validation activities during the “concept” phase.

Other comments noted that the guidance covered more than just validation issues, and

suggested changing the title to broaden the scope of the guidance. We acknowfedge that the scope

of the guidance is somewhat broader than the scope of validation in the strictest defmition of

that term. However, we have chosen not to change the title of the guidance. Planning, verification,

testing, traceability, configuration management, and many other activities discussed in the guidance

are important activities that tugether help to support a final conclusion that software is validated.

Some comments expressed concerns that the guidance might be applied too rigorously by

FDA investigators, and some ph~aGeuti~a~ manufacturers raised questions about how the

guidance would be applied to their drug manu~a~tu~ng operations. The agency’s good guidance

practices (GGPs) efearly state the role of F’DA guidance. Alternative approaches that accomplish

full eomphance with the quality system regulation are aGGeptabk. While it is clearly intended for

medicaf device manufacturers, the guidance may also be useful to the phmaceutical industry and

other industries regulated by FDA.

4

Many comments suggested that we move a11 discussions regarding use of off-the-shelf (OTS)

software to the agency’s guidance entitled “Off-the-Shelf Software Use in Medical Devices.” In

response to these comments, specific cross references to that document have been added within

the text of this guidance. However, the UT’S guidance document deals specifically with premarket

submissions for 073 software contained in medical devices. It is not the appropriate guidance

for OTS software used in manufactu~ng and quafity systems applications.

Numerous comments cited overly restrictive language and lack of sufficient implementation

flexibility in the draft guidance. For example, many cornments nuted that the guidance imphes

use of a “waterfall” as the preferred life cycle development methodology. Several comments

suggested that more discussion was needed regarding “rapid application development” and

“component-based methodologies,” as well as “build a little/test a little” as an acceptable

methodology. Other comments asked for specific examples of available life cycle models that eould

be used. In response to these cosnments, and in accordance with our own GGPs, we have carefully

rewritten the text ta remove any direct or implied use of the words “shall” or “must,” except where

we describe OF reference a regulation. We also have added language to specifically state that

incremental development methodologies may be used, and that activities and tasks can be performed

in a different order, if called for by the chosen life cycfe model. However, for ease of description,

we have retained an organization of activities based on “frequirernents,” “design,” “coding (or

construction),” and “testing.” Regardless of the order in which tasks are accomplished, these four

categories of activities are common to most life cycle models. We have not included examples

of the dozens of life cycle models that are available. To do so could imply agency endorsement

of certain life cycle models that are included over those models that are not included. Instead,

you are referred to many of the textbooks and other references fisted at the end of the guidance,

which provide details of many of these life cycle models.

5

Qne group of comments ubjected to any use of the word CCall” when describing items to be

included in specification documents, noting that ‘“all” is not a quantifiabfe term. Other comments

suggested use of the word “may” rather than “should? On the other hand, a few comments asked

for a specific compliance matrix, so that manufacturers would know exactly how to comply with

FDA expectations. We have not adopted these suggested changes. We believe that agency guidance

should identify and encourage use of approaches known to have been used effectively, while the

manufacturer retains the prerogative to choose alternative approaches that are equally effective.

Based on variables such as fimz size and structure, device risk, project size, and complexity,

manufacturers have the flexibility to choose different approaches for different projects, and to select

effective approaches that best fit their specific needs.

Several comments suggested use of the framework and format in international guidelines such

as ISO 9000-3, CAMP, IEEE Software Standards and ISOfl[EC 12207. We have drawn inf~~a~on

from each of these sources and many other listed references, but unfortunately, there is no single *
format available. We have rewritten the guidance to address specific suggestions for wording

changes and simpler language. Some comments asked for extensive use of charts, analogies, and

examples for the concepts presented in the document. While valuable, such an approach could

easily triple the size of the guidance. Instead, we suggest referring to any of the extensive list

of references included at the end of the guidance for more details on specific implementation

approaches.

D. D$&w~es Between Hardware and Software

Regarding the discussion of differences between hardware and software, the comments were

somewhat divided. Some conunents applauded the agency for recognizing the legitimate differences

between hardware engineering and software engineering. Other comments argued that “software

is not different” and suggested deletion of all or most of this section, either because it was

6

unnecessary, or because it could be misinterpreted by software developers who lack sufficient

engineering discipline. One comment suggested emphasizing the similtarities of the engineering

discipline needed to build both hardware and software. We have chosen to keep &is section because

we believe it explains part uf the rationale for why software must be thuroughly validated, and

why the software development process needs to be carefully controlled and managed. We have

also added additional information regarding the impact of mobility of software professionals on

the long-term maintenance of software and the need for thorough documentation.

Some comments objected to the discussion of standardization and reuse of software

components and asked for more recognition of the trend toward increased use of OTS and

component-based development methods. Other comments objected to the statement that <‘repairs

made to correct software defects establish a new design.” We have revised the text to address

both of these concerns.

We reorganized and rewrote the section regarding “Principles of Software Validation” to

address the comments received. FOF example, we moved the subsection dealing with documenting

software “Requirements” to the front of the section to reflect the importance of requirements in

the validation process. We clarified language regarding “predetermined” requirements to aflow for

incremental or evolutionary development of requirements during the development project. However,

we have retained the concept that documented requirements should be established prior to formal

testing or other verification activities to provide “objective” evidence that those requirements were

met.

The subsection previously entitfed Testing” is retitled ‘Defect Prevention” and is revised to

emphasize the importance of preventing software defects, as opposed to trying to “test quality

into” software

We have renamed the subsection on ‘“Timing.” In response to several comments concerning

validation continuing “for the entire fife cycle,” we have rewritten the text, but have retained the

concept. At each stage of the software fife cycle, there is info~at~on available that can contribute

to a conclusion that the software meets user needs and Intended uses. Therefore, the validation

process does not end when the device is shipped.

We replaced the subsection on “Management” with a new subsection dealing with the

“Software Life Cycle.”

We have clarified the subsections deating with “Plans” and “Procedures” to distinguish

between plans that define what to do, and procedures that describe how to do it.

The subsection entitled “Partial Validation” is substantially rewritten and retitled “Software

Validation After a Change.” Many readers misinterpreted the statement that “‘software cannot be

partially validated” and thought we intended alf validation testing to be repeated every time any

change is made. That is not what we meant. Based on the comments received, we have rewritten

the discussion to emphasize the need for regression analysis after a change, followed by an

appropriate level of regression testing to reestablish the validation status of the software. We have

deleted specific discussion of retrospective validation and reverse engineering of nonvalidated

software, but these issues should be covered during the regression analysis.

We have retitled and rewritten the subsection on “Amount of Effort.” Now titled “Validation

Coverage,” it still describes an approach that ties the level of validation and verification effort

to the safety risk and complexity of the software.

We revised the subsection on “Independence of Review” to provide greater flexibility and

a better explanation of its intent.

The subsection previously entitled ‘“Real World”’ is now entitled “Flexibility and

Responsibility,” and reemphasizes that device manufa~turers/softw~e developers have a lot of

flexibility in how they implement their software validation process, but the device manufacturer

is uhimately responsible for the adequacy and effeectiveness of the selected approach.

8

Some of the most significant comments we received had to do with our basic: definition of

software validation. fn the previous draft guidance, we relied upon technical definitions used by

the National Institute of Standards and Technology and by the Institute of Electrical and Electronic

Engineers. These technical definitions created some confusion with other definitions in our quality

system regulation. Numerous comments objected to our use of “‘validation’” as an umbrella term

to cover “design review” and L‘verification’7 as well as validation. They stated that both design

review and verification are distinctly separable quality concepts and are not a part of validation,

In response to these concerns, we have changed the definition of software validation to be more

consistent with the quality system regulation and other inte~ational quality standards. Our revised

definition of software validation is derived directly from the definitions of “‘validation” and “design

validation’ in the quality system regulation.

Comments also objected to the title ‘@Typical Validation Tasks’” at the end of each subsection

in the section V of the guidance and suggested that they are really verification tasks. Other

comments objected to possible interpretation of these as mandatory tasks. IIIn response to these

comments, we have also added text to explain that there are typical verification and testing tasks

that support an overall conclusion that software is validated. Thereafter, when we discuss “Typical

Tasks Supporting Validation,” we do not try to differentiate between verification tasks versus

validation tasks. Instead, we have revised the text to list ‘“Typical Tasks.” While we want to avoid

any inference that the tasks are mandatory in every case, the guidance makes the pomt that these

are “typical’ approaches that are recommended by software engineering standards and textbooks,

and widely used by many- software engineering professionals.

Several comments noted inconsistenc=ies in terminology from that contained in the quality

system regulation, in two software guidances issued by the Office of Device Evaluation, and in

the FDA glossary of computetized system and software development terminology. These comments

also suggested use of the term ‘risk analysis” instead of ““hazard analysis” throughout the software

9

validation guidance. We have revised the guidance to incurpurate th& term “risk analysis”

throughout. However, we continue to emphasize that while there are many different risks (e.g.,

economic OF time to market), FZ)A is concerned about safety risk (hazard). At their next revision,

we expect to update other software guidance documents and the F!DA glossary with cunsisfent

definitions of validation, verification, and risk analysis. In addition, we now use the term “user

site testing” rather than “installation testing” to describe testing performed at the user site and

outside the control of the software manufacturer.

Some comments questioned whether UTS software could be validated because the device

manufacturer frequently does nut have access to the source code. These comments suggested that

OTS software should be “qualified” rather than “validated.” However, we believe that the evidence

developed by a device manufacturer concerning OTS software is a true validation because it directly

supports a conclusion that the software meets user needs and intended uses, Where the source

code is nut available, it is incumbent upon the device manufacturer to use other means (such as

audits, or more extensive black box testing) to infer the structural integrity of the OTS software,

‘F&s issue is clearly addressed in cumment 136 of the preamble to the quality system regulation

(61 FR 52602 at 52630).

Other comments from the pharmaceutical industry suggested incorporation of widely

understood process validatiun terminulugy (Le., installation qualification (IQ), operational

qualification (OQ), and performance qua~~~~a~on (PQ)) to describe software validation. Another

comment suggested use of “product performance qualification” rather than “design validation.” We

have added a section that refers to the various types of qualification, but we have chosen not

to adopt “qualification” terminology in explaining software validation requirements, Qf course,

manufacturers may continue to organize their validation efforts using IQ/OQ/PQ te~ino~ogy, if

they wish.

10

In response to comments, a new subsection has been added to explain the differences between

“rrequirements,” which may be general in nature, versus “specification$ which are developed to

an engineering level of detail.

Several comments objected to use of undefined terms such as ‘“microcode’” and ccassertiuns.”

We reiterate that these and many other terms used throughout the guidance are specifically defined

in the FDA glossary of computerized system and software development terminology, which is

available at http:ffwww.fda.gov/ur~inspect-ref/igslgfoss.htmi.

As noted above, design reviews are not a part of validation. Xn fact, several comments noted

that results of verification and validation are inputs to design reviews-not the other way around.

To emphasize this point, we moved the subsection on ‘Besign Reviews” outside the section on

‘“Typical Tasks Supporting Validation.” We also added infomation about the difference between

formal design reviews that are mandated by the quality system regulation versus less formal

technical reviews. .

H. Traceability

A few comments objected to the guidance regarding,‘“traceabifity analysis,” especially the

discussion at the end of the subsection on ‘Coding.” Two comments noted that for very complex

programs with thousands of lines of code or thousands of modules, the traceability analysis would

be extremely complex and oflittle value. One suggested that design review was an adequate

substitute for traceability analysis. We disagree. Traceabihty is an essential aspect of verification,

and it is an important input into design reviews. We therefore da not believe that design review

could be an adequate substitute for traceability analysis.

One comment stated that requirements are not always neatly structured, and it is very difficult

to trke exactly how they are implemented in the design. There are numerous many-to-one and

one-to-many relationships to be mapped from requirements to design to code. We agree with this

observation; however, it actually further supports the need for traceability. The larger and more

cofnpfex the project, the more important the traceability analysis becomes. Therefore, we have
I

retained the discussions regarding traceability, and in response to several other cements, we have

added traceability of software ~equ~e~ents to the safety risk auafysis.

Another comment noted that iuherent traceability can be built into documentation and code

without having to have a separate traceability document. We agree and for that reason have avoided

use of the most commonly used term-” traceability matrix? Three common approaches are

tsaceabifity matrix, using computer databases to evaluate tfaceability, or building inherent

traceability into the structure of the documentation and code. There may be many other approaches

to traceability. Software developers have flexibility in how they want to implement traceability.

Many comments questioned the concept of a software failure modes and effects analysis

@‘MEA). They stated that given the difficulty of predicting specific software failure modes, FMEA >

is better used as a system level. risk analysis tool. We have revised the guidance to discuss software

risk analysis within the context of system safety. However, while we acknowledge some limitations

in its use, we also believe that software FMEA can be a useful tool, especially for safety critical

aspects of software applications. It may also be useful early in the development process for

analyzing safety critical. software requirements.

One comment objected to the suggestion that risk analysis begin at the stage where

requirements Ne defined. Howevex, to be useful and have an impact on the software development

process, we believe that risk analysis needs to begin early and needs to be updated as the project

progresses. fn addition, we have revised various portions of the guidance to emphasize that the

fevef of safety risk is a major factor in determining the level of effort tu be applied in testing

and other verification and validation tasks.

In response to comments, we have changed the subsection on “Management” to be entitled

“Quality Pfanning.” It now provides a more general. discussion of the software vafidation and

verification concerns to consider during quality planning.

Several comments questioned the idea of early test planning, which was recommended in

the draft guidance. For example, they argued that there is ~nsuf~~ient information available during

requirements development to be able to develop a system test plan or an acceptance test plan,

We disagree and have retained the recommendations fur early test planning, but we have specified

that test plans and test cases should be created as early in the software development process “as

feasible.” One of the important criteria, both for requirements and for design, is that they be testable.

The fact that there is insufficient ~nfu~ation for a particular test plan is valuable feedback to

the development process that perhaps the requirements or design processes are not yet sufficiently

complete. Planning is a dynamic activity that should be reexamined and updated as the project

progresses.

Many comments objected to use of the word “‘afl” in describing what is typically specified

in software requirements. We agree that requirements frequently do not specify “aU” that they

should, However, that is widely recugnized as one the major flaws in software development, and

its corret=tion is one of the most important messages intended by this guidance. In order to be

complete, a software requirements specification should cover afl the pertinent issues-not just a

selected few.

One comment noted that requirements may not always be measurable. We have changed the

text to state that requirements should be “‘measurable or objectively verifiable.”

A few comments noted that “internal interfaces” and “‘til ranges of values the software wih

accept” are a pd~z of design-not requirements. We agree regarding internal interfaces and have

changed the text accordingfy. However, s&e software requirements are derived from system

13

requirements, there may be some internal system interfaces prescribed from the high level system

design that would impact software requirements. Regarding “‘ranges of values,” we note that there

is rarefy a bright hne of demarcation between requirements and design. Software developers have

flexibihty as to where in their life cycfe they wish to cover particular issues. We rejected must

comments requesting even greater levels of detail. and specificity regarding static verification

techniques. For example, several comments asked for more detail regarding ‘%equirements

evaluation” and “interface analysis.” Details on these techniques are available in many of the

references listed at the end of the guidance. FDA investigators wifl expect to see a verification

procedure that includes a means for identifying and resofving incompIete, ambiguous, and

conflicting requirements, as required by the regulation. They wil afso expect to see objective

documented evidence that the verification procedure was implemented.

We have retained wording about the need for design specifications to be complete enough

for programmers not to have to make ad hoc decisions. The intent is to ensure that the code

created is consistent with the design specification. When programmers or engineers decide to add

new functionafity not identified previously in the requirements or design, those specifications need

to be updated to reflect the actual code created. The project manager, design team, and any future

maintainers of the software need to have accurate documentation in order to do their work.

We have dropped the Zisting of specific approaches to software design, and we have included

a more gener;tl description of what should be included in a software design specificatiun. Some

comments considered the previous fist to be too prescriptive as well as incomplete.

We recognize that portiuns of the software are completed and released incrementally, and

life cycle processes are repeated iteratively. The intent is that those portions of the software have

design documentation that is consistent with the software application that is implemented. One

comment noted that in a rapid apphcation development (RAD) environment, there is typically no

formal design document in place during coding. We recognize that R.AD is valuable as a

14

protoqping tool, but its use does not preclude the need to document the specific design, once

it is agreed upon.

We have changed the title of this subsection to reflect that the creation of a software

application can be either through coding, or through combining existing software components, such

as OTS software products or functional components from existing code libraries.

Comments objected to the idea of having to keep results of all cumpifations of the code.

Xn response, we have revised the discussion of compiler error checking to state that the results

of the “fZnafZS compilation of the code should be retained to document any errors that remain

uncorrected in the fmal software product.
c

We renamed and revised this subsection tu provide a better explanation of the purpose of

testing, and to avoid prescriptive language concerning use of specific testing techniques. We have

added language regarding use of incremental development and testing methodologies. We expanded

the discussion of testing coverage to explain how different degrees of coverage should be)

considered for varying levels of risk, and that the manufacturer has ffexibility to choose the right

level of coverage.

One comment noted that the intent of testing is to find errors, and suggested a better

explanation of this and other tenets of a software testing strategy. We have added such an

explanation.

Other comments argued that statistical testing based on usage profiles is more effective than

extensive structural testing in finding software defects. We agree that statisticatf testing is one of

many valuable testing methodologies, and we have added information about its use. However, it

is important to note that statistical testing is an adjunctive approach, rather than an outright

replacement for other types of testing.

15

Based on several cornments, we have renamed the subsection formerEy entitled ‘?nstalfation

Testing” and moved it into the sectiun on life cycle activities. User site testing can be any one

of several types of testing performed by the user or by others at the user site. System level testing

performed by the software developer under conditions that simulate the user’s envirorullent is an

importmt part of validation fur sume products, and it may substitute fur some aspects of user

site testing. However, for certain products such as blood establishment software, there are specific

lFC)A requirements for additional testing to be perfurmed at the user site. For manufacturing and

quality system software, user site testing is frequently performed by the device manufacturer.

Several comments objected to the statement that “all modifications are design changes,” noting

that some changes, such as a correction of coding errors, do not change the intended design. We

have made appropriate changes to the text. However, we continue to emphasize.that the validation

of afl software changes needs to in&de a regression analysis and, as apprupriate, regression testing

to show that the change has not negatively impacted the software,

In response to other comments, we have added information regarding anomaly evaluation,

probfem identi6cation and resolution tracking, and the need to update documentation.

We have added a Tltew section to the document dealing with validatiun of automated process

equipment and quality system software. This change was in response to the many comments that

raised issues and asked for mure detailed information about validating such software, especiafly

OTS automated equipment and OTS software.

Many comments discussed the difficulties encountered in trying to vahdate OTS software,

and suggested a different approach for validatiun of rnanufa~~~ng and quality system software..

Source code and life cycJe documentation are frequently unavailable for review, so structural testing

16

is usually not pussible, Auditing the vendor’s software develupment activities is one possibility,

but some software vendors will nut agree to being audited. One comment suggested that risk

analysis, design, coding, and unit testing should not apply to quality system software, especially

if it is purchased, and further suggested that functional testing is the most that can be expected.

Several comments suggested that fur widely used applications, there ean be a reasonable assumption

that the vendor validated the software at the time it was developed, and that installation qualification

by the user should be sufficient. Many of these issues are addressed in the response to comment

136 in the preamble of the quality system regulation (61 FR 52602 at 52630).

It is not the agency’s intent to discourage use of OTS computer products. The activities

described in the guidance can be shared between the vendor and device manufacturer (the user).

IIowever, we believe that the principles and activities described in the guidance are impurtant

fur an overall conclusion that software is validated for its intended use. Device manufacturers are

required to have purchasing controls fur the products and services they receive. Such controls are

an impurtant part of decision making regarding OTS software, Our experience is that “assumptions”

regarding validation by the vendor are nut always well founded, Each OTS software product needs

to be individually evaluated based an the intended use of the software, available life cycle

documentation, available verification and validation evidence, and most importantly the device

safety risk posed by the automated process- Device manufacturers can use multiple sources of

information, but are ultimately responsible for documenting the basis for their conclusion that the

software is vafidated fur its intended use.

Several comments suggested ahemative approaches fur certain types of software, such as

operating systems and certain tools used in software development, such as compilers and robust

“middleware” such as Oracle, Documenturn, or Zotus Nutes. We have added suggestions for

alternative approaches, while still retaining the basic requirement that the software must be

validated for its intended use.

17

A few comments questioned who is respons-ible for validation of OTS software. One

questioned FDA’s au~h~~~ to regulate software vendors, but argued that device manufacturers

cannot be responsible because they lack access to source code and fife cycle documentation.

Another noted that vendors frequently change their hardware and software, resulting in

unreasonable FDA expectations for revafidation of each change. One comment asked for more

details regarding the impact of the supplier’s quality system on purchasing decisions. In response

to these comments, we reaffirm that FDA holds the device manufacturer responsible for the

software validation requirement. This res~~ns~b~l~ty can be fmher delegated in part through

contracting and purchasing controls, and monitored through supplier audits or other means, but

the device manufacturer is ultimately respansible for its decision to choose a particular software

product. The fact that a vendor refuses to provide access to its development process or

documentation does not relieve the device manufacturer of this responsibility. Likewise, we note

that the device manufacturer is not obligated to install every software upgrade offered by a vendor.

Validation of those upgrades and support from the vendor, including access to the necessary vendor

documentation, need to play an important rofe in the upgrade decision,

Some comments argued that software validation should be treated more like process validation,

which is only required if the output of the process cannot be fully verified by subsequent inspection

and testing. OIlher comments asked for cfarification of the term “verification by output” and asked

whether it negated the requirement for software validation. One cornmeat argued that output of

software driven systems can never be fully verified. Another comment suggested the consideration

of intended use and dependence upon svftware for proper operation of the process to determine

whether verification could be substituted for software validation.

In response to these comments, we believe there are very few examples where “verification”

in lieu of software validation could be justified, and even in those cases, most manufacturers wauld

choose to validate the software rather than go &rough repeated verifications of output. For example,

while every aspect of a drawing from a computer-aided design (CAD) system can be independently

verified, no user of a CAD system is fikefy to go to that trouble or expense for every aspect

of every drawing. Likewise, because software itself cannot be fully verified, automated sofmare

development tools used ta create medical device software must be validated for their intended

use.

Requirements are needed to establish intended use, the degree of dependence on the software,

and therefore the degree of validation needed. The device manufacturer decides whether or not

to use OTS software. The abifity to vtiidate fvr intended use and vendor support for the effort

should be a part of that decision. Static analysis and structural testing are techniques to be used

in evaluating source code and life cycle documentatictn, when these items are available. Otherwise,

the device manufacturer is dependent upon functional testing alone. This issue is discussed in

response to comment 136 in the preamble to the quality system regulation (61 FR 52602 at 52630).

The impact on the safety and quality of the medical device is an important determining factor

in the approach and Ievel of effort te be applied for validating automated manufacturing and quality

system software, just as it is for software in a medical device.

There were numerous recommendations for additional references. Those and many other

reference books, international standards, and Fn-A guidance documents have been added to the

appendix at the end of the valida&on guidance.

For ease of cross reference, the text of cornrment 136 from the preamble of the quality system

regulation is included below:

136. One comment on lj &20.70(h), “Automated prowesses,“’ (now $820.70(i)), stated that the section

sbaufd be revised to ref%xt that saftware. used in such systems must be validated far “its intended use,”

not simply validated. Another comment stated that most companies buy software currently available on

the market and do not make changes to the softwar~~ It was recommended that 0 820,70(h) allow for

use af uutside personnel for vaIidatian runs and not necessarify require the development of a software

validation prucedure. One comment suggested that the section should aHow verification rather than

19

validation of off-the-sheff software. Severat comments on “autumated processes”’ stated that the term “data

processing systems’ ‘I was unclear and its ine’lusion rendered the requirement too broad. Others asked for

cfarification of “automated data processing systems.”

FDA has modified the requirement to mandate validation fur the intended use of the software. Xn

addition, the requirement that the software be validated by individuals designated by the manufacturer

has also been deleted to make clear that validation may be performed by those other than the manufacturer.

However, whether the manufacturer designates its own personnel or r&es on outside assistance to validate

software, there must be an established procedure to ensure validation is carried out properly.

FDA has maintained the requirement for validation because the agency befieves that it is necessary

that software be validated to the extent possibfe to adequately ensure performance. Where source code

and design specifications cannot be obtained, ““black box testing” must be performed to confimt that the

software meets the user’s needs and its intended uses.

FDA emphasizes that manufacturers are responsibIe for the adequacy of the software used in their

devices, and activities used to produce devices. When manufacturers purchase “off-the-shelf’ software, they

must ensure that it wilf perform as intended in its chosen application.

FDA has amended the requirement to state ‘“When computers or automated data processing systems

are used as part of production or the quality system,” for clarification. Software used in production or

the quality system, whether it be in the designing, manufa~tu~ng, distributing, or tracing, must be vaIldated.

This guidance document represents the agency’s current thinking on software validation. It

does not create or confer any rights far or an any person and does nut operate ta bind FDA

or the public. An afternative approach may be used if such approach satisfies the applicable statutes

and regulations.

The agency has adopted GGPs, and published t32e final rnfe, which set forth the agency’s

regulations for the development, issuance, and use of guidance documents (22 CFX IO. 115). This

guidance document is issued as a level 1 guidance in accordance wit-h the GCP regulations.

In urder to receive “General Principles of Software Validation” via your fax machine, call

the CDRW Facts-On-Demand system at 800-899-0382 or 305-827411 I from a tuuch-tone

telephone. Press 1 to enter the system. At the second voice prompt press 1 to order a document.

Enter the document number (938) followed by the pound sign (#). F;allow the remaining voice

prompts to complete your request.

Persons interested in obtaining a copy of the guidance may also do so using the Internet.

CDRH maintains an entry on the Internet for easy access ta information including text, graphics,

and files that may be downloaded to a personal computer with Internet access. Updated on a regular

basis, the CDRH home page includes the civil money penahy guidance documents package, device

safety alerts, Federa Register reprints, information on premarket submissions (including lists of

approved applications and manufacturers” addresses), small manufacturers’ assistance, information

an video conferencing and electronic submissions, Ma~~graphy Matters, and other device- .

oriented information. The CDRH home page may be accessed at http://www.fda.g~v~~drh. Guidance

documents are also available on the Dockets Management Branch Internet site at http:/

www.fda.gov/~~s/d~ckets/default.htm.

XV. Comments

Interested persons may submit to the Dockets Management Branch (address ahove) written

or electronic comments regarding this guidance at any time. Submit two copies of any comments,

21

except that individuals may submit one copy. Comments are to be identified with the docket number

fuund in brackets in the heading of this document. The guidance document and received comments

may be seen in the Dockets Management Branch between 9 a.m. and 4 pm,, Monday through

Friday.

Linda S.‘Kahan,
DeputyDirector,
Center fo Devices and Radiolag-ical Nealth-

z L: z
m DOC. U,iS????? Filed ??-??--Q$$ &45 am] I

