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A.	 How has Risk Assessment Evolved?  

Although the overall process of dividing risk assessment into operational steps has been altered 
to address the nature of the substances or processes being evaluated, the fundamental 
components of the risk assessment process have remained relatively constant. Thus, for any 
particular etiologic (causative) agent or process,  

(1) 	 the universe of potential outcomes that may be causally associated with exposure 
are identified and characterized;  

(2) 	 the relationships between exposure and outcome are described;  
(3) 	 estimates of potential exposure are made; and then,  
(4) 	 the qualitative and quantitative (when available) components are integrated into 

an estimate of the likelihood of the potential outcomes to occur given that 
exposure also occurs. 

Because information for decision-making is often incomplete, risk characterization also must 
take into account the degree of uncertainty associated with any of the steps in the overall process, 
as well as the cumulative contribution(s) that such uncertainties may make to the overall risk 
estimate. 

At various times, the National Academy of Sciences (NAS) has attempted to describe risk 
analysis in different ways (Table A-1). The 1983 NAS report “Risk Assessment in the Federal 
Government,” first attempted to consolidate the risk assessment procedures practiced in the US 
regulatory agencies (primarily FDA’s Bureau of Foods, which subsequently became the Center 
for Food Safety and Applied Nutrition) into four coherent steps. At that time, these steps were 
appropriate to the nature of the substances on which risk assessments were performed e.g., 
radiation and chemical carcinogens.  

Chief among the shared characteristics of these substances was the ability to describe dose in 
discrete units, allowing for the relative precision of exposure and dose-response estimates. By 
the time of the publication of the NAS’s 2002 report “Animal Biotechnology: Science-Based 
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Concerns” (NAS 2002b), the description of the risk assessment process had evolved to be more 
accurately suited for the potential risks associated with animal biotechnology. The most 
important differences reflect the change of etiologic agents from radiation and chemicals to 
biological agents or processes. These differences are most obviously manifested in the hazard 
assessment and dose-response sections, where the range of potential adverse outcomes (harms) 
can differ in kind from radiation and chemical damage, and the concept of dose must 
accommodate biological potential. Biological potential can be thought of as the ability for the 
substance or organism being evaluated to either grow, replicate, die, or perform a catalytic 
function so that dose is no longer a constant (or possibly decreasing) amount. 

Table A-1: Risk Analysis Steps as Described by the National Academy of Sciences 

1983 “Red Book” 2002 Animal Biotechnology Report 

o Hazard Identification 
o Exposure Assessment 
o Dose Response Evaluation 
o Risk Characterization 

o Identify potential harms  

o Identify potential hazards that might produce 
those harms 

o Define what exposure means and the 
likelihood of exposure 

o Quantify the likelihood of harm given that 
exposure has occurred 

B. Thinking About Risk 

Qualitatively, risk may be thought of as some function of the combination of exposure and the 
intrinsic properties of the substance or process under consideration by linking an exposure to the 
likelihood of an outcome. The “risk equation” was first derived for the condition of carcinogen 
exposure and written as: 

Risk = (exposure) x (potency) 

where potency was estimated from an evaluation of the relationship between exposure and 
outcome (i.e., the dose-response evaluation). More generally, however, the risk equation is best 
thought of as some function of exposure and some function of the biological properties of the 
agent causing the outcome:  

Risk ∝ foutcome (exposure, hazard) 

In cancer risk assessment, the function of outcomes was often referred to as the “cancer potency” 
and was derived from the slope of the dose-response curve for tumor formation. For animal 
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cloning, outcomes may be thought of as the adverse health effects resulting from cloning such as 
Large Offspring Syndrome, or for edible products of clones, a lack of expected nutritional 
content of milk from animal clones. 

Thinking about risk from the perspective of an “equation” is useful, even when performing 
qualitative analyses, because it allows the equation to be “solved” for any of the variables that 
have been defined. Often we ask the “forward” or prospective question: given that some process 
or exposure has occurred, what is the likelihood of a particular outcome (e.g., how likely is 
exposure to a particular contaminant in milk to cause gastrointestinal distress?). Alternatively, 
the question can be asked in the “backwards” or retrograde form: given that an outcome has 
occurred, what etiologic agent under which exposure conditions is responsible for that outcome 
(e.g., given gastrointestinal distress, did consumption of milk contaminated with x amount of y 
substance cause that effect? or how much of x do you have to consume before gastrointestinal 
distress is experienced?). 

When performing a risk analysis, it is critically important to distinguish between a hazard and 
the potential risk(s) that may result from exposure. A hazard can be defined as an act or 
phenomenon that has the potential to produce an adverse outcome, injury, or some sort of loss or 
detriment. These are sometimes referred to as harms, and are often identified under laboratory 
conditions designed to maximize the opportunity to detect adverse outcomes. Thus, such 
observational summaries are often referred to as “hazard identification” or “hazard 
characterization.” Risk, as previously discussed, is the conditional probability that estimates the 
probability of harm given that exposure has occurred. In a qualitative assessment such as this, 
however, risks can be discussed only within a qualitative context, and no quantitative 
interpretations should be made. 

Another important question to consider is who experiences the risk. At its inception, risk 
assessment tended to be anthropomorphic; all risks were evaluated in the human sphere, and 
were expressed in units of the individual, that is, the probability of a person being exposed to a 
hazard and experiencing a harm over a lifetime. That individual was defined as the receptor. 
Human risks could also be expressed at the population level, or the probability of x individuals in 
the population experiencing the harm. For animal cloning issues, the receptor can be considered 
to be the surrogate dam carrying a fetal clone, the animal clone itself, or humans or other animals 
consuming edible products of clones (e.g., milk and meat). 
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C. How Do We Think About Safety? 

For purposes of the Draft Risk Assessment, safety may be best thought of as the condition under 
which risks would be considered unlikely, rather than the condition of no risk (as such conditions 
do not exist for any scenario). It implies that a risk analysis has been performed, and the “risk 
equation” is solved for the condition that Risk � 0 (i.e., the conditions under which risk 
approaches zero). When considering food from animal clones, this risk assessment has 
approached the issue of safety from a comparative perspective. Because one of the basic 
questions that the food consumption portion of this risk assessment asks is whether animal clones 
are materially different from their conventional counterparts, the risk question that is asked is 
whether edible products from animal clones or their progeny pose an increased risk relative to 
the same products from conventional comparators. Likewise, for animal safety, the question that 
is asked is whether animals involved in the cloning process are at greater risk for any adverse 
outcome relative to other assisted reproductive technologies. 

One of the difficulties with any safety assessment is “proving the negative.” Because in practice 
the universe of conditions under which some risk may be encountered cannot be explored, there 
are always some conditions under which the null hypothesis (i.e., exposure to y μg/liter of 
Substance X will pose no significant risk) will not be disproved. Thus, a careful risk/safety 
assessment defines the boundaries of its investigation and expresses its conclusions within those 
particular limits (i.e., clones born after a carefully monitored pregnancy under closely supervised 
conditions are at a slightly increased risk of dying than animals derived via in vitro fertilization, 
or artificial insemination, or, for food safety, milk from dairy cow clones that meets existing 
regulatory standards and is not significantly different from Grade A bulk tank milk is as safe to 
drink as milk meeting existing regulatory standards from Grade A bulk tank milk derived from 
non-clone dairy cows). 
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In order to gain a better understanding of the animal safety issues associated with SCNT, it is 
helpful to review statistics on animal health and reproduction under current agricultural 
practices. This section draws data from reports published by USDA/APHIS National Animal 
Health Monitoring System (NAHMS at http://www.aphis.usda.gov/vs/ceah/ncahs/nahms/index.htm) and 
the National Agricultural Statistics Service (NASS at 
http://www.nass.usda.gov/census/census02/volume1/us/index1.htm). 

A. Dairy cattle 

The Dairy 2007 Part I: Reference of Dairy Health and Management Practices in the United 
States report (USDA/NAHMS 2007) surveyed a total of 2,194 dairy operations in the United 
States. According to the USDA/NASS census, in 2002, there were 9,109,600 milking dairy cows 
in the United States. The predominant breed of dairy cattle in the US is Holstein, comprising 
93.4 percent of the national herd. The next most popular breed is the Jersey, comprising about 
3.6 percent of dairy cattle in the US. Other “colored” breeds (Guernsey, Brown Swiss, Ayrshire, 
and others) make up the remaining minority, and numbers for these breeds are more variable. 
Individual dairies vary in size from fewer than 100 to as many as 10,000 cows. Due to the 
variability in size of dairies, the USDA/NAHMS report broke dairies down into three groups: 
fewer than 100 cows, 100-499 cows, and greater than 500 cows. The report does not supply 
statistics for individual breeds of dairy cattle. 

According to the USDA/NAHMS 2007 report, the most commonly reported causes of cow 
illness for all operations were clinical mastitis, lameness and infertility problems (failure to 
conceive by 150 days postpartum). Incidence of retained placenta was also a commonly reported 
problem (7.8 ± 0.2 percent), and may have contributed to incidence of reproductive problems. 
Incidence of clinical mastitis was similar across operations, and averaged 16.5 percent of all 
cows. Table B-1 presents data on causes and incidence rate of illness for operations responding 
to the survey. 
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Table B-1: Most commonly reported health problems contributing to morbidity, 
mortality and culling of US dairy cattle 
Cause % morbidity1 % mortality2 % culled3 

Clinical mastitis/udder 
problems 16.5 ± 0.5 16.5 ± 0.7 23.0 ± 0.6 

Lameness 14.0 ± 0.4 20.0 ± 0.8 16.0 ± 0.4 
Reproductive
  Infertility 
  Retained fetal membranes 
  Other (dystocia, metritis) 

12.9 ± 0.3 
7.8 ± 0.2 
4.6 ± 0.3 15.2 ± 0.74 

26.3 ± 0.75 

1 Expressed as percentage of all cows ± standard deviation of the mean. 
2 Expressed as percentage of cows dying ± standard deviation of the mean. 
3 Expressed as percentage of cows culled ± standard deviation of the mean. 
4 Mortality attributed to dystocia 
5 Culling for all reproductive problems 

The percent of dairy cows dying in 2002 was 5.7 ± 0.1 percent, and did not differ by size of 
operation. The most frequently reported causes of death for all dairy cows in this report were 
lameness or injury (20.0 ± 0.8 percent), mastitis (16.5 ± 0.7 percent), and difficult labor, also 
known as dystocia (15.2 ± 0.7 percent). 

Mastitis may cause death by acute toxicity, or cows may be euthanized as a result of severe or 
persistent mastitis caused by treatment-resistant pathogens such as Staphyloccocus aureus or 
Mycoplasma species. The percent of cows culled for mastitis or other udder problems in 2007 
was 23.0 ± 0.6 percent for all cows culled, and represented one of the most common reasons for 
culling. Culling due to reproductive problems was an equally common reason given by producers 
in this report (26.3 ± 0.7 percent of all cows culled), with poor production not due to illness as 
the next most common reason (16.1 ± 0.7 percent of all cows culled). On average, 23.6 ± 0.3 
percent of dairy cows were culled in 2002, with culling rate slightly higher on smaller dairies 
(24.1 ± 0.6 percent for herds with fewer than 100 cows) compared to medium dairies (23.7 ± 0.5 
percent for dairies with 100 to 499 cows) and 23.4 ± 0.7 percent for large operations (more than 
500 cows). 

Mortality for dairy cattle varied by age, with unweaned heifers having the highest death rate (8.7 
± 0.2) and weaned heifers having the lowest death rate (1.9 ± 0.1 percent). Smaller operations 
appeared to have a higher death loss among unweaned heifers compared to operations with more 
than 500 milking cows (9.1 ± 0.4 and 9.4 ± 0.3 percent for operations with less than 100 cows 
and between 100 and 500 cows, vs. 7.7 ± 0.5 percent for operations with greater than 500 cows). 
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Table B-2 presents data on causes of death and incidence rate for weaned and unweaned heifers 
for all operations responding to the survey. 

Table B-2: Major causes of mortality for unweaned and weaned dairy 
replacement heifers that died 
Cause Unweaned Weaned 
Diarrhea 56.5 ± 1.31 12.6 ± 1.0 
Respiratory 22.5 ± 0.9 46.5 ± 1.7 
Dystocia 5.3 ± 0.7 NA 
1 Percentage of deaths ± standard deviation of the mean. 

In the US, most dairy cattle are bred by AI, although many dairies still maintain bulls for cows 
that do not conceive to AI. According to the USDA/NAHMS 2007 report, 51.7 percent of dairies 
surveyed maintained one or more bulls. Embryo transfer has been promoted as a commercially 
feasible assisted reproductive technology (ART) for dairy cattle, particularly for dairies 
interested in using their best cows to improve herd genetics (Webb and Drost 1992). Embryos 
are also sold nationally and internationally to increase genetic advancement and overall herd 
production. The International Embryo Transfer Society, a professional society whose 
membership includes breeders and researchers, estimates that a total of approximately 670,711 in 
vivo derived bovine embryos were transferred worldwide in 2006 (Thibier 2007). Cows with less 
desirable genetics or production levels may be used as recipients of higher genetic merit 
embryos. However, ET is not a predominant means of reproduction in dairy cattle. In vitro 
fertilization has been less successful than in vivo fertilized ET, and is not commonly practiced. 
The developmental competence of cultured bovine embryos remains low (Betts and King 2001), 
with less than half of bovine IVF embryos developing to blastocysts, and even fewer survive to 
attachment in the uterus. 

In cows bred by AI, pregnancy may be diagnosed by ultrasound 35 days after insemination or by 
palpation approximately 40 to 45 days after insemination. Average pregnancy loss following a 
positive pregnancy diagnosis for all cows across operations of different sizes was 4.5 ± 0.2 
percent. Pregnancy loss was highest on larger operations (5.3 ± 0.3 percent for operations with 
greater than 500 head; 3.7 ± 0.1 percent for operations with less than 100 head; 3.7 ± 0.3 percent 
for operations with 100 to 499 head) (USDA/NAHMS 2007). 

B. Beef Cattle 
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Beef cattle in the US are managed under various systems, depending on the intended use of the 
animals. Beef cattle destined for slaughter may change hands several times before final 
disposition. Breeding stock and young nursing animals may be maintained on range or in 
pasture. These are generally referred to as “cow-calf” operations. Following weaning, animals 
destined for slaughter may go directly to feedlots or may be maintained for a brief period on high 
quality pasture, a stage referred to as “back-grounding” or “stocker.” In the US, most cattle are 
slaughtered between 15 to 18 months of age. 

The 1997 Beef Cow-Calf Health and Health Management Practices report (USDA/ 
NAHMS) surveyed 2,713 beef cow-calf operations throughout the United States, representing an 
estimated 34,280,000 head of cattle. According to the survey, approximately 1.5 ± 0.1 percent of 
breeding cattle, including weaned replacement heifers, cows and bulls, died or were euthanized 
due to various causes in the previous year. Mortality rate was higher on small operations with 
less than 50 cattle, compared with larger herds (2.4 ± 0.3 percent). Approximately 20 percent of 
these losses were due to unknown causes. The largest single category (27 percent) of losses for 
beef breeding cattle was “other known” causes, most of which producers attributed to old age. 
The next highest categories (after “unknown”) were weather (18.0 percent) and calving problems 
(17.0 percent). Table B-3 presents the leading known causes of death, where a specific cause was 
named, for cattle that died. 

Table B-3: Causes of death for beef breeding cattle (cows, bulls and 
weaned replacement heifers) that died 
Cause Percent ± SE 
Digestive 6.1 ± 0.1 
Respiratory 6.0 ± 1.0 
Weather 18.0 ±3.9 
Dystocia 17.0 ± 1.9 

Relatively few breeding females in cow-calf herds experienced health problems, according to the 
1997 survey. In general, replacement heifers experienced a higher percentage of illnesses 
compared to mature cows. Pinkeye was the most commonly reported illness, and occurred in 1.3 
percent of female breeding cattle. With the exception of pinkeye, illness rates for breeding 
females appeared fairly similar among herds of different sizes. Pinkeye incidence was reported 
highest in small herds (less than 50 head, 2.3 percent) than in large herds (more than 300 head 
0.6 percent). There was no difference in incidence rate of retained placenta or uterine infections 
between small and larger operations (0.2 ± 0.0 percent for operations with less than 50 or more 
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than 300 head). Incidence of pregnancy loss was also small and not significantly different 
between breeding females in different sized herds (0.2 ± 0.1 percent in herds with less than 50 
head; 0.3 ± 0.0 percent in herds with greater than 300 head). Major causes of health problems in 
breeding female beef cattle are listed in Table B-4. 

Table B-4: Causes of morbidity in breeding female beef cattle1 

Conditions Replacement Heifers Cows All Females 
Respiratory Disease 0.9 ± 0.32 0.3 ± 0.0 0.4 ± 0.1 
Scours 1.0 ± 0.2 0.4 ± 0.1 0.5 ± 0.1 
Pinkeye 1.9 ± 0.4 1.2 ± 0.1 1.3 ± 0.1 
Cancer eye 0.0 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 
Foot rot 0.8 ± 0.2 0.8 ± 0.1 0.8 ± 0.1 
Mastitis N/A 0.2 ± 0.0 0.2 ± 0.0 
Retained placenta/metritis N/A 0.4 ± 0.0 0.3 ± 0.0 
Spontaneous abortion 0.3 ± 0.1 0.3 ± 0.0 0.3 ± 0.0 
Neurologic problems 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
1 Expressed as average percentage of all breeding females in 1996 cattle inventory. 
2 Percentage of females by category ± SE. 

Average mortality rate of unweaned calves was approximately 3.4 ± 0.1 percent of all calves 
born during 1996, and there were no appreciable differences among operations of different sizes 
for calf mortality. Two of the most common causes of death, when death could be attributed to a 
cause, were respiratory problems and dystocia. The leading causes of calf mortality according to 
producers surveyed are expressed in Table B-5. 

Table B-5: Most common perceived causes of death for unweaned calves  
Cause Percent ± SE 
Digestive 14.4 ± 1.0 
Respiratory 16.3 ± 1.2 
Weather 20.2 ± 1.4 
Dystocia 13.9 ± 1.3 
Unknown 17.5 ± 1.4 

The leading cause of morbidity in calves was scours (diarrhea) affecting 2.4 ± 0.2 percent of all 
calves three weeks old or younger. Older, but still unweaned calves had a slightly lower 
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incidence of scours (1.7 ± 0.2 percent). Diarrhea, in part, may have contributed to death losses 
due to digestive problems. Causes of morbidity in unweaned calves are listed in Table B-6. 

Table B-6: Causes of morbidity in unweaned calves1 

Cause 3 Weeks or Less Over 3 Weeks Old 
Respiratory 0.5 ± 0.12 0.8 ± 0.1 
Scours 2.4 ± 0.2 1.7 ± 0.2 
Pinkeye 0.1 ± 0.0 1.1 ± 0.1 
Foot rot N/A 0.2 ± 0.0 
1 Based on all calves in survey. 
2 Mean Percentage ± standard error. 

C. Swine 

The total US swine population was estimated at 59,848,000 head in 2000 (USDA/NAHMS 
2001). Most US swine operations are fully integrated. This means that swine remain on the same 
operation under the same general management throughout their lives. Animals are usually 
maintained under full confinement in highly biosecure facilities, to minimize disease 
transmission and for other economic and management reasons. Sows generally farrow (give 
birth) twice a year. Piglets remain with their dams for approximately 21 days, and then are 
weaned and moved to a nursery, where they are housed in small groups in raised pens for 6 to 8 
weeks. They progress through “grower” and “finisher” phases, depending on weight, and are 
generally maintained in the same groups throughout the process.  

The most complete survey of swine health and management practices in the United States was 
published in 2001. This section derived data from Part I: Reference of Swine Health and 
Management in the United States, 2000 and Part II: Reference of Swine Health and Health 
Management in the United States, 2000 (USDA/NAHMS 2001). A total of 2499 producers were 
surveyed for the report. In order to qualify for the report, operations must have had at least 100 
head of swine at the time of the survey.  

A total of 3.3 ± 0.1 percent of all breeding females died and 17.5 ± 0.7 percent were culled 
between December 1999 and May 2000. The most common reasons cited for culling were age, 
lameness, performance and reproductive failure. Measures of poor performance in this survey 
included small litter size, high pre-weaning mortality and low birth rate. Other reasons for 
culling included upgrading herd genetics, poor body condition and liquidation of the breeding 
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herd for financial reasons. Table B-7 presents the reasons for culling and the relative percentages 
of swine culled for those reasons. 

Table B-7: Reasons for culling swine 
Cause Percent of culled females ± SE Percent of all females ± SE 
Age 41.9 ± 1.8 7.3 ± 0.4 
Lameness 16.0 ± 1.2 2.8 ± 0.3 
Performance 12.0 ± 0.7 2.1 ± 0.1 
Reproductive failure 21.3 ± 1.3 3.7 ± 0.2 
Other 8.8 ± 1.6 1.6 ± 0.3 

The two most commonly reported health problems in breeding females were roundworms (an 
intestinal parasite) and Porcine Reproductive and Respiratory Syndrome (PRRS). Swine 
dysentery was the only health problem more commonly reported on small operations (less than 
250 swine) compared to large operations. Other diseases occurred at a higher rate on larger 
operations. Unfortunately, no data were presented to indicate number or percent of animals 
affected by disease. Problems at farrowing and other reproductive problems were not reported.  

D. Sheep 

Most sheep in the US are raised for the production of both wool and meat. In the Eastern US, 
most sheep are raised on farms in fenced pasture, and may be supplemented with grain. In the 
Western US, it is more common to maintain sheep on open range. Lambs are generally born in 
late winter or early spring. Age at slaughter is variable, depending on the price of lamb compared 
to the price of grain and other inputs. 

The National Agricultural Statistics Service (NASS), USDA reported 66,100 sheep operations 
with a total national herd of 6,965,000 head as of February 2002. The 2001 Reference of Sheep 
Management in the United States (USDA/NAHMS) reported that 23.8 ± 1.0 percent of rams and 
18.3 ± 0.5 percent of ewes in all flocks were culled in 2000, and 5.0 ± 0.1 percent of all sheep 
and lambs died. Sheep raised on farms had a marginally higher death loss compared to open or 
fenced range sheep (5.6 vs. 4.5 and 4.7 percent, respectively). Data on culling rates by type of 
operation were not available. Table B-8 presents primary reasons for culling by sex for animals 
culled in 2000. 
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Table B-8: Primary reasons to cull for all rams and ewes culled 
Reason for Culling Rams Ewes 
Age 47.7 ± 2.11 47.9 ± 1.82 

Teeth problems 0.8 ± 0.3 5.3 ± 0.5 
Poor mothering N/A 3.3 ± 0.3 
Mastitis N/A 3.3 ± 0.2 
Failure to lamb N/A 5.5 ± 0.4 
Ram breeding soundness 13.8 ± 1.4 N/A 
Other reproductive 3.6 ± 1.1 1.2 ± 0.4 
1 Percent of all culled rams ± SE 
2 Percent of all culled ewes ± SE 

Predators (23.5 ± 1.0 percent), dystocia (12.3 ± 0.5 percent) and old age (15.4 ± 0.8 percent) 
accounted for 51.2 percent of all adult sheep that died or were lost in 2000. Other problems 
included respiratory disease, other diseases, digestive and metabolic problems (including milk 
fever and pregnancy toxemia), poisoning/toxicity, weather, and theft. Table B-9 presents data on 
major causes of death for adult sheep and lambs that died in 2000.  

Table B-9. Causes of death for adult sheep that died in 2000 
Cause Sheep Lambs 
Predators 23.5 ± 1.01 44.1 ± 1.12 

Digestive 6.7 ± 0.6 9.9 ± 0.6 
Respiratory 7.0 ± 0.8 11.7 ± 0.7 
Metabolic 3.7 ± 0.4 1.0 ± 0.1 
Dystocia 12.3 ± 0.5 NR3 

Other disease 3.0 ± 0.2 2.0 ± 0.3 
1 Based on percent of all sheep that died ± SE 
2 Based on percent of all lambs that died ± SE 
3 Not reported 

As for swine, incidence and causes of morbidity in sheep was presented as percentage of 
operations reporting the problem. Data on number or percent of animals affected by illness were 
not presented in the USDA/NAHMS report. The most commonly reported health problems were 
stomach or intestinal parasites, clostridial infection, contagious ecthyma (sore mouth), and foot 
rot. Respiratory and reproductive problems were not reported as causes of illness in sheep or 
lambs in this report. 
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E. Goats 

Statistics on goat production in the US were not available through USDA/NAHMS. According to 
the Agriculture Databases for Decision Support (ADDS), there are approximately 2 to 4 million 
goats raised in the US (http://www.adds.org/CGI­

BIN/om_isapi.dll?clientID=23885&infobase=National%20Goat%20Database&softpage=Browse_Frame_Pg). 
However, no reliable or comprehensive statistics on goat numbers or their production in the US 
could be found. Goats are generally divided into three distinct types for meat, dairy or fiber 
(mohair or cashmere) production. Goats grown for meat or fiber are raised predominantly in 
large herds on open range, while dairy goats are raised in smaller herds on limited acreage with 
grain feeding. Intestinal parasites and respiratory diseases appear to be the most common 
illnesses reported in goats, although actual data were not available (ADDS Goat Handbook 
1993). 
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Although there have been several studies comparing the outcomes of somatic cell nuclear 
transfer (SCNT) with various other assisted reproductive technologies, it is important to note that 
most of these evaluated data once other technologies had matured and were well-integrated into 
agricultural practice. The following summary provides an overview of several studies comparing 
the outcomes of four key ARTs. Comparison of success rates from SCNT with these ARTs may 
not be entirely appropriate due to the relative newness of SCNT technology. However, a review 
of the available studies indicates a trend of increasing adverse outcomes with increasing 
technological assistance; specifically, the increased rate of pregnancy failure, late gestational 
complications and problems associated with Large Offspring Syndrome (LOS) are most 
commonly associated with in vitro manipulation of the embryo. Table C-1 presents outcomes 
noted in various studies of artificial insemination (AI), in vivo produced embryo transfer (ET), in 
vitro produced embryos (IVP), blastomere nuclear transfer (BNT), and SCNT. 

Table C-1. Outcomes noted among studies for various ART in cattle, swine and sheep. 
Developmental 
Node1 

Gestational 
Period ART Outcome Reference Comments 

Node 1 

Early 
conceptus, 
early embryo 
prior to 
completion of 
organogenesis 
(gd 42 in 
cattle) 

IVP, 
BNT 

Higher rate of embryonic 
death than AI or in vivo 
produced embryos 

Reichenbach et al. 1992; 
Kruip and den Daas 
1997; 
Wells et al. 1998; 
Hasler 2000; 

Cattle and sheep 

IVP 

Pregnancy loss following 
transfer of IVP or in vivo 
produced embryos prior 
to gd2 21 or within 2 
weeks of transfer 

Farin and Farin 1995 
McMillan et al. 1998 

IVP 

Increased total length of 
conceptus from IVP 
embryos 2X that of in 
vivo produced at gd 12 
and 17 

Farin et al. 2001 
Lazzari et al. 2002  
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Developmental Gestational 
PeriodNode1 

Late 
embryonic/ 

Node 1 early fetal 
period (days 
30-90) 

ART 


IVP 


IVP 


IVP 


IVP 


ET 


AI 


AI 


ET, 

IVP 


IVP 


Outcome 

Gd 16 IVP conceptuses 
shorter than in vivo 

19% of conceptuses 
from IVP blastocysts 
degenerated by gd 17 
Altered embryonic disc 
morphology affected by 
culture medium for IVP 
embryos 

Pregnancy rates 45% or 
higher in dams receiving 
IVP embryos 

Higher embryo survival 
rate when embryos are 
transferred fresh rather 
than frozen-thawed 

Embryo loss ~30% by gd 
30in beef and dairy cattle 

Embryo loss by gd 21 
associated with high 
plasma estrogen levels 
on day of insemination 

Embryo loss for in vivo 
produced embryos < 5% 
(from 2 months – term) 

Embryo loss for IVP 
embryos higher 

- 13% after gd 40 
- 10.7-13.1% 
- 24% total between 

gd 53-calving, 
with more between 
gd 50-80 

Reference 

Bertolini et al 2002 

Farin et al. 2001 

Fischer-Brown et al. 
2005 

Hasler 2000; 
van Wagtendonk-de 
Leeuw et al. 2000; 
Lane et al 2003  

Spell et al. 2001 

Smith et al. 1982; 

Sreenan and Diskin 

1983; 

Dunne et al. 2000; 

Santos et al. 2004 


Shore et al. 1998 

King et al. 1985

Hasler et al. 1987 


Hasler et al. 1995; 
Agca et al. 1998; 
Hasler 2000; 
Block et al. 2003 

Comments 

Likely reflects 
survival status 
during critical 
time of maternal 
recognition 

Factors affecting 
outcome include 
embryo culture 
system, embryo 
quality, embryo 
evaluator, number 
of embryos 
implanted, 
synchrony with 
dam’s estrus 
cycle, fresh vs. 
frozen embryos 

Possible 
estrogenic effect 
of legume in diet 

Depending on 
medium 
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Developmental 
Node1 

Gestational 
Period ART Outcome Reference Comments 

AI, ET, 
IVP 

Pregnancy rates at gd 22 
not different among 
groups. At gd 42, 
pregnancy rates similar 
between AI and ET, but 
increased embryo loss in 
IVP compared to AI and 
ET 

Drost et al. 1999 

IVP 

Abnormal development 
of allantoic membranes 
and cavity in placentae 
of IVP embryos gd 30­
90 

Peterson et al. 2000 

Abnormal 
placental 
development and 
reduced placental 
blood membrane 
development 

IVP 

Abnormal placentome 
and blood vessel 
morphology between gd 
70-222 

Miles et al. 2004 
Miles et al. 2005 

IVP 

Gd 61 and older fetuses 
heavier than ET fetuses; 
altered fetal organ 
growth; excessive 
amniotic fluid 

Sinclair et al. 1999 

IVP 

Gd 70 altered 
angiogenesis and 
placental morphometry;  
modified synthetic 
oviductal medium 
(mSOF) compared with 
medium with serum had 
fewer placentomes, low 
placental fluid volume 
and lower fetal weight: 
placental weight ratio; 
Placentomes (cotyledon 
tissue) had decreased 
density of blood vessels, 
decreased expression of 
angiogenic factor mRNA 
and vascular endothelial 
growth factor (VEGF) 

Miles et al. 2005 
Farin et al. 2006 

AI 
Fetal loss by gd 44 30­
40% in swine 
pregnancies 

Vonnahme et al. 2002 

Fetal survival 
related to 
placental 
efficiency 
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Developmental 
Node1 

Gestational 
Period ART Outcome Reference Comments 

AI 

Embryonic/fetal loss 
varies from 10 to 20% 
between gd 28 and 80 in 
beef and dairy cattle 

Pope and Hodgson-Jones 
1975; 
Kummerfeld et al. 1978; 
Bulman and Lamming 
1979; 
Lucy 2001 

Progesterone 
levels in dams’ 
milk may be 
normal through 
first 30 days of 
pregnancy, 
followed by 
sudden drop 

AI 
Embryonic/fetal loss 11 
to 44% by gd 50 in beef 
cattle 

Bulman 1979 Attributed to bull 

Node 1 Late gestation ET, 
IVP 

Compensation in 
vascular beds of IVP 
bovine embryos; 
Compared with in vivo 
embryos, IVP had 
decreased fetal villi, 
binucleate cell volume 
densities in placentomes. 
Proportional volume of 
blood vessels in maternal 
caruncles increased in 
IVP group. Ratio of 
blood vessel volume 
density: placentome 
surface area increased. 

Miles et al. 2004 

Theorized to 
compensate for 
increased fetal 
size and need for 
increased 
nutrients and gas 
exchanges, but 
increased vascular 
blood network at 
level of 
placentome 

IVP 

IVP fetuses show 
increased glucose and 
fructose in fetal plasma 
levels; increased 
placental surface area 

Bertolini et al. 2004 

IVP 

Hydroallantois 
frequency in IVP 
pregnancies (1/200) 
higher than in “normal” 
pregnancies (1/7,500) 

Hasler et al. 1995 

IVP, 
SCNT 

Pregnancy loss higher in 
SCNT than IVP 
embryos; 50-100% loss 
gd 30-60; placentae 
hypoplastic and reduced 
cotyledonary 
development 

Hill et al. 2000; 
Chavette-Palmer et al. 
2002; 
Heyman et al. 2002; 
Edwards et al. 2003; 
Lee RS et al. 2004 
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Developmental 
Node1 

Gestational 
Period ART Outcome Reference Comments 

BNT 

Late gestation abortions, 
stillbirths, 
underdeveloped fetuses 
for gestational age, 
edema, hydronephrosis, 
testicular hypoplasia, 
skull and heart 
malformations; lack of 
udder development in 
dams 

Wells et al. 1998 

IVP, 
SCNT 

Broad distribution of 
fetal and neonatal body 
weights for both IVP and 
SCNT-derived embryos; 
shifted to “heavy” 
relative to in vivo 
embryos 

Wilson et al. 1995 
Kruip and de Daas 1997 
Farin et al. 2001 
Miles et al. 2005 

Two competing 
explanations: (1) 
“normal” for 
these animals may 
be heavier than 
for in vivo 
produced 
embryos, or (2) a 
proportion of 
animals shifts 
weight 
distribution of 
population 

Adaptation to small 
changes in biochemical 
parameters and 
morphology 

Sangild et al. 2000 

IVP, 
ET 

Increased gestation 
length, dystocia, 
perinatal mortality, fetal 
edema, altered organ 
development, abnormal 
limbs 

Kruip and den Daas 
1997; 
Behboodi et al. 1995; 
van Wagtendonk-de 
Leeuw et al. 1998; 
Farin et al 2001; 
Bertolini and Anderson 
2002; 
Edwards et al. 2003; 
Rerat et al. 2005 

Frequency and 
severity of 
abnormalities: 
IVP>ET>AI 

AI 55.9% of abortions due 
to infection Santos et al. 2004 

Node 2 Perinatal IVP, 
BNT 

Increased birth weight, 
Increased crown-rump 
length; increased 
mortality and physical 
deformities 

Behboodi et al. 1995; 
Wilson et al. 1995; 
Walker et al. 1996; 
Rerat et al. 2005 

IVP 

Perinatal mortality in 
IVP ranges from 2.4­
17.9%, due to dystocia 
associated with large 
fetuses 

Hasler et al 1995; 
van Wagtendonk-de 
Leeuw et al. 1998;  
Block et al. 2003 

Lower in heifers 
than in cows 
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Developmental 
Node1 

Gestational 
Period ART 

IVP, 
SCNT 

IVP 


IVP,

SCNT 


IVP,

SCNT 


BNT 


BNT 


Outcome Reference Comments 

IVP and SCNT fetuses Schmidt et al. 1996; 
have cerebellar van Wagtendonk-de 
hypoplasia, respiratory Leeuw et al. 2000; 
distress, and heart Chavette-Palmer et al. 
enlargement 2002 
Altered expression of 
mRNA for non-
imprinted myostatin and Crosier et al. 2002 
glyceraldehydes-3­
phosphate in IVP fetuses 
Altered expression of 
mRNA or protein in IVP 
and SCNT placentae for 
VEGF, peroxisome Davies et al. 2004; 
proliferators activated Miles et al. 2004; 
receptor γ, leptin, bovine Ravelich et al 2004; 
placental lactogen, Miles et al 2005; 
transforming growth Ravelich et al. 2005 
factor (TGF) β1, 2, 3, 
TGF- β receptor, major 
histocompatibility class I 
antigens 
Expression of 
demethylating enzymes 
DMT 1, 3a altered in Wrenzycki et al. 2004 
IVP and SCNT 
preimplantation embryos 
Birth weight range 26.4 
to 67.3 kg; slow to stand, 
poor suckling behavior, 
flexor tendon 
deformities, hypoxemia, 
hypoglycemia, acidosis, Garry et al. 1996 
hypothermia; altered 
metabolic hormones 
(thyroxine, 
triiodothironine, and 
insulin) 
Calving rate ~50% using 
high quality embryos; 
some very large calves 
(up to 70.5 kg); 
contracture of limbs and 
spine, cardiac and skull Willadsen et al. 1991 
deformities noted in a 
few calves; high rate of 
dystocia (52/100); 
hydroallantois observed 
in four cows 
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Developmental 
Node1 

Gestational 
Period ART Outcome Reference Comments 

IVP, 
SCNT 

Increased incidence of 
dystocia and C-section 
deliveries for IVP 
pregnancies compared to 
AI/NM; lack of 
contractility and other 
signs of labor in ewes; 
higher mortality among 
IVP and SCNT 
compared to AI/NM 

Ptak et al. 2002 Sheep 

AI 

Heat stress reduces birth 
weight and passive 
transfer of immunity and 
results in low IgG 
concentration in calves 

Collier et al. 1982 

High levels of 
glucocorticoids 
accelerates “gut 
closure” 

Nodes 2-3 Postnatal IVP Increased feed intake and 
growth rate Rerat et al. 2005 

IVP 

Altered glucose and 
electrolyte metabolism 
compared to AI 
persisting through early 
juvenile period 

Rerat et al. 2005 

1 For the purposes of this table, Developmental Node 1 is divided into three stages of pregnancy: early embryo, late embryo-
early fetal, and late gestation. 
2 Gd= gestation day or day of pregnancy. 

A. Successes and Failures of AI, IVP, and ET 

Success of AI depends on a variety of factors, including health of the female and timing of 
insemination relative to ovulation. In dairy cattle, conception rates to AI following spontaneous 
estrus have declined from approximately 55 percent in the 1950s to 45 percent in the late 1990s. 
The use of hormones to synchronize estrus for timed AI has further reduced conception rates to 
approximately 35 percent. The reasons for this apparent reduction in dairy cow fertility are not 
clear, although a number of factors have been cited as possibly contributing to the phenomenon, 
including increased milk production (resulting in increased stress and reduced availability of 
nutrients for reproductive function), increased average herd size (resulting in fewer person-hours 
spent observing cows for estrus behavior), nutrition, herd health, inbreeding, and environmental 
pollution (Lucy 2001). Embryo loss has been estimated to occur at a rate of 10 to 20 percent in 
dairy cattle (Lucy 2001) and as high as 30 percent in beef cattle (Dunne et al. 2000), and 
generally occurs prior to 30 days gestation. Fetal losses in swine pregnancies can be as high as 
40 percent following AI (Vonnahme et al. 2002). The reasons for these losses in utero are not 
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always apparent. Lucy (2001) noted that embryo loss may occur even in cases where the 
developing embryo appeared normal. However, in swine, fetal loss appears to be related to the 
size and efficiency of the placenta (Vonnahme et al. 2002). 

Betts and King (2001) noted that the developmental competence (an embryo’s ability to progress 
through normal cell division and development) of IVP and cultured embryos was low. Using in 
vitro procedures (as published up to 2001), less than half of inseminated bovine oöcytes reached 
blastocyst stage, and of those that did, many did not implant or attach following transfer. Betts 
and King (2001) noted that chromosomal abnormalities such as aneuploidy and polyploidy 
played a fundamental role in most of these embryonic deaths.  

The evolution of IVP technology in cattle can be observed by comparing early studies 
(conducted prior to 2002) with more recent publications. Studies using IVP embryos during the 
mid- to late 1990s (Behboodi et al. 1995; Farin and Farin 1995; Hasler et al. 1995; Walker et al. 
1996; Drost et al. 1999; Sinclair et al. 1999) noted relatively high rates of embryo loss and LOS 
among fetuses and neonatal calves. In contrast, several more recent studies using IVP embryos 
have indicated few or no problems (Chavatte-Palmer et al. 2002; Heyman et al. 2002; Bertolini 
et al. 2004; Rerat et al. 2004). However, high embryonic mortality and placental abnormalities 
may still be observed with IVP in some labs (Miles et al. 2004; Miles et al. 2005). 

Embryo transfer, in which oöcytes are fertilized in utero then removed and transferred to 
surrogates, has become a commercially viable technology (See Chapter II), and is generally more 
successful than IVP. In a study by Drost et al. (1999), initial pregnancy rates, as determined by 
blood progesterone levels at gestation day 22, were similar among cows bred by AI, ET or IVP. 
However, by gestation day 42, embryo loss among cows receiving IVP embryos was higher than 
either AI or ET, while pregnancy rate was similar between cows bred by AI compared to those 
receiving ET embryos. The success of ET may be affected by treatment of the embryo prior to 
transfer and synchrony between the surrogate and the embryo donor (Pope 1988; Spell et al. 
2001). According to Spell et al. (2001) fresh embryos had a higher rate of survival than embryos 
that had been frozen then thawed prior to transfer. Embryo survival was also higher when 
surrogates had been in estrus within 12 hours of the embryo donor (Spell et al. 2001).  

In order to follow fates of client-owned pregnant cows carrying IVP-derived pregnancies in a 
commercial ET operation, Hasler et al. 1995 noted that for the first 100 transfers, 24 ended in 
pregnancy loss before 100 days of gestation. The success rate improved the subsequent year, 
however, with only 7 percent of IVP-derived pregnancies spontaneously aborting. They 
compared these results to 5.3 percent of ET pregnancies aborted between two and seven months 
of gestation in an earlier study. 
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In a comparison of AI and IVP, Behboodi and coworkers (1995) noted an increased incidence of 
dystocia and Cesarean sections (C-section) for IVP derived pregnancies compared to AI in a 
small group of cattle (8/13 IVP-derived pregnancies vs. 7/71 AI pregnancies requiring C-
section). Birth weights of calves derived from IVP embryos were higher than calves produced by 
AI, likely contributing to the observed increase in dystocia among dams carrying IVP-derived 
pregnancies. Sinclair et al. (1999) also observed large IVP-derived fetuses with altered 
development and excessive amounts of amniotic fluid. In that study, nine of 13 fetuses (69 
percent) derived from embryos co-cultured with granulosa cells (a type of cell found in the 
ovary) and one of six embryos (17 percent) incubated in synthetic oviductal fluid (SOF) plus 
steer serum were oversized, while embryos that had been incubated with SOF alone produced 
normal sized fetuses. Bovine embryos cultured for three to five days post-fertilization also were 
associated with increased dystocia due to oversized calves in a study by Walker et al. (1996). 
(See discussion of influence of culture conditions on success rates in Chapter IV). 

Farin and Farin (1995) collected bovine IVP and ET fetuses from beef heifers at seven months 
gestation and compared development between the two groups. Fetuses from the IVP group were 
heavier than their ET counterparts (18.6 ±1.1 vs. 15.4 ±0.8 kg), had greater heart girths 
(56.5 ± 1.2 vs. 52.4 ± 0.9 cm) and weights (139.7 ± 8.3 vs. 116.2 ± 5.8 g), and greater long bone 
lengths (23.1 ± 0.6 vs. 21.3 ± 0.4 cm).When organ and skeletal measures were compared on a 
per kilogram body weight basis, however, IVP fetuses had consistently smaller skeletal measures 
than ET fetuses. Internal organ weights per unit of body weight were not different between the 
two groups of calves. The authors concluded that IVP fetuses were undergoing abnormal and 
disproportionate development compared to ET fetuses. It should be noted that the most rapid 
period of prenatal growth in cattle is during the last two months of gestation (months 8 and 9) 
(NRC 2001), which would have occurred after these pregnancies were terminated.  

Young and Fairburn (2000) noted that both IVP and embryo culture have resulted in abnormal 
phenotypes, including up to two-fold increases in birth weight (LOS), excess amniotic fluid, 
hydrops fetalis116, altered allometric organ growth117, advanced fetal development, placental and 
skeletal defects, immunological defects, and increased perinatal death. 

Markette et al. (reviewed by Farin et al. 2001) observed that 54.7 percent of ET recipients were 
pregnant at 60 days gestation, with the majority of pregnancies lost prior to day 24 of gestation. 

116 Accumulation of fluid in the entire body of the newborn. 
117 Allometric growth refers to differences in the rate of growth of a particular organ or part in relation to the rest 

of the organism. An example of normal allometric growth is the legs of a newborn foal (horse) in proportion to 
its body size; the legs are long and out of proportion to the rest of the body. As the foal ages, the body grows 
(and fills out) more rapidly than the legs, so that in adult horses the legs appear proportional to the rest of the 
body. Altered allometric growth in the context of ARTs has resulted in enlarged hearts and undersized kidneys, 
as well as other organs, which are not appropriately proportioned to the rest of the body. 
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In a large study, King et al. (1985) reported that the incidence of pregnancy loss in 1,776 embryo 
transfer recipients was 3.15 percent from 2 to 3 months of gestation, and 2.14 percent between 3 
to 7 months. These mid- and late-gestation spontaneous abortions were not influenced by embryo 
age, embryo quality, time between embryo collection and transfer, asynchrony of recipient with 
donor estrus, donor age, ovarian response to gonadotropin treatment, or whether or not the donor 
had a history of infertility, according to the authors. In most studies, pregnancy loss during the 
fetal period (day 42 to 280 of gestation in cattle) was greater following transfer of embryos 
produced in vitro than that for embryos produced in vivo. Mid- to late-gestation spontaneous 
abortion of about 7 to 13 percent has been reported for recipient cattle carrying fetuses derived 
from IVP embryos, and in some studies pregnancy loss has been considerably higher (Farin et al. 
2001). 

Conversely, Bertolini et al. (2004) compared fetal development in in vivo and IVP cattle 
pregnancies and reported no significant difference between groups for pregnancy rates (20/53 
and 36/112 for control and IVP groups respectively) and fetal losses after day 45 (2/20 and 3/36 
for control and IVP groups respectively). They did report that fetal losses between gestation days 
30 and 44 were 3.4-fold higher (P<0.05) in the IVP group (17/36) than in controls (4/20). Also in 
contrast to earlier studies, Bertolini et al. (2004) reported that their measurements of conceptus 
physical traits for both in vivo produced controls and IVP pregnancies on days 90 and 180 
demonstrated allometric proportionality between fetal body size and body weight with no 
physical deformities observed in any fetus. 

In a review of research on early embryo development, Gardner and Lane (2005) stated that the 
environment of the preimplantation embryo has a profound effect on the physiology and viability 
of the conceptus. Among the many factors that can influence development of IVP embryos, they 
cite the use of serum products as an important contributor to developmental abnormalities in 
cultured embryos. These authors state: “Mammalian embryos are never exposed to serum in 
vivo…Rather, serum is a pathological fluid, the composition of which is greatly undefined and 
varies enormously with source…serum induces premature blastulation in domestic animal 
embryos…affects embryo morphology…and leads to perturbations in ultrastructure…and energy 
metabolism.” Other factors that may influence development of embryos in vitro include 
ammonia, oxygen, inadequate nutrients, and freezing (Gardner and Lane 2005). 

Rerat et al. (2004) compared the perinatal health characteristics of IVP and AI cattle and 
observed no differences in post-natal mortality or viability. Calves in this study were generally 
healthy with the health status of IVP calves at birth and during the first 112 days of life similar to 
that of AI calves. Clinical traits such as heart rate, rectal temperature, and respiratory rate were 
nearly identical in both groups. At birth, measurements indicative of growth performance such as 
potassium, 3,5,3’-triiodothyronine (a metabolic hormone), and thyroxine concentrations were 
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lower in IVP than in AI calves. Postnatally, IVP calves had a faster growth rate than AI calves 
under conditions of identical nutrient intake. 

Sakaguchi et al. (2002) induced twinning in Japanese beef cows by transferring one or two in 
vivo fertilized embryos into AI bred cows. Fetal dystocia occurred in 7 of 14 twin parturitions, in 
which some twin calves appeared to enter the uterine cervix at the same time, but no single 
parturition was accompanied by dystocia. The incidence of retained placenta was significantly 
higher in the twin parturitions (10/14; 71 percent) than in the single parturitions (2/22; 9 percent). 
These complications are known to occur with natural twins in cattle, however, and may not be 
directly related to ET technology. The incidence of retained placenta in healthy, single calf-
bearing dairy cows is approximately 5-15 percent, (slightly lower in beef cows) and is increased 
when there are twins. The expected incidence of dystocia is 10-15 percent in first-parity animals, 
and 3-5 percent in mature cows (Merck Veterinary Manual Online 2002). 

B. Outcomes for BNT, Fetal- and Adult-Cell SCNT 

Although success rates for various types of cloning have improved, they are still highly variable 
across studies. In earlier studies, generally less than 10 percent of all NT embryos transferred to 
recipients were born alive (Wells et al. 1999). Some of these early studies noted that both 
blastomere and somatic cell NT clones appeared to have the same low success rate and exhibited 
many of the same problems, such as poor or dysfunctional placentation and LOS (Stice et al. 
1996; Wells et al. 1998). Stice et al. (1996) reported that no fetuses derived from BNT survived 
beyond day 60 of gestation. Wells et al. (1998) reported a 64 to 80 percent pregnancy loss during 
the attachment phase for clone fetuses derived from an embryonic sheep cell line, while a further 
43 percent of pregnancies were lost in the last trimester, such that 11 percent of embryos 
survived to term (12/112). In contrast, Le Bourhis et al. (1998) reported 9/30 transferred male 
bovine BNT clones developed to calving, while 6/27 female BNT clones resulted in live calves. 
Heyman et al. (2002) compared development and survival of BNT, fetal and adult NT clones to 
IVP-derived embryos under the same culture conditions. Pregnancy loss from 90 days of 
gestation to calving were 43.7 percent for adult and 33.3 percent for fetal SCNT, compared to 4.3 
percent for BNT clones, while none of the IVP-derived pregnancies were lost. Pace et al. (2002) 
reported 75 percent pregnancy loss of adult (some transgenic) SCNT embryos throughout 
pregnancy. 

Results from these studies may reflect the evolution of NT technology over time. Embryonic or 
BNT cloning and IVP success rates appear to have improved. Although losses remain high for 
the newer SCNT technology, success rates for this technology also have improved over time. It 
remains to be seen what progress may be made in further reducing pregnancy loss and other risks 
associated with SCNT. 
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C. Conclusions regarding outcomes for ARTs 

Based on the studies reviewed, there appears to be a general trend indicating that the frequency 
of embryo/fetal loss and abnormal pregnancy outcomes increases with increasing manipulation 
of the embryo and in vitro culture. This trend is evident, even when maturity of the technology is 
considered. Causes of embryo/fetal loss are not always evident, but late gestational 
complications (hydrops and dystocia) and fetal/neonatal abnormalities (skeletal and organ 
deformities, oversize, metabolic alterations) have all been noted in ET, IVP, BNT and SCNT. 
The frequency of these outcomes varies somewhat among laboratories, but has the general trend 
ET<IVP<BNT<SCNT. These data support a conclusion that SCNT falls on a continuum of 
ARTs, and that the adverse outcomes noted with SCNT are not unique, but are of concern due to 
their increased frequency. 

Animal Cloning: A Risk Assessment 



Appendix D: 


Transgenic Clones




.




Appendix D 

Transgenic Clones


A. Issues 

The current risk assessment is limited to address the risk of clones from non-transgenic cells. 
Although not within the purview of this analysis, the results of a number of studies that address 
either transgenic animal clones or transgenic and nontransgenic animal clones (Hill et al. 1999; 
the “ACT series” including Cibelli et al.1998, Lanza et al. 2000, and Lanza et al. 2001 for cattle; 
McCreath et al. 2000 and Denning et al. 2001 in sheep; Baguisi et al. 1999 and Keefer et al. 
2001a in goats; Carter et al. 2002, Lai et al. 2002, and Lee GS et al. 2003 in swine) are presented 
here to clarify the relative utility of such studies for assessing potential risk(s) associated with 
non-transgenic somatic cell nuclear transfer (SCNT). 

Many reviews of SCNT outcomes cite these papers as indicative of the severity of adverse 
outcomes associated with cloning, or a demonstration of the positive outcomes that can come 
from cloning. Hill et al. (1999), in particular, is often cited as the seminal “adverse outcome” 
paper for cloning. On the other hand, if only the “final report” paper of the ACT series, Lanza et 
al. 2001, were read, it would not be possible to know that the cells from which the cattle were 
cloned were indeed transgenic. This distinction only becomes apparent when the earlier papers 
are also reviewed. Most recently, headlines were generated when Pearson (2003) reported on 
“sudden death syndrome” in pig clones; CVM reviewed the paper that describes their generation 
and noted that these pig clones carried two distinct transgenes (Lee GS et al. 2003). 

Because these animals are transgenic clones, it is not possible to determine whether adverse 
outcomes result from the direct effect of the expression of the transgenic construct, pleiotropic 
effects resulting from insertion of the construct, the SCNT process, or some interaction of any or 
all of these processes. For example in a comparison of 34 cells lines, Forsberg et al. (2002) 
reported that when otherwise similar cells are used as donors for SCNT, those that are transgenic 
(for a selectable marker gene) result in lower pregnancy initiation (22 percent vs. 32 percent) and 
calving (3.4 percent vs. 8.9 percent) rates. The authors hypothesize that the additional culturing 
required togenerate transgenic cells, selection of transgenic lines, or the DNA construct itself, 
could be responsible for the lower rates. 

CVM thus assumes that transgenic clones occupy a different “risk space” from “just clones.” 
Conversely, an argument can be made that if no adverse outcomes are detected, then for these 
animals, neither process sufficiently perturbed development to induce anomalies. We have 
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included those studies in the overall risk assessments if such results were obtained. Nonetheless, 
because these studies occupy such a large segment of the cited literature, a few are presented 
here to illustrate the range of responses noted, with the appropriate caveats for interpretation. 

B. Cattle 

Hill et al. 1999 
Hill et al. 1999 reports on a group of 13 transgenic clones of a Holstein bull. Twelve Brangus 
cows carrying 13 fetuses cloned from Holstein cells were originally included in the study, 
although three of these transgenic clone fetuses died prior to the perinatal period (defined in this 
paper as two weeks prior to anticipated delivery and a few days thereafter), and one cow aborted 
at eight months of gestation. Two cows developed hydroallantois and were delivered by C-
section; four others were also delivered by this method due to subjective judgment regarding 
fetal size. The two remaining pregnancies delivered vaginally. Birth weights of the transgenic 
clones ranged from 44-58.6 kg (average Holstein male calf weight is in the range of 40-50 kg), 
and cited as within the weight range of in vitro produced embryos. Five of the eight live born 
clones were judged to be normal within four hours of birth based on clinical signs and blood gas 
measurements. Three of the eight were immediately diagnosed with neonatal respiratory distress. 
One of these calves died from pulmonary hypertension, pulmonary surfactant deficiency, and 
elevated systemic venous pressure at day 4. The other three animals recovered. Two of the five 
fetuses that did not survive to birth also exhibited signs of pulmonary hypertension and placental 
edema at necropsy. Another clone died at 6 weeks of age with signs of respiratory distress; 
subsequent field necropsy suggested dilated cardiomyopathy, although no definitive diagnosis 
could be made.  

The Advanced Cell Technology Series 
The series of papers from the Advanced Cell Technology group (Cibelli et al. 1998, Lanza et al. 
2000, and Lanza et al. 2001) on the health of clones are similar to that of Hill et al. (1999) in that 
the animals presented are clones that are derived from transgenic cells. Interpretation of any 
adverse outcomes is thus also confounded by the potential role of the transgene and its insertion.  

The results of these studies are summarized in Lanza et al. (2001), in a short overview with 
accompanying supporting documentation provided by the journal in electronic form. Of 30 fetal 
transgenic clones that developed to term, 24 were reported healthy at 1-4 years of age, but five 
died within 7 days of cardiopulmonary difficulties that the authors speculated were secondary to 
placental insufficiencies. The sixth animal died at day 149 due to enteric disease, 
lymphadenopathy, and exhibited mild placental edema and high fever at birth. Problems 
observed at birth included placental edema, including edematous cotyledons (attachment sites of 
the placenta to the uterus), labored breathing, froth and fluid in the lungs, pulmonary edema, 
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pneumonia, high fever, septicemia, lethargy, abdominal distention, masses in the abdomen, liver 
damage due to hypoxia, and heart abnormalities. 

Birth weights of the survivors were reported as 45 ± 2 kg (this paper cites normal as 43 kg). An 
unspecified number exhibited pulmonary hypertension and respiratory distress at birth. 
Presumably, they received supportive care at that time. Another unspecified number were also 
reported as experiencing fever following vaccination. This is not an atypical response among 
calves receiving vaccinations, as stimulating a potent immune response is likely to produce at 
least a mild local and systemic (fever) reaction in the animals (Roth 1999). 

Physical and veterinary examination of surviving animals aged 1-3 years were reported as 
normal and included temperature, pulse, and respiratory rate. No abnormalities were detected in 
general appearance, on auscultation (listening to breathing, heart beat, and digestive sounds), and 
behavior appeared normal. Puberty onset was reported to occur at the expected time, and fertility 
appeared to be normal. At the time of publication (2001), two of the animals had delivered 
apparently normal progeny. 

Clinical chemistry parameters evaluated for these animals included electrolytes, urea, creatinine, 
glucose, bilirubin, aspartate aminotransferase (AAT), sorbitol dehydrogenase (SGT), albumin, 
globulin, and total protein. Globulin and total protein measurements were reported in the 
publication as “slightly below normal.” All other measurements were reported to be within 
normal range. Hemograms (analysis of cellular components of blood) were all reported as 
normal: hematocrit, hemoglobin, red blood cells, mean red cell volume, mean red cell 
hemoglobin concentration, and white blood cell numbers and differentials were within normal 
ranges. Blood gases were also within normal ranges. To examine immunocompetence in the 
clones, peripheral blood lymphocytes from the transgenic clones and conventional Holsteins 
were compared to determine whether the same ratio of cell surface markers were present, and if 
the transgenic clone cells responded to mitogen challenge in the same way as cells from 
conventional Holsteins. No significant differences were observed between the cell surface 
markers or cellular responses of cells from conventional animals or clones. 

In the early spring of 2003, an interview of an ACT executive reported in the lay press indicated 
that two animals from this cohort had developed significant health problems. One animal was 
reported to have developed a tumor, and the other was diagnosed as having neurological 
problems. The first animal apparently died during surgery to remove the tumor, and no further 
information is available on the potential causes of the tumor. The second animal was later 
diagnosed as being positive for Johne’s disease (Mycobacterium paratuberculosis), an infectious, 
chronic, progressive disease that often presents with chronic diarrhea and eventual cachexia 
(general physical wasting and malnutrition). It is therefore unlikely that this animal’s symptoms 
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were due to either cloning or transgenesis. We are unaware of any other adverse outcomes 
associated with these animals.  

C. Swine 

Carter et al. 2002 
Carter et al. 2002 reported on the overall health status of transgenic swine clones produced from 
cells transfected with green fluorescent protein (GFP). The 10 transgenic piglet clones from three 
litters were followed for the first six months of life.  

Five of the ten transgenic swine clones died or were euthanized during the study. Two piglets 
died of congestive heart failure at 7 and 35 days of age, two others died from bacterial infections 
at 3 and 116 days of age. The fifth animal died at 130 days of age, following a history of chronic 
diarrhea, decreased growth and vitamin E deficiency. The remaining five piglets were reported 
as healthy and growing similarly to conventional animals housed in the same facility at the 
conclusion of the study. Behavior was reported as “consistent with pigs of their age group.” 

Average birth weight of the transgenic clones (1,312 g) was similar to average birth weights of 
conventional piglets from similar genetic background (1,450 g). Average daily weight gain for 
transgenic clones through the first 16 weeks was (461 g) relative to the herd average (594 g), 
which the authors considered as within the normal range.  

Some of the piglets displayed physical defects. These included two piglets with contracture of 
the flexor tendons, another piglet with five digits on a forelimb (four digits are normal) and an 
enlarged dewclaw. Another piglet with low birth weight was described as having short legs and a 
large, round chest. 

Hematology and blood clinical chemistry data were collected beginning at 2 days of age and 
every two to four weeks until 24 weeks of age. Most hematological variables were similar to the 
comparator group, except for hemoglobin, hematocrit, and plasma total protein. Mild anemia and 
low blood protein concentration were observed for the first four weeks, but both these conditions 
resolved by eight weeks of age. The authors stated that decreased hematocrit and hemoglobin 
values are common in piglets reared in confinement, and that these symptoms are generally 
treated with iron dextran. Similarly, clinical chemistry results indicated decreased levels of 
albumin and globulin during the first four weeks in the transgenic clones relative to comparators, 
but these values were back within the normal range by eight weeks of age. The authors attributed 
the decreased protein and globulin values to the decreased colostrum intake of the newborns as 
the surrogate sow bearing them did not initiate normal lactation, and piglets were dosed with 
colostrum at some unspecified point after birth. 
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Seven of the transgenic clones were evaluated for cardiac function. Although no physical defects 
were found, one piglet had evidence of mitral insufficiency (a condition in which the mitral valve 
of the heart does not close all the way during contraction, resulting in regurgitation of some of 
the blood in the left ventricle), and dilation of the left atrium and ventricle. This piglet and two 
other clones had reduced cardiac output values compared to control piglets, but did not display 
clinical signs of cardiac disease. Although similar cardiac abnormalities have been noted in 
conventional swine, the incidence is reported to be very low (Carter citing Hsu et al. 1982). 
These developmental defects appear to be similar to those noted in cattle clones (see Critical 
Biological Systems discussions). 

Lai et al. 2002 
This study was reported in a brief communication, and a limited amount of data was presented. 
Piglets were generated from cell lines (derived from inbred miniature pigs) in which the α-1-3­
galactosyltransferase gene was interrupted by the insertion of a gene sequence in order to create 
α-1-3-galactosyltransferase “knock-outs.” The α-1-3-galactosyltransferase gene codes for a 
protein that causes hyperacute rejection of swine organs when transplanted into primates. 
“Knocking out” the expression of this gene increases the suitability of these animals to be used 
as donors of organs for human transplant patients. 

Six piglets were born from two litters. All but one of the piglets had low birth weights compared 
to the breed average (115 to 650 g vs. 860 g). One piglet from each litter died shortly after birth 
from what the authors termed “respiratory distress syndrome.” A third piglet died at 17 days of 
age during a routine blood draw, and was diagnosed at necropsy with a dilated right ventricle and 
thickening of the heart wall. Other abnormalities noted in these surviving transgenic piglets 
included flexor tendon deformities in three animals; abdominal ascites, enlarged right ventricle, 
pulmonary hypertension in one animal; and ocular defects and lack of patent ear canals in 
another animal. The authors attributed these abnormalities to failures in reprogramming during 
the SCNT process rather than the genetic engineering process, as they did not see a consistent 
phenotype across the piglets. 

Lee GS et al. (2003) 
Recently, Pearson (2003) reported that the University of Connecticut laboratory that had 
generated four transgenic swine clones had announced that the three (of four) surviving piglets 
died suddenly of heart failure at less than six months of age. The fourth piglet died at three days 
due to infection and abnormal spine development (Lee GS et al. 2003). Because of the transgenic 
nature of the animals (they carried genes for human clotting factor IX and porcine lactoferrin, an 
iron transport protein found in blood), it is not possible to attribute the deaths solely to cloning. It 
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is unknown whether any cardiac abnormalities were detected in these animals prior to their 
deaths, or if any measurements of cardiac function were made. 

D. Sheep 

Denning et al. 2001 
Denning et al. 2001 were unsuccessful in producing viable knock-out sheep lacking either the α­
(1,3)-galactosyl transferase (GGTA1) or the prion protein (PrP) gene using gene targeted fetal 
fibroblasts and SCNT. Reconstructed embryos were either incubated for six days (n=48) or 
overnight (n=93) in synthetic oviductal fluid with bovine serum albumin (concentration not 
specified). Embryos incubated overnight in vitro were then embedded in 1 percent agar chips in 
phosphate buffered saline and transferred to the ligated oviduct of an estrus-synchronized ewe 
for six days. A total of 120 morula or blastocyst stage embryos were transferred to 78 estrus-
synchronized Finn Dorset ewes as final recipients. It is not clear from this paper how many of the 
transferred embryos had been incubated in vitro. Although 39 pregnancies were diagnosed at 
gd 35, only eight were maintained to term, resulting in four live births. Three of the four live­
born lambs died shortly after birth. The fourth lamb survived 12 days before it was euthanized 
after developing dyspnea (difficulty breathing) due to pulmonary hypertension and right-sided 
heart failure. The authors attributed the abnormalities observed to the nuclear transfer procedure, 
as they were similar to results obtained with non-transgenic NT lambs. 

McCreath et al. 2000 
McCreath et al. 2000 inserted a promoter-less neomycin selectable marker between the ovine 
α1(I)-procollagen translational stop and polyadenylation signal118 in male and female ovine fetal 
fibroblast cultures. Four transgenic female fibroblast cultures were selected as nuclear sources 
for SCNT, due to their vigor and normal chromosome number. A total of 80 morula and 
blastocyst stage embryos were transferred to recipient ewes. No description of post-fusion 
incubation or estrous cycle status of recipient ewes was provided in this report. Fourteen lambs 
were born alive; seven of these lambs died within 30 hours of birth. Four more lambs died 
between 3 days and 12 weeks of age. Three lambs survived and were described as thriving at one 
year of age. Necropsy of lambs that died in utero or after birth revealed a number of 
abnormalities including a high incidence of kidney defects (frequently renal pelvis dilation) and 
liver and brain abnormalities (not specified). The authors attribute these abnormalities to either 
cell treatment or the NT procedure, because the necropsy findings were similar to a previous 
nuclear transfer study using the same cell lines. 

118 These are regions of the DNA construct that provide instructions for the appropriate processing of information 
in order to make functional proteins. 
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E. Goats 

Baguisi et al. 1999 
In this study from Genzyme Transgenics, six cell lines were established from 35- and 40-day old 
fetuses that resulted from the mating of a transgenic buck (carrying a human antithrombin III 
(hAT) gene with a goat β-casein promoter) to a non-transgenic doe. This study differs slightly 
from several other transgenic cloning studies reported here, in which the gene was inserted into 
the cell lines before the cultures were established. Clone embryos were cultured on goat oviduct 
epithelial cells for 48 hours (2-16 cell stage) before being transferred to estrus synchronized 
recipient does. Although overall cloning efficiency was low (3/112 embryos transferred resulted 
in live births), all pregnancy losses occurred prior to 60 days of pregnancy. There were no 
stillbirths and no abnormalities observed in the live-born kids. Kids weighed between 2.35 and 
3.5 kg, within the normal birth weight for dairy goats, and are reported as healthy. 

Keefer et al. 2001a 
In this study from the Nexia Biotechnologies laboratory, goat fetal fibroblasts were transfected119 

with green fluorescent protein (eGFP) and neomycin resistance genes. These are commonly used 
as markers to demonstrate that transgenes have been inserted and are being expressed. Twenty 
seven NT embryos were produced with the transfected cells, and an additional 70 non-transgenic 
NT embryos were constructed and transferred into 13 estrus synchronized recipient does. The 
authors did not specify how many embryos (transgenic or non-transgenic) were transferred to 
each doe. Five non-transgenic male clones and one transgenic female clone were born alive. 
Three of the non-transgenic clones died of bacterial infections, but the single female transgenic 
clone lived and showed no signs of abnormalities. The kids were all within the normal birth 
weight range (1.5 to 3.1 kg) for goats at that facility, and no abnormalities were observed in the 
placentae. 

Behboodi et al. 2004 
The authors compared development of embryos cultured with oviductal cells in vitro vs. embryos 
cultured in vivo. Embryos were constructed using skin fibroblasts of transgenic goats. Only 
embryos cultured in vivo resulted in pregnancies. Two of these pregnancies were lost early in 
gestation (after 30 days gestation), and four other pregnancies were carried to term. Two 
surrogate does delivered stillborn kids 2-3 days after their due dates; the other two does delivered 
healthy kids (one per each doe) at term. The two live clones weighed 3.8 and 4.1 kg at birth, and 
were within the normal birth weight range for their breed (Saanen). Clones were weaned at 8 
weeks of age, and had similar growth rates compared to age-matched AI derived Saanen kids 
born at the same facility (14.5 and 18.1 kg for clones vs. 14.88 ± 1.98 kg for AI comparators). 

119 Transfection is the process of introducing exogenous DNA into cells without the use of viral vectors. Common 
methods include co-precipitating DNA with salts and polymers. 
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Pathology on the dead fetuses indicated diffuse atelectasis (lung collapse) and the presence of 
amniotic fluid in the lungs. No bacterial or viral cause for the deaths of these clones could be 
identified. The presence of amniotic fluid in the lungs suggests that the clones attempted to 
breathe prematurely, a sign of fetal stress which sometimes occurs around the time of birth. 

Behboodi et al. 2005 
The authors evaluated health, growth, reproduction and lactation in four female goat clones 
generated from two transgenic fetal cell lines (one cell line coding for glycosylated and the other 
for non-glycosylated protein). A total of seven clones were carried to term. One clone from the 
glycosylated group was still born with evidence that the umbilical vessel had ruptured. Two 
clones died at birth (one from each of the transgenic lines) after failing to breathe on their own, 
despite attempts at manual ventilation. Thus, two clones from each transgenic line survived to 
adulthood. There were no differences in birth or weaning weights among the four surviving 
clones or their age-matched comparators. Transgenic clones exhibited enlarged umbilical stumps 
(two live and one stillborn kid), “tendon laxity” (three of the four live-born clones), and minor 
generalized edema (number of clones affected not indicated). These conditions resolved without 
intervention. The four does were bred and produced nine kids, compared to five kids produced 
by comparators. Clones expressing the glycosylated version of the protein lactated only briefly, 
but the does expressing the non-glycosylated protein had normal lactation length and milk yields.  

This study is the only one we encountered that presented hematology and blood clinical 
chemistry data for four goat clones. These data are presented in comparison to four age-matched 
comparators and values from the literature (Pugh 2002). It is unclear whether or not the 
comparators in this study were also transgenic, whether they were the same breed as the clones, 
or how they were generated. Hematology values were similar between clones and comparators, 
and all hematology values fell within the published range. For clinical chemistry, 18/24 values 
were not significantly different between clones and their age-matched comparators. Of the 19 
clinical chemistry values for which published ranges were available, 18 of the values for clones 
and comparators fell within the published range. The one value out of the published range was 
creatine kinase (244.6 vs. 204.4 IU/L for clones and comparators). However, values between 
clones and comparators were not statistically different. The study does not specify the age of the 
goats at time of blood sampling, so it is difficult to interpret the high values for CK in these 
animals compared to the published range. 

This study is unique among reports of goat clones because it is the first to indicate possible signs 
of LOS in goat clones (enlarged umbilici, failure to initiate breathing, tendon problems). It is 
interesting to note that similar signs have not been noted in non-transgenic goats. We should also 
note that clinical signs in the four surviving clones resolved, and their health, growth, 
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reproduction, and hematology, clinical chemistry values indicate that even these transgenic 
clones are apparently normal. 

Landry et al. 2005 
The authors reported on growth (weight gain, wither and hip height change) and endocrine 
profiles of two lines of transgenic goat clones. Group 1 consisted on five does carrying the AT­
III gene with a β-casein promoter inserted into cells of a female Toggenburg (dairy breed). The 
gene inserted into the second line of goats (Group II; n=2) was not identified, but the cells used 
for cloning were from a female Saanen (also a dairy breed). Non-transgenic, non-clone 
comparators (n=7) were Boer X Spanish crossbred meat-type does (Group III). The authors did 
not report on overall health of the clones. One female in each group of clones died prior to the 
end of the study; one died due to an accident, the other due to a ruptured abomasum. Neither 
death appears to be related to cloning. Both groups of clones were within range for their breed 
for birth weight, and appeared to grow normally. Interpretation of hormone profiles (GH, IGF-I, 
T3, and T4) is difficult due to the fact that the clones and comparators were of different breed 
(purebred vs. crossbred) and type (dairy vs. meat) backgrounds. However, for most of the 
hormones assayed, the values for clones fell within the range of values for comparators. The one 
exception is insulin, which resulted in an extremely low value in blood samples of comparators, 
and may have been the result of difficulties with the assay. 

Melican et al. 2006 
With the long-term goal of producing caprine milk containing recombinant therapeutic proteins, 
the authors demonstrated successful reproduction and lactation in transgenic dairy goats 
produced by SCNT. Does were produced using primary fetal cells harvested from day 35-40 
fetuses. These cells were co-transfected with DNA fragments encoding the heavy and light 
immunoglobulin chains of three different monoclonal antibodies, plus neomycin resistance as a 
selectable marker. Two transgenic does were hormonally induced to lactate at two to three 
months of age and produced small amounts of milk (10-20 ml per day) for 30-40 days. These 
does were subsequently bred and, at 18 months of age, gave birth to 6 kids (4 were transgenic).  
Following parturition, the 2 transgenic does produced an average of 2.2 liters of milk per day for 
3-6 months. A third transgenic doe, at age 23 months, also lactated following the birth of one 
transgenic kid, producing 2.6 liters of milk per day for one month prior to being dried off.  The 
milk of all 3 transgenic does contained the antibody for which they were transgenic. These 
results demonstrate reproductive capacity in cloned female goats, and the ability of these goats to 
produce normal quantities of milk following parturition.   
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F. Conclusions Regarding Transgenic Clones 

The experience of these cohorts of transgenic clones can be summarized as follows: 

•	 A relatively large fraction of transgenic fetal bovine clones in cohorts surviving to 
late gestation presents with severe and often fatal difficulties. Some of these are 
qualitatively similar to those observed in cattle and sheep clones that are not derived 
from transgenic cells. Due to the many other variables that have been altered in the 
generation of these animals, at this time it is not possible to attribute these 
abnormalities to either of the processes (cloning or transgenesis) or their combination.  

•	 Some animals in both cattle cohorts are born with varying degrees of initial 
respiratory or other physiological distress. Supportive care appears to allow most of 
these animals to survive to adulthood, although some animals that initially survive 
can succumb to possible sequellae up to six weeks later. 

•	 Animals surviving to adulthood in the ACT cohort that appear to be healthy on visual 
inspection also exhibit physiological values that generally fall within normal ranges. 
CVM is unaware of an update of the health status of the Hill et al. cohort. 

•	 Animals in the ACT cohort surviving to reproductive maturity appear to be capable of 
bearing normal offspring, although it is not clear whether the offsprings’ health has 
been examined in a rigorous manner.  

•	 Two severe adverse outcomes have been noted for the ACT cohort. Both cloning and 
transgenesis can likely be ruled out as causes for one (Johne’s disease) and no causal 
agent or process has been associated with the neoplasm found in the other. 

•	 The appearance, behavior, and physiological function of the animals that survive 
suggest that even the “riskiest” set of clones (i.e., transgenic clones) can develop into 
normally functioning animals. These results are consistent with the analysis of non-
transgenic clones, and provide additional confidence that rigorous monitoring and 
responsible husbandry of such animals can allow for the selection of animals that are 
healthy. 

•	 Abnormalities for transgenic sheep clones appear similar to reports for non-transgenic 
sheep and cattle clones. 
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•	 Goats appear to suffer fewer adverse effects compared to sheep and cattle. Of the 
reports reviewed, only one cohort exhibited clinical signs of LOS. 

•	 Abnormalities reported for transgenic swine clones are similar to those reported for 
transgenic and non-transgenic cattle clones. CVM is aware of only one report in non-
transgenic swine clones (Park MR et al. 2005) in which clones exhibited similar 
health problems; however, in vitro methods used in this study likely influenced the 
outcome of swine clones in this study. 
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Appendix E: The Cyagra Dataset 


A. Response to CVM Data Requests 

The Center for Veterinary Medicine (CVM) has presented its proposed risk assessment approach 
at several public venues since the fall of 2002. As part of the proposed approach, we have 
requested that investigators engaged in cloning cattle, swine, sheep, or goats share data that they 
might have on the health status of these animals with the Center. The intent of the data request 
was to supplement the published data with unpublished data generated by the developers of these 
animals. We thought that data on the health status of animal clones would likely be in the hands 
of the private sector, which might have less impetus to publish than academic laboratories. The 
Center promised producers that, to the extent allowed by law, if they wished, their identities 
could be kept confidential by FDA, and that we would not publish the specific identity and 
location of the animals. 

We discovered that there are very few datasets describing the health of animal clones. In general, 
clones are monitored closely for the first few weeks of life (or through weaning). They are often 
then moved from “research/hospital” facilities to “farm-like” facilities, where they are often 
reared with conventional animals. Most producers kept fairly cursory veterinary records unless 
the animal was in distress. Further, because of technical issues associated with generating 
successful pregnancies, only a few clones tend to be delivered at one time or from one cell line. 
The result is that aggregating and analyzing data becomes difficult unless publications are 
planned in advance. 

As many of the clone producers either have primary employment as academics, or continue to 
maintain academic appointments, there may be data available that have not yet been shared with 
CVM because of the investigators’ desire not to jeopardize their ability to publish in peer 
reviewed journals. Because of CVM’s pledge to be fully transparent in this risk assessment, we 
determined that all data submitted would be made public through the risk assessment. We 
obtained the express permission from the submitters of data for the public release of this data. 
“Publishing” this information in the assessment could preclude formal publication in a peer 
reviewed journal, as most high quality peer reviewed journals have a policy of being the site of 
first publication. 

As our risk assessment methodology evolved, it was presented at public fora (the Pew Initiative 
for Agricultural Biotechnology’s September 2002 Biotech in the Barnyard conference, the April 
2003 American Registry of Professional Animal Scientists meeting in Maryland, and the FDA 
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Science Forum of April 2003). Subsequent discussions between clone producers and agency staff 
resulted in investigators returning to the field to try to collect existing data, or, in one exceptional 
case, to generate de novo data on the health status of clones. Without exception, every clone 
producer or investigator contacted was willing to answer questions on aspects of clone 
production, gestation, delivery, and care. Many have provided data or information that we have 
incorporated into this risk assessment or will use in future iterations. In order to issue the risk 
assessment in a timely manner, however, we have had to put off our analysis of some of the 
datasets until the next revision of the risk assessment. We are very grateful to those producers 
and owners who voluntarily expended significant time, effort, and in some cases, capital, to 
provide information to us. 

B. Cyagra Dataset 

One clone producer, Cyagra Inc.,120 has been engaged in the production of cattle clones since 
1999. In the late spring of 2003, Cyagra submitted an extensive database to CVM for use in the 
animal health component of our food consumption and the animal health risk assessments. These 
data were made available for CVM to use in our risk assessments with no restriction, except to 
protect to the extent allowed by law the identity and location of the animals, and their current 
owners. In order to accommodate this request, CVM issued each animal in the study a unique 
identification number. These numbers have been employed throughout this analysis. 

Cyagra has asserted that they have provided data on all of the clones that they can trace, 
including those that died, or were euthanized or culled. Animals were divided into three age 
cohorts by Cyagra: neonates (within 24 hours), 1-6 month age cohort (between 30 and 175 days 
of age), and 6-18 month age cohort (187-557 days of age).  

The age spread among these animal cohorts reflects key stages in physiological development of 
cattle. For example, digestion differs significantly among different age groups: a 2-month-old 
calf is just starting to use its rumen, while a 6-month-old calf is a fully developed, cud-chewing 
ruminant. In this case, these two calves have been grouped together even though they have 
substantive physiological differences, because they have more in common than, for example, a 
neonate and a six month old calf. For the sake of accuracy, we have classified this group as 1 to 6 
months old. A 6-18 month old calf is not quite old enough to be considered an adult, as it is still 
growing, and the younger animals in this group will still be pre-pubertal. We have therefore 
decided to classify this group simply as “6 to 18 months.” The distribution of animals in the 
cohorts is found in Table E- 1: Distribution of Cattle Clones and Comparator Populations.  

120Cyagra Inc. is a privately held biotechnology company commercializing SCNT technology for the agricultural 
sector. 

Animal Cloning: A Risk Assessment 



Appendix E: The Cyagra Dataset 473 

Comparators were approximately age-matched animals reared on the same farms or facilities as 
clones. The comparators were not born at the same locations, and do not represent the same 
distribution among breeds as the clones. Comparator animals were not clones, but were produced 
by either artificial insemination (AI) or natural breeding, from either primiparous (heifers) or 
multiparous dams, and were all delivered vaginally. Blood samples from neonatal comparator 
animals were taken after colostrum administration, while neonatal clones were sampled prior to 
receiving colostrum. 

These animals do not provide a strict biological comparator that has experienced the same 
treatments and conditions as the clones. For example, the culturing conditions in the embryonic 
phase for cloned embryos could be more closely compared with those encountered by animals 
generated by in vitro fertilization. These comparators are not, strictly speaking, “control” 
animals.  

Further, given the approximate age- and breed-matching, this dataset should not be evaluated in 
the same manner as a tightly controlled prospective “laboratory” experiment. Rather, our opinion 
is that this dataset should be viewed as an attempt to compare health and laboratory test values 
between clones and conventional animals comprising part of national dairy and beef herds. These 
data were not generated or collected under “Good Laboratory Practices,” and we have not 
attempted to audit the data except insofar as we have detected errors or requested clarification(s) 
from Cyagra. 

Table E- 1: Distribution of Cattle Clones and Comparator Populations for Blood 
Analyses 

Number of Animals 

neonates 1 to 6 
months 6 to 18 months Totals 

Clones 10 46 18 67 
Comparators 17 47 21 83 

In Table E-1, 7 (of the 46) 1-6 month clones and 2 (of the 47) 1-6 month comparators were 
sampled in the neonatal group. The 1 to 6 month and 6 to 18 month cohort information was 
collected within a relatively short time frame. These data may best be thought of as a “snapshot” 
view of the animals during their development, rather than a longitudinal study in which the same 
animals are followed over some period of time. In fact, only nine animals were sampled or 
examined at more than one time point (at birth and weaning), and of those, seven were clones 
and two were controls (Clone ID# 71, 72, 73, 78, 79, 119, and 132; Control ID# 135 and 162). 
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1. Description of Clones 

All clones were derived from actively dividing cells from skin biopsies; recipient oöcytes were 
obtained from commercial abattoirs. After 7 or 8 days of in vitro culture, morula or blastocyst 
stage reconstructed embryos were implanted into recipient Holstein heifers. Pregnancies were 
monitored closely, and with few exceptions, clones were delivered via Caesarean section (C­
section) to reduce the risk associated with birth. Blood samples were drawn from the neonates 
prior to colostrum administration.  

Table E-2 summarizes the information on samples taken from calves within the first 24 hours of 
birth. Some of the animals in the Cyagra dataset required some supportive care immediately after 
birth (e.g., glucose, warming, or supplemental oxygen), and many (n=29 out 134) received 
umbilical surgery after birth. Enlarged umbilical vessels which do not close naturally after birth 
are an identified hazard for clone calves, and many of these calves received surgery to prevent 
complications such as umbilical infections and bleeding (see subsequent discussion on veterinary 
examinations and health status). This appears to be a fairly common problem in clones, and may 
be associated with poor placentation. However, no direct causal attribution can be made at this 
time to any particular developmental pathway causing the umbilical problems.  

Health anomalies noted in surviving animals for which there are no additional follow-up data 
include diarrhea, fever, anemia, heart murmur, and slight contracture of the flexor tendons 
(referred to as “contracture”). 

Of the 134 clones in this review, 28 were stillborn, died, or were euthanized within 48 hours of 
birth, leaving 106 animals (or 79 percent) alive two days after birth. At the time that data were 
collected on these animals (late March 2003), 67 were alive (64 percent of those surviving to 48 
hours, or 50 percent of those born or delivered). Eleven (10 percent) of the animals alive at 48 
hours died within approximately one and a half years later. These data are summarized in Table 
E-2. Of the eleven deaths between 48 hours and one and a half years later, Cyagra considers two 
deaths not related to cloning, and the other nine as “related, possibly related, or questionably 
related” to cloning. Of those fitting the “related (to some degree) to cloning” category, one was 
clearly a fetal developmental anomaly: flexor tendon contracture (“contracture”); three 
experienced difficulties with the umbilicus ultimately leading to death either via infection or 
adhesions; two had gastrointestinal problems with bloat or adhesions; two had circulatory 
problems; and one animal was euthanized for “failure to thrive.”  
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Table E-2: Summary of Outcomes for Clones Not Surviving Birth 
Animal 
Number

 Birth Weight 
(kg) Age at Death (days) Problems 

Noted Cause of Death 

3 NP1 0 Abnormal delivery Stillborn 
6 NP 16 NP Accident; hung in stall 

11 NP 0 Abnormal delivery Euthanized 

12 NP 0 Ruptured uterus in 
recipient Stillborn 

13 NP 0 NP Unknown 

14 33.2 13 Contracture2, umbilical 
infection Septicemia 

16 50.0 2 
Slack abdomen, umbilical 
problems, breathing 
difficulties 

Failure to transition to 
neonatal circulation  

18 68.2 0 Polycystic kidneys Stillborn 

19 69.1 0 Umbilical problems, 
flaccid abdomen Stillborn 

20 NP 0 Abnormal development Euthanized 

23 45.5 0 
Abnormal development, 
internal bleeding, umbilical 
problems 

Euthanized 

28 NP 0 NP Stillborn (C-section) 
29 NP 0 Abnormal development Euthanized 

31 76.8 0 Abnormal renal 
development Euthanized 

34 NP 0 NP Stillborn (C-section) 
43 NP 1 Diarrhea Rotavirus 
47 NP 0 NP Stillborn (C-section) 
48 54.5 0 NP Stillborn (C-section) 
49 NP 0 NP Stillborn (C-section) 

51 NP 0 Flaccid abdomen, 
“bulldog” Stillborn (C-section) 

52 NP 0 NP Stillborn (Fetotomy) 

54 59.1 0 
Reverted to fetal 
circulation, cardiac, 
neurological problems 

Euthanized 

57 NP 23 Ruptured abomasum Ruptured abomasum 

63 NP 60 Loss of hair, appetite, 
muscle Euthanized/failure to thrive 

65 61.4 3 Lethargic GI transit; adhesions from 
umbilical bleeding 

66 54.6 149 

Contracted tendons, 
recurring bloat, large 
umbilicus requiring 
surgery 

Bloat/GI motility problems 

68 NP 0 (2 weeks Pericarditis Unable to determine 
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Table E-2: Summary of Outcomes for Clones Not Surviving Birth 
Animal 
Number

 Birth Weight 
(kg) Age at Death (days) Problems 

Noted Cause of Death 

premature) 

77 NP 47 Umbilical problems Severe contracture, 
unresponsive to therapy 

80 NP 1 Diarrhea Rotavirus 

86 NP 0 Severe contracture, fluid 
filled belly Euthanized.  

92 NP 0 Depressed, pus in 
umbilicus Unable to determine 

95 NP 0 Severe contracture Euthanized 

97 NP 0 Severe contracture, fluid 
filled belly Euthanized 

105 45.5 0 Severe twisting of neck, 
contracture Euthanized 

107 NP 2 Hypoxemia, rapid 
deterioration Euthanized 

109 NP 0 Abnormal development Euthanized 

113 NP 22 Nephritis Pyelonephritis3/ umbilical 
infection 

123 NP 9 Contracted front fetlocks Pyelonephritis/ umbilical 
infection 

125 NP 0 Severe contracture, rotation Euthanized 
1NP = Not provided
2Contracture is a condition in which muscles have a fixed, high resistance to stretching due to fibrosis of the tissues 
supporting the muscles or joints, or from disorders of the muscle fibers. 
3Pyelonephritis is an inflammation of the kidney due to bacterial infection. 

2. Evaluations Performed 

Several types of information including veterinary records, clinical chemistry measurements, 
hemograms,121 and urinalysis are provided in this dataset. Not every collectable data point has 
been provided for each animal. Some information is unavailable because use of the data in a 
review such as this was not anticipated at the time the data were collected. In addition, dispersal 
of clones to their ultimate owners limited data collection to the degree to which owners made 
information or animals available. Nonetheless, this is the largest collection of information on the 
health status of non-transgenic clones of which we are aware, and the most detailed with respect 
to health status and laboratory tests. 

121 A hemogram is a panel of measurements characterizing the nature of the circulating blood in an animal or 

human. 


Animal Cloning: A Risk Assessment 



Appendix E: The Cyagra Dataset 477 

The dataset includes information on the following: 
•	 Breed from which donor cells were collected 
•	 Gender of the donor 
•	 Birth date of the clone 
•	 Birth status (alive, stillborn) 
•	 Birth weight 
•	 Perinatal health status and veterinary/supportive care provided 
•	 Health status of animals between two and twelve months of age 
•	 Veterinary care, including treatment with drugs, surgery, or other therapeutic 


interventions 

•	 Standard blood chemistry assays (Large Animal Panels) 
•	 Assays for serum Insulin-like Growth Factor-1 (IGF-1), estradiol-17β, amylase, 


cholesterol, and bile acids 

•	 Complete blood counts (CBC) and differentials 
•	 Standard urinalysis 

Comprehensive veterinary examinations were performed by licensed cattle veterinarians. Blood 
samples were drawn within a few hours of birth, or at the time of veterinary examination. For 
CBC, blood was collected into standard EDTA-treated collection tubes; additionally, two 
unstained and unfixed air-dried smears were provided. For chemical analyses, whole blood was 
collected, allowed to clot, and the serum fraction separated by centrifugation. Laboratory 
analyses were all performed at the Cornell University’s Animal Health Diagnostic Laboratory. 

3.	 CVM’s Analysis of Cyagra Data: Method 

Our goal in evaluating the Cyagra dataset has been to determine whether extensive interrogation 
of the health status of the clones, including clinical chemistry and hematology, could 

(a) 	Distinguish clones from comparators; 
(b) 	 Determine whether the health status of the clones was inferior to conventional 

animals and offer a predictor of a successful outcome; and  
(c) 	 Determine whether any of the information indicated concerns regarding animal 

health or food safety. 

We note that this was not a “blinded” analysis of the provided data. No attempt was made to 
disguise the identity of the animals, and whether they were clones or comparators. CVM 
personnel engaged in performing the evaluation included veterinarians, animal scientists, 
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toxicologists, and risk assessors, with extensive training in evaluating clinical and physiological 
measurements of animals traditionally consumed as food in the US. 

For the overall health status of animals, the veterinary records were reviewed for notations 
indicating therapeutic interventions (including administration of colostrum, vaccines, dehorning, 
surgeries, drug therapies, etc.). Clinical and hematologic data were compared to both reference 
ranges provided by the testing laboratory and to the comparator animals. Additionally, laboratory 
values from the comparator animals were also compared to the testing laboratory to determine 
the degree to which the comparator group was represented by the testing laboratory’s reference 
range (see Results). In general, urinalysis data were only used qualitatively as confirmation of 
outcomes noted in the clinical chemistry (e.g., glucose, BUN or creatinine levels). Table E-3 
provides a summary of the analyses performed and tabulated in the Charts indicated. 

Outcomes were reviewed on an analyte basis across a cohort of animals (analyte evaluation), and 
on a per animal basis across analytes (animal evaluation). The questions asked for each animal 
and analyte tested were “How many of the total animals tested exhibited values outside the 
comparator/testing laboratory reference range for Analyte X?” and “How many values outside 
the comparator/testing laboratory reference range does Animal Y exhibit?” 

Table E-3. Summary of Charts Describing Comparisons 

Clones: Reference Range Clones: Comparators Comparators: Reference 
Range 

Clinical Chemistry: 
6 to 18 months 
1 to 6 months 
neonates 

Chart 300 
Chart 200 
Chart 100 

Chart 301 
Chart 201 
Chart 101 

Chart 302 
Chart 202 
Chart 102 

Hematology: 
6 to 18 months 
1 to 6 months 
neonates 

Chart 310 
Chart 210 
Chart 110 

Chart 311 
Chart 211 
Chart 111 

Chart 312 
Chart 212 
Chart 112 

The Charts are a graphical summary of CVM’s analyses. For each chart, the unique identification 
number associated with each animal (“ID#” or “animal number”) is listed in columns 
horizontally across the top of the table; the analysis performed is listed in rows vertically down 
the side of the table. If the value being evaluated fit within the comparison range being used for 
that interrogation, a black rectangle was recorded in the cell corresponding to the animal 
column/analyte row pair (g). If the value was outside the comparator range, but judged to be not 
clinically relevant, a gray rectangle (  ) was recorded. If the value recorded was above or below 
the clinically relevant range, an arrow indicating whether the value was greater or less than the 
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range was inserted (↑↓). Values that were considered to be so far out of range as to be 
physiologically incompatible with a healthy animal but unsupported by related clinical 
measurements were deemed artifact and labeled “X.” For example, a calf with a blood glucose 
level of 4 mg/dl would be comatose or dead. If the sample came from an animal that was not 
comatose or in distress, and there were no other related clinical measurements normally 
associated with abnormal blood glucose, we assumed that the measurement was an artifact. 
Missing values were represented by an asterisk (*). 

4. CVM’s Analysis of Cyagra Data: Results 

a. Comprehensive Veterinary Examinations 

Comprehensive Veterinary examinations were performed on 53 clones and 2 non-clones, and 
included explicit evaluations of the following: 

• Demeanor • Gastrointestinal system 
• Posture • Genitals 
• Gait • Neurological examination 
• Body Condition • Peripheral lymph nodes 
• Skin and coat • Responsiveness of pupils to light 
• Vocalization • Corneas and eyelids 
• Lungs (Auscultation) • Umbilicus 
• Nerves • Weight 
• Integument • Heart Rate 
• Musculo-skeletal system • Respiration rate 
• Cardiovascular system • Temperature 
• Oral/Pharyngeal region • Feces 
• Urine 

The calves in this study were examined by veterinarians specializing in cattle at roughly 1-6 
months of age or at 6-18 months of age. The most consistent abnormality reported for clones was 
umbilical surgery, often described as umbilical hernia surgery. In some instances, the records 
stated, “umbilicus – had surgery.” Some other comments on the umbilicus were: “had umbilical 
hernia surgery,” “ventral hernia,” and “1 ½” hernia,” “fluid filled mass,” “umb. stump.” In the 
initial submission of 58 animals, 26 animals had umbilical surgery.  Other abnormalities reported 
included two clones with musculo-skeletal abnormalities, one with slight precocious (early) 
mammary development, two with harsh lung sounds, three cryptorchid (undescended testicles) 
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bull calves, and one with premature ventricular contractions (PVCs, a form of cardiac 
arrhythmia) every 5 – 10 heartbeats.  

The two clones with musculo-skeletal abnormalities included a Holstein heifer (ID# 79) with 
thick withers, enlarged left carpus, and leg that deviated laterally, and an Angus heifer that was a 
dwarf tending to gastro-intestinal bloat (Clone #108). These are obvious abnormalities and the 
animals were culled. The calf with slight mammary development was a 4½ month old Jersey 
(Clone #87). This age is young for mammary development but the phenomenon sometimes 
occurs in conventional heifers if they are overfed. There is no notation of follow up to determine 
if the calf continued to develop precociously. 

The two clones with harsh lung sounds were a Holstein heifer (Clone # 41) and an Angus heifer 
(Clone #58). Both also had umbilical surgery. A note at the bottom of the Angus heifer’s exam 
sheet stated that the heifer “may not return home due to permanent lung damage.” There is no 
indication as to whether this animal was culled. Three Holstein bull clones derived from the 
same cell line were diagnosed with a retained testicle (cryptorchid) (Clones #128, 130, 131). 
Although cryptorchidism is not common in bull calves, it is thought to be heritable and is seen 
with some regularity. Bulls exhibiting cryptorchidism would fail their breeding soundness 
exams, and would not be used for breeding,122 but would not be refused by an inspector at 
slaughter. 

A Holstein bull calf clone (Clone #126) was diagnosed with premature ventricular contractions 
from a single exam, but no subsequent follow up is provided to determine whether the animal 
outgrew the condition or whether the animal was culled. The frequency of cardiac arrhythmias in 
conventional calves is unknown. Thoracic auscultation (listening to the chest with a stethoscope) 
or more elaborate procedures are needed to detect cardiac arrhythmias. Calves are rarely 
examined with thoracic auscultation unless they show signs of illness. 

b. Conclusions from Veterinary Examinations 

The adverse physical exam findings noted in this limited sample of clones do not present a food 
safety issue for several reasons. One of the precepts of this risk assessment is that animals found 
to have a disease or condition that would render them adulterated (e.g., unfit for food, 
unhealthful, unwholesome) are excluded from the food supply, as normally happens with 
conventional animals. Dwarf animals from conventional breeding would likely be culled 

122 Cryptorchidism is undesirable because of its heritability, its adverse effect on fertility, and potential for the 
development of testicular cancer in animals living long enough to allow neoplasia to develop. From a veterinary 
standpoint, however, testicular neoplasia is more of an issue with companion animals, as they are generally 
longer-lived than farm animals. 
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depending on the extent of the physical abnormality. Pre-pubescent mammary development, lung 
sounds, cryptorchidism, and cardiac arrhythmias are not conditions that typically exclude 
animals from food use. If the disease process had progressed to an extent sufficiently severe to 
cause systemic changes (e.g., liver congestion, enlarged heart, edematous lungs), the carcass 
would be condemned on inspection at the slaughtering plant. In fact, all of these conditions occur 
in conventional animals.  

With respect to animal safety, these conditions may pose some cause for concern. Our review of 
these data indicates that the clone cohort appears to exhibit a higher incidence of abnormalities 
than might be expected in a random sample of conventional calves. There is, however, an 
absence of data on the prevalence of these outcomes in contemporary cattle. As some of these 
defects (e.g., dwarfism, cryptorchidism) likely have a hereditary component, in the absence of 
information on the donor cattle and their individual histories, we cannot determine whether the 
defects result from the cloning process, the selection of the donor nucleus, or some combination 
of those factors. The clustering of cryptorchidism in clones from one cell line, for example, 
implies that heredity may indeed be a contributing factor in the appearance of that outcome. 
Comparison with datasets on animal health from other clone producers would be instructive in 
determining whether these health problems are common among clones generated by different 
methods and multiple cell lines. 

c. Laboratory Values: Selection of Most Appropriate Comparator 

Two comparators were available for evaluating the Clones: the Cornell Animal Health 
Diagnostic Laboratory (“Reference Range”) and approximately age-matched, and breed-
distributed cohort of animals contemporarily reared at the same farms as the clones 
(“Comparator Population” or “Comparators”). The Reference Range population from the Cornell 
Laboratory is described as follows: 

“We establish reference intervals by collecting blood from at least 50 adult healthy 
animals. These healthy animals are obtained from a variety of sources (e.g., student- or 
faculty-owned). Therefore, our reference intervals are only applicable for adult animals 
and not young animals. Results from young animals may fall outside our reference 
intervals because of age-dependent changes in their analytes. For example, phosphate 
concentrations and alkaline phosphatase activity are higher in young animals and 
decrease to within reference intervals at about one year of age.” 
(http://www.diaglab.vet.cornell.edu/clinpath/reference/) 

Follow-up conversation with the laboratory indicates that the animals used to establish the 
laboratory’s reference range were exclusively dairy cows, and thus do not represent the beef 
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breeds that are included in the Cyagra clone cohort or comparator cohorts, and may not include 
bulls. In addition, it is important to remember that the reference range is selected as a statistical 
distribution containing about 95 percent of the normal samples. As a result, as many as 5 percent 
of the test values will likely fall outside that range. Statistically, when numerous tests are run on 
the same animal, the chance of obtaining one or more results outside the “normal range” rises 
based on chance alone and not a disease state. 

Table E-3a: Fraction of Blood Values Within Comparison Range 

Animals Analysis Clones: Cornell 
Reference Range 

Clones: 
Comparator 
Population 

Comparator 
Population: Cornell 

Reference Range 
Chart  FCWR Chart  FCWR Chart  FCWR 

Peripubertals 
(6-18 months) 

Clinical 
Chemistry 300 0.75 301 0.99 302 0.73 

 Hematology 310 0.73 311 0.99 312 0.71 
Juveniles 
1-6 months) 

Clinical 
Chemistry 200 0.62 201 0.96 202 0.71 

 Hematology 210 0.59 211 0.96 212 0.61 
Neonates 
(<48 hours) 

Clinical 
Chemistry 100 0.31 101 0.90 102 0.36 

 Hematology 110 0.61 111 0.90 112 0.62 
FWCR= Fraction contained within range of comparison, calculated by determining the number of out of range 
analytes of potential clinical relevance to the total number of measurements collected in each Chart. 

Table E-3a provides a summary of the Charts evaluating the clinical chemistry and hematology 
tests performed on the Cyagra clones compared with the comparator population, and the Cornell 
Reference Range. In addition, the comparator population was compared to the Cornell Reference 
Range. First, as cautioned by the Cornell Laboratory, the Reference Range is not a good 
comparator for young animals. A number of the clones and comparators fall outside the 
Reference Range123 but the similarity to the Reference Range increases with age for both clone 
and comparator populations. Approximately half the animals in the older cohort were less than 
one year of age, however, and all clones and comparators were less than two years of age. All of 
the animals in the older cohorts were still growing and thus do not match the laboratory reference 
adult cattle population well. Clearly, then the most relevant comparison for the clone cohorts in 
this review is the comparator population. 

d. Conclusions Regarding Clone and Comparator Population Cohorts in Aggregate 

123 It should be noted that because the reference range represents only 95 percent of the animals used in its 
derivation, even comparison of the animals used for the derivation will not fit exactly within the distribution.  
Thus, if the reference range were expanded to include those values outside the 95 percent distribution, it is likely 
that the clone and comparator populations would show a higher degree of “fit” than is observed in this analysis. 
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Review of the degree to which the clone cohorts have laboratory values that fit within those of 
the comparator population cohorts indicates the following: 

1.	 Even at birth, 90 percent (107 of 119 measurements) of the hematology values, and 90 
percent (272 of 324 values) of the clinical chemistry values lie within the values of the 
comparator population (Table E-3, Charts E101 and E111). This is particularly 
instructive, considering that many of the clones required some assistance immediately 
after birth (no similar records were kept for the comparators, but we assume that no 
extraordinary measures were taken, and were informed that all comparators were born 
vaginally). Further, clones had blood samples drawn before colostrum administration, 
while the comparators had blood samples drawn after colostrum administration, but 
within 24 hours after birth. Colostrum consumption (quantity and quality) influences 
certain laboratory values (e.g., globulin, total protein, GGT). 

2.	 The 1 to 6 month age cohorts are even more similar to each other than the neonatal 
cohorts: both the clinical chemistry and hematology values have 96 percent and 95 
percent concordance respectively (707 of 742 of the hematology measurements and 1,404 
of 1,462 of the clinical chemistry measurements for clones are within the clinically 
relevant ranges) (Charts 201 and 211). 

3.	 The 6 to 18 month cohorts are almost superimposable with respect to laboratory values 
(Charts 301 and 311). Only three of the 294 hematological values and seven of the 592 
clinical chemistry measurements were outside the clinically relevant ranges, significantly 
less than would be expected by chance alone. 

Based on clinical chemistry and hematology values, it is not possible to distinguish between 
these two cohorts (clones and comparators). The superimposability of the laboratory values and 
the absence of any significant health observations in the clones (based on the limited number of 
explicit veterinary exams) leads to the conclusion that the health of these animal clones during 
the 6-18 month period is not inferior to that of conventional animals. 

Because we have concluded that the comparator group is the appropriate basis for comparison 
for the clones, all subsequent discussion regarding clinical and hematological values will be 
considered in that context. 
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e. Animal and Analyte Specific Analyses 

In addition to evaluating the overall status of the clone and comparator cohorts, individual 
animal and analyte data were reviewed to determine if more detailed evaluations could provide 
either confirmation of the overall health of the animals, or to serve as indicators of potential 
health problems that might be present in the animals that were not detected on the 
comprehensive veterinary examinations. For each Chart, the following two questions were 
asked: 

1.	 “For all of the clones in this age cohort, how many of the values for each analyte were 
out of the range established by the comparators? (i.e., looking across each row, how 
many arrows or grey rectangles were present?), and  

2.	 “For each clone in this cohort, how many of the analytes were out of the range 

established by the comparators?” (i.e., looking down each column of the Chart). 


There are three overall issues addressed by this evaluation: 

1.	 Whether the laboratory values of the clones were similar to those of the comparator 
population on an animal-by-animal level, or whether it would be possible to 
distinguish between the two populations based on the clinical chemistry and 
hematology data. A finding of similar laboratory values would provide confidence 
that there were no material differences in metabolic, immunologic, and hematopoetic 
(blood producing) functions between clones and conventional animals; 

2.	 Whether the clones respond to the internal (growth and maturation) and normal 
external (stressors, disease) environments appropriately (analyte based approach); and 

3.	 Whether the individual values can be used to predict the long-term viability of that 
animal or that cohort (analyte and animal approaches combined). 

A description of the parameters that were evaluated and their relation to physiological status is 
provided in Appendix F: The Comprehensive Veterinary Examination. 

Clinical chemistry and hematology responses are best evaluated in the context of the whole 
animal, including its age, species, breed, husbandry, geographic location, reproductive status, 
and the laboratory performing the analysis. Laboratory findings complement the subjective 
physical diagnosis of the patient by providing objective information for the process of 
differential diagnosis, monitoring treatment, and formulation of a prognosis (see Appendix 
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