• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Food

  • Print
  • Share
  • E-mail

FDA Food Code 2009: Annex 3 - Public Health Reasons / Administrative Guidelines - Chapter 4, Equipment, Utensils, and Linens

 

Public Health Reasons / Administrative Guidelines for:


Chapter 4 Equipment, Utensils, and Linens

Multiuse

4-101.11 Characteristics.

Multiuse equipment is subject to deterioration because of its nature, i.e., intended use over an extended period of time. Certain materials allow harmful chemicals to be transferred to the food being prepared which could lead to foodborne illness. In addition, some materials can affect the taste of the food being prepared. Surfaces that are unable to be routinely cleaned and sanitized because of the materials used could harbor foodborne pathogens. Deterioration of the surfaces of equipment such as pitting may inhibit adequate cleaning of the surfaces of equipment, so that food prepared on or in the equipment becomes contaminated.

Inability to effectively wash, rinse and sanitize the surfaces of food equipment may lead to the buildup of pathogenic organisms transmissible through food. Studies regarding the rigor required to remove biofilms from smooth surfaces highlight the need for materials of optimal quality in multiuse equipment.

4-101.12 Cast Iron, Use Limitation.

Equipment and utensils constructed of cast iron meet the requirement of durability as intended in section 4-101.11. However, the surface characteristics of cast iron tend to be somewhat porous which renders the material difficult to clean. On the other hand, when cast iron use is limited to cooking surfaces the residues in the porous surface are not of significant concern as heat destroys potential pathogens that may be present.

4-101.13 Lead, Use Limitation.

Historically, lead has been used in the formulation or decoration of these types of utensils. Specifically, lead-based paints that were used to decorate the utensils such as color glazes have caused high concentrations of lead to leach into the food they contain.

Lead poisoning continues to be an important public health concern due to the seriousness of associated medical problems. Lead poisoning is particularly harmful to the young and has caused learning disabilities and medical problems among individuals who have consumed high levels. The allowable levels of lead are specific to the type of utensil, based on the average contact time and properties of the foods routinely stored in each item listed.

FDA has established maximum levels (see FDA Compliance Policy Guide Section 545.450 Pottery (Ceramics); Imported and Domestic - Lead Contamination (CPG 7117.07) for leachable lead in ceramicware, and pieces that exceed these levels are subject to recall or other agency enforcement action. The levels are based on how frequently a piece of ceramicware is used, the type and temperature of the food it holds, and how long the food stays in contact with the piece. For example, cups, mugs, and pitchers have the most stringent action level, 0.5 parts per million, because they can be expected to hold food longer, allowing more time for lead to leach. Also, a pitcher may be used to hold fruit juice. And a coffee mug is generally used every day to hold a hot acidic beverage, often several times a day.

The FDA allows use of lead glazes because they're the most durable, but regulates them tightly to ensure their safety. Commercial manufacturers employ extremely strict and effective manufacturing controls that keep the lead from leaching during use. Small potters often can't control the firing of lead glazes as well so their ceramics are more likely to leach illegal lead levels, although many do use lead-free glazes.

In 21 CFR 109.16, FDA requires high-lead-leaching decorative ceramicware to be permanently labeled that it's not for food use and may poison food. Such items bought outside the United States may not be so labeled, potentially posing serious risk if used for food.

Pewter refers to a number of silver-gray alloys of tin containing various amounts of antimony, copper, and lead. The same concerns about the leaching of heavy metals and lead that apply to brass, galvanized metals, copper, cast iron, ceramics, and crystal also apply to pewter. As previously stated, the storage of acidic moist foods in pewter containers could result in food poisoning (heavy metal poisoning).

Solder is a material that is used to join metallic parts and is applied in the melted state to solid metals. Solder may be composed of tin and lead alloys.

4-101.14 Copper, Use Limitation.

High concentrations of copper are poisonous and have caused foodborne illness. When copper and copper alloy surfaces contact acidic foods, copper may be leached into the food. Carbon dioxide may be released into a water supply because of an ineffective or nonexistent backflow prevention device between a carbonator and copper plumbing components. The acid that results from mixing water and carbon dioxide leaches copper from the plumbing components and the leachate is then transferred to beverages, causing copper poisoning. Backflow prevention devices constructed of copper and copper alloys can cause, and have resulted in, the leaching of both copper and lead into carbonated beverages.

Brass is an alloy of copper and zinc and contains lead which is used to combine the two elements. Historically, brass has been used for items such as pumps, pipe fitting, and goblets. All 3 constituents are subject to leaching when they contact acidic foods, and food poisoning has resulted from such contact.

The steps in beer brewing include malting, mashing, fermentation, separation of the alcoholic beverage from the mash, and rectification. During mashing, it is essential to lower the pH from its normal 5.8 in order to optimize enzymatic activity. The pH is commonly lowered to 5.1-5.2, but may be adjusted to as low as 3.2. The soluble extract of the mash (wort) is boiled with hops for 1 to 22 hours or more. After boiling, the wort is cooled, inoculated with brewers yeast, and fermented. The use of copper equipment during the prefermentation and fermentation steps typically result in some leaching of copper.

Because copper is an essential nutrient for yeast growth, low levels of copper are metabolized by the yeast during fermentation. However, studies have shown that copper levels above 0.2 mg/L are toxic or lethal to the yeast. In addition, copper levels as low as 3.5 mg/L have been reported to cause symptoms of copper poisoning in humans. Therefore, the levels of copper necessary for successful beer fermentation (i.e., below 0.2 mg/L) do not reach a level that would be toxic to humans.

Today, domestic beer brewers typically endeavor to use only stainless steel or stainless steel-lined copper equipment (piping, fermenters, filters, holding tanks, bottling machines, keys, etc.) in contact with beer following the hot brewing steps in the beer making process. Some also use pitch-coated oak vats or glass-lined steel vats following the hot brewing steps. Where copper equipment is not used in beer brewing, it is common practice to add copper (along with zinc) to provide the nutrients essential to the yeast for successful fermentation.

4-101.15 Galvanized Metal, Use Limitation.

Galvanized means iron or steel coated with zinc, a heavy metal that may be leached from galvanized containers into foods that are high in water content. The risk of leaching increases with increased acidity of foods contacting the galvanized container.

4-101.16 Sponges, Use Limitation.

Sponges are difficult, if not impossible, to clean once they have been in contact with food particles and contaminants that are found in the use environment. Because of their construction, sponges provide harborage for any number and variety of microbiological organisms, many of which may be pathogenic. Therefore, sponges are to be used only where they will not contaminate cleaned and sanitized or in-use, food-contact surfaces such as for cleaning equipment and utensils before rinsing and sanitizing.

4-101.17 Wood, Use Limitation.

The limited acceptance of the use of wood as a food-contact surface is determined by the nature of the food and the type of wood used. Moist foods may cause the wood surface to deteriorate and the surface may become difficult to clean. In addition, wood that is treated with preservatives may result in illness due to the migration of the preservative chemicals to the food; therefore, only specific preservatives are allowed.

4-101.18 Nonstick Coatings, Use Limitation.

Perfluorocarbon resin is a tough, nonporous and stable plastic material that gives cookware and bakeware a surface to which foods will not stick and that cleans easily and quickly. FDA has approved the use of this material as safe for food-contact surfaces. The Agency has determined that neither the particles that may chip off nor the fumes given off at high temperatures pose a health hazard. However, because this nonstick finish may be scratched by sharp or rough-edged kitchen tools, the manufacturer's recommendations should be consulted and the use of utensils that may scratch, abrasive scouring pads, or cleaners avoided.

4-101.19 Nonfood-Contact Surfaces.

Nonfood-contact surfaces of equipment routinely exposed to splash or food debris are required to be constructed of nonabsorbent materials to facilitate cleaning. Equipment that is easily cleaned minimizes the presence of pathogenic organisms, moisture, and debris and deters the attraction of rodents and insects.

Single-Service and Single-Use

4-102.11 Characteristics.

The safety and quality of food can be adversely affected through single service and single use articles that are not constructed of acceptable materials. The migration of components of those materials to food they contact could result in chemical contamination and illness to the consumer. In addition, the use of unacceptable materials could adversely affect the quality of the food because of odors, tastes, and colors transferred to the food.

Durability and Strength

4-201.11 Equipment and Utensils.

Equipment and utensils must be designed and constructed to be durable and capable of retaining their original characteristics so that such items can continue to fulfill their intended purpose for the duration of their life expectancy and to maintain their easy cleanability. If they can not maintain their original characteristics, they may become difficult to clean, allowing for the harborage of pathogenic microorganisms, insects, and rodents. Equipment and utensils must be designed and constructed so that parts do not break and end up in food as foreign objects or present injury hazards to consumers. A common example of presenting an injury hazard is the tendency for tines of poorly designed single service forks to break during use.

4-201.12 Food Temperature Measuring Devices.

Food temperature measuring devices that have glass sensors or stems present a likelihood that glass will end up in food as a foreign object and create an injury hazard to the consumer. In addition, the contents of the temperature measuring device, e.g., mercury, may contaminate food or utensils.

Cleanability

4-202.11 Food-Contact Surfaces.

The purpose of the requirements for multiuse food-contact surfaces is to ensure that such surfaces are capable of being easily cleaned and accessible for cleaning. Food-contact surfaces that do not meet these requirements provide a potential harbor for foodborne pathogenic organisms. Surfaces which have imperfections such as cracks, chips, or pits allow microorganisms to attach and form biofilms. Once established, these biofilms can release pathogens to food. Biofilms are highly resistant to cleaning and sanitizing efforts. The requirement for easy disassembly recognizes the reluctance of food employees to disassemble and clean equipment if the task is difficult or requires the use of special, complicated tools.

4-202.12 CIP Equipment.

Certain types of equipment are designed to be cleaned in place (CIP) where it is difficult or impractical to disassemble the equipment for cleaning. Because of the closed nature of the system, CIP cleaning must be monitored via access points to ensure that cleaning has been effective throughout the system.

The CIP design must ensure that all food-contact surfaces of the equipment are contacted by the circulating cleaning and sanitizing solutions. Dead spots in the system, i.e., areas which are not contacted by the cleaning and sanitizing solutions, could result in the buildup of food debris and growth of pathogenic microorganisms. There is equal concern that cleaning and sanitizing solutions might be retained in the system, which may result in the inadvertent adulteration of food. Therefore, the CIP system must be self-draining.

4-202.13 "V" Threads, Use Limitation.

V-type threads present a surface which is difficult to clean routinely; therefore, they are not allowed on food-contact surfaces. The exception provided for hot oil cooking fryers and filtering systems is based on the high temperatures that are used in this equipment. The high temperature in effect sterilizes the equipment, including debris in the "V" threads.

4-202.14 Hot Oil Filtering Equipment.

To facilitate and ensure effective cleaning of this equipment, Code requirements, §§ 4-202.11 and 4-202.12 must be followed. The filter is designed to keep the oil free of undesired materials and therefore must be readily accessible for replacement. Filtering the oil reduces the likelihood that off-odors, tastes, and possibly toxic compounds may be imparted to food as a result of debris buildup. To ensure that filtering occurs, it is necessary for the filter to be accessible for replacement.

4-202.15 Can Openers.

Once can openers become pitted or the surface in any way becomes uncleanable, they must be replaced because they can no longer be adequately cleaned and sanitized. Can openers must be designed to facilitate replacement.

4-202.16 Nonfood-Contact Surfaces.

Hard-to-clean areas could result in the attraction and harborage of insects and rodents and allow the growth of foodborne pathogenic microorganisms. Well-designed equipment enhances the ability to keep nonfood-contact surfaces clean.

4-202.17 Kick Plates, Removable.

The use of kick plates is required to allow access for proper cleaning. If kick plate design and installation does not meet Code requirements, debris could accumulate and create a situation that may attract insects and rodents.

Accuracy

4-203.11 Temperature Measuring Devices, Food.

The Metric Conversion Act of 1975 (amended 1988, 1996, and 2004, 15 USC 205a et seq) requires that all Federal government regulations use the Celsius scale for temperature measurement. The Fahrenheit scale is included in the Code for those jurisdictions using the Fahrenheit scale for temperature measurement.

The small margin of error specified for thermometer accuracy is due to the lack of a large safety margin in the temperature requirements themselves. The accuracy specified for a particular food temperature measuring device is applicable to its entire range of use, that is, from refrigeration through cooking temperatures if the device is intended for such use.

4-203.12 Temperature Measuring Devices, Ambient Air and Water.

A temperature measuring device used to measure the air temperature in a refrigeration unit is not required to be as accurate as a food thermometer because the unit's temperature fluctuates with repeated opening and closing of the door and because accuracy in measuring internal food temperatures is of more significance.

The Celsius scale is the federally recognized scale based on The Metric Conversion Act of 1975 (amended 1988, 1996, and 2004, 15 USC 205a et seq) which requires the use of metric values. The ±1.5°C requirement is more stringent than the 3°F previously required since ±1.5°C is equivalent to ±2.7°F. The more rigid accuracy results from the practical application of metric equivalents to the temperature gradations of Celsius thermometers.

If Fahrenheit thermometers are used, the 3°F requirement applies because of the calibrated intervals of Fahrenheit thermometers.

The accuracy specified for a particular air or water temperature measuring device is applicable to its intended range of use. For example, a cold holding unit may have a temperature measuring device that measures from a specified frozen temperature to 20°C (68°F). The device must be accurate to specifications within that use range.

4-203.13 Pressure Measuring Devices, Mechanical Warewashing Equipment.

Flow pressure is a very important factor with respect to the efficacy of sanitization. A pressure below the design pressure results in inadequate spray patterns and incomplete coverage of the utensil surfaces to be sanitized. Excessive flow pressure will tend to atomize the water droplets needed to convey heat into a vapor mist that cools before reaching the surfaces to be sanitized.

Functionality

4-204.11 Ventilation Hood Systems, Drip Prevention.

The dripping of grease or condensation onto food constitutes adulteration and may involve contamination of the food with pathogenic organisms. Equipment, utensils, linens, and single service and single use articles that are subjected to such drippage are no longer clean.

4-204.12 Equipment Openings, Closures and Deflectors.

Equipment openings and covers must be designed to protect stored or prepared food from contaminants and foreign matter that may fall into the food. The requirement for an opening to be flanged upward and for the cover to overlap the opening and be sloped to drain prevents contaminants, especially liquids, from entering the food-contact area.

Some equipment may have parts that extend into the food-contact areas. If these parts are not provided with a watertight joint at the point of entry into the food-contact area, liquids may contaminate the food by adhering to shafts or other parts and running or dripping into the food.

An apron on parts extending into the food-contact area is an acceptable alternative to the watertight seal. If the apron is not properly designed and installed, condensation, drips, and dust may gain access to the food.

4-204.13 Dispensing Equipment, Protection of Equipment and Food.

This requirement is intended to protect both the machine-dispensed, unpackaged, liquid foods and the machine components from contamination. Barriers need to be provided so that the only liquid entering the food container is the liquid intended to be dispensed when the machine's mechanism is activated. Recessing of the machine's components and self-closing doors prevent contamination of machine ports by people, dust, insects, or rodents. If the equipment components become contaminated, the product itself will be exposed to possible contamination.

A direct opening into the food being dispensed allows dust, vermin, and other contaminants access to the food.

NSF/ANSI 18-Manual Food and Beverage Dispensing Equipment is the standard for manual food and beverage dispensing equipment which has been designed to maintain the safety of aseptically packaged fluid foods without refrigeration even after the hermetic seal is broken.

NSF/ANSI 18 was revised in 2006 to specifically address dispensing equipment designed to hold potentially hazardous food or beverages in a homogeneous liquid form without temperature control. NSF/ANSI 18 requires that such equipment designs include a number of safeguards that prevent the contamination of specially packaged food stored within the dispensing equipment. The Standard also requires that the dispensing equipment have lockout mechanisms that preclude the dispensing of the product if such safeguards fail or if a prescribed duration of storage is exceeded. The American National Standards Institute (ANSI) recognizes NSF/ANSI 18 as the sole American National Standard for the sanitary design of manual food and beverage dispensers.

4-204.14 Vending Machine, Vending Stage Closure.

Since packaged foods dispensed from vending machines could attract insects and rodents, a self-closing door is required as a barrier to their entrance.

4-204.15 Bearings and Gear Boxes, Leakproof.

It is not unusual for food equipment to contain bearings and gears. Lubricants necessary for the operation of these types of equipment could contaminate food or food-contact surfaces if the equipment is not properly designed and constructed.

4-204.16 Beverage Tubing, Separation.

Beverage tubing and coldplate cooling devices may result in contamination if they are installed in direct contact with stored ice. Beverage tubing installed in contact with ice may result in condensate and drippage contaminating the ice as the condensate moves down the beverage tubing and ends up in the ice.

The presence of beverage tubing and/or coldplate cooling devices also presents cleaning problems. It may be difficult to adequately clean the ice bin if they are present. Because of the high moisture environment, mold and algae may form on the surface of the ice bins and any tubing or equipment stored in the bins.

4-204.17 Ice Units, Separation of Drains.

Liquid waste drain lines passing through ice machines and storage bins present a risk of contamination due to potential leakage of the waste lines and the possibility that contaminants will gain access to the ice through condensate migrating along the exterior of the lines.

Liquid drain lines passing through the ice bin are, themselves, difficult to clean and create other areas that are difficult to clean where they enter the unit as well as where they abut other surfaces. The potential for mold and algal growth in this area is very likely due to the high moisture environment. Molds and algae that form on the drain lines are difficult to remove and present a risk of contamination to the ice stored in the bin.

4-204.18 Condenser Unit, Separation.

A dust-proof barrier between a condenser and food storage areas of equipment protects food and food-contact areas from contamination by dust that is accumulated and blown about as a result of the condenser's operation.

4-204.19 Can Openers on Vending Machines.

Since the cutting or piercing surfaces of a can opener directly contact food in the container being opened, these surfaces must be protected from contamination.

4-204.110 Molluscan Shellfish Tanks.

Shellfish are filter feeders allowing concentration of pathogenic microorganisms that may be present in the water. Due to the number of shellfish and the limited volume of water used, display tanks may allow concentration of pathogenic viruses and bacteria.

Since many people eat shellfish either raw or lightly cooked, the potential for increased levels of pathogenic microorganisms in shellfish held in display tanks is of concern. If shellfish stored in molluscan shellfish tanks are offered for consumption, certain safeguards must be in place as specified in a detailed HACCP plan that is approved by the regulatory authority. Opportunities for contamination must be controlled or eliminated. Procedures must emphasize strict monitoring of the water quality of the tank including the filtering and disinfection system.

4-204.111 Vending Machines, Automatic Shutoff.

Failure to store potentially hazardous (time/temperature control for safety) food at safe temperatures in a vending machine could result in the growth of pathogenic microorganisms that may result in foodborne illness. The presence of an automatic control that prevents the vending of food if the temperature of the unit exceeds Code requirements precludes the vending of foods that may not be safe.

It is possible and indeed very likely that the temperature of the storage area of a vending machine may exceed Code requirements during the stocking and servicing of the machine. The automatic shut off, commonly referred to as the "public health control," provides a limited amount of time that the ambient temperature of a machine may exceed Code requirements. Strict adherence to the time requirements can limit the growth of pathogenic microorganisms.

4-204.112 Temperature Measuring Devices.

The placement of the temperature measuring device is important. If the device is placed in the coldest location in the storage unit, it may not be representative of the temperature of the unit. Food could be stored in areas of the unit that exceed Code requirements. Therefore, the temperature measuring device must be placed in a location that is representative of the actual storage temperature of the unit to ensure that all potentially hazardous (time/temperature control for safety) foods are stored at least at the minimum temperature required in Chapter 3.

Installing an air thermometer in some open display refrigerators can be difficult without physically impairing the usability of the case and interfering with cleaning and sanitation. Use of a temperature monitoring system that uses probe-like sensors that are placed in material resembling the density of food is an acceptable alternative. Thus, the direct temperature of the substitute product is measured by use of this product mimicking method.

A permanent temperature measuring device is required in any unit storing potentially hazardous (time/temperature control for safety) food because of the potential growth of pathogenic microorganisms should the temperature of the unit exceed Code requirements. In order to facilitate routine monitoring of the unit, the device must be clearly visible.

The exception to requiring a temperature measuring device for the types of equipment listed is primarily due to equipment design and function. It would be difficult and impractical to permanently mount a temperature measuring device on the equipment listed. The futility of attempting to measure the temperature of unconfined air such as with heat lamps and, in some cases, the brief period of time the equipment is used for a given food negate the usefulness of ambient temperature monitoring at that point. In such cases, it would be more practical and accurate to measure the internal temperature of the food.

The importance of maintaining potentially hazardous (time/temperature control for safety) foods at the specified temperatures requires that temperature measuring devices be easily readable. The inability to accurately read a thermometer could result in food being held at unsafe temperatures.

Temperature measuring devices must be appropriately scaled per Code requirements to ensure accurate readings.

The required incremental gradations are more precise for food measuring devices than for those used to measure ambient temperature because of the significance at a given point in time, i.e., the potential for pathogenic growth, versus the unit's temperature. The food temperature will not necessarily match the ambient temperature of the storage unit; it will depend on many variables including the temperature of the food when it is placed in the unit, the temperature at which the unit is maintained, and the length of time the food is stored in the unit.

4-204.113 Warewashing Machine, Data Plate Operating Specifications.

The data plate provides the operator with the fundamental information needed to ensure that the machine is effectively washing, rinsing, and sanitizing equipment and utensils. The warewashing machine has been tested, and the information on the data plate represents the parameters that ensure effective operation and sanitization and that need to be monitored.

4-204.114 Warewashing Machines, Internal Baffles.

The presence of baffles or curtains separating the various operational cycles of a warewashing machine such as washing, rinsing, and sanitizing are designed to reduce the possibility that solutions from one cycle may contaminate solutions in another. The baffles or curtains also prevent food debris from being splashed onto the surface of equipment that has moved to another cycle in the procedure.

4-204.115 Warewashing Machines, Temperature Measuring Devices.

The requirement for the presence of a temperature measuring device in each tank of the warewashing machine is based on the importance of temperature in the sanitization step. In hot water machines, it is critical that minimum temperatures be met at the various cycles so that the cumulative effect of successively rising temperatures causes the surface of the item being washed to reach the required temperature for sanitization. When chemical sanitizers are used, specific minimum temperatures must be met because the effectiveness of chemical sanitizers is directly affected by the temperature of the solution.

4-204.116 Manual Warewashing Equipment, Heaters and Baskets.

Hot water sanitization is accomplished in water of not less than 77°C (170°F) and an integral heating device is necessary to ensure that the minimum temperature is reached.

The rack or basket is required in order to safely handle the equipment and utensils being washed and to ensure immersion. Water at this temperature could result in severe burns to employees operating the equipment.

4-204.117 Warewashing Machines, Automatic Dispensing of Detergents and Sanitizers.

The presence of adequate detergents and sanitizers is necessary to effect clean and sanitized utensils and equipment. The automatic dispensing of these chemical agents, plus a method such as a flow indicator, flashing light, buzzer, or visible open air delivery system that alerts the operator that the chemicals are no longer being dispensed, ensures that utensils are subjected to an efficacious cleaning and sanitizing regimen.

4-204.118 Warewashing Machines, Flow Pressure Device.

Flow pressure is a very important factor impacting the efficacy of sanitization in machines that use fresh hot water at line-pressure as a final sanitization rinse. (See discussion in Public Health Reason for section 4-203.13.) It is important that the operator be able to monitor, and the food inspector be able to check, final sanitization rinse pressure as well as machine water temperatures. ANSI/NSF Standard #3, a national voluntary consensus standard for Commercial Spray-Type Dishwashing Machines, specifies that a pressure gauge or similar device be provided on this type machine and such devices are shipped with machines by the manufacturer. Flow pressure devices installed on the upstream side of the control (solenoid) valve are subject to damage and failure due to the water hammer effect caused throughout the dishwashing period each time the control valve closes. The IPS valve provides a ready means for checking line-pressure with an alternative pressure measuring device. A flow pressure device is not required on machines that use only a pumped or recirculated sanitizing rinse since an appropriate pressure is ensured by a pump and is not dependent upon line-pressure.

4-204.121 Vending Machines, Liquid Waste Products.

The presence of internal waste containers allows for the collection of liquids that spill within the vending machine. Absence of a waste container or, where required, a shutoff valve which controls the incoming liquids could result in wastes spilling within the machine, causing a condition that attracts insects and rodents and compounds cleaning and maintenance problems.

4-204.122 Case Lot Handling Equipment, Moveability.

Proper design of case lot handling equipment facilitates moving case lots for cleaning and for surveillance of insect or rodent activity.

4-204.123 Vending Machine Doors and Openings.

The objective of this requirement is to provide a barrier against the entrance into vending machines of insects, rodents, and dust. The maximum size of the openings deters the entrance of common pests.

Acceptability

4-205.10 Food Equipment, Certification and Classification.

Under ANSI document CA-1 ANSI Policy and Criteria for Accreditation of Certification Programs, it has been stipulated that:

"For food equipment programs, standards that establish sanitation requirements shall be specified government standards or standards that have been ratified by a public health approval step. ANSI shall verify that this requirement has been met by communicating with appropriate standards developing organizations and governmental public health bodies."

The term certified is used when an item of food equipment has been evaluated against an organization's own standard. The term classified is used when one organization evaluates an item of food equipment against a standard developed by another organization.

Equipment

4-301.11 Cooling, Heating, and Holding Capacities.

The ability of equipment to cool, heat, and maintain potentially hazardous (time/temperature control for safety) foods at Code-required temperatures is critical to food safety. Improper holding and cooking temperatures continue to be major contributing factors to foodborne illness. Therefore, it is very important to have adequate hot or cold holding equipment with enough capacity to meet the heating and cooling demands of the operation.

4-301.12 Manual Warewashing, Sink Compartment Requirements.

The 3 compartment requirement allows for proper execution of the 3-step manual warewashing procedure. If properly used, the 3 compartments reduce the chance of contaminating the sanitizing water and therefore diluting the strength and efficacy of the chemical sanitizer that may be used.

Alternative manual warewashing equipment, allowed under certain circumstances and conditions, must provide for accomplishment of the same 3 steps:

  1. Application of cleaners and the removal of soil;
  2. Removal of any abrasive and removal or dilution of cleaning chemicals; and
  3. Sanitization.

Refer also to the public health reason for § 4-603.16.

4-301.13 Drainboards.

Drainboards or equivalent equipment are necessary to separate soiled and cleaned items from each other and from the food preparation area in order to preclude contamination of cleaned items and of food.

Drainboards allow for the control of water running off equipment and utensils that have been washed and also allow the operator to properly store washed equipment and utensils while they air-dry.

4-301.14 Ventilation Hood Systems, Adequacy.

If a ventilation system is inadequate, grease and condensate may build up on the floors, walls and ceilings of the food establishment, causing an insanitary condition and possible deterioration of the surfaces of walls and ceilings. The accumulation of grease and condensate may contaminate food and food-contact surfaces as well as present a possible fire hazard.

Refer also to the public health reason for § 4-204.11.

4-301.15 Clothes Washers and Dryers.

To protect food, soiled work clothes or linens must be efficiently laundered. The only practical way of efficiently laundering work clothes on the premises is with the use of a mechanical washer and dryer.

Refer also to the public health reason for § 4-401.11.

Utensils, Temperature Measuring Devices, and Testing Devices

4-302.11 Utensils, Consumer Self-Service.

Appropriate serving utensils provided at each container will, among other things, reduce the likelihood of food tasting, use of fingers to serve food, use of fingers to remove the remains of one food on the utensil so that it may be used for another, use of soiled tableware to transfer food, and cross contamination between foods, including a raw food to a cooked potentially hazardous (time/temperature control for safety) food.

4-302.12 Food Temperature Measuring Devices.

The presence and accessibility of food temperature measuring devices is critical to the effective monitoring of food temperatures. Proper use of such devices provides the operator or person in charge with important information with which to determine if temperatures should be adjusted or if foods should be discarded.

When determining the temperature of thin foods, those having a thickness less than 13 mm (1/2 inch), it is particularly important to use a temperature sensing probe designed for that purpose. Bimetal, bayonet style thermometers are not suitable for accurately measuring the temperature of thin foods such as hamburger patties because of the large diameter of the probe and the inability to accurately sense the temperature at the tip of the probe. However, temperature measurements in thin foods can be accurately determined using a small-diameter probe 1.5 mm (0.059 inch), or less, connected to a device such as thermocouple thermometer.

4-302.13 Temperature Measuring Devices, Manual Warewashing.

Water temperature is critical to sanitization in warewashing operations. This is particularly true if the sanitizer being used is hot water. The effectiveness of cleaners and chemical sanitizers is also determined by the temperature of the water used. A temperature measuring device is essential to monitor manual warewashing and ensure sanitization.

4-302.14 Sanitizing Solutions, Testing Devices.

Testing devices to measure the concentration of sanitizing solutions are required for 2 reasons:

  1. The use of chemical sanitizers requires minimum concentrations of the sanitizer during the final rinse step to ensure sanitization; and
  2. Too much sanitizer in the final rinse water could be toxic.

Location

4-401.11 Equipment, Clothes Washers and Dryers, and Storage Cabinets, Contamination Prevention.

Food equipment and the food that contacts the equipment must be protected from sources of overhead contamination such as leaking or ruptured water or sewer pipes, dripping condensate, and falling objects. When equipment is installed, it must be situated with consideration of the potential for contamination from such overhead sources.

If a clothes washer and dryer are installed adjacent to exposed food, clean equipment, utensils, linens, and unwrapped single-service and single-use articles, it could result in those items becoming contaminated from soiled laundry. The reverse is also true, i.e., items being laundered could become contaminated from the surrounding area if the washer and dryer are not properly located.

Installation

4-402.11 Fixed Equipment, Spacing or Sealing.

This section is designed to ensure that fixed equipment is installed in a way that:

  1. Allows accessibility for cleaning on all sides, above, and underneath the units or minimizes the need for cleaning due to closely abutted surfaces;
  2. Ensures that equipment that is subject to moisture is sealed;
  3. Prevents the harborage of insects and rodents; and
  4. Provides accessibility for the monitoring of pests.

4-402.12 Fixed Equipment, Elevation or Sealing.

The inability to adequately or effectively clean areas under equipment could create a situation that may attract insects and rodents and accumulate pathogenic microorganisms that are transmissible through food.

The effectiveness of cleaning is directly affected by the ability to access all areas to clean fixed equipment. It may be necessary to elevate the equipment. When elevating equipment is not feasible or prohibitively expensive, sealing to prevent contamination is required.

The economic impact of the requirement to elevate display units in retail food stores, coupled with the fact that the design, weight, and size of such units are not conducive to casters or legs, led to the exception for certain units located in consumer shopping areas, provided the floor under the units is kept clean. This exception for retail food store display equipment including shelving, refrigeration, and freezer units in the consumer shopping areas requires a rigorous cleaning schedule.

Equipment

4-501.11 Good Repair and Proper Adjustment.

Proper maintenance of equipment to manufacturer specifications helps ensure that it will continue to operate as designed. Failure to properly maintain equipment could lead to violations of the associated requirements of the Code that place the health of the consumer at risk. For example, refrigeration units in disrepair may no longer be capable of properly cooling or holding potentially hazardous (time/temperature control for safety) foods at safe temperatures.

The cutting or piercing parts of can openers may accumulate metal fragments that could lead to food containing foreign objects and, possibly, result in consumer injury.

Adequate cleaning and sanitization of dishes and utensils using a warewashing machine is directly dependent on the exposure time during the wash, rinse, and sanitizing cycles. Failure to meet manufacturer and Code requirements for cycle times could result in failure to clean and sanitize. For example, high temperature machines depend on the buildup of heat on the surface of dishes to accomplish sanitization. If the exposure time during any of the cycles is not met, the surface of the items may not reach the time-temperature parameter required for sanitization. Contact time is also important in warewashing machines that use a chemical sanitizer since the sanitizer must contact the items long enough for sanitization to occur. In addition, a chemical sanitizer will not sanitize a dirty dish; therefore, the cycle times during the wash and rinse phases are critical to sanitization.

4-501.12 Cutting Surfaces.

Cutting surfaces such as cutting boards and blocks that become scratched and scored may be difficult to clean and sanitize. As a result, pathogenic microorganisms transmissible through food may build up or accumulate. These microorganisms may be transferred to foods that are prepared on such surfaces.

4-501.13 Microwave Ovens.

Failure of microwave ovens to meet the CFR standards could result in human exposure to radiation leakage, resulting in possible medical problems to consumers and employees using the machines.

4-501.14 Warewashing Equipment, Cleaning Frequency.

During operation, warewashing equipment is subject to the accumulation of food wastes and other soils or sources of contamination. In order to ensure the proper cleaning and sanitization of equipment and utensils, it is necessary to clean the surface of warewashing equipment before use and periodically throughout the day.

4-501.15 Warewashing Machines, Manufacturers' Operating Instructions.

To ensure properly cleaned and sanitized equipment and utensils, warewashing machines must be operated properly. The manufacturer affixes a data plate to the machine providing vital, detailed instructions about the proper operation of the machine including wash, rinse, and sanitizing cycle times and temperatures which must be achieved.

4-501.16 Warewashing Sinks, Use Limitation.

If the wash sink is used for functions other than warewashing, such as washing wiping cloths or washing and thawing foods, contamination of equipment and utensils could occur.

4-501.17 Warewashing Equipment, Cleaning Agents.

Failure to use detergents or cleaners in accordance with the manufacturer's label instructions could create safety concerns for the employee and consumer. For example, employees could suffer chemical burns, and chemical residues could find their way into food if detergents or cleaners are used carelessly.

Equipment or utensils may not be cleaned if inappropriate or insufficient amounts of cleaners or detergents are used.

4-501.18 Warewashing Equipment, Clean Solutions.

Failure to maintain clean wash, rinse, and sanitizing solutions adversely affects the warewashing operation. Equipment and utensils may not be sanitized, resulting in subsequent contamination of food.

4-501.19 Manual Warewashing Equipment, Wash Solution Temperature.

The wash solution temperature required in the Code is essential for removing organic matter. If the temperature is below 110°F, the performance of the detergent may be adversely affected, e.g., animal fats that may be present on the dirty dishes would not be dissolved.

4-501.110 Mechanical Warewashing Equipment, Wash Solution Temperature.

The wash solution temperature in mechanical warewashing equipment is critical to proper operation. The chemicals used may not adequately perform their function if the temperature is too low. Therefore, the manufacturer's instructions must be followed. The temperatures vary according to the specific equipment being used.

4-501.111 Manual Warewashing Equipment, Hot Water Sanitization Temperatures.

If the temperature during the hot water sanitizing step is less than 77°C (171°F), sanitization will not be achieved. As a result, pathogenic organisms may survive and be subsequently transferred from utensils to food.

4-501.112 Mechanical Warewashing Equipment, Hot Water Sanitization Temperatures.

The temperature of hot water delivered from a warewasher sanitizing rinse manifold must be maintained according to the equipment manufacturer's specifications and temperature limits specified in this section to ensure surfaces of multiuse utensils such as kitchenware and tableware accumulate enough heat to destroy pathogens that may remain on such surfaces after cleaning.

The surface temperature must reach at least 71°C (160°F) as measured by an irreversible registering temperature measuring device to affect sanitization. When the sanitizing rinse temperature exceeds 90°C (194°F) at the manifold, the water becomes volatile and begins to vaporize reducing its ability to convey sufficient heat to utensil surfaces. The lower temperature limits of 74°C (165°F) for a stationary rack, single temperature machine, and 82°C (180°F) for other machines are based on the sanitizing rinse contact time required to achieve the 71°C (160°F) utensil surface temperature.

4-501.113 Mechanical Warewashing Equipment, Sanitization Pressure.

If the flow pressure of the final sanitizing rinse is less than that required, dispersion of the sanitizing solution may be inadequate to reach all surfaces of equipment or utensils.

4-501.114 Manual and Mechanical Warewashing Equipment, Chemical Sanitization - Temperature, pH, Concentration, and Hardness.

With the passage of the Food Quality Protection Act of 1996 and the related Antimicrobial Regulation Technical Correction Act of 1998, Federal regulatory responsibility for chemical hard surface sanitizers was moved from FDA (CFSAN/OFAS) to EPA (Office of Pesticides Programs, Antimicrobial Division). As a result, the relevant Federal regulation has moved from 21 CFR 178.1010 to 40 CFR 180.940. The Food Code contains provisions that were not captured in either 21 CFR 178.1010 or 40 CFR 180.940, such as pH, temperature, and water hardness. There is need to retain these provisions in the Code.

The effectiveness of chemical sanitizers can be directly affected by the temperature, pH, concentration of the sanitizer solution used, and hardness of the water. Provisions for pH, temperature, and water hardness in section 4-501.114 have been validated to achieve sanitization; however, these parameters are not always included on EPA-registered labels. Therefore, it is critical to sanitization that the sanitizers are used consistently with the EPA-registered label, and if pH, temperature, and water hardness (for quat) are not included on the label, that the solutions meet the standards required in the Code.

With respect to chemical sanitization, section 4-501.114 addresses the proper use conditions for the sanitizing solution, i.e., chemical concentration range, pH, and temperature minimum levels and, with respect to quaternary ammonium compounds (quats), the maximum hardness level. If these parameters are not as specified in the Code or on the EPA-registered label, then this provision is violated.

By contrast, paragraph 4-703.11(C) addresses contact time in seconds. For chemical sanitization, this paragraph is only violated when the specified contact time is not met.

Section 7-204.11 addresses whether or not the chemical agent being applied as a sanitizer is approved and listed for that use under 40 CFR 180.940.

EPA sanitizer registration assesses compliance with 40 CFR 180.940, therefore if the product is used at the appropriate concentration for the application on the EPA-registered label, it is not necessary to consult 40 CFR 180.940 for further compliance verification. If a sanitarian determined that a solution exceeded the concentration for the application on the EPA-registered label or is used for an application that is not on the EPA-registered label, section 7-204.11 would be violated.

To summarize, a sanitizing solution that is too weak would be a violation of section 4-501.114. A solution that is too strong would be a violation of section 7-204.11. Section 7-202.12 would not be violated due to the existence of section 7-204.11 that specifically addresses the use chemical sanitizers.

4-501.115 Manual Warewashing Equipment, Chemical Sanitization Using Detergent-Sanitizers.

Some chemical sanitizers are not compatible with detergents when a 2 compartment operation is used. When using a sanitizer that is different from the detergent-sanitizer of the wash compartment, the sanitizer may be inhibited by carry-over, resulting in inadequate sanitization.

4-501.116 Warewashing Equipment, Determining Chemical Sanitizer Concentration.

The effectiveness of chemical sanitizers is determined primarily by the concentration and pH of the sanitizer solution. Therefore, a test kit is necessary to accurately determine the concentration of the chemical sanitizer solution.

Utensils and Temperature and Pressure Measuring Devices

4-502.11 Good Repair and Calibration.

A utensil or food temperature measuring device can act as a source of contamination to the food it contacts if it is not maintained in good repair. Also, if temperature or pressure measuring devices are not maintained in good repair, the accuracy of the readings is questionable. Consequently, a temperature problem may not be detected, or conversely, a corrective action may be needlessly taken.

4-502.12 Single-Service and Single-Use Articles, Required Use.

In situations in which the reuse of multiuse items could result in foodborne illness to consumers, single-service and single-use articles must be used to ensure safety.

4-502.13 Single-Service and Single-Use Articles, Use Limitation.

Articles that are not constructed of multiuse materials may not be reused as they are unable to withstand the rigors of multiple uses, including the ability to be subjected to repeated washing, rinsing, and sanitizing.

4-502.14 Shells, Use Limitation.

The reuse of mollusk and crustacean shells as multiuse utensils is not allowed in food establishments. This prohibition does not apply to the removal of the oyster or other species from the shell for preparation, then returning the same animal to the same shell for service.

The shell itself may be potentially unsafe for use as a food utensil because of residues from natural and environmental contamination occurring after the mollusk or crustacean is removed. In addition, natural shells are not durable or easily cleanable as specified under section 4-502.13. When mollusk or crustacean shells (from commercial sources) are re-used by filling them with shucked shellfish, the food is considered misleading and not honestly presented.

Objective

4-601.11 Equipment, Food-Contact Surfaces,Nonfood-Contact Surfaces, and Utensils.

The objective of cleaning focuses on the need to remove organic matter from food-contact surfaces so that sanitization can occur and to remove soil from nonfood contact surfaces so that pathogenic microorganisms will not be allowed to accumulate and insects and rodents will not be attracted.

Frequency

4-602.11 Equipment Food-Contact Surfaces and Utensils.

Microorganisms may be transmitted from a food to other foods by utensils, cutting boards, thermometers, or other food-contact surfaces. Food-contact surfaces and equipment used for potentially hazardous (time/temperature control for safety) foods should be cleaned as needed throughout the day but must be cleaned no less than every 4 hours to prevent the growth of microorganisms on those surfaces.

Refrigeration temperatures slow down the generation time of bacterial pathogens, making it unnecessary to clean every four hours. However, the time period between cleaning equipment and utensils may not exceed 24 hours. A time-temperature chart is provided in subparagraph 4-602.11(D)(2) to accommodate operations that use equipment and utensils in a refrigerated room or area that maintains a temperature between 41°F or less and 55°F.

Surfaces of utensils and equipment contacting food that is not potentially hazardous (time/temperature control for safety food) such as iced tea dispensers, carbonated beverage dispenser nozzles, beverage dispensing circuits or lines, water vending equipment, coffee bean grinders, ice makers, and ice bins must be cleaned on a routine basis to prevent the development of slime, mold, or soil residues that may contribute to an accumulation of microorganisms. Some equipment manufacturers and industry associations, e.g., within the tea industry, develop guidelines for regular cleaning and sanitizing of equipment. If the manufacturer does not provide cleaning specifications for food-contact surfaces of equipment that are not readily visible, the person in charge should develop a cleaning regimen that is based on the soil that may accumulate in those particular items of equipment.

Regarding the possible adulteration from one species of meat to another between cleaning of food-contact surfaces, USDA/FSIS does not automatically consider species adulteration as a health hazard. FSIS stated in an Advance Notice of Proposed Rulemaking that species adulteration falls into a gray area between safety and economic adulteration (65 FR 14486, March 17, 2000, Other Consumer Protection Activities). FSIS will review public comments received on the species adulteration issue and further review the scientific literature and risk assessment mechanisms before declaring species adulteration a health hazard. Meanwhile, species adulteration is generally considered by FSIS as an economic issue. However, investigations by FSIS of species adulteration incidents may include a determination regarding the impact of species adulteration as a health hazard on a case-by-case basis.

4-602.12 Cooking and Baking Equipment.

Food-contact surfaces of cooking equipment must be cleaned to prevent encrustations that may impede heat transfer necessary to adequately cook food. Encrusted equipment may also serve as an insect attractant when not in use. Because of the nature of the equipment, it may not be necessary to clean cooking equipment as frequently as the equipment specified in § 4-602.11.

4-602.13 Nonfood-Contact Surfaces.

The presence of food debris or dirt on nonfood contact surfaces may provide a suitable environment for the growth of microorganisms which employees may inadvertently transfer to food. If these areas are not kept clean, they may also provide harborage for insects, rodents, and other pests.

Methods

4-603.11 Dry Cleaning.

Dry cleaning methods are indicated in only a few operations, which are limited to dry foods that are not potentially hazardous (time/temperature control for safety foods). Under some circumstances, attempts at wet cleaning may create microbiological concerns.

4-603.12 Precleaning.

Precleaning of utensils, dishes, and food equipment allows for the removal of grease and food debris to facilitate the cleaning action of the detergent. Depending upon the condition of the surface to be cleaned, detergent alone may not be sufficient to loosen soil for cleaning. Heavily soiled surfaces may need to be presoaked or scrubbed with an abrasive.

4-603.13 Loading of Soiled Items, Warewashing Machines.

Items to be washed in a warewashing machine must receive unobstructed exposure to the spray to ensure adequate cleaning. Items which are stacked or trays which are heavily loaded with silverware cannot receive complete distribution of detergent, water, or sanitizer and cannot be considered to be clean.

4-603.14 Wet Cleaning.

Because of the variety of cleaning agents available and the many different types of soil to be removed it is not possible to recommend one cleaning agent to fit all situations. Each of the different types of cleaners works best under different conditions (i.e., some work best on grease, some work best in warm water, others work best in hot water). The specific chemical selected should be compatible with any other chemicals to be used in the operation such as a sanitizer or drying agent.

4-603.15 Washing, Procedures for Alternative Manual Warewashing Equipment.

Some pieces of equipment are fixed or too large to be cleaned in a sink. Nonetheless, cleaning of such equipment requires the application of cleaners for the removal of soil and rinsing for the removal of abrasive and cleaning chemicals, followed by sanitization.

4-603.16 Rinsing Procedures.

It is important to rinse off detergents, abrasive, and food debris after the wash step to avoid diluting or inactivating the sanitizer.

4-603.17 Returnables, Cleaning for Refilling.

The refilling of consumer-owned beverage containers introduces the possibility of contamination of the filling equipment or product by improperly cleaned containers or the improper operation of the equipment. To prevent this contamination and possible health hazards to the consumer, the refilling of consumer-owned containers is limited to beverages that are not potentially hazardous (time/temperature control for safety) foods. Equipment must be designed to prevent the contamination of the equipment and means must be provided to clean the containers at the facility.

Objective

4-701.10 Food-Contact Surfaces and Utensils.

Effective sanitization procedures destroy organisms of public health importance that may be present on wiping cloths, food equipment, or utensils after cleaning, or which have been introduced into the rinse solution. It is important that surfaces be clean before being sanitized to allow the sanitizer to achieve its maximum benefit.

Frequency

4-702.11 Before Use After Cleaning.

Sanitization is accomplished after the warewashing steps of cleaning and rinsing so that utensils and food-contact surfaces are sanitized before coming in contact with food and before use.

Methods

4-703.11 Hot Water and Chemical.

Efficacious sanitization depends on warewashing being conducted within certain parameters. Time is a parameter applicable to both chemical and hot water sanitization. The time hot water or chemicals contact utensils or food-contact surfaces must be sufficient to destroy pathogens that may remain on surfaces after cleaning. Other parameters, such as rinse pressure, temperature, and chemical concentration are used in combination with time to achieve sanitization.

When surface temperatures of utensils passing through warewashing machines using hot water for sanitizing do not reach the required 71°C (160°F), it is important to understand the factors affecting the decreased surface temperature. A comparison should be made between the machine manufacturer's operating instructions and the machine's actual wash and rinse temperatures and final rinse pressure. The actual temperatures and rinse pressure should be consistent with the machine manufacturer's operating instructions and within limits specified in §§ 4-501.112 and 4-501.113.

If either the temperature or pressure of the final rinse spray is higher than the specified upper limit, spray droplets may disperse and begin to vaporize resulting in less heat delivery to utensil surfaces. Temperatures below the specified limit will not convey the needed heat to surfaces. Pressures below the specified limit will result in incomplete coverage of the heat-conveying sanitizing rinse across utensil surfaces.

Objective

4-801.11 Clean Linens.

Linens that are not free from food residues and other soiling matter may carry pathogenic microorganisms that may cause illness.

Frequency

4-802.11 Specifications.

Linens, cloth gloves, and cloth napkins are to be laundered between uses to prevent the transfer of pathogenic microorganisms between foods or to food-contact surfaces. The laundering of wet wiping cloths before being used with a fresh solution of cleanser or sanitizer is designed to reduce the microbiological load in the cleanser and sanitizer and thereby reduce the possible transfer of microorganisms to food and nonfood-contact surfaces.

Methods

4-803.11 Storage of Soiled Linens.

Soiled linens may directly or indirectly contaminate food. Proper storage will reduce the possibility of contamination of food, equipment, utensils, and single-service and single-use articles.

4-803.12 Mechanical Washing.

Proper laundering of wiping cloths will significantly reduce the possibility that pathogenic microorganisms will be transferred to food, equipment, or utensils.

4-803.13 Use of Laundry Facilities.

Washing and drying items used in the operation of the establishment on the premises will help prevent the introduction of pathogenic microorganisms into the environment of the food establishment.

Drying

4-901.11 Equipment and Utensils, Air-Drying Required.

Items must be allowed to drain and to air-dry before being stacked or stored. Stacking wet items such as pans prevents them from drying and may allow an environment where microorganisms can begin to grow. Cloth drying of equipment and utensils is prohibited to prevent the possible transfer of microorganisms to equipment or utensils.

4-901.12 Wiping Cloths, Air-Drying Locations.

Cloths that are air-dried must be dried so that they do not drip on food or utensils and so that the cloths are not contaminated while air-drying.

Lubricating and Reassembling

4-902.11 Food-Contact Surfaces.

Food-contact surfaces must be lubricated in a manner that does not introduce contaminants to those surfaces.

4-902.12 Equipment.

Equipment must be reassembled in a way that food-contact surfaces are not contaminated.

Storing

4-903.11 Equipment, Utensils, Linens, and Single-Service and Single-Use Articles.

Clean equipment and multiuse utensils which have been cleaned and sanitized, laundered linens, and single-service and single-use articles can become contaminated before their intended use in a variety of ways such as through water leakage, pest infestation, or other insanitary condition.

4-903.12 Prohibitions.

The improper storage of clean and sanitized equipment, utensils, laundered linens, and single-service and single-use articles may allow contamination before their intended use. Contamination can be caused by moisture from absorption, flooding, drippage, or splash. It can also be caused by food debris, toxic materials, litter, dust, and other materials. The contaminatin is often related to unhygienic employee practices, unacceptable high-risk storage locations, or improper construction of storage facilities.

Preventing Contamination

4-904.11 Kitchenware and Tableware.
4-904.12 Soiled and Clean Tableware.
4-904.13 Preset Tableware.

The presentation or setting of single-service and single-use articles and cleaned and sanitized utensils shall be done in a manner designed to prevent the contamination of food- and lip-contact surfaces.

4-904.14 Rinsing Equipment and Utensils after Cleaning and Sanitizing.

The rinsing of cleaned and sanitized utensils and equipment in a manner that may contaminate the surfaces before they are used, such as running them under a faucet or by dipping them in a vessel of water, is prohibited. The application of a post-sanitizing rinse is restricted to warewashing machines because there will be little opportunity for contamination of the potable water rinse if applied within the confines of a compliant warewashing machine. Provided the sanitization is achieved before the rinse is applied and as long as any chemical sanitizers are used in accordance with an EPA-registered label, the sanitary state of utensils and equipment should not be altered by applying a potable water rinse after the required final sanitizing rinse within a warewashing machine.