• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Vaccines, Blood & Biologics

  • Print
  • Share
  • E-mail

Characterization of Bacterial Glycoconjugates and Development of Associated Vaccine Technologies

Principal Investigator: Willie F. Vann, PhD
Office / Division / Lab: OVRR / DBPAP / LBP


General Overview

Disease-causing bacteria coat themselves with a variety of complex chains of sugar molecules called polysaccharides. These polysaccharide coats are essential for the survival of these bacteria in the human blood stream. Since these structures are important for survival of bacteria in the blood stream they are perfect targets the body's defense mechanisms. Scientists have learned that these polysaccharide chains can be made into effective vaccines against disease causing microorganisms.

Our laboratory is studying how bacteria make these polysaccharide coats so we can develop new techniques to make vaccines against bacteria coated with these polysaccharides. Specifically, we are investigating new ways to prepare and analyze vaccines prepared from bacterial polysaccharide coats using molecular biology and biochemical techniques. What we learn from this work will be of great help to us in understanding and evaluating current and future techniques for manufacturing carbohydrate vaccines.


Scientific Overview

Bacterial pathogens are often coated with polysaccharide virulence factors and some pathogens produce toxins that bind to host oligosaccharides using those host molecules as receptors for entry into the cell. These polysaccharides and toxins are excellent targets for preventing and controlling disease. Indeed, both polysaccharides and polysaccharides conjugated to inactivated toxins are the key components of vaccines that are very effective in preventing disease caused by Haemophilus influenzae, Streptococcus pneumonia, and several serogroups (i.e., "variations of") of Neisseria meningitidis.

The goals of this research project are 1) to determine the metabolic pathway for the synthesis of polysaccharides in gram negative pathogens and use this knowledge to develop methods for preparing glycoconjugate vaccines using metabolic engineering; and 2) to improve the manufacture of current conjugate vaccines through the investigation of conjugation chemistry.

While the currently licensed polysaccharide vaccines have been successful, manufacture and control of quality and efficacy of these products present regulatory challenges due to lack of a detailed definition of the immunogens. The novel technology developed and knowledge gained by this work will help to us to better characterize vaccines and predict if alternative vaccines will be effective.


Publications

J Bacteriol 2011 Apr;193(7):1576-82
Characterization and acceptor preference of a soluble meningococcal group C polysialyltransferase. Exit Disclaimer
Peterson DC, Arakere G, Vionnet J, McCarthy P, Vann WF

Glycoconj J 2010 Jan;27(1):69-77
Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant. Exit Disclaimer
Bongat AF, Saksena R, Adamo R, Fujimoto Y, Shiokawa Z, Peterson DC, Fukase K, Vann WF, Kovac P

Vaccine 2007 Nov 14;25(46):7972-80
Comparison of Neisseria meningitidis serogroup W135 polysaccharide-tetanus toxoid conjugate vaccines made by periodate activation of O-acetylated, non-O-acetylated and chemically de-O-acetylated polysaccharide. Exit Disclaimer
Gudlavalleti SK, Lee CH, Norris SE, Paul-Satyaseela M, Vann WF, Frasch CE

Mol Microbiol 2007 Sep;65(5):1258-75
Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Exit Disclaimer
Freiberger F, Claus H, Günzel A, Oltmann-Norden I, Vionnet J, Mühlenhoff M, Vogel U, Vann WF, Gerardy-Schahn R, Stummeyer K

Glycobiology 2007 Jul;17(7):735-43
Successive glycosyltransfer of sialic acid by Escherichia coli K92 polysialyltransferase in elongation of oligosialic acceptors. Exit Disclaimer
Vionnet J, Vann WF

Proc Natl Acad Sci U S A 2007 Jul 10;104(28):11557-61
Extracellular structure of polysialic acid explored by on cell solution NMR. Exit Disclaimer
Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J, Freedberg DI

Altern Lab Anim 2007 Jun;35(3):323-31
The potential of physicochemical and immunochemical assays to replace animal tests in the quality control of toxoid vaccines. The report and recommendations of ECVAM workshop 61. Exit Disclaimer
Metz B, Brunel F, Chamberlin C, van der Gun J, Halder M, Jiskoot W, Kersten G, van Opstal O, Petersen JW, Ravetkar SD, Redhead K, Schwanig M, Wilhelmsen ES, Vann WF, Hendriksen C

Gene 2006 Dec 15;384:113-9
Escherichia coli BL21(DE3) chromosome contains a group II capsular gene cluster. Exit Disclaimer
Andreishcheva EN, Vann WF

Biochemistry 2006 Nov 14;45(45):13511-13516
Functional Molecular Mass of Escherichia coli K92 Polysialyltransferase As Determined by Radiation Target Analysis. Exit Disclaimer
Vionnet J, Kempner ES, Vann WF

J Bacteriol 2006 Sep;188(17):6195-206
Separate pathways for O acetylation of polymeric and monomeric sialic acids and identification of sialyl O-acetyl esterase in Escherichia coli K1. Exit Disclaimer
Steenbergen SM, Lee YC, Vann WF, Vionnet J, Wright LF, Vimr ER

Biochem J 2006 Jul 1;397(1):195-201
Elimination of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid 9-phosphate synthase activity from human N-acetylneuraminic acid 9-phosphate synthase by a single mutation. Exit Disclaimer
Hao J, Vann WF, Hinderlich S, Sundaramoorthy M

J Bacteriol 2006 Mar;188(5):1786-97
Gene Products Required for De Novo Synthesis of Polysialic Acid in Escherichia coli K1. Exit Disclaimer
Andreishcheva EN, Vann WF

Biochem J 2004 Oct 1;383(Pt 1):83-9
Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni. Exit Disclaimer
Sundaram AK, Pitts L, Muhammad K, Wu J, Betenbaugh M, Woodard RW, Vann WF

J Bacteriol 2004 Feb 1; 186(3): 706-712
The NeuC Protein of Escherichia coli K1 Is a UDP N-Acetylglucosamine 2-Epimerase. Exit Disclaimer
Vann WF, Daines DA, Murkin AS, Tanner ME, Chaffin DO, Rubens CE, Vionnet J, Silver RP

     
 

Contact FDA

(800) 835-4709
(240) 402-8010
Consumer Affairs Branch (CBER)

Division of Communication and Consumer Affairs

Office of Communication, Outreach and Development

Food and Drug Administration

10903 New Hampshire Avenue

Building 71 Room 3103

Silver Spring, MD 20993-0002